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Abstract

This paper investigates infinitely repeated prisoner-dilemma games where the

discount factor is less than but close to 1. We assume that monitoring is truly imperfect

and truly private, there exist no public signals and no public randomization devices, and

players cannot communicate and use only pure strategies. We show that implicit

collusion can be sustained by Nash equilibria under a mild condition. We show that the

Folk Theorem holds when players’ private signals are conditionally independent. These

results are permissive, because we require no conditions concerning the accuracy of

private signals such as the zero likelihood ratio condition. We also investigate the

situation in which players play a Nash equilibrium of a machine game irrespective of

their initial states, i.e., they play a uniform equilibrium. We show that there exists a

unique payoff vector sustained by a uniform equilibrium, i.e., a unique uniformly

sustainable payoff vector, which Pareto-dominates all other uniformly sustainable

payoff vectors. We characterize this payoff vector by using the values of the minimum

likelihood ratio. We show that this payoff vector is efficient if and only if the zero

likelihood ratio condition is satisfied. These positive results hold even if each player has

limited knowledge on her opponent’s private signal structure.

Keywords: Repeated Prisoner-Dilemma Games, Private Monitoring, Conditional

Independence, Folk Theorem, Uniform Sustainability, Zero Likelihood Ratio Condition,

Limited Knowledge.
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1. Introduction

This paper investigates infinitely repeated prisoner-dilemma games where the

discount factor is less than but close to 1. We assume that players not only imperfectly

but also privately monitor their opponents’ actions. Players cannot observe their

opponents’ actions directly, but can only observe their own private signals which are

drawn according to a density function over closed intervals conditional upon the action

profile played. There are no public signals.

The paper investigates the possibility that implicit collusion can be sustained by

Nash equilibria. We show that there exist Nash equilibrium payoff vectors which are

better than the one-shot Nash equilibrium payoff vector if the minimum of the

likelihood ratio indicating whether the opponent has chosen the right action satisfies a

mild condition. Furthermore, we show that an efficient payoff vector is approximated by

a Nash equilibrium payoff vector if this minimum likelihood ratio is equal to zero, i.e.,

if for each player there exists a private signal that indicates accurately whether her

opponent has chosen the right action. Note that as this signal is not public this

efficiency result is not immediate.

Given the zero likelihood ratio condition, it is well known that efficiency is

attainable in the limit of the discount factor even with imperfect monitoring provided

that monitoring is public. With private monitoring the problem is more delicate. Even

when a player is certain that a particular opponent has deviated, this certainty will

typically not be shared by the other players and they will be unable to coordinate on an

equilibrium which punishes the deviant in the continuation game. Nevertheless a more

complicated argument establishes that efficiency is attainable under this condition.

We also intensively investigate the situation in which players’ private signals are

conditionally independent, i.e., players can obtain no information on what their

opponents have observed by observing their own private signals. We show, as the main

theorem of this paper, that the Folk Theorem holds, i.e., every feasible and individually

rational payoff vector is approximated by a Nash equilibrium payoff vector, provided

that players’ private signals are conditionally independent. This result is permissive,

because we require no informational conditions concerning the accuracy of players’

private signals such as the zero likelihood ratio condition.

The study of repeated games with private monitoring is relatively new. Most earlier

work in this area has assumed that monitoring is either perfect or public and has

investigated only perfect public equilibria. Perfect public equilibrium requires that the

past histories relevant to future play are common knowledge in every period. This
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common knowledge property makes equilibrium analyses tractable, because players’

future play can always be described as a Nash equilibrium. When monitoring is only

private, however, it is inevitable that an equilibrium sustaining implicit collusion

depends on players’ private histories, and therefore, the past histories relevant to future

play are not common knowledge. This makes equilibrium analyses much more difficult,

especially in the discounting case, because players’ future play cannot be described as a

Nash equilibrium.

To the best of my knowledge, Radner (1986) is the first paper on repeated games

with private monitoring. Radner assumed no discounting, and showed that every

feasible and individually rational payoff vector can be sustained by a Nash equilibrium.1

The two papers by Matsushima (1990a, 1990b) appear to be the first to investigate the

discounting case. Matsushima (1990a) provided an Anti-Folk Theorem, showing that it

is impossible to sustain implicit collusion by pure strategy Nash equilibria when private

signals are conditionally independent and Nash equilibria are restricted to be

independent of payoff-irrelevant private histories. The present paper establishes the

converse result: the Folk Theorem holds when we use pure strategy Nash equilibria

which can depend on payoff-irrelevant private histories.

Matsushima (1990b) conjectured that a Folk Theorem type result could be obtained

even with private monitoring and discounting when players can communicate by

making publicly observable announcements. Subsequently, Kandori and Matsushima

(1998) and Compte (1998) proved the Folk Theorem with communication.

Communication synthetically generates public signals and consequently it is possible to

conduct the dynamic analysis in terms of perfect public equilibria as in the paper by

Fudenberg, Levine and Maskin (1994) on the Folk Theorem with imperfect public

monitoring. The present paper assumes that players make no publicly observable

announcements.

Interest in repeated games with private monitoring and no communication has been

stimulated by a number of recent papers, including Sekiguchi (1997), Bhaskar (1999),

Piccione (1998), and Ely and Valimaki (1999). Sekiguchi (1997) investigated a

restricted class of prisoner-dilemma games on the assumption that monitoring was

almost perfect and that players’ private signals were conditionally independent.

Sekiguchi was the first to show that an efficient payoff vector can be approximated by a

mixed strategy Nash equilibrium payoff vector even if players cannot communicate. By

                                                
1 See also Lehler (1989) and Fudenberg and Levine (1991) for the study of repeated games with

no discounting and with private monitoring.
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using public randomization devices, Bhaskar (1999) extended Sekiguchi’s result to

more general prisoner-dilemma games.

Piccione (1998) and Ely and Valimaki (1999) also considered repeated prisoner-

dilemma games when the discount factor is close to 1, and provided their respective

Folk Theorems. Both papers constructed mixed strategy equilibria in which each player

is indifferent between the right action and the wrong action irrespective of her

opponent’s possible future strategy. Piccione used dynamic programming techniques

over infinite state spaces, while Ely and Valimaki used two-state Markov strategies.

Both papers investigated only the almost-perfect monitoring case, and most of their

arguments rely heavily on this assumption. However, in the last section of his paper,

Piccione provides an example in which implicit collusion is possible even if players’

private observation errors are not infinitesimal.

Mailath and Morris (1998) investigate the robustness of perfect public equilibria

when monitoring is almost public, i.e., each player can always discern accurately which

private signal her opponent has observed by observing her own private signal. The

present paper does not assume that monitoring is almost public.

In consequence, this paper has many substantial points of departure from the earlier

literature. We assume that there exist no public signals, players make no publicly

observed announcements, and there exist no public randomization devices. We do not

require that monitoring is either almost perfect or almost public. Hence, the present

paper can be regarded as the first work to provide affirmative answers to the possibility

of implicit collusion with discounting when monitoring is truly imperfect and truly

private.

As such, this paper may offer important economic implications within the field of

industrial organization. In the real economy, communication between rival firms’

executives is restricted by Anti-Trust Law, on the assumption that such communication

enhances the possibility of a self-enforcing cartel agreement.2 Moreover, in reality,

firms usually cannot directly observe the prices or quantities of rival firms and the

aggregate level of consumer demand is stochastic. Instead, each firm’s only information

about its opponents’ actions within any particular period, is its own realized sales level

and, therefore, each firm cannot know what its opponents have observed. These

                                                
2 See such industrial organization textbooks as Scherer and Ross (1990) and Tirole (1988).

Matsushima (1990b), Kandori and Matsushima (1998) and Compte (1998) provided a

justification of why communication is so important for the self-enforcement of a cartel

agreement.
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circumstances tend to promote the occurrence of price wars, as each firm cannot know

whether a fall in its own sales is due to a fall in demand or a secret price cut by a rival

firm. In this way, it has been widely believed that a cartel agreement is most likely to be

breached when each firm’s monitoring of its opponents’ actions is truly private.3 In

contrast, the present paper shows that collusive behavior is possible even if

communication is prohibited and each firm obtains no public information on the prices

or quantities of its rivals.

This paper is closely related to Piccione (1998) and Ely and Valimaki (1999),

particularly the latter. This paper is also related to Matsushima (1999), which

investigated the impact of multimarket contact on implicit collusion in the imperfect

public monitoring case and provided the efficiency result by using the idea of a review

strategy equilibrium. Our equilibrium construction may be viewed as extending the

equilibrium construction of Ely and Valimaki combined with that of Matsushima to

general private signal structures.

The latter part of this paper, i.e., Sections 7 and 8, are devoted to considering

situations in which players have limited knowledge on their opponents’ strategies. Both

sections provide their respective sets of multiple possible strategies for each player.

Each player only knows that her opponent plays one of these possible strategies, but has

no idea which strategy is the correct one. We assume that it is common knowledge that

the played strategy profile satisfies the Nash equilibrium property, while which Nash

equilibrium is the correct one is not common knowledge.4 The purpose of these sections

is to clarify the possibility of implicit collusion even when players have limited

knowledge on their opponents’ strategies.

Section 7 regards a repeated prisoner-dilemma game as a machine game as explored

by, for instance, Rubinstein (1984), Neyman (1985), and Abreu and Rubinstein (1987).

A player behaves according to a machine which is defined as a combination of an

output function, a transition function, and an initial state of machine. A rule for player

                                                
3 Stigler (1964) is closely related. Moreover, Green and Porter (1984) investigated repeated

quantity-setting oligopoly when the market demand is stochastic and firms cannot observe the

quantities of their rival firms. They assumed that firms can publicly observe the market-clearing

price. In contrast, the present paper assumes that there exist no publicly observable signals such

as the market-clearing price.
4 In the analysis of situations in which strategies are not common knowledge, Bernheim (1984)

and Pearce (1984) introduced the concept of rationalizability instead of assuming that it is

common knowledge that players’ behaviors are described as a Nash equilibrium.
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i  is defined as a combination of an output function and a transition function. We

assume that players’ rules are common knowledge, but their initial states are not

common knowledge. Each player knows that her opponent's play is consistent with this

rule, but has no idea which initial state is the correct one. A rule profile is called a

uniform equilibrium if every machine (i.e., rule plus initial state) profile consistent with

this rule profile is a Nash equilibrium. Hence, all possible Nash equilibria are

interchangeable. A payoff vector is called uniformly sustainable if there exists a

uniform equilibrium such that every machine profile consistent with it induces virtually

the same payoff vector as the given payoff vector. Hence, all possible Nash equilibria

virtually induce this given payoff vector, i.e., are virtually payoff-equivalent.

We show that there exists a unique uniformly sustainable payoff vector which

Pareto-dominates all other uniformly sustainable payoff vectors. This Pareto-

dominance property is in sharp contrast with the fact that there exist a

continuum/countable set of Pareto-undominated perfect equilibrium payoff vectors. We

characterize this Pareto-dominant uniformly sustainable payoff vector by using the

values of the minimum likelihood ratio. We show that this payoff vector is efficient if

and only if the zero likelihood ratio condition is satisfied. Hence, the zero likelihood

ratio condition is not only sufficient but also necessary for efficient uniform

sustainability.

Abreu, Pearce and Stacchetti (1986) is related to this analysis. They investigated

symmetric repeated oligopoly with imperfect public monitoring modeled by Green and

Porter (1984), and characterized the optimal symmetric equilibrium, where the future

punishment is triggered by the observation of the public signals which correspond to the

minimum likelihood ratio. This optimal symmetric equilibrium is efficient if and only if

the minimum likelihood ratio is equal to zero. In contrast with their work, the present

paper does not assume that the model is symmetric, equilibria are restricted to be

symmetric, or that there exists any public signal.

Ely and Valimaki (1999) is also, and more closely, related. In their analysis of

Prisoner-Dilemma games with almost-perfect monitoring, Ely and Valimaki

constructed interchangeable Markov strategy Nash equilibria. A point of difference is

that Ely and Valimaki did not require that Nash equilibria are virtually payoff-

equivalent, whereas the present paper does.

Section 8 considers the situation in which players have limited knowledge on their

private signal structure. Each player knows her own private signal structure, i.e., knows

the conditional density function of her own private signal, but does not know her

opponent’s private signal structure, i.e., does not know the conditional density function
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of her opponent’s private signal. Each player’s strategy depends on her own private

signal structure, but is independent of her opponent’s private signal structure.

We provide the following two positive results. We reconsider the sustainability of

Nash equilibria and clarify whether the Folk Theorem can be achieved by using only

players’ strategies which depend only on their own private signal structures. Each

player behaves according to a mapping which assigns a strategy for this player to each

possible conditional density function over her own private signal. Their mappings are

assumed to be common knowledge, but each player does not know which strategy in the

range of the opponent’s mapping is actually played. We require that every pair of

strategies in the ranges of their mappings are Nash equilibria. We establish the Folk

Theorem with interchangeability and virtual payoff-equivalence. That is, if it is

common knowledge among players that private signals are conditionally independent,

then, for every feasible and individually rational payoff vector, there exists a profile of

mappings assigning each possible private signal structure a Nash equilibrium which

induces approximately the same payoff vector as this payoff vector. Hence, all possible

Nash equilibria can be regarded as being interchangeable and virtually payoff-

equivalent.

