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Abstract

We consider interregional migration, where regions may be interpreted as clubs, social
subgroups, species, or strategies. Using the positive definite adaptive (PDA) dynamics,
which include the replicator dynamics, we examine the evolutionary stable state (ESS) and
the asymptotic stability of the spatial distribution of economic activities in a multiregional
system. We derive an exact condition for the equivalence between ESS and asymptotically
stable equilibrium in each PDA dynamic. We show that market outcome yields the efficient
allocation of population with an additional condition. We also show that interior equilibria
are stable in the presence of strong congestion diseconomies but unstable in the presence of
strong agglomeration economies with a further condition.

Keywords: asymptotic stability, ESS, positive definite adaptive dynamics, replicator dy-
namics, economic geography.
J.E.L. Classification: C62, C73, R23.

1 Introduction

General equilibrium analysis in international economics or in economic geography has usually
dealt with two regions only. It is often said that analyzing more than two regions is no eas-
ier than analyzing the universal gravitation among more than two particles in physics. General
equilibrium analysis of multiregional dynamical systems is very complicated since we must simul-
taneously consider not only prices and quantities in all regions but also interregional migration
of firms and households.

In this paper, assuming that all economic variables constituting utility functions are ex-
pressed by the spatial distribution of population as reduced forms, we pay attention to spatial
equilibrium and the optimum population distribution. It is important to know if there exists a
spatial equilibrium such that no economic agent has an incentive to migrate in a multiregional
system. It is also important to know whether or not these equilibria are stable against any
perturbations. However, Fujita, Krugman and Venables (1999), Fujita and Thisse (2001), Otta-
viano, Tabuchi and Thisse (2001) and Tabuchi, Thisse and Zeng (2001) among others, analyze
spatial equilibria in multiregional systems without fully examining the existence and stability of
these equilibria.

Concerning the ezistence of equilibrium, Miyao (1978) showed that a spatial equilibrium
in a dynamical system exists when migration is probabilistic for any continuous probability
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function, any continuous utility function, and any number of regions. Ginsburgh, Papageorgiou
and Thisse (1985) have shown the existence of spatial equilibrium for a dynamical system when
migration is determined by interregional utility differentials with any continuous utility function
and for any number of regions.

However, very little is known concerning the stability of spatial equilibrium except for the fact
that the number of regions is two. Miyao (1978) and Ginsburgh et al. (1985) analyze stability
conditions in a multiregional system using probabilistic models. Although they provide some
sufficient conditions for stability, these conditions seem to be far from necessary for stability.
Using a deterministic model of a multiregional system, Tabuchi (1986) obtained instability
conditions of interior equilibrium, while Zeng (2001) derived stability conditions of interior and
corner equilibria. In both cases, however, they use a specific dynamic.

In this paper, we establish stability and instability conditions of spatial equilibrium in positive
definite adaptive (PDA) dynamics including the replicator dynamics (Taylor and Jonker, 1978).

We would like to emphasize that the model of our paper is general enough in three respects.
First, although we deal with regions, they may be interpreted as various social subgroups — for
example, clubs in local public finance and strategies in population games. Second, our results
are for any number of regions, whereas almost all results in the previous literature are limited
to two regions. Finally, our dynamics is not confined to a simple economic model of utility
differentials. It includes not only the gravity models in international and regional economics,
but also the replicator dynamics in biology and game theory as special cases.

The remainder of the paper is organized as follows. Spatial equilibrium and its asymptotic
stability are defined formally in Sections 2. We use PDA dynamics to describe migration behavior
in Section 3. Section 4 defines ESS and asymptotic stability in PDA dynamics and clarifies
their mathematical relationship. Based on this, we establish a theorem on the equivalence
of asymptotic stability and ESS conditions under somewhat general conditions on the utility
functions in Section 5. We find that the market outcome and the social optimum of population
distribution coincide by imposing the symmetric condition on the utility functions in Section
6. We then identify conditions that generate market distortion. In Section 7, we derive the
simple stability and instability conditions of interior equilibrium with a further assumption on
the utility functions. It is clarified that the system tends to be stable (unstable) in the presence
of negative (positive) externalities. Section 8 concludes.

