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Maximum Covariance Difference Test for Equality of Two
Covariance Matrices

Akimichi Takemura and Satoshi Kuriki

Abstract. We propose a test of equality of two covariance matrices based
on the maximum standardized difference of scalar covariances of two sample
covariance matrices. We derive the tail probability of the asymptotic null
distribution of the test statistic by the tube method. However the usual formal
tube formula has to be suitably modified, because in this case the index set,
around which the tube is formed, has zero critical radius.

1. Introduction

Consider the null hypothesis of equality of two covariance matrices

H0 : Σ1 = Σ2

of two Wishart populations against the alternative Σ1 �= Σ2. In this paper we
propose a test statistic based on maximizing the standardized difference of sample
scalar covariances from two populations. Let p×p (p ≥ 2) random matrices W1,W2

be independently distributed according to Wishart distributions Wp(ni,Σi), i =
1, 2. Consider the difference of the scalar covariances a′S1b − a′S2b, where Si =
Wi/ni, i = 1, 2, are sample covariance matrices and a, b are p × 1 vectors. Under
the null hypothesis H0 : Σ1 = Σ2 = Σ, the variance of the difference for fixed a, b
is written as

(1.1) Var(a′S1b− a′S2b) =
(

1
n1

+
1
n2

)(
(a′Σa)(b′Σb) + (a′Σb)2

)
.

See Appendix A. Therefore our proposed statistic is

(1.2) T = max
a,b∈Rp

a′S1b− a′S2b√
(1/n1 + 1/n2)((a′Sa)(b′Sb) + (a′Sb)2)

,

where S is the pooled sample covariance matrix

S =
W1 +W2

n1 + n2
.

In the case that maximizing vectors a and b in (1.2) coincide, our proposed
statistic detects the difference in the scalar variances of two populations. However
as discussed in the next section, maximizing vectors a and b may be different. In
this case our statistic detects the difference in scalar covariances. In this sense
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our statistic is different from Roy’s maximum-minimum roots test ([Ro]), which
compares only the scalar variances. In fact we shall show that with overwhelming
probability a and b are different for large p (see Table 1 below) or large value of
our statistic T (see Proposition 3.2). Therefore the behavior of our statistic is quite
different from that of Roy’s test. It is clearly different from omnibus type test
procedures such as likelihood ratio test or Nagao’s trace test ([Na]). Comparisons
of various test statistics mainly from the viewpoint of power behavior have been
given in [PJ], [PA], [CP] among others.

We have described our statistic in the setting of two-sample problem. One-
sample version is even simpler. Let a p×p matrix W = nS be distributed according
to Wishart distribution Wp(n,Σ). For testing

H0 : Σ = I (the identity matrix)

our test statistic is

(1.3) T = max
a,b∈Rp

√
na′(S − I)b√

(a′a)(b′b) + (a′b)2
.

The advantage of maximum type test, including our test statistic and Roy’s
maximum-minimum roots test, is that when the null hypothesis is rejected, the test
statistic itself suggests the direction of departure from the null hypothesis. On the
other hand the drawback of the maximum type test is that the asymptotic null
distribution is difficult to evaluate, because the limiting distribution is not a χ2

distribution in general. Recently it has been recognized that the tube formula or
the Euler characteristic method provide a general methodology for evaluating the
tail probability of the asymptotic null distribution of maximum type statistic in
various testing problems in classical multivariate analysis. The tube method can
be applied to our proposed statistic as well.

However there is a substantial difficulty in formal application of the tube for-
mula to the present problem. For the application of the tube formula we set up
a Gaussian random field Z(u) = 〈u, Z〉, u ∈ M , (see (3.1) below) corresponding
to the asymptotic null distribution of Wishart matrices. The index set M of the
Gaussian field is a subset of the p(p+1)/2−1 dimensional unit sphere Sp(p+1)/2−1.
It turns out that the critical radius of M for our present problem is zero and the
formal expansion of the tail probability based on tube formula is only partly valid.
In our previous work ([TK2]) we have investigated the validity of tube formula and
found that the asymptotic expansion is valid up to certain degrees of freedom in the
case of zero critical radius. Employing our previous argument it will be shown that
for our present problem the asymptotic expansion is valid for [p/2] terms, where [·]
denotes the integer part.

