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Abstract

We propose a unit root test for panels with cross-sectional dependency. We
allow general dependency structure among the innovations that generate
data for each of the cross-sectional units. Each unit may have different sam-
ple size, and therefore unbalanced panels are also permitted in our frame-
work. Yet, the test is asymptotically normal, and does not require any
tabulation of the critical values. Our test is based on nonlinear IV estima-
tion of the usual ADF type regression for each cross-sectional unit, using
as instruments nonlinear transformations of the lagged levels. The actual
test statistics is simply defined as a standardized sum of individual IV t¢-
ratios. We show in the paper that such a standardized sum of individual
IV t-ratios has limit normal distribution as long as the panels have large in-
dividual time series observations and are asymptotically balanced in a very
weak sense. We may have the number of cross-sectional units arbitrarily
small or large. In particular, the usual sequential asymptotics, upon which
most of the available asymptotic theories for panel unit root models heavily
rely, are not required. Finite sample performance of our test is examined via
a set of simulations, and compared to those of other commonly used panel
unit root tests. Our test generally performs better than the existing tests
in terms of both finite sample sizes and powers. We apply our nonlinear IV
method to test for the purchasing power parity hypothesis in panels.
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1. Introduction

It is now widely perceived that the panel unit root test is important. The test helps
us to answer some of the important economic questions like growth convergence and
divergence, and purchasing power parity, among many others. Moreover, it also
provides a means to improve the power of the unit root test, which is known to often
yield very low discriminatory power if performed on individual time series. A number
of unit root tests for panel data are now available in the literature. Examples include
the tests proposed by Levin, Lin and Chu (1997), Im, Pesaran and Shin (1997),
Maddala and Wu (1996), Choi (1997) and Chang (2000). The reader is referred to
Banerjee (1999) for some detailed discussions on the existing panel unit root tests
and other related issues.

Rather unsatisfactorily, however, most existing panel unit root tests assume cross-
sectional independence, which is quite restrictive given the nature of economic panel
data. Such tests are, of course, likely to yield biased results if applied to the panels
with cross-sectional dependency. Maddala and Wu (1996) conduct a set of simula-
tions to evaluate the performances of the commonly used panel unit root tests that
are developed under the cross-sectional independence when in fact the panel is spa-
tially dependent. They, in particular, show that the panel unit root tests based on
independence across cross-sectional units, such as those considered in Levin, Lin and
Chu (1997) and Im, Pesaran and Shin (1997), perform poorly for cross-sectionally
correlated panels.

The cross-sectional dependency is very hard to deal with in nonstationary panels.
In the presence of cross-sectional dependency, the usual Wald type unit root tests
based upon the OLS and GLS system estimators have limit distributions that are
dependent in a very complicated way upon various nuisance parameters defining
correlations across individual units. There does not exist any simple way to get rid
of nuisance parameters in such systems. This was shown in Chang (2000). None of
the existing tests, except for Chang (2000) which relies on the bootstrap method,
successfully overcomes the nuisance parameter problem in panels with cross-sectional
dependence.

In this paper, we take the IV approach to solve the nuisance parameter problem
for the unit root test in panels with cross-sectional dependency. Our approach here is
based upon nonlinear IV estimation of the autoregressive coefficient. We first estimate
the AR coefficient from the usual augmented Dickey-Fuller (ADF) regression for each
cross-sectional unit using the instruments generated by an integrable transformation
of the given time series. We then construct the t-ratio statistics for testing the unit
root based on the nonlinear IV estimator for the AR coefficient. We show for each
cross-sectional unit that such nonlinear IV ¢-ratio statistics for testing the unit root
has limiting standard normal distribution under the unit root null hypothesis, just as
in the stationary alternative cases. The asymptotic normality under the null indeed
establishes continuity of the limit theory for the ¢-statistics over the entire parameter
space covering both null and alternative hypotheses. This clearly makes a drastic
contrast with the limit theory of the standard ¢-statistics based on the ordinary least



squares estimator.

More importantly, we show that the limit standard normal distributions for each
individual IV t-ratio statistics are independent even across dependent cross-sectional
units. The cross-sectional independence of the individual IV ¢-ratio statistics follows
readily from the asymptotic orthogonality for the nonlinear transformations of inte-
grated processes by an integrable function, which is established in Chang, Park and
Phillips (1999). We are therefore led to consider the average of these independent
individual IV t-ratio statistics as a statistics for testing joint unit root null hypothesis
for the entire panel. The actual test statistics is simply defined as a standardized
sum of the individual IV ¢-ratios. We show in the paper that such a normalized
sum of the individual IV t-ratios has standard normal limit distribution as long as
Tin — 00 and Tpa /4108 T o /Tin3/* — 0, where T, and T, denote respec-
tively the minimum and maximum numbers of the time series observations 7;’s for
the cross-sectional units 4 = 1,...,N. The usual sequential asymptotics, upon which
most of the available asymptotic theories for panel unit root models heavily rely, are
therefore not required. We may thus allow the number of cross-sectional units to
be arbitrarily small. Our test is applicable for all panels that have large numbers of
individual time series observations and are asymptotically balanced in a very weak
sense.

Finite sample performance of our average IV t-ratio statistics, which we call Sy
statistics, is examined via a set of simulations, and compared to that of the commonly
used average statistics ¢-bar by Im, Pesaran and Shin (1997). Our test generally per-
forms better than the t-bar test in terms of both finite sample sizes and powers.
The simulations conducted indeed corroborate the standard normal limit theory we
provide here. The finite sample sizes of S, are computed using the standard normal
critical values, and shown to quite well approximate the nominal sizes. This is quite
contrary to the well known finite sample size distortions of the ¢-bar test, see Mad-
dala and Wu (1996) for example. The discriminatory powers of Sy are yet noticeably
higher than the ¢-bar. We also apply our nonlinear IV method to test for the pur-
chasing power parity hypothesis (PPP) using the data sets from Pappel (1997) and
Oh (1996). Our test Sy supports unambiguously the PPP relationships, contrary to
most of the previous empirical findings which are usually mixed and inconclusive.

The rest of the paper is organized as follows. Section 2 introduces the model,
assumptions and back ground theory. Section 3 presents the nonlinear IV estimation
of the augmented autoregression and derives the limit theory for the nonlinear IV
t-ratio statistics for each cross-sectional unit. In Section 4, we introduce a nonlinear
IV panel unit root test and establish its limit theory. It is in particular shown
that the test is asymptotically standard normal. Section 5 extends our nonlinear IV
methodology to models with deterministic trends such as constant and linear time
trend. In Section 6, we conduct simulations to investigate finite sample performance
of the average IV t-ratio statistics. Section 7 provides empirical illustrations for
testing the purchasing power parity (PPP) using our nonlinear panel IV unit root
test. Section 8 concludes, and mathematical proofs are provided in an Appendix.



2. Assumptions and Background Theory

We consider a panel model generated as the following first order autoregressive re-
gression:
Yit = Yit—1 + Ui, ’izl,...,N; t=1,...,T;. (1)
As usual, the index i denotes individual cross-sectional units, such as individuals,
households, industries or countries, and the index ¢ denotes time periods. The number
of time series observations T; for each individual 7 may differ across cross-sectional
units. Hence, unbalanced panels are allowed in our model. We are interested in
testing the unit root null hypothesis, ; = 1 for all y;; given as in (1), against the
alternative, |o;| < 1 for some y;, ¢ = 1,...,N. Thus, the null implies that all Yit’S
have unit roots, and is rejected if any one of y;;’s is stationary with |o;| < 1. The
rejection of the null therefore does not imply that the entire panel is stationary. The
initial values (y10,--.,yn~o0) of (y1¢,...,Ynt) do not affect our subsequent asymptotic
analysis as long as they are stochastically bounded, and therefore we set them at zero
for expositional brevity.
It is assumed that the error term u; in the model (1) is given by an AR(p;)
process specified as
ai(L)uit = E&it (2)

where L is the usual lag operator and
Pi
ai(z)=1— Z Qi 2*
k=1

fori=1,...,N. Note that we let c; vary across 7, thereby allowing heterogeneity in
individual serial correlation structures. We assume:

Assumption 2.1 Fori=1,...,N, o;(2z) #0 for all 2| < 1.