2 Spatial equilibrium

The space-economy is made of n > 2 regions. The total population is fixed and normalized to

1. Let z; € [0,1] denote the population share in region ¢ = 1,... ,n and let
n
X = {x = (21, ,70); Z:):Z =1 and x; > 0}.
i=1

Markets are monopolistically competitive as in Fujita et al. (1999) or markets are competitive
with Marshallian externalities as in Henderson (1974). Each firm produces a differentiated
product in a region. Each firm selects a price so as to maximize its profit in monopolistically
competitive markets with free entry and free migration of firms. Each homogeneous household
consumes a variety of differentiated products so as to maximize its utility under an income
constraint. In addition, each household chooses a region with the highest utility under free
interregional migration. Suppose that all prices and quantities are uniquely determined by
solving a set of the first-order conditions for maximum, together with the zero profit condition



and the free migration condition. Then, we would be able to express the indirect utility in each
region as a function of population distribution in a general equilibrium context.!

Let u;(x) be the (indirect) utility level residing in region ¢ = 1,... ,n, where u;(x) satisfies
the so-called Lipschitz condition and is hence continuous in . Assuming a zero cost of migration,
each household freely migrates between regions so as to maximize its utility, resulting in an equal
utility level u*. The distribution &* € X is a spatial equilibrium when no individual can receive a
higher utility level by migrating to another region. Formally, a distribution x* is an equilibrium

if u* exists such that
uwi(x*) =u* if af >0,
wi(x*) <wu* if af =0.

The equality means that the utility level is constant across regions with positive population. On
the other hand, the inequality implies that some regions may have zero population in equilibrium
with lower utility levels than other regions. Because u;(x) is continuous, we know that a spatial
equilibrium always exists from Proposition 1 of Ginsburgh et al. (1985).

3 Dynamics for migration

Consider an interior equilibrium «* = (z7F, ... ,2z})" with 2 > 0 for each region i so that we can
limit our concern to a neighborhood of x*. The population (share) migrating from the origin
region j to the destination region i(# j) during the unit time period is

zji = Mji(a,ui(z) — uj(z))

= fij(x)[ui(x) — uj(x)] for i,5 € {1,... ,n}, (1)
where the adjustment speed of migration is
ani(a:, 0)

o) = B

by Taylor’s expansion with respect to u; — uj.? By definition of xj;, the symmetry f;; = fj;
holds for all 2,5 = 1,... ,n. For convenience, we set f;; = 0 for all 1.
Summing (1) over j yields a dynamical system of multi-regions as:

€Ty = E -Tji

J#i
= fii > (wik — ujr)Tp (2)
J# k

1See Krugman (1993) and Fujita, Krugman and Mori (1999) inter alia for more detailed economic descriptions
of firm and household behaviors.
2Note that fi; is related to the attributes of the distribution 2 and origin-destination relationships, such as
the distance. For example, the gravity model sets
Tilj
2
dz;

fis =

where d;; is the distance between regions ¢ and j and « is a positive constant. The term x; is interpreted as the
supply of migrants in the origin region, and the term z; is the demand for migrants, such as job opportunities in the
destination region. This gravity model is widely used in empirical analyses of migration and international trade—
for example, Greenwood (1975) and Bergstrand (1985, 1989)—and there are some microeconomic foundations in
Wilson (1967), Anderson (1979), Bergstrand (1985), and Sen and Smith (1995).



x = F(z)U(x)x, (3)
where
fi  —he -+ —fm uil w2 o Uiy
e —{12 f;2 EE —Jj2n = u'21 u?2 o Uzp
_ fln —fon o fa Upl Una - Unp
and f; = >0, fij fori = 1,... ,n. In evolutionary game theory, u;(x) is interpreted as absolute

fitness, and (F(x)U(x)x); is relative fitness.
Following Hopkins and Seymour (2000), we call (3) a positive definite adaptive (PDA) dy-
namic® if the following conditions additionally hold.