We also reconsider uniform sustainability discussed in Section 7 and show that the

Pareto-dominant uniformly sustainable payoff vector can be uniformly sustained by

using only players’ rules which depends only on their own private signal structures.

Each player behaves according to a mapping which assigns a rule for this player to each

possible conditional density function over her own private signal. Their mappings are

assumed to be common knowledge, but each player does not know which rule in the

range of the opponent’s mapping is the correct one. We require that every pair of rules

in the ranges of their mappings are uniform equilibria. Hence, all possible uniform

equilibria can be regarded as being interchangeable. We do not require the conditional

independence assumption. We show that the arguments in Section 7 hold even if each

player only knows her own private signal structure, i.e., we show that there exists a

profile of mappings which assigns each possible private signal structure a uniform

equilibrium such that every machine profile consistent with it induces virtually the same

payoff vector as the associated Pareto-dominant payoff vector.

The organization of this paper is as follows. Section 2 defines the model. Section 3

provides a theorem which characterizes a subset of sustainable payoff vectors. Section 4

gives the proof of this theorem. Section 3 shows that efficiency is sustainable under the

zero likelihood ratio condition. Section 5 assumes conditional independence and

provides the Folk Theorem. Section 6 gives the proof of this Folk Theorem. Section 7
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shows that there exists the Pareto-dominant uniformly sustainable payoff vector, and

this payoff vector is efficient if and only if the zero likelihood ratio condition is

satisfied. Section 8 considers two scenarios in which each player has limited knowledge

on her opponent’s private signal structure, and shows that the positive results provided

in the previous sections hold in each of these scenarios. Section 9 concludes.
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2. The Model

An infinitely repeated prisoner-dilemma game Γ( )δ = (( , , ) , , ),A u pi i i iΩ =1 2 δ  is

defined as follows. In every period t ≥ 1, players 1 and 2 play a prisoner-dilemma game
( , ) ,A ui i i=1 2 . Throughout this paper, we will denote j i≠ , i.e., denote j = 1  when i = 2 ,

and j = 2  when i = 1. Player i s'  set of actions is given by A c di i i= { , }. Let

A A A≡ ×1 2 . Player i s'  instantaneous payoff function is given by u A Ri: → . We
assume that for every i = 1 2, , u ci ( ) = 1, u di ( ) = 0 , u d c xi j i( / ) = + >1 1, and

u c d yi j i( / ) = − < 0 , where we denote c c c≡ ( , )1 1  and d d d≡ ( , )1 2 . We assume also

that x x y y1 2 1 2+ ≤ + , i.e., the payoff vector ( , )11  is efficient. The feasible set of payoff

vectors V R⊂ 2  is defined as the convex hull of the set
{( , ), ( , ), ( , ), ( , )}11 0 0 1 11 2 1 2+ − − +x y y x . The discount factor is denoted by δ ∈ [ , )0 1 . At

the end of every period, each player i  observes her own private signal ωi . The set of

player i s'  private signals is defined as Ω i ≡ [ , ]0 1 . Let Ω Ω Ω≡ ×1 2 . A signal profile

ω ω ω≡ ∈( , )1 2 Ω  is determined according to a conditional density function p a( | )ω .

Let p a p a di i j

j j

( | ) ( | )ω ω ω
ω

≡
∈
∫

Ω

. We assume that p ai i( | )ω  is continuous w. r. t.

ωi i∈Ω , p ai i( | )ω > 0  for all a A∈  and almost all ωi i∈Ω , and p a p ai i( | ) ( | )⋅ ≠ ⋅ ′
for all a A∈  and all ′ ∈a A a/ { } . Based on the above definitions, we may regard

u ai ( )  as the expected value defined by

u a a p a di i i i i i i

i i

( ) ( , ) ( | )≡
∈
∫ π ω ω ω

ω Ω

,

where π ωi i ia( , )  is the realized instantaneous payoff for player i  when player i

chooses action ai  and observes her own private signal ωi .

Remark: An example is the model of a price-setting duopoly. Actions ci  and di  are

regarded as the choices of high price λ i ic( )  and low price λ i id( ) , respectively, for

firm i s'  commodity, where λ λi i i ic d( ) ( )> ≥ 0 . Firm i s'  sales when private signal ωi

is observed is given by qi i( )ω ≥ 0 . The realized instantaneous profit for firm i  is

given by π ω λ ω ωi i i i i i i i i ia a q C q( , ) ( ) ( ) ( ( ))= − , where C qi i( ) ≥ 0  is firm i s'  total

cost of production.

A private history for player i  up to period t ≥ 1 is denoted by
h ai

t
i i

t= =( ( ), ( ))τ ω τ τ 1 , where a Ai i( )τ ∈  is the action chosen by player i  and

ω τi i( ) ∈Ω  is the private signal observed by player i  in period τ . The null history for

player i  is denoted by hi
0 . The set of all private histories for player i  is denoted by



11

Hi . A (pure) strategy for player i  is defined as a function s H Ai i i: → . The set of

strategies for player i  is denoted by Si . Let S S S≡ ×1 2 . Player i s'  normalized long-

run payoff induced by a strategy profile s S∈  is given by

v s E u a t si
t

i
t

( , ) ( ) [ ( ( ))| ]δ δ δ≡ − −

=

∞

∑1 1

1

. Let v s v s v s( , ) ( ( , ), ( , ))δ δ δ≡ 1 2 . A strategy profile

s S∈  is said to be a Nash equilibrium in Γ( )δ  if for each i = 1 2,  and every ′ ∈s Si i ,

v s v s si i i( , ) ( , / )δ δ≥ ′ . Since each player’s private signal structure has almost full

support, the set of Nash equilibrium payoff vectors is equivalent to the set of sequential

equilibrium payoff vectors.

Definition 1: A payoff vector v v v R= ∈( , )1 2
2  is sustainable if for every ε > 0  and

every infinite sequence of discount factors ( )δ m
m=
∞

1  satisfying lim
m

m

→+∞
=δ 1 , there exists

an infinite sequence of strategy profiles ( )sm
m=
∞

1  such that for every large enough

m = 1 2, ,... , sm  is a Nash equilibrium in Γ( )δ m , and

v v s v
m

m m− ≤ ≤ +
→+∞

( , ) lim ( , ) ( , )ε ε δ ε ε .

Note that the set of sustainable payoff vectors is compact. We denote by si hi
t|  the

strategy for player i  induced by si  after the private history h Hi
t

i∈  occurs.
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3. Efficiency

The likelihood ratio function for player i s'  private signals, L A Ri i:Ω × →2 , is

defined by

L a a

p a

p a
if p a

p a

p a
if p a

i i

i i

i i
i i

i i

i i
i i

i i

( , , )

( | )

( | )
( | )

lim
( | )

( | )
( | )

ω

ω
ω

ω

ω
ω

ω
ω ω

′ ≡
′

′ ≠

′
′ ′

′ =








 ′→

0

0

.

We assume that such a function Li  exists and is continuous w. r. t. ωi i∈Ω . We define

the minimum likelihood ratio function for player i , L A Ri:
2 → , by

L a a L a ai i i
i i

( , ) min ( , , )′ ≡ ′
∈ω

ω
Ω

.

We define

vi ≡ 1
1

−
−
L c c d x

L c c d
j i i

j i

( , / )

( , / )
,

and

v
L d d c y

L d d c
i

j i i

j i

≡
−

( , / )

( , / )1
.

Let v v v≡ ( , )1 2  and v v v≡ ( , )1 2 . Note that if for each i = 1 2, ,

1 >
L c c d x

L c c d
j i i

j i

( , / )

( , / )1−
+

−
L d d c y

L d d c
j i i

j i

( , / )

( , / )1
,                  (1)

then it holds that v v> . We define a subset V V* ⊂  by the convex hull of the set

{( , ), ,( , ),( , )}0 0 1 2 1 2v v v v v . See Figure 1.

[Figure 1]

Theorem 1: If inequalities (1) hold, then every v V∈ *  is sustainable.

We provide the proof of Theorem 1 in the next section.

Theorem 2: If for each i = 1 2, ,
L c c di j( , / ) = 0 ,                                    (2)

and

L d d c
y

i j
j

( , / ) <
+
1

1
,                               (3)
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then, ( , )11  is sustainable.

Proof: Equalities (2) and inequalities (3) imply inequalities (1). Equalities (2) implies
v = ( , )11 . Hence, Theorem 1 implies that ( , )11  is sustainable.

Q.E.D.

Theorem 2 states that the efficient payoff vector (1,1) can be approximately
sustained by a Nash equilibrium when the minimum likelihood ratio L c c di j( , / )

between c  and c d j/  is zero and the minimum likelihood ratio L d d ci i( , / )  between

d  and d c j/  is less than a positive value 
1

1+ y j

 for each i = 1 2, . Note that Theorems

1 and 2 do not depend on any informational assumption such as conditional

independence.
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4. Proof of Theorem 1

The proof of Theorem 1 is divided into three steps.5

Step 1: We show that for every v V+ ∈ *  and every v V− ∈ * , if
v v v v≥ > ≥+ − ,

then, v+ , v− , ( , )v v1 2
+ −  and ( , )v v1 2

− +  are all sustainable.

From the continuity of Li , we can choose $ωi i∈Ω  for each i = 1 2,  which satisfies

v j
+ = 1

1
−

−
L c c d x

L c c d
i i j j

i i j

( $ , , / )

( $ , , / )

ω
ω

,

that is,

L c c d
v

x vi i j

j

j j

( $ , , / )ω =
−

+ −

+

+

1

1
.    (4)

For each i = 1 2, , choose ξj > 0  close to 0. From the continuity of Li , we can choose
~ ~ ( )ω ω ξi i j i= ∈Ω  for each i = 1 2,  which satisfies

v

y v
L d d c

v

y v
j j

j j j
i i j

j

j j

−

−

−

−

+

+ +
> >

+

ξ

ξ
ω( ~ , , / ) .                (5)

Let εi > 0  and 
~
λi > 0  be positive real numbers which are close to 0.

Consider the following Markov strategies with two states, i.e., “play c i ”, and “play di ”.
When player i s'  state is “play c i ” and player i  observes a private signal which belongs to

(does not belong to) the interval ( $ , $ ]ω ε ω εi i i i− +  in the current period, player i s'  state in

the next period will be “play di ” (“play c i ”, respectively). When player i s'  state is “play

di ” and player i  observes a private signal which belongs to (does not belong to) the interval

( ~ ~
, ~ ~

]ω λ ω λi i i i− +  in the current period, player i s'  state will be “play c i ” (“play di ”,

respectively). See Figure 2.

[Figure 2]

According to Ely and Valimaki (1999), we require that each player i = 12,  is indifferent

between the choice of action c i  and the choice of action di  irrespective of her own

private history. This incentive constraint is much stronger than sequential equilibrium but

                                                
5 This proof does not depend on the assumption of x x y y1 2 1 2+ ≤ + .
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drastically simplifies equilibrium analyses. In the following proof, we show that for every

discount factor close to 1, there exist εi  and 
~
λi  for each i = 12,  such that all of the four

Markov strategy profiles associated with different initial state profiles satisfy this incentive
constraint, i.e., are Nash equilibria, and virtually induce the payoff vectors v+ , v− , ( , )v v1 2

+ −

and ( , )v v1 2
− + .

Fix i = 1 2,  arbitrarily. Choose εi > 0  close to 0. From equality (4), we can choose

$ $ ( )v vj j i= ε  which satisfies

p c d

p c d d

v

x v

i i i

i i j i

j

j j

i i i i i

i i i i i

( | )

( | / )

$

$
( $ , $ ]

( $ , $ ]

ω ω

ω ω
ω ω ε ω ε

ω ω ε ω ε

∈ − +

∈ − +

∫

∫
=

−

+ −
1

1
.                   (6)

Note that $ $ ( )v vj j i= ε  tends towards v j
+  as εi  approaches 0. We define

α α ε

ω ω
ω ω ε ω ε

j j i

i i j i

j j

p c d d

x v
i i i i i= ≡

+ −
∈ − +

∫
( )

( | / )

$
( $ , $ ]

1
.                  (7)

Note that α εj i( )  tends towards 0 as εi  approaches 0.

We define λ λ εi i i= ( )  and λ λ εi i i= ( )  by

λ λi i> > 0 ,

p d c d y vi i j i j j j j

i i i i i

( | / ) ( )
( ~ , ~ ]

ω ω ξ α
ω ω λ ω λ∈ − +

−∫ = + + ,

and

p d c d y vi i j i j j j

i i i i i

( | / ) ( )
(

~
,
~

]

ω ω α
ω ω λ ω λ∈ − +

−∫ = + .