Under Assumption 2.1, the AR(p;) process u;; is invertible, and has a moving-average
representation

ui = mi(L)ei

where 7;(z) = a;(2)7! and is given by
oo
mi(z) = Zﬂ'z’,kzk
k=0

We allow for the cross-sectional dependency through the cross-correlation of the inno-
vations ¢;;, ¢ = 1,..., N, that generate the errors u;;’s. To define the cross-sectional
dependency more explicitly, we define (e:)7_; by

et = (€1t . . - ,&‘m)' (3)

and denote by | - | the Euclidean norm: for a vector x = (z;), |z|? = ¥; 22, and for
a matrix A = (a;;), |A| =¥, ; a%;. The data generating process for the innovations
{e+} is assumed to satisfy the following assumption.



Assumption 2.2 {e;} is an iid (0, ) sequence of random variables with E|e;|¢ < oo
for some £ > 4, and its distribution is absolutely continuous with respect to Lebesque
measure and has characteristic function ¢ such that limy ., |\"@(A) = 0, for some
r > 0.

Assumption 2.2 is strong, but is still satisfied by a wide class of data generat-
ing processes including all invertible Gaussian ARMA models. Define a stochastic

processes Ur for ¢; as
7]

Ur(r) =T123 &
t=1

on [0,1], where [s] denotes the largest integer not exceeding s. The process Ur(r)
takes values in D0, 1]V, where D[0, 1] is the space of cadlag functions on [0,1]. Under
Assumptions 2.1 and 2.2, an invariance principle holds for Uy, viz.

Ur —q U (4)

as T — oo, where U is an N-dimensional vector Brownian motion with covariance
matrix 3. It is also convenient to define Br(r) from u; = (uyy, ... yunt), similarly as
Ur(r). Then we have By —4 B, where B = (By, ... ,By) and B; = m;(1)U;. This is
shown in Phillips and Solo (1992).

Our theory relies heavily on the local time of Brownian motion, which we discuss
only briefly here for convenience. The reader is referred to e.g., Chung and Williams
(1990) and Revuz and Yor (1994) for the concept of local time and a more detailed
discussion. The local time of a Brownian motion V is a two parameter process,
written as Ly (t, s), with ¢ and s respectively being the time and spatial parameters,
satisfying the important (so-called occupation time) formula

t 00
| evenavi = [~ oLy, ds, ®)
for locally integrable G : R — R¥, where [V], is the quadratic variation process of
the Brownian motion V. If we apply (5) to the function G(z) = 1{a < = < b} for
a,b € R, then

t b
/ 1{a < V(r) < b} d[V], = / Ly(t,s)ds,
0 a

and, correspondingly, when the local time Ly (¢, s) is treated as a function of its spatial
parameter s, it can be viewed as an occupation time (or sojourn) density. The time
that V' stays in the interval [a, ] is measured by d[V],, which can be thought of as a
natural time scale for V. Also, due to the continuity of Ly, (t,-), we have

.1t

Ly(t,s) = lim —/ 1{[V(r) ~ 5| < e} d[V], .

e—0 2¢ 0
for €>0. Therefore, Ly (t, s) measures the time (in units of quadratic variation) that
V spends in the neighborhood of s, up to time ¢.



To define local times that appear in our limit theory more precisely, we first write
the limit vector Brownian motion given in (4) explicitly as U(r) = (Ui(r),...,Un(r)).
We denote by Ly, the local time of Uj, for ¢ = 1,...,N, and define

Lit,9) = (1/oDu(t9) =l [ 1{]04r) — o] < e}

where o0? is the variance of U;, for 2 = 1,...,N. Clearly, L; is just a scaled local
time of U; that measures time in chronological units. Our asymptotic results will
be presented using L;, instead of Ly,. Using L;, the occupation time formula (5) is
rewritten as

/ " G dr = / ¥ G(s)Lit, 5) ds, (6)
0 —00

since d[U;], = o2 dr. In the rest of the paper, we refer to (6) as the occupation time
formula.

In addition to the Brownian motions U = (Uj,...,Uy)’, we need to introduce
another set of the standard Brownian motions W = (W3, ..., Wy)'. Throughout the
paper, the Brownian motion W will be assumed to be standard vector Brownian
motion that is independent of U.

We now introduce the class of regularly integrable transformations in R, which
plays an important role in the subsequent development of our theory.

Definition 2.3 A transformation G on R is said to be regularly integrable if G is
a bounded integrable function such that for some constants ¢ > 0 and k > 6/(£ — 2)
with £ > 4 given in Assumption 2.2, |G(z) — G(y)| < c¢|z — y|*¥ on each piece A; of
its support A = |Ji~; A: C R.

The regularly integrable transformations are roughly integrable functions that are
reasonably smooth on each piece of their supports. The required smoothness depends
on the moment condition of the innovation sequence {¢:}. Let £ be the maximum
order of the existing moments. If £ > 8, any piecewise Lipschiz continuous function is
allowed. For the indicator function on a compact interval to be regularly integrable,
on the other hand, it is sufficient to have £ > 4.

The asymptotic behaviors of the nonlinear functions of an integrated time se-
ries are analyzed by Park and Phillips (1999,2000). For {y;:} generated as in (1),
they provide, in particular, the asymptotic theories for the sample moments given by
S°Ti, Gyir) and 354 G(yit—1) €it, which are referred to in their paper as the mean
and covariance asymptotics respectively, for various types of function G. Our sub-
sequent theory is based upon the mean and covariance asymptotics for G regularly
integrable. The conditions in Assumption 2.2 are required to obtain the relevant
asymptotics. They are stronger than are required for the usual unit root asymp-
totics, because we need the convergence and invariance of the sample local time,
as well as those of the sample Brownian motion, for the asymptotics of integrable
transformations of integrated time series.



We now obtain the Beveridge-Nelson representations for u;: and y;. Let a;(1) =
1— 3% | k. Then it is indeed easy to get

1 Pi ?i_k o j
Ui = a—i—(l—) €it + kz=:1 W (Uit—k — Uit—k+1)

= mi(1)ew + (Tig—1 — Uit)

where 71'1;(1) = 1/ai(1) and ﬁu = Z%:l &i,kui,t_kﬂ, with &i,k = 7!'1;(1) Z‘I;t:k Qg 5.
Under our condition in Assumption 2.1, {@;:} is well defined both in a.s. and L" sense
[see Brockwell and Davis (1991, Proposition 3.1.1)]. Under the unit root hypothesis
o; = 1, we may now write

t

yir = > wik = mi(1)&e + (Tio — Tat) (7)
k=1

where &; = >%_; ik, for all i = 1,...,N. Consequently, y;; behaves asymptoticaily
as the constant 7;(1) multiple of &;;. Note that @ is stochastically of smaller order
of magnitude than £;;, and therefore will not contribute to our limit theory.

Using the specification of the regression error u; given in (2), we write the model
(1) as
Pi
Yit = oiYiz—1 + Z Q; Ui g + Eit
k=1

Since Ay;: = u; under the unit root null hypothesis, the above regression may be
written as

pi
Vit = 04Yig—1 + Z 0 kDYt + Eit (8)
k=1

on which our unit root test will be based.

3. IV Estimation and Limit Theory

In this section, we consider the IV estimation of the augmented autoregression (8).
To deal with the asymptotic endogeneity in the lagged level variable y;;—1, we use
the instrument generated by a nonlinear instrument generating function F as

F(yiz—1)

For the lagged differences z}, = (Ayit—1,...,NYit—p;), We use the variables them-
selves as the instruments. Hence for the entire regressors (yi:—1,};)’, we use the
instruments given by

(F(yig—1), %) = (F(it—1)s DYit—1,+ s DYit—p;) (9)

The transformation F will be called the instrument generating function (IGF)
throughout the paper. We assume that



Assumption 3.1 Let F be regularly integrable and satisfy / zF(z) #0.
—o0

Roughly speaking, the condition given in Assumption 3.1 requires that the instru-
ment F(y;+—1) is correlated with the regressor y; ;. It is shown in Phillips, Park and
Chang (1999, Theorem 3.2(a)) that IV estimators become inconsistent when the in-
strument is generated by a regularly integrable function F such that [*°_ zF(z)dz =
0. In this case, the IGF F is orthogonal to the regression function, which is the
identity in this case, in the Hilbert space L?(R) of square integrable functions. In
the standard stationary regression, an instrument is invalid and the resulting I'V esti-
mator becomes inconsistent if in particular it is uncorrelated with the regressor. Such
an instrument failure also arises in our nonstationary regression with an integrated
regressor when the instrument generating function is orthogonal to the regression
function.