(i) Every element of F' is continuously differentiable in x. (4)
(ii) y'Fy > 0 for all y € R™ which is not a multiple of 1 = (1,...,1)". (5)

Together with the Lipschitz condition on u;(x), condition (4) ensures a unique solution for
each PDA dynamic.

The class of PDA dynamics is large enough to allow f;; < 0 for several i and j. If f;; > 0 for
all 7 # j, then it is consistent with a well-established tradition in migration theory (Greenwood,
1975): people migrate from low- to high-utility regions from (1). If we specify f;; = kx;z; for
all 7, 7, then the PDA dynamics (3) turn out to be the replicator dynamics:

T = KX [uz(ac)—ijuj(:B)] fori=1,...,n.
J

If we set f;j = x/n, then (3) is reduced to the simple dynamics (Tabuchi, 1986; Friedman, 1991;
Zeng, 2001):

s = 1 [ua(a) — %Zuj(a,-)] for i=1,... .
J

4 Asymptotic stability and evolutionarily stable state

A spatial equilibrium x* is asymptotically stable if, for any positive €, there exists a neighborhood
N(x*) of x* such that for any £° € N(z*), the solution x(t) = (x1(t),... ,7,(t)) of a given
dynamical system with an initial value °(0) = ¥ satisfies ||z(t) — z*||(= max;=1, , |7i(t) —
xf|) < e for any time ¢t > 0 and lim;_,o, x(t) = «*. It is known that equilibrium =* of (3) is
asymptotically stable if all the real parts of eigenvalues of F(x*)U(x*) are negative.

3Hofbauer and Sigmund (1990, 1998) call such a dynamic simply adaptive dynamic. This dynamic is weak
compatible with a fitness function w;(x) (Friedman, 1991).



On the other hand, a spatial equilibrium x* is an evolutionarily stable state (ESS) if for
every perturbation (strategy) x#x*,

D (1 - a* +ex) < Y zjui((1— €)x* + ex) (6)
i=1 =1

holds for any sufficiently small ¢ > 0. Linearizing u;(-) in the neighborhood of ¢, (6) is approx-
imated as

(x —x*)U(x —x*) <0, (7)

Hence, * is ESS if and only if the following optimization problem has a unique maximum at
T =cx".
max (x—x*)'U(x — x") (8)
xr

subject to le =1
i

With the Lagrange multiplier \;, the first-order conditions for maximum are
2(3:i — x?)u“ + Z(SU] - :c;k)(uzj + Uji) - )\i =0 for i = 1, e, n,
J#i

Equilibrium «* is ESS only if the following second-order conditions of semi-negative defi-
niteness are satisfied:

/
(=1)™Ug[l---m] = (-1)" 2 U({1---m}) i U{Ll---m}) |>0  ¥Ym>2, (9)
2
where
Uiq1  Wigig 0 UWUgidy,
U{i1ig- - im}) = izt Wizdy 70t Hiai
Wippis  Wippia " Wipio,

Note that —Ug[1---m)] is the sum of all the cofactors of [U({1---m}) +U({1---m})’] /2. If the
inequalities in (9) hold strictly, then * becomes an ESS. For later purposes, we define

which is the sum of all the cofactors of U({1---m}).

The following lemma illuminates the important relationship between the ESS property and
the asymptotic stability. Although this result is partly obtained by Samuelson (1947), Hines
(1980) first derives the following lemma with respect to R™, and Hopkins (1999) with respect to

Ry = {(z1,.. ,2n)| >oiy 2 = 0}

4An ESS is called regular if all strategies that are a best reply to &* are in its support. Following most of the
literature, we only consider a regular ESS in this paper.