Note that both λ εi i( )  and λ εi i( )  tend towards 0 as εi  approaches 0, because

α α εj j i= ( )  tends towards 0 as εi  approaches 0. Choose any continuous function

w w v vj j i j i i j j j= → +− −( , ):[ , ] [ , ]ε ξ λ λ ξ  which satisfies that

w vj i j j( )λ ξ= +− ,

w vj i j( )λ = − ,

and for every λ λ λi i i∈[ , ] ,

p d c d y wi i j i j j i j

i i i i i

( | / ) ( ( ))
( ~ , ~ ]

ω ω λ α
ω ω λ ω λ∈ − +

∫ = + .               (8)

Since L d d ci i j( ~ , , / )ω  is approximated by

p d d

p d c d

i i i

i i j i

i i i i i

i i i i i

( | )

( | / )
( ~ ,~ ]

( ~ ,~ ]

ω ω

ω ω
ω ω λ ω λ

ω ω λ ω λ

∈ − +

∈ − +

∫

∫
,

one gets from inequalities (5) that
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w

y w

v

y v

p d d

p d c d
j i

j j i

j j

j j j

i i i

i i j i

i i i i i

i i i i i

( )

( )

( | )

( | / )
( ~ , ~ ]

( ~ , ~ ]

λ

λ

ξ

ξ

ω ω

ω ω
ω ω λ ω λ

ω ω λ ω λ

+
=

+

+ +
>

−

−

∈ − +

∈ − +

∫

∫

>
+

=
+

−

−

v

y v

w

y w
j

j j

j i

j j i

( )

( )

λ
λ

.

Hence, the continuity of w j i( )λ  implies that there exists 
~ ~

( , )λ λ ε ξi i i j=  such that

p d d

p d c d

w

y w

i i i

i i j i

j i

j j i

i i i i i

i i i i i

( | )

( | / )

(
~

)

(
~

)

( ~ ~
, ~ ~

]

( ~ ~
, ~ ~

]

ω ω

ω ω

λ

λ
ω ω λ ω λ

ω ω λ ω λ

∈ − +

∈ − +

∫

∫
=

+
.                 (9)

We define
~ ~ ( , ) ( , )(

~
( , )) (

~
( , ))v v w wj j i j j i j i i j j i i j= ≡ =ε ξ ε ξ λ ε ξ λ ε ξ .

Note that ~ ~ ( , )v vj j i j= ε ξ  tends towards v j
−  as ξj  approaches 0, because 

~ ~
( , )λ λ ε ξi i i j=

tends towards 0 as ξj  approaches 0. We define δ δ ε ξj j i j= ∈( , ) ( , )01  by

1−
= −

δ
δ

αj

j
j j jv v( $ ~ ) .                               (10)

Note that δ j  tends towards 1 as εi  approaches 0, because α εj i( )  tends towards 0 as εi

approaches 0.
Fix an infinite sequence of discount factors ( )δ m

m=
∞

1  arbitrarily, which satisfies

lim
m

m

→+∞
=δ 1 . The above arguments imply that there exists ( , , , )ε ξ ε ξ1 1 2 2 1

m m m m
m=
∞  such that

lim( , , , ) ( , , , )
m

m m m m

→∞
=ε ξ ε ξ1 1 2 2 0 0 0 0 ,

and for every large enough m ,
δ δ ε ξm m m= =1 2 1( , ) δ ε ξ2 1 2( , )m m .

Choose ( ~ ,
~

, $ , ~ )ω λi
m

i
m

i
m

i
m

mv v =
∞

1  satisfying that for every large enough m , ~ ~ ( )ω ω ξi
m

i j
m≡ ,

~ ~
( , )λ λ ε ξi

m
i i

m
j
m≡ , $ $ ( )v vi

m
i j

m≡ ε , and ~ ~ ( , )v vi
m

i j
m

i
m≡ ε ξ . From equalities (6), (7) and (10),

one gets

p c d
v

v vj j j

m

m
i
m

i
m

i
m

j j j
m

j j
m

( | ) ( )(
$

$ ~ )
( $ , $ ]

ω ω
δ

δ
ω ω ε ω ε∈ − +

∫ =
− −

−
1 1

,

and, therefore,

$vi
m m= −1 δ + −

∈ − +
∫δ ω ω

ω ω ε ω ε

m
i
m

j j jv p c d
j j j

m
j j

m

{$ ( ( | ) )
( $ , $ ]

1

+
∈ − +

∫~ ( | ) }
( $ , $ ]

v p c di
m

j j j

j j j
m

j j
m

ω ω
ω ω ε ω ε

.                         (11)

From equalities (7) and (10), one gets
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p c d d
x v

v vj j i j

m

m
i i

m

i
m

i
m

j j j
m

j j
m

( | / ) ( )(
$

$ ~ )
( $ , $ ]

ω ω
δ

δ
ω ω ε ω ε∈ − +

∫ =
− + −

−
1 1

,

and, therefore,

$ ( )( )v xi
m m

i= − +1 1δ + −
∈ − +

∫δ ω ω
ω ω ε ω ε

m
i
m

j j i jv p c d d
j j j

m
j j

m

{$ ( ( | / ) )
( $ , $ ]

1

+
∈ − +

∫~ ( | / ) }
( $ , $ ]

v p c d di
m

j j i j

j j j
m

j j
m

ω ω
ω ω ε ω ε

.                      (12)

From equalities (8) and (10), one gets

p d c d
y v

v vj j i j

m

m
i i

m

i
m

i
m

j j
m

j
m

j
m

j
m

( | / ) ( )(
~

$ ~ )
( ~ ~

, ~ ~
]

ω ω
δ

δ
ω ω λ ω λ∈ − +

∫ =
− +

−
1

,

and, therefore,
~ ( )( ) {$ ( ( | / ) )

( ~ ~
, ~ ~

]

v y v p d c di
m m

i
m

i
m

j j i j

j j
m

j
m

j
m

j
m

= − − + −
∈ − +

∫1 1δ δ ω ω
ω ω λ ω λ

+
∈ − +

∫~ ( | / ) }
( ~ ~

, ~ ~
]

v p d c di
m

j j i j

j j
m

j
m

j
m

j
m

ω ω
ω ω λ ω λ

.                      (13)

From equalities (8), (9) and (10), one gets

p d d
v

v vj j j

m

m
i
m

i
m

i
m

j j
m

j
m

j
m

j
m

( | ) ( )(
~

$ ~ )
( ~ ~

,~
~

]

ω ω
δ

δ
ω ω λ ω λ∈ − +

∫ =
−

−
1

,

and, therefore,
~ {$ ( ( | ) )

( ~ ~
, ~ ~

]

v v p d di
m m

i
m

j j j

j j
m

j
m

j
m

j
m

= −
∈ − +

∫δ ω ω
ω ω λ ω λ

1

+
∈ − +

∫~ ( | ) }
( ~ ~

, ~ ~
]

v p d di
m

j j j

j j
m

j
m

j
m

j
m

ω ω
ω ω λ ω λ

.                         (14)

We specify an infinite sequence of strategy profiles ( )s m
m=
∞

1  in the following way. For

each i = 12, ,

s h ci
m

i i( )0 = ,

s h ci
m

i
t

i( ) =  if s h ci
m

i
t

i( )− =1  and ω ω ε ω εi i i
m

i i
m∉ − +( $ , $ ] ,

s h ci
m

i
t

i( ) =  if s h di
m

i
t

i( )− =1  and ω ω λ ω λi i i
m

i i
m∈ − +( ~ ~

, ~ ~
] ,

s h di
m

i
t

i( ) =  if s h ci
m

i
t

i( )− =1  and ω ω ε ω εi i i
m

i i
m∈ − +( $ , $ ] ,

and

s h di
m

i
t

i( ) =  if s h di
m

i
t

i( )− =1  and ω ω λ ω λi i i
m

i i
m∉ − +( ~ ~

, ~ ~
] .

Note that there exist D A Ri : →  such that for every h Hi
t

i∈  and every h Hj
t

j
′ ∈ ,

v s s D ci
m

i
m

h j
m

h i
i
t

j
t( , | , | ) ( )δ ′ =  if s h ci

m
i
t

i( ) =  and s h cj
m

j
t

j( )′ = ,

v s s D di
m

i
m

h j
m

h i
i
t

j
t( , | , | ) ( )δ ′ =  if s h di

m
i
t

i( ) =  and s h dj
m

j
t

j( )′ = ,

v s s D c di
m

i
m

h j
m

h i j
i
t

j
t( , | , | ) ( / )δ ′ =  if s h ci

m
i
t

i( ) =  and s h dj
m

j
t

j( )′ = ,
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and

v s s D d ci
m

i
m

h j
m

h i j
i
t

j
t( , | , | ) ( / )δ ′ =  if s h di

m
i
t

i( ) =  and s h cj
m

j
t

j( )′ = .

Note that

D ci
m( ) = −1 δ +

∉ − +
∉ − +

∫δ ω ω
ω ω ε ω ε
ω ω ε ω ε

m
iD c p c d

i i i
m

i i
m

j j j
m

j j
m

{ ( ) ( | )
( $ , $ ]
( $ , $ ]

+
∈ − +
∈ − +

∫D d p c di

i i i
m

i i
m

j j j
m

j j
m

( ) ( | )
( $ , $ ]
( $ , $ ]

ω ω
ω ω ε ω ε
ω ω ε ω ε

+
∉ − +
∈ − +

∫D c d p c di j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | )
( $ , $ ]
( $ , $ ]

ω ω
ω ω ε ω ε
ω ω ε ω ε

+
∈ − +
∉ − +

∫D d c p c di j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | ) }
( $ , $ ]
( $ , $ ]

ω ω
ω ω ε ω ε
ω ω ε ω ε

,

D di( ) = δ ω ω
ω ω λ ω λ
ω ω λ ω λ

m
iD c p d d

i i i
m

i i
m

j j j
m

j j
m

{ ( ) ( | )
( ~ ,~ ]
( ~ ,~ ]

∈ − +
∈ − +

∫ +
∉ − +
∉ − +

∫D d p d di

i i i
m

i i
m

j j j
m

j j
m

( ) ( | )
( ~ , ~ ]
( ~ , ~ ]

ω ω
ω ω λ ω λ
ω ω λ ω λ

+
∈ − +
∉ − +

∫D c d p d di j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | )
( ~ , ~ ]
( ~ , ~ ]

ω ω
ω ω λ ω λ
ω ω λ ω λ

+
∉ − +
∈ − +

∫D d c p d di j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | ) }
( ~ ,~ ]
( ~ ,~ ]

ω ω
ω ω λ ω λ
ω ω λ ω λ

,

D c d yi j
m

i( / ) ( )( )= − − +1 δ δ ω ω
ω ω ε ω ε
ω ω λ ω λ

m
i jD c p c d d

i i i
m

i i
m

j j j
m

j j
m

{ ( ) ( | / )
( $ , $ ]
( ~ ,~ ]

∉ − +
∈ − +

∫

+
∈ − +
∉ − +

∫D d p c d di j

i i i
m

i i
m

j j j
m

j j
m

( ) ( | / )
( $ , $ ]
( ~ , ~ ]

ω ω
ω ω ε ω ε
ω ω λ ω λ

+
∉ − +
∉ − +

∫D c d p c d di j j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | / )
( $ , $ ]
( ~ , ~ ]

ω ω
ω ω ε ω ε
ω ω λ ω λ

+
∈ − +
∈ − +

∫D d c p c d di j j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | / ) }
( $ , $ ]
( ~ , ~ ]

ω ω
ω ω ε ω ε
ω ω λ ω λ

,

and

D d c xi j
m

i( / ) ( )( )= − + +1 1δ δ ω ω
ω ω λ ω λ
ω ω ε ω ε

m
i jD c p d c d

i i i
m

i i
m

j j j
m

j j
m

{ ( ) ( | / )
( ~ , ~ ]
( $ , $ ]

∈ − +
∉ − +

∫

+
∉ − +
∈ − +

∫D d p d c di j

i i i
m

i i
m

j j j
m

j j
m

( ) ( | / )
( ~ , ~ ]
( $ , $ ]

ω ω
ω ω λ ω λ
ω ω ε ω ε

+
∈ − +
∈ − +

∫D c d p d c di j j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | / )
( ~ , ~ ]
( $ , $ ]

ω ω
ω ω λ ω λ
ω ω ε ω ε

+
∉ − +
∉ − +

∫D d c p d c di j j

i i i
m

i i
m

j j j
m

j j
m

( / ) ( | / ) }
( ~ , ~ ]
( $ , $ ]

ω ω
ω ω λ ω λ
ω ω ε ω ε

.