Examples of the regularly integrable IGF’s satisfying Assumption 3.1 include
1{|z| < K}, any indicator function on a compact interval defined by a truncation
parameter K, and its variates such as sgn(z)1{|z| < K} and z1{|z| < K}. Also
included are functions of the type ze 1#l. For example, the IV estimator constructed
from the indicator function on the interval [0, 1]

F(z) =1{lz| < 1}

is simply the trimmed OLS estimator, i.e., the OLS estimator which uses only the
observations taking values in some compact interval.
Define

yiapi"'l yiapi m:'-,PH-l si;PH‘l
Yi = : y Yo = : y Xi= : y €= :

Yi,r; Yi,ri—1 ., i1y

where z, = (Ayit-1,...,Yit—p;). Then the augmented autoregression (8) can be
written in matrix form as

Yi =yeoi + Xiffi & =Yiyi + & (10)

where G = (ai1,...,0p), Yi = (Yu,Xi), and v; = (o;,0])’. For the augmented
autoregression (10), we consider the estimator 4; of v; given by

. &; - FyeYyes Flyu)Xi\™" ( Flye)yi
= (%) = iy ‘Wfi=( 1
= () = rwa = (T Ty xy ) Y

where W; = (F(yu),X:) with F(ye) = (F(Yip:)s- .- F(Yir;—1)). The estimator %;
is thus defined to be the IV estimator using the instruments W;.

The IV estimator &; for the AR, coefficient ¢; corresponds to the first element of
#%; given in (11). Under the null, we have

& — 1= Bl Ar, (12)

7



where

Ar, = F(yu)ei— Fyu) Xi(X1X:) " Xie;

T

-1 T;

T; T; T;
= Y F(yiz1)ei — > F(yiz—1)2% (Z xit-??/it) > e
t=1 t=1 t=1 t=1

Br, = F(ya)ye — Fya) Xi(X{X:) " Xiyu

T; T; T; -1 7,
= > Flyig-1)yit-1 — Y F(yiz—1)s (Z mitx'it) > wiyiz
t=1 t=1 t=1

t=1

and the variance of &; is given by

o?EB;2Cr, (13)
under Assumption 2.2, where
Cr, = Fu)Fe)— F(ya) X X{X:) " X{F(ye:) (14)
T; T; T4 -1
= Y Fyiz-1)’ — D_F(yi-1) (Z xitxét) > zitF(yiz—1) (15)
t=1 t=1 t=1 t=1

For testing the unit root hypothesis Hy : a; = 1 for each ¢ = 1,...,N, we
construct the t-ratio statistics from the nonlinear IV estimator &; defined in (12).
More specifically, we construct such IV t-ratio statistics for testing for a unit root in
(1) or (8) as

& —1

Z; =
(&) (16)
where s(é&;) is the standard error of the IV estimator &; given by
s(&;)? = 62B;2Cr, (17)

due to (13). The 42 is the usual variance estimator given by T 157 €%, where é;

is the fitted residual from the augmented regression (8), viz.

pi
Bt = yir — Gi¥it1 — D Qi plNYig—k = Yit — GiYit—1 — LiplOi
k=1

It is natural in our context to use the IV estimate (&;,3;) given in (11) to get the
fitted residual ;. However, we may obviously use any other estimator of (a;, 3;) as
long as it yields a consistent estimate for the residual error variance.

To derive the limit null distribution of the IV t-ratio statistics Z; introduced
in (16), we need to obtain the asymptotics for various sample product moments
appearing in Ar,, Br, and Cr,. They are presented in the following lemma.



Lemma 3.2 Under Assumptions 2.1, 2.2 and 3.1, we have

T o~ /2
@ T Pl e —a o1 (21,0 [~ F62as)” W)

t=1

(b) Ti_l/ziF(yi,t—l)z —a 0i(1) Li(1,0) /oo F(s)%ds
t=1 e

T4
(c) T;3/4ZF(yi,t—1)Ayi,t—k —p 0, fork=1,...,p;
=1

as T; — 0o, where a;(1) =1 — 30| k.

The results in Lemma 3.2 are simple extensions of the results in parts (c), (i) and (e)
of Lemma 3.1 in Chang, Park and Phillips (1999). For the detailed discussion on the
asymptotics here, the reader is referred to Park and Phillips (1999,2000) and Chang,
Park and Phillips (1999). For the regularly integrable IGF F, the covariance asymp-
totics yields a mixed normal limiting distribution with a mixing variate depending
upon the local time L; of the limit Brownian motion Uj, as well as the integral of the
square of the transformation function F'.
It is very useful to note that

T; 1
7Y Fet)es ~a YT | F(VTiBar,)dU:
t=1

T3 1
Ti_1/2 ZF(yi,t—1)2 g \/’1_2/0 F(VTiBir,)?
t=1

from which we may easily deduce the results in parts (a) and (b) of Lemma 3.2 using
elementary martingale theory as in Park and Phillips (1999,2000) and Chang, Park
and Phillips (1999).

The limit null distribution of the IV ¢-ratio statistics Z; defined in (16) now follows
readily from the results in Lemma 3.2.

Theorem 3.3 Under Assumption 2.1, 2.2 and 3.1, we have
Zi —d VVz(l) = N(O,l)
asT; mooforalli=1,...,N.

The limiting distribution of the IV ¢-ratio Z; for testing o; = 1 is standard normal if a

regularly integrable function is used as an IGF. Moreover, the limit standard normal

distributions, W;(1)’s, are independent across cross-sectional units ¢ = 1,...,N.
Note that we have under the alternative of stationarity, i.e., |o;| < 1,

TV (& — ;) —a N(0,0?)

where - 9
2 F (yi,t—l)

( SiL F (yi,t—l)yi,t—1)2

v? =plim,, o,

9



Consequently, if we let

P

Qi — Oy

Zi(ew) = @) (18)
where s(&;) is defined in (17), then
Zi(c;) —a N(0,1) (19)

Therefore, the IV ¢-ratio constructed with regularly integrable IGF are normally
distributed asymptotically, for all |o;| < 1.

Continuity of the distribution across the values o; of the t-ratio Z;(c;) defined in
(18) also allows us to construct the confidence intervals for o; from the IV estimators.
As we have noticed above,

Z; (ai) —d N(Oa 1)

for all values of «; including unity, when the IGF F is a regularly integrable function.
We may therefore construct 100 (1 — X) % asymptotic confidence interval for ¢; as

[di —2)\/2 S(fk,;), &; + Zx/2 s(&l)] (20)

using the IV estimators generated by any integrable function F', where 2 /5 is the
(1 — \/2)-percentile from the standard normal distribution.

This is one important advantage of using the nonlinear IV method. The OLS-
based standard t-ratio has non-Gaussian asymptotic null distribution, called the
Dickey-Fuller distribution. It is asymmetric and skewed to the left, as tabulated
in Fuller (1996). Therefore, the confidence interval which is valid for all |o;| < 1
cannot be constructed from the OLS based t-ratio.

4. Panel Nonlinear IV Unit Root Test

The test statistics that we propose here to test the unit root null hypothesis Hy :
a; = 1foralli=1,...,N is basically an average of the individual ¢-ratio statistics for
testing o; = 1 in (8) for each cross-sectional unit ¢ = 1,..., N. For testing the joint
unit root hypothesis Hy : a1 =... = ay = 1, we propose to use an average statistics
based on the individual ¢-ratios constructed from the nonlinear IV estimators é&;
defined in (12). More specifically, the average IV t-ratio statistics is defined as

1 N
Sn TN ; z; (21)
where Z; is the nonlinear IV t-ratio statistics, defined (16), for testing o; = 1 for the
i-th cross-sectional unit.

For the average statistics Sy, we allow each of the cross-sectional units ¢ =
1,...,N to have a different sample size T;, and therefore unbalanced panels are per-
mitted in our framework. Our test is based on nonlinear IV estimation of the usual

10



ADF type regression for each cross-sectional unit, using as instruments nonlinear
transformations of the lagged levels y; ¢ _1’s.