Lemma 1 The following two statements are equivalent;

(i) Matriz U + U’ is negative definite when constrained to R ;

(i1) For any matriz F' which is positive definite when constrained to Rfj, the eigenvalues of
FU for all eigenvectors in Rfj have negative real parts.

Proposition 1 Suppose Ug[iy - - ip] # 0 for any m > 2, then an equilibrium is ESS if and only
if it is asymptotically stable for any PDA dynamic.

Hopkins (1999) gives a proof for the only if part of Proposition 1.> The if part holds
evidently.

Proposition 1 shows that the ESS is equivalent to the asymptotic stability of the whole
class of PDA dynamics. When x* is asymptotically stable for several PDA dynamics, it is not
necessarily ESS. However, we will show that this is true under a certain condition in the next
section.

5 Equivalence between asymptotic stability and ESS

We show in this section that the converse of Proposition 1 becomes true when one of the
conditions in Lemma 2 holds. That is, the asymptotic stability conditions for any PDA dynamic
coincide with the ESS conditions: if * is asymptotically stable in a PDA dynamic, then it is
ESS, and vice versa. For this purpose, we begin with lemmas.

Lemma 2 For n > 3, the following four statements are equivalent:

(i) For any m € {3,... ,n} and i1,... ,im € {1,... ,n}, Ualir---im] = Ugli1 - - - im] holds.
(ii) For any distinct i,7,k € {1,... ,n}, Ualijk] = Ug[ijk] holds.

(iii) For any distinct i,5,k € {1,... ,n}, it holds that

Ujj + Uik + Uk = Uk + Ugj + Ugy. (10)

(iv) There exists a = (a1,... ,an) € R™ such that ujj — uj; = aj —a; for alli,j=1,... ,n.

A proof is in the Appendix. Lemma 2 gives exact conditions for the equivalence between the
asymptotic stability and the ESS property shown in Theorem 1 below.

Lemma 3 Suppose Ugli1 -+ im] # 0 for any m > 2, then for any symmetric U at spatial
equilibrium, the asymptotically stable equilibria are precisely the ESS in every PDA dynamic.

Proof. For any specific PDA dynamic, each ESS is asymptotically stable by Proposition 1.
In the following, we prove the converse. Due to the symmetry of U, we have

/
d@Uz) i U
dt
=22'Ux
=2 Z u;(x) Z[ui(w) — uj(x)] fij
i=1 Jj=1

The strict inequality condition of (9) is not clearly stated in Hopkins (1999). However, it is necessary because
(7) is just an approximation of (6).



n

= Z Zfz] Z )u](a:)f”

1=1 i,j=1
=2(Uz)'F(Ux)

The third equality is because u;(x) = (Ux);. The inequality is due to the definition of PDA
dynamics (5), with equality if and only if = is an interior equilibrium, so that u;(x) = u;(x) for
alli,j=1,...,n

Let * be any asymptotically stable equilibrium. Then, £’'Ux < *Ux* holds for all  # x*
in the neighborhood of x*. Replacing x by 2x — x* (which is also close to x*), we obtain
'Ux < x¥Ux, implying that * is an ESS. O

Based on the lemmas, we then establish our main result.

Theorem 1 For any U satisfying condition (10) at spatial equilibrium, the asymptotically stable
equilibria are precisely the ESS in any PDA dynamic.

Proof. Let
vi(x) = ui(x) — Z axxg.
k

First, we show that the asymptotic stability properties are the same between v;(x) and u;(x).
For any distinct %, j, we readily have

ui(x) — uj(x) = vi(@) — v;(x), (11)
8’1)1‘ . 8uz 8’U,j o 8’Uj

= —Qa; = a; =
821?]‘ 8xj J 821?1 821?1 ’

(12)

where the second equality in (12) is due to condition (iv) in Lemma 2. From (11), the solutions
x"(t) of the dynamics (13) and x"(¢) of (14) should be the same because of the uniqueness of
solution

{ 2 = 5, fis (@) vi() — vy()] (13)
{ = Y0, fig (@) us(®) — uj(@)) (14)
— 50

implying that the asymptotic stability properties are the same between them. Second, we know
from Lemma 3 that the asymptotically stable equilibria are precisely the ESS in (13) for any
relative fitness function v(x) satisfying the symmetry condition (12).