From equalities (11), (12), (13) and (14), one gets that

D c D d c vi i j i
m( ) ( / ) $= = , D d D c d vi i j i

m( ) ( / ) ~= = ,

and, for every h Hi
t

i∈ , every h Hj
t

j
′ ∈ , and for every s Si i∈  satisfying that

s si a i
m

h ai i i
t

i i
| |( , ) ( ,( , ))ω ω

=  for all ( , )a Ai i i iω ∈ × Ω ,

v s s
v if s h c

v if s h d
i

m
i j

m

h

i
m

j
m

j
t

j

i
m

j
m

j
t

j
j
t( , , | )

$ ( )

~ ( )
δ ′ =

=

=







′

′
,

and, therefore,
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v s s v s si
m

i
m

h j
m

h i
m

i j
m

hi
t

j
t

j
t( , | , | ) ( , , | )δ δ′ ′= .                 (15)

Equalities (15) imply that for every h Ht
1 1∈  and every 

~
h Ht

2 2
′ ∈ , ( | , | )~s sm

h

m

ht t1 2
1 2

′  is a Nash

equilibrium in Γ( )δm . Hence, we have completed the proof of Step 1.

Remark: Step 1 offers the following economic implication. Consider the example of the
price-setting duopoly presented in Section 2. The state profile “play ( , )c c1 2 , i.e., play (high

price, high price)” is the situation of price collusion, while the profile “play ( , )d d1 2 , i.e., play

(low price, low price)” is that of a price war. The remaining two profiles, “play ( , )c d1 2 , i.e.,

play (high price, low price)”, and “play ( , )d c1 2 , i.e., play (low price, high price)”, can be

regarded as the situations of a one-sided secret price cut. On the equilibrium path sustaining

implicit collusion outlined in Step 1, each of these state profiles emerges infinitely many times.

This is in contrast with the trigger strategy equilibrium used by Green and Porter (1984) in their

study of a quantity-setting duopoly with public monitoring, according to which, both the

situation of a price war and the situation of price collusion emerge infinitely many times but the

situation of a one-sided secret price cut never emerges.

Step 2: We show that for every positive integer K > 0  and every K  sustainable payoff

vectors v[ ]1 , ..., v K[ ] , 
v

K

k

k

K
[ ]

=
∑

1  is also sustainable.

Fix ( )δ m
m=
∞

1  arbitrarily, which satisfies lim
m

m

→+∞
=δ 1 . Fix ε > 0  arbitrarily. For every

k K= 1, ..., , let ( ){ , }s k m
m=
∞

1  be an infinite sequence of strategy profiles satisfying that for every

large enough m = 12, ,... , s k m{ , }  is a Nash equilibrium in Γ( )δm , and

v v s vk

m

m k m k[ ] { , } [ ]( , ) lim ( , ) ( , )− ≤ ≤ +
→+∞

ε ε δ ε ε .

We define an infinite sequence of strategy profiles ( )s
m

m=
∞

1  satisfying that

s h s hi

m

i
k

i
k m

i( ) ( ){ , }− =1 0 ,

and for every t K≥ + 1,

s h s hi

m

i
t

i
k m

i
t( ) (

~
){ , }

~− =1  if t Kt k= +~  and for every τ = 1,...,
~
t ,

(~ ( ), ~ ( )) ( ( ), ( ))a a K k K ki i i iτ ω τ τ ω τ= + + .

Note that

lim (( ) , ) lim
( ) ( , )

( )

{ , }

m

m K
m

m

m
k

K m k m

k

K

m
k

K

k

K
v s

v s

→∞ →∞

−

=
−

=

=
∑

∑
δ

δ δ

δ

1

1

1
1

1
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∈ − += =
∑ ∑

[ ( , ), ( , )]

[ ] [ ]v

K

v

K

k

k

K
k

k

K

1 1ε ε ε ε .

Since s k m{ , }  is a Nash equilibrium in Γ( )δm  for every large enough m = 12, ,... , one gets

that s
m

 is a Nash equilibrium in Γ(( ) )δ m K

1

 for every large enough m = 12, ,... . Hence,

v

K

k

k

K
[ ]

=
∑

1  is sustainable.

Step 3: Note that ( , )0 0  is sustainable, because the repetition of the choices of d  is the

Nash equilibrium in Γ( )δ  for all δ ∈[0, )1 . Step 1 and inequalities (1) imply that v , v ,

( , )v v1 2  and ( , )v v1 2  are all sustainable. Since the set of sustainable payoff vectors is

compact, one gets from Step 2 that the set of sustainable payoff vectors is convex. Hence,
every payoff vector in the convex hull of the set {( , ), ,( , ),( , )}0 0 1 2 1 2v v v v v , i.e., in V * , is

sustainable.

From these observations, we have completed the proof of Theorem 1.
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5. The Folk Theorem

This section assumes that players’ private signals are conditionally independent, i.e.,
p a p a p a( | ) ( | ) ( | )ω ω ω= 1 1 2 2  for all a A∈  and all ω ∈Ω .

A feasible payoff vector v V∈  is said to be individually rational if it is more than or
equal to the minimax payoff vector, i.e., v ≥ ( , )0 0 . Let

z
y x

y
[ ] ( , )1 1 2

1

0
1

1
≡

+ +
+

 and z
y x

y
[ ] ( , )2 2 1

2

1

1
0≡

+ +
+

.

Note that the set of all feasible and individually rational payoff vectors is equivalent to
the convex hull of the set {( , ), ( , ), , }[ ] [ ]11 0 0 1 2z z . See Figure 1 again.

We provide the Folk Theorem on the conditional independence assumption in the

following way.

Theorem 3: Suppose that players’ private signals are conditionally independent. Then,

every feasible and individually rational payoff vector is sustainable.

We provide the proof of Theorem 3 in the next section.

Theorem 3 is permissive, because we require no informational conditions

concerning the accuracy of players’ private signals such as the zero likelihood ratio

condition. Theorem 3 is in contrast with Matsushima (1990a). Matsushima showed that

the repetition of the one-shot Nash equilibrium is the only Nash equilibrium if players’
private signals are conditionally independent and only pure strategies are permitted

which are restricted to be independent of payoff-irrelevant histories. Here, a strategy

profile s  is said to be independent of payoff-irrelevant histories if for each i = 1 2, ,

every t = 1 2, ,... , every h Hi
t

i∈ , and every ′ ∈h Hi
t

i ,

s si h i hi
t

i
t| |=

′
 whenever p h s h p h s hi j

t
i
t

i j
t

i
t( | , ) ( | , )= ′  for all

h Hj
t

j∈ ,

where p h s hi j
t

i
t( | , )  is the probability anticipated by player i  that the opponent j

observes private history h Hj
t

j∈  when player i  observes private history h Hi
t

i∈ ,

provided that both players behave according to s S∈ . Theorem 3 shows that the Folk

Theorem holds if players’ private signals are conditionally independent and only pure

strategies are permitted, but which depend on payoff-irrelevant histories.
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6. Proof of Theorem 3

The proof of Theorem 3 is divided into four steps.

Step 1: We show that the payoff vectors (1,1), (1,0), (0,1) and (0,0) are all sustainable.

Before constructing Nash equilibria, we consider the situation in which players T
times repeatedly play the prisoner-dilemma game. Denote a a a TT = ( ( ),..., ( ))1 ,

c c cT = ( , ..., ) , d d dT = ( ,..., ) , ( / ) ( / , ..., / )c d c d c dj
T

j j= , and so on.

We choose a subset Ω Ωi i
* ⊂  satisfying that

p c d p c d di i i i i j i

i i i i

( | ) ( | / )
* *

ω ω ω ω
ω ω∈ ∈
∫ ∫<

Ω Ω

.

We denote by f r T ai
T*( , , )  the probability that the number of the observed private

signals for player i  which belong to Ω i
*  is equal to r T∈ { ,..., }0 , conditional that aT

is played. Let F r T a f r T ai
T

i
T

r

r
* *( , , ) ( , , )≡ ′

′=
∑

0

. We choose an infinite sequence

( ( ))*r Ti T =
∞

1  satisfying that

lim ( ( ), , )* *

T
i i

TF r T T c
→∞

=1,                            (16)

lim
( )*

T

ir T

T→∞
= p c di i i

i i

( | )
*

ω ω
ω ∈
∫

Ω

,                        (17)

and
lim ( ( ), , )* *

T
i i

TTf r T T c
→∞

−−1 1

>
−

∈ ∈
∫ ∫

1

p c d d p c di i j i i i i

i i i i

( | / ) ( | )
* *

ω ω ω ω
ω ωΩ Ω

.               (18)

In the same way as Lemma 1 in Matsushima (1999), one gets that such an infinite
sequence ( ( ))*r Ti T =

∞
1  exists. The Law of Large Numbers implies that

lim ( ( ), , ( / ) )* *

T
i i j

TF r T T c d
→∞

= 0 .                       (19)

We choose another subset Ω Ωi i
** ⊂  satisfying that

p d d p d c di i i i i j i

i i i i

( | ) ( | / )
** **

ω ω ω ω
ω ω∈ ∈
∫ ∫<
Ω Ω

.

We denote by f T ai
T**( , )  the probability that all of the observed private signals for

player i  belong to Ω i
** , conditional that aT  is played. Note that

lim
( , )

( , ( / ) )

**

**T

i
T

i j
T

f T d

f T d c→∞
= 0 .                            (20)

Fix an infinite sequence of discount factors ( )δ m
m=
∞

1  arbitrarily, which satisfies
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lim
m

m

→∞
=δ 1. We choose an infinite sequence of positive integers ( )T m

m=
∞

1  satisfying that

lim
m

mT
→∞

= ∞ , γ δm m T m

≡ ( ) , lim
m

m

→∞
=γ 1,

and for each i = 1 2, ,

lim ( ,( / ) )**

m

m

m i
m

j
T

jf T d c y
m

→ℜ −
>

γ
γ1

.

Hence, from equalities (16), (19) and (20), we can choose an infinite sequence

( , ,( , ) ),v vm m
i

m

i

m
i mξ ξ = =

∞
1 2 1  satisfying that ξ i

m
∈ [ , ]0 1  and ξ

i

m ∈ [ , ]0 1  for all m = 1 2, ,... ,

lim ( , )
m

mv
→∞

= 11 ,

lim ( , )
m

mv
→∞

= 0 0 ,

and for each i = 1 2,  and every large enough m ,

v F r T T c v vj
m

m

m i
m

i i
m m T

j
m

j
mm

= −
−

− −1
1

1
γ

γ
ξ { ( ( ), , )}( )* *

= + −
−

− −1
1

1x F r T T c d v vj

m

m i
m

i i
m m

j
T

j
m

j
mmγ

γ
ξ { ( ( ), , ( / ) )}( )* * ,

                                                   (21)

and

v f T d v vj
m

m

m i

m
i

m T
j
m

j
mm

=
−

−γ
γ

ξ
1

**( , )( )

= − +
−

−y f T d c v vj

m

m i

m
i

m
j

T
j
m

j
mmγ

γ
ξ

1
**( , ( / ) )( ) .         (22)

From the continuity of pi , we can choose two subsets Ω Ωi i
*( )ξ ⊂  and

Ω Ωi i
** **( )ξ ⊂  for every ξ ∈ [ , ]0 1  sufficiently close to 1, satisfying that

ξ =

p c d

p c d

i i i

i i i

i i i

i i

( | )

( | )

* *

*

( )

ω ω

ω ω
ω ξ

ω

∈

∈

∫

∫
Ω Ω

Ω

I =
∈
∉

∉

∫

∫

p c d

p c d

i i i

i i i

i i

i i

i i

( | )

( | )

*

*

*

( ),

ω ω

ω ω

ω ξ
ω

ω

Ω
Ω

Ω

= ∈

∈

∫

∫

p c d d

p c d d

i i j i

i i j i

i i i

i i

( | / )

( | / )

* *

*

( )

ω ω

ω ω
ω ξ

ω

Ω Ω

Ω

I =
∈
∉

∉

∫

∫

p c d d

p c d d

i i j i

i i j i

i i

i i

i i

( | / )

( | / )

*

*

*

( ),

ω ω

ω ω

ω ξ
ω

ω

Ω
Ω

Ω

= =∈

∈

∈

∈

∫

∫

∫

∫

p d d

p d d

p d c d

p d c d

i i i

i i i

i i j i

i i j i

i i

i i

i i

i i

( | )

( | )

( | / )

( | / )

**

**

**'

**

( ) ( )

ω ω

ω ω

ω ω

ω ω
ω ξ

ω

ω ξ

ω

Ω

Ω

Ω

Ω

.

These equalities imply that the probability of ω ξi i∈Ω *( )  is the same between the case
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of the choice of action profile c  and the case of the choice of action profile c d j/ , the

probability of ω ξi i∈Ω *( )  conditional on ωi i∈Ω *  is equivalent to that conditional on

ω ξi i∉Ω *( ) , and the probability of ω ξi i∈Ω **( )  conditional on ωi i∈Ω **  is the same

between the case of the choice of action profile d  and the case of the choice of action
profile d c j/ .