In order to derive the limit theory for the statistics Sy, we first investigate how
the individual IV t-ratio statistics Z;’s interact in the limit. We have

Ty 1
Ti—l/4 ZF(yi,t_QEit Rq \4/7_’;/0 F(\/T;Bir,)dU;
t=1

Tj 1

-1/4

TS Flysemt)er ~a T, /0 F(,/T;Bjz,)dU;
t=1

which become asymptotically independent if their quadratic covariation

o3 4/TiT; /0 ' F(JTiBur, (M) F(\/T;Bjr, (r))dr

converges a.s. to zero, where o;; denotes the covariance between U; and Uj. This was
shown in Chang, Park and Phillips (1999). Below we introduce a sufficient condition
and establish their asymptotic independence subsequently.

Let T.. and To., respectively be the minimum and the maximum of T;’s for
i=1,...,N.

Assumption 4.1 Assume

T 3/4

Tmin — 00 and

Then we have

Lemma 4.2 Under Assumptions 2.1, 2.2, 3.1 and 4.1, the following holds:

7T [ FO/Bin ) F T3 Bin, ()dr = 0 (22

and the results in Lemma 3.2 hold jointly for all ¢ = 1,..., N with independent W;’s
acrosst=1,...,N.

The result Lemma 4.1 is new, and shows that the product of the nonlinear instru-
ments F(y;¢—1) and F(y;t—1) from different cross-sectional units ¢ and j are asymp-
totically uncorrelated. This implies that the individual IV t-ratio statistics Z; and
Z; constructed from the nonlinear IV’s F' (yiz—1) and F(y;z—1) are asymptotically
independent. This asymptotic orthogonality plays a crucial role in developing limit
theory for our panel unit root test Sy defined above, as can be seen in below.

The limit theory for Sy follows immediately from Theorem 3.3 and Lemma 4.1,
and is provided in

11



Theorem 4.3 We have
SN —d N(Oal)

under Assumptions 2.1, 2.2, 3.1 and 4.1.

The limit theory is derived using T-asymptotics only. It holds as long as all T;’s go
to infinity and 7T;’s are asymptotically balanced in a very weak sense, as we specify
in Lemma 4.1. It should be noted that the usual sequential asymptotics is not used
here.?2 The factor N~1/2 in the definition of the test statistics Sy in (21) is used just
as a normalization factor, since Sy is based on the sum of N independent random
variables. Therefore, the dimension of the cross-sectional units N may take any value,
small as well as large. The above result therefore implies that we can do simple
inference based on the standard normal distribution even for unbalanced panels with
general cross-sectional dependencies.

The normal limit theory is also obtained for the existing panel unit root tests, but
the theory holds only under cross-sectional independence, and obtained only through
sequential asymptotics. For example, the pooled OLS test by Levin, Lin and Chu
(1997) and the group mean ¢-bar statistics by Im, Pesaran and Shin (1997) have nor-
mal asymptotics. However, they all presume cross-sectional independence and their
normal limit theories are obtained through sequential asymptotics. The independence
assumption was crucial for their tests to have normal limiting distributions, since the
individual ¢ -statistics contributing to the average become independent only when
the innovations ¢;; generating the individual units are independent. Moreover, the
sequential asymptotics is an essential tool to derive their results, and they do not pro-
vide joint asymptotics. Here we achieve the asymptotic independence of individual
t-statistics by establishing asymptotic orthogonalities of the nonlinear instruments
used in the construction of the individual t-ratio statistics without having to impose
independence across cross-sectional units, or relying on sequential asymptotics.

5. Nonlinear IV Estimation for Models with Determinis-
tic Trends

The models with deterministic components can be analyzed similarly. If the time
series (2;;) with a nonzero mean is given by

Zit = Wi + Yit (23)

where (y;t) is generated as in (1). We can test for the presence of the unit root in the
process y;; from the augmented regression (8) defined with the fitted values of {y;:}
obtained from the preliminary regression (23), viz.

P
yh =iyt + ) cipyl,_ +eu (24)
k=1

2The usual sequential asymptotics is carried out by first passing T to infinity with IV fixed, and
subsequently let N go to infinity, usually under cross-sectional independence.
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where
1 t
Yhe = 2it — i = 2t — 3 Zzik (25)
k=1
We note that the parameter y; is estimated from the model (23) using the observations
up to time ¢t. That is, the i} is the least squares estimator from the regression

Zig = pi + Yk, for k=1,...,¢ (26)

That we use the data upto the current period ¢ only, instead of using the full sample,
for the estimation of the constant y; leads to the demeaning based on the partial sum
of the data upto ¢ as given in (25), which we call adaptive demeaning. We may then
construct the nonlinear IV t-ratio statistics Z! based on the nonlinear IV estimator
for o; from the regression (24), just as in (16). With the adaptive demeaning the
predictability of our nonlinear instrument F' (yﬁ ,_,) is retained, and consequently our
previous results continue to apply, including the normal distribution theory for the
IV t-ratio statistics.

We may also test for the unit root in the models with more general deterministic
time trends. As in the cases with the models with nonzero means, we may derive
nonlinear IV unit root test Z7 in the same manner. More explicitly, consider the
time series with a linear time trend

Zit = i + 6t + yir (27)

where (y;:) is generated as in (1). Similarly, we may test for the unit root in y;; from
the regression (8) defined with the fitted values of (y;:)

pi

yh = cuyls 1 + O iRyl + it (28)
k=1

from running the regression (27), where
vi =z — [ - 81t (29)

The parameter estimates fi} and 3: are estimated using again the observations upto
time ¢ only, from the model (27). That is, it and 6} are the least squares estimator
from

Zik = pi + 6k +yik, for k=1,...,¢ (30)

This leads to the adaptive detrending of the data y;; as given in (29) above, and this
in turn preserves the predictability of our instrument F(y7, ;). The nonlinear IV
t-ratio statistics Z is then defined as in (16) from the nonlinear IV estimator for a;
from the regression (28).

We may now derive the limit theory for the statistics Z!* and Z7. We may do so
in the similar manner as we did to establish the limit theory given in Theorem 3.3.

13



In order to define the limit distribution properly, we first introduce some notation.
Define the adaptively demeaned Brownian motion

UM (r) = Ui(r) — % /0 " Ui(s)ds (31)

for i = 1,...,N, and denote its local time by L scaled as for L;. Similarly we also
define adaptively detrended Brownian motion

Uz (r) = Us(r) — % /0 " Ui(s)ds + r% /0 " sUi(s)ds (32)

and analogously denote the local time of the adaptively detrended Brownian motion
Ul by LT fori=1,...,N.

The processes U!* and U] introduced in (31) and (32) are not defined at the
origin. However, due to the well known Brownian law of iterated logarithm [see, for
instance, Revuz and Yor (1994, p.53)], we have

Ui(r) = O(r*?(loglog(1/r))/?) a.s.

and therefore,
/ U;(s)ds = O(r®?(loglog(1/r))'/?) as
0
and .
/ sU;(s)ds = O(r*?(loglog(1/r))}/?) a.s.
0
It then follows that
1/ 1
;/0 Ui(s)ds, ﬁ/o sUi(s)ds — 0 as r—0

Therefore, if we let U(0) = U7 (0) = 0, then both U}(r) and U/ (r) become continu-
ous stochastic processes defined on [0, 00). We make this convention through the rest
of the paper.

The limit theories given in Lemma 3.2 extend easily to the models with nonzero
means and deterministic trends if we replace y;; with the fitted residuals y/, and yJ;
defined respectively in (25) and (29), and are given similarly with the local times L'
and LT in the places of the local time L; of the Brownian motion U;. Then the limit
theories for Z!* and Z] follows immediately, and are given in

Corollary 5.1 Under Assumption 2.1, 2.2 and 3.1, we have
Zlf‘, Z;r —d N(O’ 1)

asT; —»ooforalli=1,...,N.

The standard normal limit theory of the nonlinear IV t-ratio statistics continues to
hold for the models with determininstic components.
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6. Simulations

We conduct a set of simulations to investigate the finite sample performance of the
average IV t-statistics Sy based on integrable IGF’s for testing the unit root null
hypothesis Hyp : «; = 1 for all ¢ = 1,..., N against the stationarity alternatives
H; : |ey| < 1 for some ¢. In particular, we explore how close are the finite sample
sizes of the test Sy in relation to the corresponding nominal test sizes, using the
critical values from its limit N(0,1) distribution, and compare its sizes and powers
to those of the commonly used average statistics t-bar proposed by Im, Pesaran and
Shin (1997).