Third, since

> (@i — af)vij(ay — 2f) = Z(m — afuij(ay — 25) = Y (@i —xf) Y aj(x;
J

1,J 7

—Z i Juij (x5 — x3),

the ESS property for v(x) is identical to that for u(x).



Finally, by these three equivalence, the ESS property for u(x) is shown to be the same as
the asymptotic stability for any u(x) satisfying condition (iv) in Lemma 2. O

It is known that asymptotically stable equilibria in replicator dynamics are precisely ESS
in doubly symmetric games (Losert and Akin, 1983). Theorem 1 is more general. The equiv-
alence property between asymptotic stability and ESS holds for each PDA dynamic and for
each symmetric game with a payoff matrix U satisfying (10). Note that the class of PDA dy-
namics includes the replicator dynamics and the class of symmetric games with payoff matrices
satisfying (10) includes doubly symmetric games.

It is also known that if U is negative definite, the equilibrium is asymptotically stable from
Proposition 1; and if U is positive definite, the equilibrium is unstable from Proposition 3 in
Hopkins and Seymour (2000). If U is neither negative nor positive definite, then the stability
depends on the dynamics F'. However, the equilibrium turns out to be always unstable under
condition (10) when U is not negative definite by Theorem 1, which provides nearly unifying
conditions that are both sufficient and necessary.® Hence, Taylor-Jonker’s (1978, p.151) example,
that the equilibrium is not ESS but asymptotically stable, never appears under condition (10).

In the context of economic geography, Theorem 1 is interpreted as follows. ESS is based
on “corporate rationality” in that a mutant entrepreneur maximizes the average utility level
of employees by employing a small number of them from various regions and relocating them
to several regions. That is, the entrepreneur optimizes the distribution of employees among
multilocational branch firms. On the other hand, asymptotic stability in PDA dynamics is
based on “individual rationality” in that each individual chooses a region so as to mazximize her
utility level in the long run. Note that individuals do not always migrate from lower- to higher-
utility regions (i.e., f;; > 0) in PDA dynamics. They may temporarily migrate from higher- to
lower-utility regions (i.e., f;; < 0), but they migrate so that their utilities become the highest
in the long run. Under (10), the corporate behavior depicted by ESS is shown to coincide with
the individual behavior described by asymptotic stability in PDA dynamics.

Not surprisingly, Theorem 1 shows that the stability conditions are determined only by the
derivatives of the utilities u;;’s but independent of the interaction terms f;;’s for any PDA
dynamic. Such independence of f;; is also found in computing the spatial equilibrium, which is
u; () =constant.

The assumption (10) is not so restrictive. From Lemma 2, (10) is the same as

ui; =bi+by;  with b =b; Vi, j=1,...,n.
Thus, Theorem 1 applies if the utility function is linearized as
J
J#i

in the neighborhood of equilibrium x* as in Tabuchi (1982). The first term (u; + a;) is the
exogenous net amenities in region ¢, while the second and the third terms are endogenously de-
termined net benefits of intraregional and interregional market interactions. One may consider
the population fictitious play in which one individual chooses region i and another individual
selects region j with probability x;. The second term is the case of i = j, where her payoft b;

®The reason for “nearly” is that there remain the cases of Ug[i1 ---im] = 0 (m > 2) in (9). However, such
critical cases are indeterminate without information on the higher-order partial derivatives.



represents the intraregional net benefits or spatial externalities of agglomeration net benefits.
The third term is the case of i # j, where her payoff b;; expresses the interregional net benefits,
which is assumed symmetric b;; = bj;. In reality, this assumption may be justified since inter-
regional transportation and communication benefits and costs, such as telephone charges and
airfares, are symmetric. In this situation, the asymptotic stability is equivalent to the negative
definiteness of U only.