For every m = 1 2, ,... , we define two subsets of the T m  times product of Ω i ,

Φ Ωi
m

i
T m* ⊂  and Φ Ωi

m
i
T m** ⊂ , by

Φi
m* ≡ {( ( ),..., ( ))ω ωi i

m
i
TT

m

1 ∈Ω : either ωi t( ) ∈ Ω i
*  for at most

r Ti
m*( )  periods, or ω ξi

m
i i

mT( ) ( )*∉Ω },

and

Φi
m** ≡ {( ( ), ..., ( ))ω ωi i

m
i
TT

m

1 ∈Ω : either ωi t( ) ∈Ω i
**  for all

t T m∈ { ,..., }1 , or ω ξi
m

i i

mT( ) ( )**∉Ω }.

Based on the above definitions, we consider the following Markov strategies with
2T m  states, i.e., with states ( , )ci τ  and ( , )di τ  for all τ =1,...,T m . When player i s'

state is state ( , )ci τ  (state ( , )di τ ) , player i  chooses action ci  (action di ,

respectively). When in a period t  player i s'  state is state ( , )ci τ  (state ( , )di τ ) and

τ < T m , player i s'  state in the next period t +1 will be state ( , )ci τ +1  (state

( , )di τ +1 , respectively). When in a period t  player i s'  state is ( , )c Ti
m  and the

vector of her private signals observed in the past T m  periods ( ( ),..., ( ))ω ωi
m

it T t− +1

belongs to Φi
m*  (does not belong to Φi

m* ), player i s'  state in the next period t +1 will

be state ( , )ci 1  (state ( , )di 1 , respectively). When in a period t  player i s'  state is state

( , )d Ti
m  and ( ( ),..., ( ))ω ωi

m
it T t− +1  belongs to Φi

m**  (does not belong to Φi
m** ),

player i s'  state in the next period t +1 will be state ( , )ci 1  (state ( , )di τ +1 ,

respectively). See Figure 3.

[Figure 3]

We denote by si
m  and si

m  the strategies which start with state ( , )ci 1  and state

( , )di 1 , respectively. In order to prove that s m , sm , s sm
j
m/  and s sm

j
m/  are all Nash

equilibria, we will make the following two requirements; that for every k = 0 1, ,... , any

mixture of the choices of action ci  and action di  in the T m  times repeated play is less

preferable than the T m  times repeated choice of action ci  or the T m  times repeated

choice of action di  in period t kT m= +1, irrespective of her own private history; and
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that for every k = 0 1, ,... , each player i  is indifferent between si
m  and si

m  in period

t kT m= +1, irrespective of her own private history. Note that the second requirement is

similar to that of Step 1 in the proof of Theorem 1. This requirement makes our analysis

more complicated than the simple application of the Law of Large Numbers in the study

of review strategies by, for example, Radner (1985). However, by using the lemmata in

Matsushima (1999), we can prove that both requirements are satisfied when m  is large

enough.

Formally, we specify an infinite sequence of two strategy profiles ( , )s sm m
m=
∞

1  in the

following way. For each i =1 2, ,

s h ci
m

i
t

i( )− =1  and s h di
m

i
t

i( )− =1  for all t T m= 1,...,  and all

h Hi
t

i
− ∈1 ,

s si
m

h
i
m

i
T m| =  if ( ( ),..., ( )) *ω ωi i

m
i
mT1 ∈Φ ,

s si
m

h
i
m

i
T m| =  if ( ( ),..., ( )) *ω ωi i

m
i
mT1 ∉Φ ,

s si
m

h
i
m

i
T m| =  if ( ( ),..., ( )) **ω ωi i

m
i

mT1 ∈Φ ,

and

s si
m

h
i
m

i
T m| =  if ( ( ),..., ( )) **ω ωi i

m
i

mT1 ∉Φ .

These strategies are regarded as a modification of the review strategy originated by

Radner (1985).6 When the T m  times repeated play passes the review of player i , that
is, either ( ( ),..., ( )) *ω ωi i

m
i
mT1 ∈Φ  in the case of player i s'  T m  times repeated choice

of action ci  or ( ( ),..., ( )) **ω ωi i
m

i
mT1 ∈Φ  in the case of player i s'  T m  times repeated

choice of action di , player i  will play collusive behavior during the next T m  periods

according to si
m . When the T m  times repeated play fails the review of player i , that is,

either ( ( ),..., ( )) *ω ωi i
m

i
mT1 ∉Φ  in the case of player i s'  T m  times repeated choice of

action ci  or ( ( ),..., ( )) **ω ωi i
m

i
mT1 ∉Φ  in the case of player i s'  T m  times repeated

choice of action di , player i  will play punishment behavior during the next T m

periods according to si
m .

Equalities (21) and (22) imply that

v s v s s vj
m m

j
m m

j
m

j
m( , ) ( , / )δ δ= = ,                    (23)

                                                     
6 See also Abreu, Milgrom and Pearce (1991), Matsushima (1999), Kandori and Matsushima

(1998), and Compte (1998). These papers made future punishment triggered by either bad

histories of the public signals during the review phase or bad messages announced at the last

stage of the review phase. In contrast, the present paper assumes the non-existence of such

public signals or messages.
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v s v s s vj
m m

j
m m

j
m

j
m( , ) ( , / )δ δ= = ,                    (24)

and therefore,

lim ( , ) lim ( , / )
m

j
m m

m
j

m m
j
mv s v s s

→∞ →∞
= =δ δ 1,

and

lim ( , ) lim ( , / )
m

j
m m

m
j

m m
j
mv s v s s

→∞ →∞
= =δ δ 0 .

We show below that s m , sm , s sm
j
m/  and s sm

j
m/  are all Nash equilibria for every

large enough m . Suppose that there exists s Sj j∈  such that

v s s vj
m m

j j
m( , / )δ > ,

and

s sj
h

j
m

hj
T m

j
T m| |=  for all h Hj

T
j

m

∈ .

The definition of Ω i i
m*( )ξ  and the conditional independence assumption imply that we

can assume that there exists ( ( ),..., ( ))a a Tj j
m1  such that

s h a tj j
t

j( ) ( )− =1  for all t T m=1,...,  and all h Hj
t

j
− ∈1 .

In the same way as Lemma 4 in Matsushima (1999), one gets that, given that m  is large
enough, player j  can obtain a positive gain from deviation by choosing action d j

either only in the first period or in all T m  periods. Hence, we can assume that either
a dj j( )1 =  and a t cj j( ) =  for all t T m= 2,..., , or a t dj j( ) =  for all t T m=1,..., .

Equalities (23) imply that player j  cannot obtain any gain from deviation by choosing

action d j  in all T m  periods. Moreover, In the same way as Lemma 5 in Matsushima

(1999), we can show that, given that m  is large enough, player j  cannot obtain any
gain from deviation by choosing action d j  only in the first period, as follows. Note that

the difference of the probabilities that event Φ i
m*  does not occur (i.e., player j  is

punished) between in the case of a c d c cT
j

m

= ( / , ,..., )  and in the case of a cT Tm m

=  is

equal to

ξi
m{ p c d d p c di i j i i i i

i i i i

( | / ) ( | ) }
* *

ω ω ω ω
ω ω∈ ∈
∫ ∫−
Ω Ω

f r T T ci i
m m T m* *( ( ), , )− −1 1 .

Hence, the difference of the (un-normalized) long-run payoffs for player j  in the case

of the T m  times repeated choice of action c j  and the case of the deviation by choosing

action d j  only in the first period is equal to

x j − ξi
m{ p c d di i j i

i i

( | / )
*

ω ω
ω ∈
∫
Ω

−
∈
∫ p c di i i

i i

( | ) }
*

ω ω
ω Ω

f r T T ci i
m m T m* *( ( ), , )− −1 1 γ

δ

m

m1−
( )v vj

m
j
m− .

From equality (19), the latter equality of (21), lim lim( )
m

m

m

m T m

→∞ →∞
= =γ δ 1, lim ( , )

m

mv
→∞

= 11
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and lim ( , )
m

mv
→∞

= 0 0 , one gets that

lim
( )m

m

m m i
m

T→∞ −
γ
δ

ξ
1

=
−→∞

lim
m

m

m i
mγ

γ
ξ

1
lim

( )

m

m t

t

T

m j

m

T
x

→∞

=

−

∑
=

δ
0

1

,

and therefore, the limit of this difference in long-run payoffs is equal to

x j − x j{ p c d di i j i

i i

( | / )
*

ω ω
ω ∈
∫
Ω

−
∈
∫ p c di i i

i i

( | ) }
*

ω ω
ω Ω

lim ( ( ), , )* *

T
i i

TTf r T T c
→∞

−−1 1 ,

which is less than zero, because of inequality (18). Hence, player j  have no incentive
to deviate by choosing action d j  only in the first period. This, however, is a

contradiction.
Next, suppose that there exists s Sj j∈  such that

v s s vj
m m

j j
m( , / )δ > ,

and

s sj
h

j
m

hj
T m

j
T m| |=  for all h Hj

T
j

m

∈ .

The definition of Ω i i
m*( )ξ  and the conditional independence assumption imply that we

can assume that there exists ( ( ),..., ( ))a a Tj j
m1  such that

s h a tj j
t

j( ) ( )− =1  for all t T m=1,...,  and all h Hj
t

j
− ∈1 .

Let τ ∈ { ,..., }1 T m  denote the number of the periods in which a t cj j( ) = . Without loss

of generality, we can assume that player j  chooses action c j  in the last τ  periods, i.e.,

from period T m − +τ 1 to period T m . Note that

f T a p d c d p d di
m T

i i j i i i i
Tm

i i i i

m**( , ) ( ( | / ) ) ( ( | ) )
** **

=
∈ ∈

−∫ ∫ω ω ω ω
ω

τ

ω

τ

Ω Ω

= q f T di
m T mτ **( , ) ,

where

q

p d c d

p d d

i i j i

i i i

i i

i i

≡ >∈

∈

∫

∫

( | / )

( | )

**

**

ω ω

ω ω
ω

ω

Ω

Ω

1.

Hence, one gets from equalities (22) that

v s sj
m m

j( , / )δ

= −
−

− +
−

−
= −

−

∑1

1 1

1δ
γ

δ γ
γ

ξ
τ

m

m j
m t

t T

T m

m i

m
i

m T
j
m

j
my f T a v v

m

m

m

( ) ( ) ( , )( )**

= −
−

− +
= −

−

∑1

1

1δ
γ

δ
τ

τ
m

m j
m t

t T

T

j
my q v

m

m

( ) ( ) .
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We denote by v j ( )τ  the right hand side of these equalities, i.e.,

v y q vj

m

m j
m t

t T

T

j
m

m

m

( ) ( ) ( )τ δ
γ

δ
τ

τ≡ −
−

− +
= −

−

∑1

1

1

.

Note that

v v y q q vj j m

m T m

m j j
m

m

( ) ( ) ( ) {
( )

( )} ( )τ τ
δ

δ γ
γ

τ τ+ − = −
−

− + −
−

1
1

1
1

1

.

(25)

Note also that

v v s v s v Tj j
m m

j
m m

j
m( ) ( , ) ( , ) ( )0 = = =δ δ .               (26)

Given that m  is large enough, we can assume that

1
1

< <
δ m q .

This, together with equality (25), inequality 
( )

( )
δ γ

γ

m T m

m j

m

y
− −

−
− <

1

1
0 , and inequality

( )q v j
m− >1 0 , implies that for every τ ∈ { ,..., }1 T m ,

v vj j( ) ( )τ τ+ − ≥1 0  if v vj j( ) ( )τ τ− − ≥1 0 ,

and
v vj j( ) ( )τ τ− − ≤1 0  if v vj j( ) ( )τ τ+ − ≤1 0 .

This, together with equalities (26), implies that
v vj j( ) ( )0 ≥ τ  for all τ ∈ { ,..., }1 T m .

Hence, it must hold that v s s vj
m m

j j
m( , / )δ ≤ , but this is a contradiction.

From these observations, we have proved that s m , sm , s sm
j
m/  and s sm

j
m/  are all

Nash equilibria for every large enough m . Hence, (1,1), (1,0), (0,1) and (0,0) are all

sustainable.

Step 2: We show that z [ ]1  and z [ ]2  are both sustainable. Consider z [ ]1  only. We can

prove that z [ ]2  is sustainable in the same way.

Before constructing Nash equilibria, we consider the situation in which players M
times repeatedly play the prisoner-dilemma game. We choose a subset Ω Ω2 2

+ ⊂

satisfying that

p d c d p d d2 2 1 2 2 2 2

2 2 2 2

( | / ) ( | )ω ω ω ω
ω ω∈ ∈+ +
∫ ∫<

Ω Ω

.