For the simulation, we consider the (y;:) given by the model (1) with (u;) gener-
ated as AR(1) processes, viz.,

Uit = PiUig—1 + Eit (33)

The innovations &; = (£1¢,...,ext) that generate us = (uyy,...,unt) are drawn from
an N-dimensional multivariate normal distribution with mean zero and covariance
matrix . The AR coefficients, p;’s, used in the generation of the errors (u;) are
drawn randomly from the uniform distribution, i.e., p; ~ Uniform[0.2,0.4]. The pa-
rameter values for the (NxN) covariance matrix ¥ = (o;;) are also randomly drawn,
but with particular attention. To ensure that X is a symmetric positive definite ma-
trix and to avoid the near singularity problem, we generate X% following the steps
outlined in Chang (2000). The steps are presented here for convenience:

(1) Generate an (N x N) matrix M from Uniform[0,1].

(2) Construct from M an orthogonal matrix H = M(M'M)~'/2.

(3) Generate a set of N eigen values, \j,...,Ay. Let \;=r >0 and Ay=1and draw
A2, ...y An—1 from Uniform|r,1].

(4) Form a diagonal matrix A with (A,...,Ay) on the diagonal.

(5) Construct the covariance matrix ¥ as a spectral representation ¥ = HAH'.

The covariance matrix constructed in this way will surely be symmetric and non-
singular with eigen values taking values from r to 1. We set the maximum eigen
value at 1 since the scale does not matter. The ratio of the minimum eigenvalue to
the maximum is therefore determined by the same parameter r. We now have some
control over the size of the minimum eigen value and the ratio of the minimum to
the maximum eigen values through the choice of . The covariance matrix becomes
singular as r tends to zero, and becomes spherical as r approaches to 1. For the
simulations, we set r at r = 0.1.

For the estimation of the model (8) for ¢ = 1,..., N, we consider the IV estimator
4; defined in (11) which uses the instrument (F(y;t—1), AYit—1,..-3AYit—p;)- The
instrument used for the lagged level y;:_; is generated by the integrable IGF

F(yiat—l) = yi’t_le—cilyi,t—ll

where the factor c¢; is proportional to the sample standard error of Ay;: = u; and
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77"/, That is,
T4
= KTi_l/zs(Ayit) with sz(Ay,-t) = T{l ZAy?t
t=1

where K is a constant. Notice that the larger the value of the factor c;, the more
integrable the IGF F becomes. The value of K is fixed at 5 for all ¢ = 1,...,N,
and for all combinations of N and T considered here.> We note that the factor ¢; in
the definition of the instrument generating function F' is data-dependent through the
sample standard error of the difference of the data y;:. Hence, the value of ¢; will be
determined for each cross-sectional unit ¢ = 1,..., N. The shape of the integrable IV
generating function F is given in Figure 1.

To test the unit root hypothesis, we set o; =1 for all¢ = 1,..., N, and investigate
the finite sample sizes in relation to the corresponding nominal test sizes. To examine
the rejection probabilities under the alternative of stationarity, we generate o;’s ran-
domly from Uniform[0.8,1]. The model is thus heterogeneous under the alternative.
The finite sample performance of the average IV t-ratio statistics Sy is compared
with that of the t-bar statistics by Im, Pesaran and Shin (1997), which is based on
the average of the individual t-tests computed from the sample ADF regressions (8)
with mean and variance modifications. More explicitly, the ¢-bar statistics is defined

a VN(x = NT' N, Et))
\/N—1 SN, var(t;)

where t; is the t-statistics for testing o; =1 for the i-th sample ADF regression (8),
and fy=N"1 3N, t;. The values of the expectation and variance, E(¢;) and var(¢;),
for each individual ¢; depend on T'; and the lag order p;, and computed via simulations
from independent normal samples. The number of time series observation T'; for each
i=1,...,N is required to be the same.*

The panels with the cross-sectional dimensions N = 5, 15,25, 50, 100 and the time
series dimensions T' = 25,50, 100° are considered for the 1%, 5% and 10% size tests.
Since we are using randomly drawn parameter values, we simulate 20 times and
report the ranges of the finite sample performances of the average IV nonlinear ¢-
ratio statistics Sy and the ¢-bar test. Each simulation run is carried out with 10,000
simulation iterations. Tables 1, 2 and 3 report, respectively, the finite sample sizes,

t-bar =

3The test Sy constructed from the IGF F with a lager value of K tends to have smaller rejection
probabilities uniformly over all the choices of N and T'. The IGF defined with K =5 seems to work
best overally, and thus chosen for our simulations. For the cases where the time dimension is small
T =25, the average IV test Sy slightly over-rejects the null. In such cases, one might use a little
larger value of K to correct the upward size distortion.

4Table 2 in Im, Pesaran and Shin (1997) tabulates the values of E(t;) and var(t:) for T =
5,10, 15, 20, 25, 30, 40, 50, 60, 70, 100 and for p; =1,...,8.

5Though we allow heterogeneity in the number T’; of time series observations in our theoretical
framework, we use the same T for all the cross-sectional units to be able to make our average IV
t-statistics Sy comparable to the ¢-bar test by Im, Pesaran and Shin (1997), which requires T'’s to
be the same across i.
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the finite sample rejection probabilities and the size adjusted finite sample powers
of the two tests. For each statistics, we report the minimum, mean, median and
maximum of the rejection probabilities under the null and under the alternative
hypothesis.

As can be seen from Table 1, the finite sample sizes of the test Sy are quite
close to the corresponding nominal sizes. The sizes are calculated using the critical
values from the standard normal distribution, and therefore the simulation results
corroborate the asymptotic normal theory for Sy. The limit theory seems to work
reasonably well even when the number of time series observation is relatively small,
i.e., when T = 25, for all of the cross-sectional dimensions considered. On the other
hand, the t-bar statistics exhibits noticeable size distortions, as reported, for instance,
in the previous simulation work by Maddala and Wu (1996). The size distortions seem
to be mostly upward for the 1% tests, and downward for 5% and 10% tests. For the
cases where the number of cross-sectional units is larger relative to the number of time
series observations, however, the ¢t-bar suffers from serious upward size distortions for
all tests. For example, when N =100 and T'=25, the finite sample sizes of ¢-bar for
1%, 5% and 10% tests are, respectively, 32.9%, 35.0% and 36.1%.

The test Sy is more powerful than the t-bar statistics for all 1%, 5% and 10% tests
and for all N and T combinations considered, as can be seen clearly from the results
on the finite sample rejection probabilities and the size adjusted powers, reported
repetitively in Tables 2 and 3. The discriminatory power of Sy is noticeably much
higher than that of the t-bar statistics for the cases with smaller T"and N. For the 1%
tests with the combinations (N, T) = {(15,25), (25,25), (5,50)}, the power of the test
Sy is more than twice as large as that of the ¢-bar statistics. The Sy still performs
much better than the ¢-bar even when T is large, if the cross-sectional dimension is
small. The performance of the t-bar statistics improves as both N and T increase,
though the improvement is more noticeable with the growth in 7. The differences in
the finite sample powers of Sy and t-bar vanish as both N and T increases.

7. Empirical Illustrations

In this section, we apply the newly developed panel unit root test Sy to test whether
the purchasing power parity (PPP) hypothesis holds. The PPP hypothesis has been
tested numerously many times by many researchers using various unit root tests,
both in panel as well as univariate models. Examples include MacDonald (1996),
Frankel and Rose (1996), Oh (1996), Papell (1997), O’Connell (1998), just to name
a few. There have been, however, conflicting evidences, and the issue does not seem
to be completely settled.

We consider the data used in Papell (1997), which consists of the real exchange
rates for twenty countries computed from the IMF’s International Financial Statistics
(IFS) tape, covering the period 1973:1 — 1998:4.% We also consider the data from Penn

5The data used in Pappel (1997) covers the period 1973:1 — 1994:3, but the data used here is
extended to 1998:4. The data is quarterly, and is taken from the International Monetary Fund’s
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World Table (PWT) analyzed in Oh (1996).” The empirical results are summarized
in Tables 4 and 5, respectively for the results from using data from Pappel (1997) and
Oh (1996). We allow the models to have heterogeneous dynamic structure, i.e., the
models may have different AR orders for individual cross-sectional units. For each
cross-sectional unit the AR order is selected using BIC criterion with the maximum
number of lags 4 and 6. To see how sensitive are the test results with respect to the
specifications of individual dynamics, we also look at the panels with homogeneous
dynamics, where we do not allow the AR order to vary across the individual units
and fix the AR order at 2 and 4 for all cross-sectional units.