6 Social optimum versus market equilibrium

Social optimum configuration x° is defined by the most efficient allocation of population, which
is the solution of

max z'u(x) (16)

subject to sz = 1.

)

As before, linearizing u(x) around x° yields the first-order condition for optimum:

Z(Uij + uji)x; = constant. (17)
J

On the other hand, the spatial equilibrium condition is u;(x) = u* or

Z u;;x; = constant. (18)
J

If the symmetry condition u;; = wuj; is met for all 4 and j, the necessary conditions for
optimum (17) and equilibrium (18) are equalized. Similar to the proof of Lemma 3, we have the
following.

Theorem 2 For any symmetric U at spatial equilibrium, the socially optimum allocation of
population is automatically attained by the market mechanism for any PDA dynamic if the
equilibrium s unique.

It is often the case that true migration behavior is impossible to observe, and hence exact
dynamics cannot be depicted. However, insofar as the dynamics are in the class of PDA dynam-
ics, the market equilibrium is shown to be equal to the socially optimum if the symmetry holds
near the equilibrium and the equilibrium is unique. In this situation, no market intervention is
necessary. In other words, the reasons to prevent equilibrium paths approaching social optimum
are the asymmetric marginal utilities and multiple equilibria.

It is worth noting that the intraregional externalities u; do not cause any market distortion
if the conditions in Theorem 2 are met. This seems inconsistent with the well-known result that
the market outcome with positive (negative) externalities u; > (<)0 involves too little (much)
agglomeration if we can change the number of regions n (Henderson, 1974; Kanemoto, 1980).
However, since n is fixed here, such distortions do not occur. In fact, changing n is prohibitively
difficult in practice since emergence and disappearance of cities are not realized by infinitesimal
lows of migration.

Another important issue is the direction of market distortion. For n = 2 with linear utility
functions (15), we have

U1 — U21
20 4[12]

vy —af =



if they are interior solutions. Since U4[12] > 0 holds for asymptotic stability and ESS, we can
say that region 1 is overpopulated (underpopulated) if uio > u91 (u12 < u91), and is the socially
optimum size if w12 = us1. Unfortunately, such a result cannot be generalized for n > 3 except
for the symmetric case (Theorem 2).

Finally, the social welfare function (16) resembles the objective function (8) in deriving the
ESS condition. However, the former does not have z; and x}f, while the latter does. The social
planner maximizes the sum of all utilities (16) in optimum. In equilibrium, on the other hand,
each individual simply chooses a higher-utility region, or each multilocational firm allocates
employees in order to maximize their average utility level. Since each firm is small enough, it is
unable to maximize the sum of all utilities without the symmetry and uniqueness conditions.

7 Market interactions within regions

Due to the spatial proximity, the intraregional market interactions are usually much stronger
than the interregional market interactions. In order to crystallize the discussion, we consider
the special, but important, case of

ui(x) = wi(z;). (19)

Assumption (19) is justified when the impacts of own population are much stronger than those
of other populations, i.e., |u;;| > |u;x| for all i # k. For example, urban costs and benefits such
as congestion and product variety are usually closely related to population size within a region
only but not to the populations of other regions. This implies that the change in population
share z; on the utility levels in other regions w; is zero for all j(# i).

Since assumption (19) implies the symmetry assumption w;; = uj;, Theorem 2 applies. That
is, insofar as the market equilibrium is unique, it is the socially optimum allocation of population
for any marginal utility u; and for any PDA dynamic.

Corollary 1 Suppose the intraregional market interactions u;; are much larger than the inter-
regional ones u;j (j # ). Then, for any PDA dynamic, the socially optimum allocation of
population is automatically attained by the market mechanism if the equilibrium is unique.