We denote by f r M a M
2
+ ( , , )  the probability that the number of the observed private

signals for player 2 which belong to Ω2
+  is equal to r M∈ { ,..., }0 , conditional that

a M  is played. Let F r M a f r M aM M

r

r

2 2
0

+ +

′=

≡ ′∑( , , ) ( , , ) . We choose an infinite sequence
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( ( ))r M M2 1
+

=
∞  satisfying that

lim ( ( ), , ( / ) )
M

MF r M M d c
→∞

+ + =2 2 1 1,                   (27)

lim
( )

M

r M

M→∞

+

=2 p d c d2 2 1 2

2 2

( | / )ω ω
ω ∈ +
∫

Ω

,                 (28)

and
lim ( ( ), , ( / ) )
M

MMf r M M d c
→∞

+ +
2 2 1

> 1 1

1 2 2 2 2 2 1 2

2 2 2 2

+
−

∈ ∈+ +
∫ ∫

y

y p d d p d c d{ ( | ) ( | / ) }ω ω ω ω
ω ωΩ Ω

         (29)

In the same way as Lemma 1 in Matsushima (1999), one gets that such an infinite
sequence ( ( ))r M M2 1

+
=

∞  exists. The Law of Large Numbers implies that

lim ( ( ), , )
M

MF r M M d
→∞

+ + =2 2 0 .                       (30)

We choose a positive real number b > 0  arbitrarily, which is less than but close to
1

1 1+ y
,

satisfying that
lim ( ( ), , ( / ) )
M

MMf r M M d c
→∞

+ +
2 2 1

> by

b p d d p d c d
1

2
2 2 2 2 2 1 21

2 2 2 2

( ) { ( | ) ( | / ) }− −
∈ ∈+ +
∫ ∫ω ω ω ω

ω ωΩ Ω

.

Let
v b y x b* ( , ) ( )( , )≡ − + + −1 21 1 11 .

Note that v*  approximates z [ ]1 , and
v z1 1

1 0* [ ]> = .

Fix an infinite sequence of discount factors ( )δ m
m=
∞

1  arbitrarily, which satisfies

lim
m

m

→+∞
=δ 1 . We choose an infinite sequence of positive integers ( )M m

m=
∞

1  satisfying

that

lim
m

mM
→∞

= ∞ , χ δm m M m

≡ ( ) ,

and
lim
m

m b
→∞

= −χ 1 .                                  (31)

For every m = 1 2, ,... , we define a subset of the M m  times product of Ω2 ,

Φ Ω2 2
+ ⊂m M m

, by

Φ2
+ ≡m {( ( ), ..., ( ))ω ω2 2 21 M m M m

∈Ω : ω2( )t ∈ Ω2
+  for at most

r M m
2
+( )  periods}.

Let ( , )s sm m
m=
∞

1  be the infinite sequence of the two strategy profiles specified in Step 1.
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Consider the following strategy profile. In the first M m  periods, player 1 always
chooses action c1  and player 2 always chooses action d2 . From period M m +1, player

1 certainly plays the strategy s m
1 . From period M m +1, player 2 plays strategy s m

2

(strategy sm
2 ) if the vector of the observed private signals ( ( ), ..., ( ))ω ω2 21 M m  passes

the review, i.e., belongs to Φ2
+  (fails the review, i.e., does not belong to Φ2

+ ,

respectively). See Figures 4.1 and 4.2.

[Figure 4.1]

[Figure 4.2]

Formally, we specify an infinite sequence of strategy profiles ( )[ , ]s m
m

1
1=

∞  in the

following way.
s h c dm t[ , ]( ) ( , )1

2
1

1 2
− =  if 1 ≤ ≤t M m ,

s sm

h

m
T m1

1
1

1

[ , ]| =  for all hT m

1 ,

s sm

h

m
T m2

1
2

2

[ , ]| =  if ( ( ), ..., ( ))ω ω2 21 M m ∈Φ 2
+ ,

and

s sm

h

m

T m2
1

2
2

[ , ]| =  if ( ( ), ..., ( ))ω ω2 21 M m ∉Φ 2
+ .

Note that
v sm m

1
1( , )[ , ]δ

= − −( )( )1 1χ m y + + +χ m m m M mF r M M d c v
m

{ ( ( ), , ( / ) )2 2 1 1

+ − + +( ( ( ), , ( / ) )) }1 2 2 1 1F r M M d c vm m M mm

,

and
v sm m

2
1( , )[ , ]δ = ( )( )1 1 2− +χ m x + χ m mv2 .

Note from equalities (27), (30) and (31) that
lim ( , ) ( , )[ , ]

m

m mv s b y x
→∞

= − +δ 1
1 21 + − =( )( , ) *1 11b v .

Hence, v sm m( , )[ , ]δ 1  approximates z [ ]1  for every large enough m .

We show below that s m[ , ]1  is a Nash equilibrium for every large enough m . Step 1
and the definition of s m[ , ]1  imply that ( | , | )[ , ] [ , ]s sm

h

m

hM m M m1
1

2
1

1 2

 is a Nash equilibrium for

every ( , )h hM Mm m

1 2  and every large enough m . Since players’ private signals are

conditionally independent and action d2  is dominant in the component game, the
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repeated choice of action d2  during the first M m  periods is the best response for

player 2 . Hence, all we have to do is to check that the repeated choice of action c1

during the first M m  periods is the best response for player 1 for every large enough m .
Suppose that there exists s S1 1∈  such that

u s s u sm m
1 1 2

1
1

1( , ) ( )[ , ] [ , ]> ,

and

s s
h

m

hM m M m1 1
1

1 1

| |[ , ]=  for all h HM m

1 1∈ .

From the conditional independence assumption, we can assume that there exists
( ( ),..., ( ))a a M m

1 11  such that

s h a tt
1 1

1
1( ) ( )− =  for all t M m= 1,...,  and all h Ht

1
1

1
− ∈ .

In the same way as Lemma 4 in Matsushima (1999), one gets that, given that m  is large
enough, player 1 can obtain a positive gain from deviation by choosing action d1  either

only in the first period or in all these M m  periods. Hence, we can assume that either
a d1 11( ) =  and a t c1 1( ) =  for all t M m= 2,..., , or a t d1 1( ) =  for all t M m= 1,..., . In

the same way as Lemma 5 in Matsushima (1999) and Step 1 in the proof of this theorem,

we can show that, given that m  is large enough, player 1 cannot obtain any gain from
deviation by choosing action d1  only in the first period, as follows. Note that the

difference of the probabilities that event Φi
m+  does not occur (i.e., player j  is

punished) between in the case of a d d c d cT m

= ( , / , ..., / )1 1  and in the case of

a d cT Tm m

= ( / )1  is equal to

{ ( | ) ( | / ) }p d d p d c d2 2 2 2 2 1 2

2 2 2 2

ω ω ω ω
ω ω∈ ∈+ +
∫ ∫−
Ω Ω

f r M M d cm m M m

2 2 1
11+ + −−( ( ), , ( / ) ) .

Hence, the difference of the long-run payoffs for player 1 in the case of the T m  times
repeated play of action c1  and the case of the deviation by choosing action d1  only in

the first period is equal to

y1 − { ( | )p d d2 2 2

2 2

ω ω
ω ∈ +
∫
Ω

−
∈ +
∫ p d c d2 2 1 2

2 2

( | / ) }ω ω
ω Ω

⋅ −+ + −f r M M d cm m M m

2 2 1
11( ( ), , ( / ) )

χ
δ

m

m1−
( )v vm m

1 1− .

From equality (31), one gets that

lim
( )m

m

m mM→∞ −
χ
δ1

=
−→∞

lim
m

m

m

χ
χ1

lim
( )

( )
m

m t

t

M

m

m

M

b

b→∞

=

−

∑
= −

δ
0

1

21
,

which, together with lim ( , )
m

mv
→∞

= 11  and lim ( , )
m

mv
→∞

= 0 0 , implies that the limit of this

difference in long-run payoffs is equal to
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y1 − { ( | )p d d2 2 2

2 2

ω ω
ω ∈ +
∫
Ω

−
∈ +
∫ p d c d2 2 1 2

2 2

( | / ) }ω ω
ω Ω

⋅ − −
→∞

+ + −( )
lim ( ( ), , ( / ) )

1
1

2

2 2 1
1b

b
Mf r M M d c

M

M .

Since b  is close to 
1

1 1+ y
, this value is approximated by

y1 − { ( | )p d d2 2 2

2 2

ω ω
ω ∈ +
∫
Ω

−
∈ +
∫ p d c d2 2 1 2

2 2

( | / ) }ω ω
ω Ω

⋅
+

−
→∞

+ + −y

y
Mf r M M d c

M

M1
2

1
2 2 1

1

1
1lim ( ( ), , ( / ) ) ,

which is less than zero, because of inequality (29). Hence, player 1 have no incentive to
deviate by choosing action d1  only in the first period, when m  is large enough. This,

however, is a contradiction. Hence, it must hold that a t d1 1( ) =  for all t M m= 1,..., .

Note from lim ( , )
m

mv
→∞

= 0 0  and equality (30) that if a t d1 1( ) =  for all t M m= 1,..., , then

lim ( , ( , ))[ , ]

m

m mv s s
→∞ 1 1 1

1δ

=
→∞

+ +lim { ( ( ), , )
m

m m m M mF r M M d v
m

χ 2 2 1

+ − + +( ( ( ), , )) }1 2 2 1F r M M d vm m M mm

= 0 .

Since lim ( , )[ , ] *

m

m mv s v
→∞

= >1
1

1 0δ , one gets that v s s v sm m m m
1 1 2

1
1

1( , ( , )) ( , )[ , ] [ , ]δ δ<  for

every large enough m , but this is a contradiction.

Hence, we have proved that z [ ]1  is sustainable. Similarly, z [ ]2  is sustainable too.

Step 3: Step 2 in the proof of Theorem 1 has proved that for every positive integer

K > 0  and every K  sustainable payoff vectors v [ ]1 , ..., v K[ ] , 
v

K

k

k

K
[ ]

=
∑

1  is also

sustainable.

Step 4: Step 1 and Step 2 imply that (1,1), (0,0), z [ ]1  and z [ ]2  are all sustainable. Since

the set of sustainable payoff vectors is compact, one gets from Step 3 that the set of

sustainable payoff vectors is convex. Hence, every payoff vector in the convex hull of
the set {( , ),( , ), , }[ ] [ ]0 0 11 1 2z z , i.e., every feasible and individually rational payoff vector,

is sustainable.

From these observations, we have completed the proof of Theorem 3.
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7. Uniform Sustainability

In contrast with Sections 5 and 6, this section require no presumptions on the private
signal structure such as conditional indifference. This section regards Γ( )δ  as a machine

game.7 For each i = 1 2, , fix the finite set of states of machine for player i , Qi , arbitrarily,

where | |Qi ≥ 2 . Let Q Q Q≡ ×1 2 . A rule for player i  is defined by σ τi i if≡ ( , ) , where

f Q Ai i i: →  is an output function,τi i i iQ Q: × →Ω  is a transition function, and τ i  is

measurable w. r. t. Ωi . The set of rules for player i  is denoted by Σ i . Let Σ Σ Σ≡ ×1 2 .

A machine for player i  is defined as a combination of a rule and an initial state,
θ σi i i i iq Q= ∈ ×( , ) Σ . In every period t , player i  chooses action a t f q ti i i( ) ( ( ))=
where q ti ( )  is the state for player i  in period t . The state for player i  will transit from

q ti ( )  to q t q t Ti i i I( ) ( ( ), ( ))+ =1 τ ω  in period t + 1 when she observes private signal

ωi t( )  in period t . Player i s'  normalized long-run payoff induced by a machine profile

θ ∈Θ  is defined by v E u a ti
t

i
t

( , ) ( ) [ ( ( ))| ]δ θ δ δ θ≡ − −

=

∞

∑1 1

1

. The set of all machines for

player i  is denoted by Θ i . Let Θ Θ Θ≡ ×1 2 . A machine profile θ ∈Θ  is said to be a

Nash equilibrium in Γ( )δ  if for each i = 12,  and every ′ ∈θi iΘ , v vi i i i i( , ) ( , / )δ θ δ θ θ≥ ′ .

A machine profile θ ∈Θ  is sometimes denoted by ( , )σ q Q∈ ×Σ .

For every i = 1 2,  and every machine θ σi i i iq= ∈( , ) Θ  for player i , we define a

strategy s Si i i( )θ ∈  for player i  and a function q H Qi i i i( ):θ →  by

q h q Qi i i i i( )( )θ 0 = ∈ ,

s h f q Ai i i i i i( )( ) ( )θ 0 = ∈ ,

and for every t ≥ 1  and every h Hi
t

i∈ ,

q h q h t Qi i i
t

i i i i
t

i i( )( ) ( ( )( ), ( ))θ τ θ ω= ∈−1 ,

and
s hi i i

t( )( )θ = f q hi i i i
t( ( )( ))θ ∈ Ai .