For the analysis of the PWT data, we looked at four different groups of countries.
For each group of countries, the numbers of the time series observations are different,
varying from 30 to 41.8 The IFS data has total 104 time series observations. To
examine the dependency on the sample size also for the test results from the IFS data
set, we considered three sub-samples of the sizes 25,50 and 100. The sub-samples are
obtained by retaining the most recent observations.

For both data from Papell (1997) and Oh (1996), our test strongly and unambigu-
ously support the PPP relationship. As seen from Tables 4 and 5, our test rejects the
presence of the unit root in all cases.? The values of the test statistics Sy of course
vary for different choices of the sample size T and the specifications of the dynamic
structures, but they consistently reject the null hypothesis of the unit root. Our test
appears to be fairly robust with respect to the specifications of model dynamics and
the sizes of the samples.

In sharp contrast, the t-bar test by Im, Pesaran and Shin (1997) produces the
results that are inconclusive. The test results are, in particular, sensitive to the
specifications of the individual dynamic structures, and to the dimensions of the
cross-sectional and time series observations. For the IFS data, we get contradictory
results for each choice of the number of time series observations and maximum order
in the BIC criterion. It appears that the test has the tendency to support the PPP
when the sample size is large. However, this tendency is not observed when we do
not allow for heterogeneous dynamics across individual units. The results from the

International Financial Statistics data tape. The countries considered include Austria, Belgium,
Denmark, Finland, France, Germany, Italy, Japan, Netherlands, Norway, Spain, Sweden, Switzer-
land, United Kingdom, Ireland, Australia, Greece, New Zealand, Portugal, and Canada. The real
exchange rate r;; for the i-th country is computed using the US dollar as the numeraire currency,
and calculated as ri¢ = log(ewpxt/pit), where eis, p.: and pi: denote respectively the nominal spot
exchange rate for the i-th country, the US CPI, and the CPI for the i-th country.

"The data used in Oh (1996) are yearly observations from the Penn World Table, Mark 5.5. The
data is collected for 111 countries for the period 1960 — 1989, and extended to a longer period 1950 —
1990 for a group of 51 countries. For the longer sample, the data is analyzed for two sub-samples, the
twenty-two OECD countries and G6 countries (Canada, France, Germany, Italy, Japan and United
Kingdom).

8For the group of 111 countries, there are 30 annual observations. But for the the group of 51
countries (including its sub-samples of 22 OECD countries and G6 countries), there are 41 time series
observations.

9There is only one exception. Our test is not able to reject the absence of PPP for G6 countries
based on PWT data, when the dynamics is restricted to be AR(4) for all cross-sectional units.
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PWT data are also mixed. The t-bar test supports or rejects the PPP depending
upon how we select the countries and the time series observations. The test fails to
reject the presence of the unit root except for one case where we have largest number
of total observations.

8. Conclusions

This paper introduces an asymptotically normal unit root test for panels with cross-
sectional dependency. The test is based on nonlinear IV estimation of the autoregres-
sive coefficient using the instruments generated by the class of regularly integrable
functions. The t-ratio statistics for the test of the unit root constructed from such
nonlinear IV estimators is shown to have standard normal limit distribution, for each
individual cross-sectional unit ¢ = 1,..., N, The nonlinear IV t¢-ratio statistics has
simple symmetric confidence intervals both under the unit root null as well as under
the stationarity alternatives. Therefore, there are no more discontinuity problems in
the confidence intervals in the transition from stationary to nonstationary cases. The
same results extend to the models with deterministic trends. More importantly, we
show that the limit distributions of the nonlinear IV t-ratio statistics for testing for
the unit root in individual cross-sectional units are cross-sectionally independent.

The asymptotic orthogonalities among the individual nonlinear IV t-ratio statis-
tics naturally lead us to propose a standardized sum of the individual IV t-ratios
for the test of the unit root for panels with cross-sectional dependency. We show
that the limit theory of such standardized sum of individual nonlinear IV t¢-ratios,
which we call the Sy statistics, is also standard normal. The limit theory is derived
via T-asymptotics, which is not followed by N-asymptotics. The spatial dimension
consequently is not required to be large, and therefore it may take any value, large
or small. Moreover, the number of time series observations is allowed to be different
across cross-sectional units, and thus our panel nonlinear IV method permits unbal-
anced panels. This implies that we can do simple inference based on the standard
normal distribution even for unbalanced panels with general cross-sectional depen-
dency.

The simulation results seem to well support our theoretical findings. The finite
sample sizes of Sy calculated from using the standard normal critical values quite
closely approximate the nominal test sizes. Moreover, the test Sy has noticeably
higher discriminatory power than the commonly used average panel unit root test
t-bar by Im, Pesaran and Shin (1997). The panel nonlinear IV unit root test seems to
improve significantly upon the ¢-bar test under cross-sectional dependency, especially
for smaller time and spatial dimensions. The new statistics Sy is applied to test
whether the purchasing power parity hypothesis holds, using the data sets from the
International Financial Statistics and the Penn World Table. Our test appears to be
fairly robust to the specifications of the model dynamics and the sizes of the samples,
and strongly and unambiguously support the PPP relationships, while the t-bar test
by Im, Pesaran and Shin (1997) produces inconclusive results.
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Appendix: Mathematical Proofs

Proof of Lemma 3.2 We have from the Beveridge-Nelson representation of y;:
given in (7) that
[7i7)
—1/2 —1/2
i / Yigrir) = mi(1)T; / Z &it + 0p(1)
t=1

T

where 7;(1) = a;(1)"!. Then we have as T; — oo

T ey = m()Uir,(r) + 0p(1) —4 m(1)Ui(r) (34)
since U, —q U; as T; — 0o, due to the invariance principle in (4). Then it follows
from Lemma 3.1 (c) of Chang, Park and Phillips (1999) that

TS Fle)er —a o (L) [T Fm()o?ds) W)
t=1 o0

= (a0 [T Feras)” wa

by a simple change of variables. This establishes the result in part (a).
The stated result in part (b) is obtained similarly using the result in Lemma 3.1
(i) of Chang, Park and Phillips as follows (1999)

T; (o
Ti—l/zzF(yi,t—ﬂz —d Li(l,O)/ F(m;(1) s)°ds
=1 e

— (1) Li(1,0) /_ °:o F(s)%ds

again by a simple change of variables.

For part (c), just note that Ay;;_1, ..., Ay;;_, are stationary regressors, and then
the proof follows directly from the asymptotic orthogonality between the integrable
transformations of integrated processes and stationary regressors established in part
(e) of Lemma 3.1 in Chang, Park and Phillips (1999).

Proof of Theorem 3.3 We begin by investigating the limit behavior of Ar, and

Cyr, defined below (12) and (13), respectively. Recall z; = (Ayit—1,- -+, DYit—p;)-
Then it follows from Lemma 3.2 (c) that

T4
S F(yig—1)2) = 0p(TV%)
t=1

which gives
Ty T -l
! !
> F(yig—1) (Z xit%:) > zien
t=1 t=1 =1
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-1
ZF Yit— 1) 1,t (intxzt)

op(T3/“>op(T;‘>op<T:/2>
op(T2'*)

Ty
E Zit€it
t=1

and

-1 7,
ZF (yz t— 1)5% (Z ﬁfzt%e) intF (yi,t—l)

t=1 t=1

ZF Yit—1)T (sztxzt)

= o,,(T3/4)o,,(T Yop(T3/*)
= Op(T:ﬂ)

<

T;
Z it F(Yit—1)

t=1

Then we have T
t=1
and -
7720, =T Fyip—1)? + 0,(1)
t=1
Next we write Z; defined in (16) as
& —1 B _'1AT1'. ATi

zZ. = = Ti =
"os(&)  (62BRECr,)V? 6-1:0;:1'/2

using the results in (12) and (17). Then it follows immediately from Lemma 3.2 (a)
and (b) that