Since assumption (19) also implies assumption (10), we know from Theorem 1 that the
ESS conditions coincide with the asymptotic stability conditions for any PDA dynamic. The
necessary and sufficient conditions for ESS are the negative definiteness of Up, which are
(=1)Ug[1l---i >0foralli=2,..., n.

Without loss of generality, let

UP] > U2 =+ 2> Upp. (20)

We have the following nearly necessary and sufficient conditions for the stability of spatial
equilibrium under the assumption (19).

Proposition 2 Any PDA dynamic (3) is asymptotically stable and is ESS if (i) or (ii) holds.
(l) u11 <0 and ugy < 0,
(Z’L) ui1 > 0> uog and Zz 1/Uii > 0.
Any PDA dynamic (3) is neither asymptotically stable nor ESS if (iii) or (iv) holds.
(111) uir > 0> uzp and Y, 1/u; <0,
(iv) u11 > 0 and ugy > 0.

10



A proof is in the Appendix. As in Theorem 1, Proposition 2 provides nearly unifying condi-
tions that are both sufficient and necessary.

Stability condition (i) in Proposition 2 says that if an increasing population always lowers
its utility level and a decreasing population always raises its utility level, no individual has an
incentive to migrate, and hence it is stable. In other words, congestion diseconomies within all
regions ensure the stability of interior equilibrium.

On the other hand, instability condition (iv) says that if a small migration between positively
sloped regions takes place due to a disturbance, then it is unstable. Since the utility level
increases in the region experiencing in-migration while it decreases in a region experiencing out-
migration, it generates further migration between the regions, leading to instability.” That is,
the existence of sufficiently large agglomeration economies within at least two regions destroys
the stability of interior equilibrium.

If there is only one positive slope of the utility function, conditions (ii) and (iii) apply. For
n = 2, suppose a small (net) migration were to occur from region 2 with uge < 0 to region 1
with w17 > 0, then the utility levels in both regions would increase. If uﬁl + u;zl > () as in case
(ii), then

Awl i Al‘Q _ Al‘l B Al‘l
Aup  Auy  Aup Aug

> 0, (21)

and hence the increase in region 2’s utility is higher. This necessarily generates the reverse
migration from region 1 to region 2, restoring the original equilibrium x*. On the other hand,
if uﬁl + ugzl < 0 as in case (iii), region 1’s utility is higher, which is unstable.

%

Figure 1: Stability in a multiregional system

A similar principle holds for n > 3. Suppose a small (net) migration from regionsi = 2,... ,n
with u; < 0 to region 1 with uy; > 0 takes place, while keeping the fixed total population as

Azy ==Y Az; > 0. (22)

=2

"It should be mentioned that Konishi, Le Breton and Weber (1997a) showed the existence of strong Nash
equilibrium related to (i) in Proposition 2 in the presence of negative externality called “partial rivalry,” and
Konishi, Le Breton and Weber (1997b) showed the nonexistence of equilibrium related to (iv) in Proposition 2 in
the presence of positive externality.

11



The change in the utility level in each region is illustrated in the diagram of Figure 1. Now,
from (22), the stability condition is rewritten as

Ar; = Az 1 1
— =N Az; [— —— ) >0. 23
Au1 + - Aui Z i A’U,Z‘ Aul ( )
=2 =2
If each Au; were to be the same for all i = 2,... ,n as in Figure 1, then (23) would be reduced

0 (21). Since the utility increase in region 1 is smaller than that in other regions (Au; < Au;),
the stability of the multiregional system is guaranteed.

8 Conclusion

In this paper, we have considered the spatial distribution of economic activities in a multiregional
dynamical system assuming that other variables, such as prices and quantities, are solved as a
function of the distribution in general equilibrium.