Let s s s S( ) ( ( ), ( ))θ θ θ≡ ∈1 1 2 2 . Note that θ  is a Nash equilibrium in Γ( )δ  if s( )θ  is a

Nash equilibrium in Γ( )δ . Note also that v v s( , ) ( , ( ))δ θ δ θ= .

We assume that players’ initial states are not common knowledge. We introduce the

following solution concept of a rule profile.

Definition 2: A rule profile σ ∈Σ  is a uniform equilibrium in Γ( )δ  if ( , )σ q  is a Nash

equilibrium in Γ( )δ  for all q Q∈ .

                                                
7 For the definition of a machine game in the perfect monitoring case, see Rubinstein (1994,

Chapter 9). This section extends this definition to the private monitoring case.
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Definition 2 requires that players always play Nash equilibria irrespective of their initial

states. This means that all possible Nash equilibria are interchangeable.
Note that σ  is a uniform equilibrium in Γ( )δ  if s q( , )σ  is a Nash equilibrium in Γ( )δ

for all q Q∈ . Note also that

v q v s q( ,( , )) ( , ( , ))δ σ δ σ=  for all q Q∈ .

Note that if σ  is a uniform equilibrium in Γ( )δ , then, for each i = 1,2 , every q Q∈  and

every ′ ∈q Qi i ,

v q v q qi i i( ,( , )) ( , ( , / ))δ σ δ σ= ′ ,

that is, each player can obtain the same payoff irrespective of her own initial state. However,
v qi ( , ( , ))δ σ  is not necessarily equivalent to v q qi j( , ( , / ))δ σ ′  for every q Q∈  and every

′ ∈q Qj j , i.e., the payoff which each player obtains may depend on her opponent’s initial state.

The following theorem states that for every discount factor there exist a uniform equilibrium

and a state profile, the combination of which sustains the payoff vector Pareto-dominating all

other payoff vectors induced by the machine profiles consistent with the other uniform

equilibria.

Theorem 4: For every δ ∈[ , )01 , there exists a uniform equilibrium σ ∈Σ  in Γ( )δ
and q Q∈  such that for every uniform equilibrium ′ ∈σ Σ  in Γ( )δ  and every

′ ∈q Q ,

v q v s q( , ( , )) ( , ( , ))δ σ δ σ≥ ′ ′ .

Proof: Fix δ ∈[ , )01  arbitrarily, and consider a uniform equilibrium σ ∈Σ  in Γ( )δ . Note

that for every q Q∈ ,

v q( , , )δ σ ≥ 0 ,

because each player i  obtains at least payoff zero by always choosing action di .

Suppose that there exists i = 12,  such that f q di i i( ) =  for all q Qi i∈ . Since the choice

of action d j  is the dominant action for player j  in the component game G , it must hold that

f q dj j j( ) =  for all q Qj j∈ .

Hence, one gets that both players repeatedly choose this dominant action profile d , and

therefore,
v q( , , )δ σ = 0 .

Next, suppose that for each i = 12, , there exists q Qi i∈  such that f q ci i i( ) = . We can

check that for each i = 12,  there also exists ′ ∈q Qi i  such that f q di i i( )′ = . Otherwise, the

only best response for her opponent j  is to always choose action d j  irrespective of her

state, but this is a contradiction. Hence, one gets from the definition of uniform equilibrium that



35

each player i  is always indifferent between the choices of c i  and di , and therefore, she is

indifferent among all machines, i.e.,
v q v q i( , , ) ( ,( , ) / )δ σ δ σ θ=  for all θi i∈Θ  and all q Q∈ .

This implies that for every σ ∈Σ , every ′ ∈σ Σ , every q Q∈  and every ′ ∈q Q , if σ
and ′σ  are both uniform equilibria in Γ( )δ , then ( , )σ σ1 2′  is also a uniform equilibrium and

satisfies
v q q v q v q( , ( , ), ( , )) ( ( , , ), ( , , ))δ σ σ δ σ δ σ1 2 1 2 1 2′ ′ = ′ ′ .

These observations and the compactness of the set of uniform equilibria imply that there exist a
uniform equilibrium σ ∈Σ  and q Q∈  such that for every uniform equilibrium ′ ∈σ Σ  and

every ′ ∈q Q , v q v s q( , ( , )) ( , ( , ))δ σ δ σ≥ ′ ′ .

Q.E.D.

Theorem 4 is in sharp contrast with the fact that there exist a continuous/countable set of

Pareto-undominated perfect equilibrium payoff vectors. The following theorem provides an

upper-bound of all payoff vectors sustained by machine profiles consistent with uniform

equilibria.

Theorem 5: If σ ∈Σ  is a uniform equilibrium in Γ( )δ , then for each i = 1 2, ,

max[ , ] ( , , )0 v v qi i≥ δ σ  for all q Q∈ .

Proof: Suppose that there exists i = 12,  such that f q di i i( ) =  for all q Qi i∈ . Since d  is

the dominant action profile, it must hold that
f q dj j j( ) =  for all q Qj j∈ .

Hence, players repeatedly choose d , and therefore,
v q( , , )δ σ = 0 .

Suppose that for each i = 12, , there exists ~q Qi i∈  such that f q ci i i(~ ) = . Fix i = 12,

arbitrarily, and let
W q v qi j i i i j j

i i

( ) max ( , , ( , ))≡ ′
′∈θ

δ θ σ
Θ

.

The uniform equilibrium property of σ  implies that for every q Q∈ ,

v q W qi i j( , , ) ( )δ σ = ,

and therefore,
W q u c f qi j i i j j( ) ( ) ( , ( ))= −1 δ

+
∈
∫δ ω τ ω ω

ω

p c f q W q dj j i j j i j j j j

j j

( | , ( )) ( ( , ))
Ω

.

Choose q Qj j
* ∈  which maximizes W qi j( ) , and suppose that W qi j( )* > 0 . Note that

W q u c f qi j i i j j( ) ( , ( ))* *=
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+
−

−
∈
∫

δ
δ

ω τ ω ω
ω1

p c f q W q W q d
j j i j j i j j j i i j

j j

( | , ( )){ ( ( , )) ( )}* * *

Ω

.

Since W q W qi j j j i i( ( , )) ( )* *τ ω − ≤ 0  for all ω j j∈Ω , one gets that W qi i( )*  is less than or

equal to the value induced by the following conditional maximization.

max { ( , )
: { },e R

a A

i i j
j

j j

u c a
Ω →
∈

+ U 0
−

∈
∫ p c a e dj j i j j j

j j

( | , ) ( ) }ω ω ω
ω Ω

subject to

u c ai i j( , ) −
∈
∫ p c a e dj j i j j j

j j

( | , ) ( )ω ω ω
ω Ω

≥ u d ai i j( , ) −
∈
∫ p d a e dj j i j j j

j j

( | , ) ( )ω ω ω
ω Ω

.

Since W qi j( )* > 0  and u c d yi j i( / ) = − < 0 , one gets that a cj j=  must hold. Hence, the

value induced by the above conditional maximization is equivalent to

max {
: { }e RjΩ → + U 0

1 −
∈
∫ p c e dj j j j

j j

( | ) ( ) }ω ω ω
ω Ω

subject to

{ ( | , )p d cj j i j

j j

ω
ω ∈
∫

Ω

− p c e dj j j j( | )} ( )ω ω ω ≥ xi .

The value induced by this conditional maximization is equal to

1
1

−
−

L c c d x

L c c d
i j j

i j

( , / )

( , / )
,

which is equal to v i .

Q. E.D.

We show below that the upperbound provided by Theorem 5 is the least upperbound.

We also show below that there exists a uniform equilibrium such that this upperbound is

approximately sustained by every machine profile consistent with it. We introduce the notion of

uniform sustainability as follows.

Definition 3: A payoff vector ( , )v v R1 2
2∈  is uniformly sustainable if for every ( )δ m

m=
∞

1

satisfying lim
m

m

→+∞
=δ 1 , and for every ε > 0 , there exists an infinite sequence of rule profiles

( )σ m
m=
∞

1  such that for every large enough m , σ m  is a uniform equilibrium in Γ( )δ , and for

every q Q∈ ,

v v q v
m

m m− < < +
→+∞

( , ) lim ( , , ) ( , )ε ε δ σ ε ε .

Uniform sustainability requires that players always play Nash equilibria irrespective of their
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initial states and always obtain virtually the same payoff vector irrespective of their initial states,

that is, all possible machine profiles are interchangeable and virtually payoff-equivalent Nash

equilibria. Note that the set of uniformly sustainable payoff vectors is compact.

Theorem 6: If v v>  and v v v R= ∈( , )1 2
2  satisfies

v v v≥ ≥ ,

then it is uniformly sustainable.

Proof: Fix v V+ ∈ *  and v V− ∈ *  arbitrarily, which satisfies v v v v≥ > ≥+ − . Fix an infinite

sequence of discount factors ( )δ m
m=
∞

1  arbitrarily, which satisfies lim
m

m

→+∞
=δ 1 . Let ( )s m

m=
∞

1

be the infinite sequence of strategy profiles specified in Step 1 in the proof of Theorem 1. Let
Q q q qi i i i i

= { , ,..., }, , ,1 2 β , where βi iQ≡| | . We define an infinite sequence of rule profiles

( )σ m
m=
∞

1  in the following way. For each i = 12, ,

f q ci
m

i i( ),1 = ,

f q di
m

i i( ) =  for all q qi i≠ ,1 ,

τ ωi
m

i i iq q( , ), ,1 1=  if ω ω ε ω εi i i
m

i i
m∉ − +( $ , $ ] ,

τ ωi
m

i i iq q( , ), ,1 2=  if ω ω ε ω εi i i
m

i i
m∈ − +( $ , $ ] ,

and for every q qi i≠ ,1 ,

τ ωi
m

i i iq q( , ) ,= 1  if ω ω λ ω λi i i
m

i i
m∈ − +( ~ ~

, ~ ~
] ,

and

τ ωi
m

i i iq q( , ) ,= 2  if ω ω λ ω λi i i
m

i i
m∉ − +( ~ ~

, ~ ~
] ,

where $ωi , ~ωi , εi
m , and λi

m  were specified in Step 1 in the proof of Theorem 1. Note that

s q si i
m

i i
m

hi
t( , ) |,σ 1 =  if s h ci

m
i
t

i( ) = ,

and for every q qi i≠ ,1 ,

s q si i
m

i i
m

hi
t( , ) |σ =  if s h di

m
i
t

i( ) = .

Since ( | , | )s sm

h

m

ht t1 2
1 2

′  is a Nash equilibrium in Γ( )δm  for every h Ht
1 1∈  and every

h Ht
2 2

′ ∈ , one gets that s qm( , )σ  is a Nash equilibrium in Γ( )δm  for all q Q∈ , and

therefore, σ m  is a uniform equilibrium in Γ( )δm . Since for each i = 1 2, ,

v q v s q vi
m

i
m

i
m( , ( , )) ( , ( , )) $δ σ δ σ= =  if q qi i= ,1 ,

v q v s q vi
m

i
m

i
m( ,( , )) ( , ( , )) ~δ σ δ σ= =  if q qi i≠ ,1 ,

and we can choose v−  as close to v+  as possible, we have proved that v+  is uniformly

sustainable. Since the set of uniformly sustainable payoff vectors is compact, we have proved

that every v  satisfying v v v≥ ≥  is uniformly sustainable.

Q.E.D.
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Theorems 5 and 6 imply that v  is the unique uniformly sustainable payoff vector

which Pareto-dominates all other uniformly sustainable payoff vectors.

Theorem 7: Suppose that for each i = 1 2, , inequality (3) holds, i.e.,

L d d c
yi j

i

( , / ) <
+
1

1
.

Then, ( , )11  is uniformly sustainable if and only if for each i = 1 2, , equality (2) holds,

i.e.,
L c c di j( , / ) = 0 .

Proof: We show the “if” part. Theorem 6, the definition of v , and equalities (2) imply that if
( , )11 ≥ v > v , then v  is uniformly sustainable. Inequalities (3) and the definition of v  imply

( , )11 > v .

Hence, ( , )11  is uniformly sustainable.

We show the “only if” part. Theorem 5 implies that for each i = 12, ,

max[ , ]0 1v i ≥ .

Hence, v = ( , )11  must hold, which implies equalities (2).

Q.E.D.

Theorem 7 implies that the efficient payoff vector ( , )11  is uniformly sustainable if and

only if the zero likelihood ratio condition holds, and implies also that if this efficient

payoff vector is uniformly sustainable, then it Pareto-dominates all other uniformly

sustainable payoff vectors.
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8. Limited Knowledge on the Signal Structure

This section investigates the situation in which players have limited knowledge on their

private signal structures. Each player i = 1 2,  knows her own monitoring ability, i.e., knows
pi , but does not know her opponent’s monitoring ability, i.e., does not know p j , and

therefore, behaves according to a strategy which does not depend on p j . All notations in the

previous sections will be rewritten as being parameterized by p , if necessary. For example,

we write v v vp p p[ ] [ ] [ ]( , )= 1 2
2 1  and v v vp p p[ ] [ ] [ ]( , )= 1 2

2 1  instead of v v v= ( , )1 2  and

v v v= ( , )1 2 , respectively.