1/2
&, (TZI/ZCT,-) /
1/4 L
TS Fyig1)en

= = izt op(1)

i (T: 12 TZF (yi,t—l)z)
1/2
(al(l)L (1,0) / F(s)zds) Wi(1)

o <ai(1)Li(1,0) /_ ) F(s)2ds>1/2

wi(1)

Z; =
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as T; — oo, and this establishes the stated result.
Proof of Lemma 4.2 We may assume w.l.o.g. that F is monotonic decreasing,

since otherwise we may redefine F as such a function dominating the given F'. Let
T; < T; for any 1 <4,j < N. Then we have

{7 [ FWTiBuar)F (5B, )i
< YT, [ FO/TBir ()P WTiByr, ()i (35)
However, due to the result in Kasahara and Kotani (1979), we have
/ (vTiBi(r))F(VTiB;(r))dr = O, (1°g7 ) 8. (36)

and as shown in Chang, Park and Phillips (1999)

102:& / F(VT;:Bir,(r))F( \/— Bijr,(r))dr
- 1021"/ F(VTiBy(r))F (y/T;B;(r))dr + 0p(1) (37)

We now have from (35), (36) and (37) that
{78 [ FO/TBa o) F (5B, ()
/4 log T
= YT, TJ / ﬁ;Ble ) (\/——_BJT] (T))d’l’ + Op (—iﬁ——)

o 1/ 4 log T;
= O, Tf 7

— Tmnxl/4 log Tmnx
B Op Tmin3/4

which is of order o,(1) if
T o /210g T
m)n3/4
as assumed. This establishes the stated result in (22).
As shown in Chang, Park and Phillips (1999), the result in (22) implies that

— 0

Ty
T4 Flyip1)en

t=1
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are asymptotically independent for all ¢ = 1,...,N. It is clear that the results in
Lemma 3.2 hold jointly, if T,;, — oo, and thus the proof is complete.

Proof of Theorem 4.3 Under the given assumptions, the individual IV t-ratio
statistics Z;’s have the standard normal limit distributions as established in Theorem
3.3, and Z; and Z; become asymptotically independent for all 7 # j, as implied by
Lemma 4.2. This suffices to establish the stated result.

Proof of Corollary 5.1 The least squares estimator of x; from the regression (26)
with sub-samples upto time ¢ is ¢t 3%_; z;x. Then we have from (25) that

. 1< 1< 1<
Yh = zit — U = zis — 7 Zzik = (s +yit) — n Z(M+yik) =Y =3 Zyik

To examine the limit behavior of yl;, we may write it as

[Tir]

1

m ;yik

Yijrer) = Yilrer) —

Then it follows from (34) and the invariance principle given in (4) that

/ / 1 1l

—-1/2 p Iy i -1/2

Ti yi[TiT‘] - Ti yi[TiT] - [Ti?"] —ng Z Ti Yik
k=1

1 T
= WU, (r) = 5 [ w1V (s)ds + 0,(1)
—q m(LUF(r)
as T; — oo, where
Uf=Uw0—l/(Mﬂ$
T Jo

To calculate the LS estimators of u; and 6; from the sub-sample regression (30), we
may rewrite the model as

t+1 t+1
Zik = (,ui+—2 5,-) + 6 (k——2 ) 4y, for k=1,...,¢t
Note that the regressors are orthogonal in this reparameterized regression. Hence,
the LS estimators for the parameters in the reparameterized regression are easily
calculated and are given by

. t41a t+1 13
ME+T5E = M+T5i+'£zyik
k:
t o\ 1 ¢
. t4+1 t+1
t = §; L k——=)y;
5 5z+<k\;1(k : )) kz;( : )yk



Now, we may write the fitted residual y7; given in (29) more explicitly as
yh = zie— i — 8t

. t+1, t—

= (uﬁ +— 52) -3

t+1 1
= (i + 6t +yu) — <,ui + T&’ + n Zyzk)

k—l k=1 k=1
t t
t + 1
= Yit — Z Yik + Z k Yik — Z Yik
t(t+ 1 — 9 =

t

= yit—‘zlgyik"'mzk%k

k=1
Then we have

[Ts7]

yz’[Tir] =Yilrir) — [T ] Z Yik + W Z k‘y,,k

giving
[Tir] 2 t
—-1/2 - -1/2 4T; 1 -1/2 67 1 k. 172
l y”'[TiT] i Yi[r:r] [Ti’l"] T kgl i Yik + [Tl’)"]([ Lr] + 1) i T; Tz Yik

= W) = 2 [ (1), (s + S [ smiUir,(0)ds + 01
—a m(D)U (r)

as T; — 0o due to (34) and (4), where

U7 (r) = Us(r) — /0 "Uis)ds + 5 /0 " sUi(s)ds

Now the limit theories given in Lemma 3.2 for the sample moments for the models
with no deterministic trend easily extends to the sample moments from the models
with deterministic trends. The limit theories in fact have the identical expressions
with the local times of adaptively demeaned and detrended Brownian motions U/
and U] in the place of the original U;. Using these modified limit theories, we may
then easily derive the limit distributions of the nonlinear IV t-ratio statistics Z* and
Z] for the models with nonzero mean and deterministic trends.
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Table 1: Finite Sample Sizes

1% test 5% test 10% test
N T tests min mean med max min mean med max min mean med max
5 25 t-bar 0.017 0.020 0.020 0.022 0.033 0.036 0.036 0.039 0.044 0.047 0.047 0.051
S~ 0.012 0.016 0.016 0.019 0.053 0.059 0.060 0.065 0.100 0.109 0©.109 0.117
15 25 t-bar 0.063 0.067 0.067 0.071 0.085 0.090 0.089 0.094 0.098 0.103 0.102 0.108
S~ 0.018 0.021 0.021 0.025 0.070 0.077 0.075 0.086 0.125 0.135 0.134 0.147
25 25 t-bar 0.098 0.102 0.102 0.106 0.119 0.124 0.123 0.129 0.134 0.138 0.138 0.142
S~ 0.017 0.020 0.020 0.022 0.064 0.073 0.073 0.078 0.121 0.131 0.131 0.140
50 25 t-bar 0.179 0.185 0.185 0.189 0.202 0.208 0.208 0.214 0.211 0.219 0.220 0.226
SN 0.017 0.019 0.018 0.021 0.067 0.072 0.072 0.079 0.122 0.129 0.128 0.136
100 25 t-bar 0.321 0.329 0.329 0.342 0.342 0.350 0.350 0.362 0.353 0.361 0.361 0.374
SN 0.019 0.023 0.022 0.025 0.079 0.084 0.085 0.089 0.139 0.146 0.146 0.152
5 50 t¢-bar 0.012 0.015 0.015 0.017 0.026 0.028 0.028 0.030 0.034 0.036 0.036 0.039
S~ 0.011 0.014 0.014 0.016 0.048 0.055 0.055 0.061 0.096 0.103 0.102 0.113
15 50 t-bar 0.041 0.044 0.043 0.047 0.055 0.060 0.060 0.065 0.065 0.070 0.069 0.076
Sn 0.014 0.017 0.017 0.019 0.059 0.066 0.066 0.071 0.108 0.119 0.119 0.127
25 50 t-bar 0.054 0.059 0.059 0.062 0.068 0.074 0.074 0.077 0.075 0.083 0.084 0.086
SN 0.011 0.014 0.014 0.017 0.053 0.058 0.058 0.064 0.100 0.107 0.107 0.116
50 50 t-bar 0.088 0.094 0.094 0.100 0.099 0.108 0.108 0.114 0.108 0.117 0.117 0.122
S~ 0.011 0.012 0.012 0.015 0.048 0.052 0.052 0.059 0.091 0.097 0.097 0.105
100 50 t-bar 0.140 0.147 0.146 0.158 0.152 0.160 0.160 0.172 0.160 0.167 0.167 0.180
SN 0.011 0.013 0.013 0.015 0.050 0.054 0.053 0.057 0.094 0.100 0.100 0.108
5 100 t¢-bar 0.011 0.013 0.013 0.015 0.021 0.023 0.024 0.026 0.028 0.032 0.032 0.035
SN 0.010 0.013 0.013 0.017 0.051 0.056 0.056 0.060 0.096 0.103 0.103 0.109
15 100 t-bar 0.032 0.035 0.035 0.038 0.044 0.047 0.047 0.050 0.052 0.055 0.055 0.059
SN 0.013 0.016 0.016 0.018 0.054 0.062 0.063 0.070 0.103 0.112 0.114 0.121
25 100 t-bar 0.042 0.045 0.045 0.049 0.053 0.057 0.057 0.061 0.060 0.064 0.064 0.068
S~ 0.011 0.013 0.013 0.016 0.049 0.054 0.054 0.060 0.094 0.101 0.101 0.108
50 100 t-bar 0.0568 0.062 0.061 0.067 0.068 0.072 0.072 0.078 0.073 0.077 0.078 0.083
S~ 0.010 0.011 0.010 0.013 0.041 0.046 0.045 0.050 0.078 0.088 0.088 0.095
100 100 ¢-bar 0.083 0.089 0.090 0.093 0.092 0.099 0.099 0.103 0.098 0.104 0.105 0.108
SN 0.010 0.011 0.011 0.013 0.041 0.046 0.046 0.053 0.081 0.087 0.086 0.098
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Table 2: Finite Sample Rejection Probabilities