With regular conditions on utility functions (u;j +wux +ur; = Uik +ukj +u;;), we have proven
that asymptotic stability conditions and ESS conditions coincide in any PDA dynamic. In this
case, the stability of spatial equilibrium is ensured only by computing the signs of the principal
minors of the payoff matrix U, without computing all the eigenvalues of the dynamical system
FU (Theorem 1).

Imposing the symmetric assumption on the marginal utility functions (u;; = u;;), we have
shown that the market outcome of population distribution (equilibrium configuration) coincides
with globally efficient allocation of population (social optimum configuration) (Theorem 2).

Imposing a further assumption of negligible interregional externalities (u;; = 0,Vi # j), we
have derived simple stability conditions of spatial interior equilibrium (Proposition 2). Due to
the simple form of the conditions, we were able to interpret them and explain how the multire-
gional system becomes stable in several ways. We have shown that strong positive externalities
due to agglomeration economies destroy the interior equilibrium of the system whereas strong
negative externalities due to agglomeration diseconomies, such as congestion, stabilize the inte-
rior equilibrium.

So far we have obtained the stability conditions of spatial equilibrium, and Ginsburgh et
al. (1985) showed the existence of spatial equilibrium. However, not everything has been
elucidated on the nature of spatial equilibrium. In particular, there is no guarantee that a
spatial stable equilibrium always exists, although its existence seems quite likely. In fact, our
preliminary analysis indicates that the spatial stable equilibrium always exists under a class of
utility functions.

Appendix
Proof of Lemma 2
(i)=(ii). This is simply because (ii) is a special case of (i).
(ii)=-(iii). Obviously,
0 = Ualijk] — Uglijk] = (uij + uji + up — uji — upj — uir)?,

holds for any different combination of 4,5,k =1,... ,n.
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(ifi)=(iv). Let

aj = U1j — Uj1, 2,]21,...,71.

Then,

aj — G; = U1j + Uy — U1 — Uj1 = Uj1 + UL + Usj — Ujp — UL — Ujl = Uij — Ugg-

(iv)=-(i). We only prove that Ug[l---i] = Ux[l---i] holds for i« = 3,... ,n below. Other
cases can be proven by suitably renumbering the regions.

Upll---i] =

0 1 1 1
1 U1 (wiz +u21)/2 -+ (ur+ui)/2
1 (w12 +u21)/2 U2 s (ugi +u)/2
I (wig+un)/2  (u +ui)/2 - U
0 1 1 1
1 U1l ulg—(al—ag)/Q uli—(al—ai)/Q
1 UQ1+((11—CL2)/2 ug9 U2i_(a2_ai)/2
1w+ (a1 —a;)/2 upp+ (a2 —a;)/2 - U
0 1 1 1
1 u11+a1/2 u12—|—a2/2 u1i+ai/2
1 wuor+a1/2 wse+az/2 -+ wug+a;/2
1 ui1+a1/2 ui2+a2/2 uii+ai/2
o 1 1 - 1
1w w0 uy
1 wor woe -+ wy
1w ue Ui
Ugyll---1]

Proof of Proposition 2

Since the asymptotic stability conditions for any F' and the ESS conditions coincide under
assumption (19) by Theorem 1, it is sufficient to check the condition (9). From (20), the LHS
of (9) is rewritten as

(0 if two or more u;; are zeroes,

m
(™t Hum if only ugy is zero,

~om] = ik (24)

m
(=pmt H U Zu%] otherwise.
i=1



(i) If w11 # 0, then it is obvious from the last line in (24). If w1y = 0, then

n

(~)™Ug[1---m] = [[(—uw)> 0,
1=2

which satisfies (9) with strict inequality.

(ii) Obvious from the last line in (24).

(ili) Since (=1)"Ug[l---n] = ui [[;_o(—uii) D274 1/uj; < 0, this violates condition (9) for
m=n.

(iv) Since (—1)2Ug[12] = —u11 — ugz < 0, this violates (9) for m = 2. O
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