8.1. The Folk Theorem

We reconsider sustainability by Nash equilibrium. For each i = 12, , fix an arbitrary

compact and nonempty subset Pi
*  of conditional density functions on player i s'  private

signal. Let P P P* * *≡ ×1 2 . We assume that each player i  only knows which element of Pi
*

is the correct conditional density function for her own private signal. We assume that it is

common knowledge that the correct conditional density function belongs to P* . We assume

also that it is common knowledge that players’ private signals are conditionally independent. A
mapping assigning each element of Pi

*  a strategy for player i  is denoted by ρi i iP S: * → .

Let ρ ρ ρ≡ ( , )1 2 , and ρ ρ ρ( ) ( ( ), ( ))p p p≡ 1 1 2 2 . Player i  plays the assigned strategy

ρi i ip S( ) ∈  irrespective of her opponent’s monitoring ability p Pj j∈ * .

The following theorem states that the Folk Theorem holds for every p P∈ *  with the

above restrictions of limited knowledge.

Theorem 8: For every feasible and individually rational payoff vector v R∈ 2 , every

( )δ m
m=
∞

1  satisfying lim
m

m

→∞
=δ 1 , and every ε > 0 , there exists ( )ρm

m=
∞

1  such that for

every p P∈ *  and every large enough m, ρm p( )  is a Nash equilibrium in Γ( )δm , and

v v p v
m

m m− < < +
→∞

( , ) lim ( , ( )) ( , )ε ε δ ρ ε ε .

Proof: Fix ( )δ m
m=
∞

1  arbitrarily, which satisfies lim
m

m

→∞
=δ 1. From the compactness of P* ,

there exist e > 0 , e > 0 , Ψ Ω
i iP i* *: → 2  and Ψ Ω

i iP i** *: → 2  for each i = 1 2,  such that

e e> ,

and for each i = 1 2,  and every p Pi i∈ * ,

e p c d p d di i i

p

i i

p

i

i i i i i i

= =
∈ ∈
∫ ∫( | ) ( | )

* **( ) ( )

ω ω ω ω
ω ωΨ Ψ

,
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and

e p c d d p d c di i j i

p

i i j

p

i

i i i i i i

= =
∈ ∈
∫ ∫( | / ) ( | / )

* **( ) ( )

ω ω ω ω
ω ωΨ Ψ

.

For each i = 1 2,  and every p Pi i∈ * , We set the associated sets Ωi
*  and Ωi

**  introduced in

Step 1 of the proof of Theorem 3 equivalent to Ψi ip*( )  and Ψi ip**( ) , respectively. Hence,

we can choose ( ( ))*r Ti T =
∞

1 , ( )T m
m=
∞

1  and ( , ,( , ) ),v vm m
i
m

i

m
i mξ ξ = =

∞
1 2 1  introduced in Step 1 of

the proof of Theorem 3 independently of p Pi i∈ * . We denote si
m pi,  and s i

m pi,  instead of

si
m  and s i

m , respectively, which are the strategies specified in Step 1 of the Proof of Theorem

3. We specify ( )
v
ρi

m
m=
∞

1  and ( )ρ
i

m
m=
∞

1  by

ρi
m

i i
m pp s i( ) ,=  and ρ

i

m
i i

m pp s i( ) ,=  for all p Pi i∈ * .

Step 1 in the proof of Theorem 3 implies that for every p P∈ *  and every large enough m ,

( ( ), ( ))ρ ρ1 1 2 2
m mp p , ( ( ), ( ))ρ ρ1 1 2 2

m mp p , ( ( ), ( ))ρ ρ
1 1 2 2
m mp p  and ( ( ), ( ))ρ ρ

1 1 2 2
m mp p  are all

Nash equilibria, approximately sustaining (1,1), (1,0), (0,1) and (0,0), respectively.

From the compactness of P* , there exist e + > 0 , e+ > 0 , and Ψ Ω
i iP i+ →: * 2  for

each i = 1 2,  such that

e e+ +> ,

and for each i = 1 2,  and every p Pi i∈ * ,

e p d c di i j

p

i

i i i

+

∈

=
+
∫ ( | / )

( )

ω ω
ω Ψ

,

and

e p d di i

p

i

i i i

+

∈

=
+
∫ ( | )

( )

ω ω
ω Ψ

.

For every i = 1 2,  and every p Pi i∈ * , we set the associated set Φ i
+  introduced in Step 2 of

the proof of Theorem 3 equivalent to Ψi ip+ ( ) . Hence, we can choose ( ( ))r Mi M
+

=
∞

1  and

( )M m
m=
∞

1  introduced in Step 2 of the proof of Theorem 3 independently of p Pi i∈ * . We

denote si
m pi[ , , ]1  and si

m pi[ , , ]2  instead of si
m[ , ]1  and si

m[ , ]2 , respectively, which are the strategies

specified in Step 2 of the proof of Theorem 3. We specify ( )[ , ]ρi
m

m
1

1=
∞  and ( )[ , ]ρi

m
m

2
1=

∞  by

ρi
m

i i
m pp s i[ , ] [ , , ]( )1 1=  and ρi

m
i i

m pp s i[ , ] [ , , ]( )2 2=  for all p Pi i∈ * .

Step 2 of the proof of Theorem 3 implies that for every p P∈ *  and every large enough m ,

both ( ( ), ( ))[ , ] [ , ]ρ ρ1
1

1 2
1

2
m mp p  and ( ( ), ( ))[ , ] [ , ]ρ ρ1

2
1 2

2
2

m mp p  are Nash equilibria, approximately

sustaining z [ ]1  and z[ ]2 , respectively.

Fix a positive real number ε > 0 , a positive integer K , and K  feasible and individually

rational payoff vectors v v K{ } { }, ...,1 , arbitrarily. Suppose that for every k K∈{ ,..., }1 , there

exists ( ){ , }ρ k m
m=
∞

1  such that for every p P∈ *  and every large enough m , ρ{ , }( )k m p  is a

Nash equilibrium in Γ( )δm , and
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v v p vk

m

m k m k{ } { , } { }( , ) lim ( , ( )) ( , )− < < +
→∞

ε ε δ ρ ε ε .

We specify ( )ρm
m=
∞

1  satisfying that for every i ∈{ , }1 2 , every p Pi i∈ * , and every

k K∈{ ,..., }1 ,

ρ ρi
m

i i
k

i
k m

i ip h p h( )( ) ( )( ){ , }− =1 0 ,

and for every t K≥ + 1,

ρ ρi
m

i i
t

i
k m

i i
tp h p h( )( ) ( )(

~
){ , } ~− =1

if t Kt k= +~  and (~ ( ), ~ ( )) ( ( ), ( ))a a K k K ki i i iτ ω τ τ ω τ= + +

for all τ = 1,...,
~
t .

Note that for every p P∈ * , ρm p( )  is a Nash equilibrium in Γ(( ) )δ m K

1

 for every large

enough m = 12, ,... , and

lim (( ) , ( )) lim
( ) ( , ( ))

( )

{ , }

m

m K m

m

m
k

K m k m

k

K

m
k

K

k

K
v p

v p

→∞ →∞

−

=
−

=

=
∑

∑
δ ρ

δ δ ρ

δ

1

1

1
1

1

∈ − += =
∑ ∑

[ ( , ), ( , )]

{ } { }v

K

v

K

k

k

K
k

k

K

1 1ε ε ε ε .

Hence, we have proved that 
v

K

k

k

K
[ ]

=
∑

1  is sustainable.

Since the set of payoff vectors satisfying the conditions in Theorem 3 is compact, we have

proved that every feasible and individually rational payoff vector satisfies the conditions of

Theorem 3.

Q.E.D.

8.2. Uniform Sustainability

We reconsider uniform sustainability discussed in Section 7. We denote by P**  the set of

all conditional density functions p  satisfying v p[ ] > v p[ ] . For each i = 12, , we define Pi
**

as the set of all conditional density functions p i  on player i s'  private signal satisfying that

p a p a di i j

j j

( | ) ( | )ω ω ω
ω

≡
∈
∫

Ω

 for some p P∈ ** . Note that players’ private signals are not

necessarily conditionally independent. We assume that each player i  only knows which
element of Pi

**  is the correct conditional density function for her own private signal. We

assume that it is common knowledge that the correct conditional density function belongs to

P** . We also assume that each player i  has no idea on what is the degree of correlation
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between their private signals. A mapping assigning each element of Pi
**  a rule for player i  is

denoted by βi i iP: ** → Σ . Let β β β≡ ( , )1 2  and β β β( ) ( ( ), ( ))p p p≡ 1 1 2 2 . Player i

behaves according to the assigned rule βi i ip( ) ∈Σ  irrespective of her opponent’s monitoring

ability p Pj j∈ ** .

The following theorem states that for every p P∈ ** , the Pareto-dominant uniformly

sustainable payoff vector v p[ ]  can be uniformly sustained by a rule profile with the above

restrictions of limited knowledge.

Theorem 9: For every ( )δ m
m=
∞

1  satisfying lim
m

m

→∞
=δ 1  and every ε > 0 , there exists

( )βm
m=
∞

1  such that for every p P∈ **  and every large enough m, β m p( )  is a uniform

equilibrium in Γ( )δm , and for every q Q∈

v v p q vp

m

m m p[ ] [ ]( , ) lim ( , ( ), ) ( , )− < < +
→∞

ε ε δ β ε ε .

Proof: Let ( )σ m
m=
∞

1  be the infinite sequence of rule profiles defined in the proof of Theorem 6,

where we assume v v v vp p[ ] [ ]( , ) ( , )− < < < +− +ε ε ε ε . We will write

σ σ σm p m p m p, , ,( , )= 1 2
1 2  instead of σ m . Here, we must note that, by definition, σ i

m  depends

only on pi  for each i = 12, . Hence, we can specify ( )βm
m=
∞

1  by

β σi
m

i i
m pp i( ) ,=  for each i = 12, , all m = 1 2, , ... , and all p P∈ ** .

The proof of Theorem 6 implies that for every p P∈ **  and every large enough m ,

β σm m pp( ) ,=  is a uniform equilibrium in Γ( )δm , and for every q Q∈ ,

v v q v p qp

m

m m

m

m m[ ] ( , ) lim ( , , ) lim ( , ( ), )− < =
→∞ →∞

ε ε δ σ δ β

< +v p[ ] ( , )ε ε .

Q.E.D.
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9. Conclusion and Future Research

The present paper investigated repeated prisoner-dilemma games with discounting where

players are sufficiently patient. We provided the Folk Theorem in terms of Nash equilibrium

when players’ private signals are conditionally independent. We also showed that the zero

likelihood ratio condition is necessary and sufficient for efficient uniform sustainability. These

results hold true even if players have limited knowledge on their opponents’ private signal

structures.

We have the following problems to be solved in future research.

We have proved the Folk Theorem on the conditional independence assumption by using

the review strategy equilibrium construction. The use of the review strategy relies on the

conditional independence assumption. Hence, whether the Folk Theorem holds even without

conditional independence is an open question. In the study of repeated games with public

monitoring, Matsushima (1989) provided an idea of equilibrium construction of punishment

and reward on hyperplanes. Subsequently, by using this idea, together with that of self-

generation explored by Abreu, Pearce and Stacchetti (1990), Fudenberg, Levine and Maskin

(1994) provided the Folk Theorem in the public monitoring case. In order to discover the

Folk Theorem without the use of the review strategy, it would be a crucial step to apply the

idea of punishment and reward on hyperplanes to the private monitoring case.

The present paper considered only repeated prisoner-dilemma games. It is important to

clarify whether this paper can be extended to more general games. For example, we can

extend Theorem 1 to a class of games with more than two actions in the following way.
Suppose that a player i  has an action ′d i  other than actions c i  and d i , and there exist

α ∈[0, ]1  and ′ ∈α [ , ]01  such that

u c d u c u c di i i i i( / ) ( ) ( ) ( / )′ ≤ + −α α1 ,

p c d p c p c dj j i j j j j i( $ | / ) ( $ | ) ( ) ( $ | / )ω α ω α ω′ > + −1 ,

u d d u d u d ci i i i i( / ) ( ) ( ) ( / )′ ≤ ′ + − ′α α1 ,

and
p d d p d p d cj j i j j j j i( ~ | / ) ( ~ | ) ( ) ( ~ | / )ω α ω α ω′ < ′ + − ′1 ,

where $ω j  and ~ω j  are the private signals for the opponent defined in the proof of Theorem 1.

Since the choice of action ′d i  is worse than a mixture of actions c i  and d i , player i  have

no incentive to choose action ′d i  when her opponent plays the strategy constructed in the

proof of Theorem 1.

The study of private monitoring in general repeated games with more than two actions and

more than two players, and also in general stochastic games, should be expected to be started

in the near future.
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