1% test 5% test 10% test
N T tests min mean med max min mean med max min mean med max
5 25 t-bar 0.047 0.074 0.069 0.115 0.079 0.119 0.113 0.175 0.102 0.149 0.140 0.211
S~ 0.053 0.097 0.087 0.168 0.166 0.257 0.240 0.392 0.271 0.381 0.364 0.537
15 25 t-bar 0312 0375 0.381 0.450 0.377 0.443 0.448 0.519 0.408 0.475 0.481 0.551
S~ 0.272 0.380 0.388 0(.488 0.525 0.638 0.649 0.742 0.663 0.762 0.773 0.847
25 25 t-bar 0515 0.630 0.632 0.720 0.566 0.677 0.678 0.763 0.595 0.702 0.705 0.786
SN 0.414 0.583 0.581 0.726 0.677 0811 0.817 0.904 0.793 0.893 0.897 0.953
50 25 t-bar 0.870 0.923 0.924 0.969 0.890 0.936 0.937 0.975 0.897 0.941 0.942 0.977
SN 0.764 0.882 0.888 0.969 0.920 0.969 0.970 0.995 0961 0.987 0.989 0.998
100 25 ¢t-bar 0.994 0.998 0.998 1.000 0.995 0.999 0.999 1.000 0.996 0.999 0.999 1.000
SN 0.987 0.997 0.998 1.000 0.998 1.000 1.000 1.000 0.999 1.000 1.000 1.000
5 50 t-bar 0.067 0.168 0.138 0.331 0.112 0.248 0.214 0.449 0.141 0.292 0.255 0.508
SN 0.146 0.306 0.262 0.552 0.345 0.561 0.525 0.811 0.488 0.695 0.673 0.899
15 50 t¢-bar 0.589 0.727 0.750 0.853 0.657 0.781 0.806 0.887 0.689 0.805 0.829 0.905
Sn 0.761 0.885 0.905 0.965 0.925 0971 0.980 0.994 0.967 0.988 0.993 0.998
25 50 t-bar 0.827 0934 0.941 0.984 0.858 0.949 0.956 0.989 0.875 0.956 0.962 0.991
S~ 0.928 0.983 0.988 0.999 0.986 0.998 0.999 1.000 0.995 1.000 1.000 1.000
50 50 t-bar 0.994 0.999 1.000 1.000 0.995 0999 1.000 1.000 0.996 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 100 ¢-bar 0.191 0.581 0.524 0.946 0.275 0.673 0.639 0.975 0.333 0.721 0.701 0.985
SN 0.435 0.765 0.759 0.991 0.708 0.913 0.931 1.000 0.824 0.956 0.971 1.000
15 100 t-bar 0.984 0.996 0.999 1.000 0.990 0.998 0.999 1.000 0.992 0.998 1.000 1.000
SN 0.999 1.000 1.000 1.000 1.0000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25 100 t-bar 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 100 t-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 100 ¢-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3: Finite Sample Powers

1% test 5% test 10% test
N T tests min mean med max min mean med max min mean med max
5 25 t-bar 0.022 0.041 0.040 0.068 0.109 0.156 0.149 0.217 0.201 0.269 0.260 0.349
S~ 0.034 0.070 0.065 0.129 0.143 0.228 0.209 0.359 0.249 0.361 0.345 0.515
15 25 t-bar 0.074 0.112 0.112 0.151 0.257 0.317 0.314 0.398 0.399 0.469 0.464 0.549
SN 0.187 0.263 0.265 0.359 0.437 0546 0.552 0.663 0.606 0.697 0.706 0.798
25 25 t-bar 0.136 0.208 0.202 0.298 0.366 0.474 0.472 0.568 0.513 0.626 0.626 0.715
Sy 0309 0.466 0.457 0.625 0.596 0.749 0.751 0.852 0.733 0.857 0.862 0.932
50 25 t-bar 0318 0.455 0.454 0.607 0.614 0.736 0.737 0.853 0.750 0.845 0.850 0.928
Sy 0.654 0.818 0.823 0.942 0.882 0.951 0.956 0.990 0.941 0.980 0.982 0.997
100 25 t-bar 0.654 0.810 0.817 0.900 0.878 0.947 0.947 0.977 0.942 0977 0.979 0.992
SN 0.969 0.992 0.993 0.999 0.995 0.999 0.999 1.000 0.998 1.000 1.000 1.000
5 50 t-bar 0.047 0.129 0.111 0.280 0.176 0.352 0.320 0.584 0.306 0507 0.479 0.730
Sy 0116 0.258 0.222 0.483 0.310 0.538 0.500 0.803 0.477 0.687 0.662 0(.898
15 50 t-bar 0.294 0.455 0.462 0.596 0612 0.752 0.769 0.866 0.749 0.859 0.877 0.940
S~ 0.686 0.832 0.847 0.942 0903 0.959 0.968 0.992 0.961 0.985 0990 0.998
25 50 t-bar 0521 0.744 0.748 0.901 0.813 0.922 0.929 0.981 0.898 0.967 0.973 0.994
SN 0.882 0.975 0.982 0.998 0.980 0.997 0.998 1.000 0.994 0.999 1.000 1.000
50 50 t¢-bar 0905 0.974 0.981 0.998 0.985 0.996 0.998 1.000 0.994 0.999 1.000 1.000
Sy 0999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 50 t-bar 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
5 100 t-bar 0.182 0.540 0.480 0.925 0.441 0.786 0.785 0.993 0.615 0.882 0.899 0.999
Sy 0375 0731 0715 0.982 0.678 0.903 0.926 0.999 0.818 0.955 0.971 1.000
15 100 t¢-bar 0.940 0.982 0.992 0.999 0.990 0.998 1.000 1.000 0.997 0.999 1.000 1.000
SN 0.998 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
25 100 t¢-bar 0.993 1.000 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
50 100 ¢-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.006 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
100 100 ¢-bar 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
SN 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
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Table 4:

PPP Tests for IFS Data

t-bar Sy
T=25 T=50 T=100 T=25 T=50 T=100
AR 2 -1.200 -1.589 -1.183 -3.425 -4.362 -4.087
order 4 -5.362 -7.108 -4.525 -4.099 -8539 -7.362
BIC 4 0.555 -2.623 -2.420 -2.534 -5.438 -5.464
max order 6 -0.064 -1.127 -2.646 -2.544 -2.962 -5.613
critical 1 -1.990 -1.980 -1.970
values 5 -1.850 -1.850 -1.840 N(0,1)
(%) 10 -1.780 -1.780 -1.770
Table 5: PPP Tests for PWT Data
t-bar SN
G6 OECD 51Con 111Con G6 OECD 51Con 111Con
AR 2 -0.400 -0.669 -0.912 -3.420 -2.219 -3.865 -4.702 -9.896
order 4 0.247 -0.101 -1.213 -3.031 -1.187 -3.157 -4.133 -7.537
BIC 4 -0.575 -1.026 -1.636 -2.823 -2.605 -5.012 -6.389 -9.709
max order 6 -0.575 -0.888 -0.891 -1.789 -2.605 -4.678 -6.151 -9.077
critical 1 -2.430 -1980 -1.810 -1.730
values 5 -2.160 -1.850 -1.730 -1.670 N(0,1)
(%) 10  -2.020 -1.780 -1.680 -1.640
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