The organization of this paper is as follows. In Section 2 we explicitly solve the
maximization in (1.2) and (1.3) and give some intuitive meaning of our statistic.
Section 3 is the main section of this paper and we investigate geometry of the index
setM and evaluate coefficients in the tube formula forM . By studying singularities
of M , we will show that the asymptotic expansion based on the tube formula is
valid for [p/2] terms. In Section 4 we give some simulation results to confirm the
accuracy of approximation by tube formula. From the simulation we see that for the
present problem the tube formula approximation is practical, but not remarkably
good as in the cases with positive critical radius. Satisfactory approximation is
achieved by explicit evaluation of the term of the order, where the formal tube
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formula breaks down. We also give some simulation results of power behavior of
our statistic. Note that the theoretical investigation of the power behavior of our
statistic is difficult, because at the present the tube formula is not applicable under
contiguous alternative hypotheses.

2. Some simple interpretations of proposed statistic

In this section we explicitly solve the maximization in (1.2) and (1.3). This leads
to a clear understanding of the meaning of our proposed test statistic. Throughout
this paper for a real symmetric matrix A, we denote the positive (non-negative,
non-positive, negative) definiteness by A > 0 (A ≥ 0, A ≤ 0, A < 0).

The maximization is entirely equivalent in (1.2) and (1.3). In (1.2) let

(2.1) Z =
√

n1n2

2(n1 + n2)
S−1/2(S1 − S2)S−1/2

and replace a by S1/2a and b by S1/2a. Then the maximization in (1.2) reduces to
the maximization in (1.3), where

(2.2) Z =
√
n

2
(S − I).

Therefore we consider the maximization problem

max
a,b∈Rp

√
2a′Zb√

(a′a)(b′b) + (a′b)2
,

where Z is a real symmetric matrix. It is convenient for later discussion to include
the factor 1/

√
2 in the definition of Z. Since the maximum is always non-negative,

we can equivalently solve

max
a,b∈Rp

2(a′Zb)2

(a′a)(b′b) + (a′b)2
= max

a,b∈Rp

2a′Zbb′Za
a′((b′b)I + bb′)a

,

which is a ratio of quadratic forms in a for fixed b. Therefore for fixed b, the
maximizing a is proportional to

(I + bb′/(b′b))−1Zb = (I − bb′/(2b′b))Zb = Zb− b′Zb
2b′b

b

and the maximum value is given by

(2.3)
2b′Z(I + bb′/(b′b))−1Zb

b′b
=

2b′b · b′Z2b − (b′Zb)2

(b′b)2
.

We now maximize this with respect to b under the restriction b′b = 1. Note
that by diagonalizing Z, we can reduce the problem to the case of diagonal Z =
diag(l1, . . . , lp), l1 ≥ · · · ≥ lp. Write b = (b1, . . . , bp)′ and xi = b2i ≥ 0, i = 1, . . . , p,
with

∑p
i=1 xi = 1. Then (2.3) is written as

Q = 2
∑

xil
2
i −
(∑

xili

)2

.

Suppose that l1 ≥ li > 0. Fixing xj , j �= 1, i, consider changing x1, xi to x1+c, xi−c,
respectively. Differentiating Q by c we have

1
2
∂Q

∂c
= (l21 − l2i ) −

(∑
xj lj

)
(l1 − li) = (l1 − li)

(
l1 + li −

∑
xj lj

)
.
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This is non-negative because l1 ≥ ∑xj lj . Therefore we increase Q by changing
x1, xi to x1 + xi, 0, respectively. Similarly if 0 > li ≥ lp we increase Q by changing
xp, xi to xp + xi, 0, respectively. It now follows that for positive definite Z we
maximize Q by taking x1 = 1, x2 = · · · = xp = 0. Similarly for negative definite Z
we maximize Q by xp = 1, x1 = · · · = xp−1 = 0. It remains to consider the case
l1 ≥ 0 ≥ lp. The above argument shows that at the maximum x2 = · · · = xp−1 = 0.
Write x1 = c, xp = 1 − c. ∂Q/∂c = 2(l1 − lp)(l1 + lp − cl1 − (1 − c)lp) = 0 yields

x1 = c =
l1

l1 − lp , xp = 1 − c =
−lp
l1 − lp .

a and b are given as

b =

( √
l1√

l1 − lp
, 0, . . . , 0,±

√−lp√
l1 − lp

)′
,

a =

( √
l1√

l1 − lp
, 0, . . . , 0,∓

√−lp√
l1 − lp

)′
.(2.4)

(see Appendix A for a.) Summarizing the above derivation in terms of original Z,
we have proved the following theorem.

Theorem 2.1. Define Z by (2.1) for the two-sample problem or by (2.2) for
the one-sample problem. Write the spectral decomposition of Z as Z =

∑p
i=1 lihih

′
i,

l1 ≥ · · · ≥ lp. Then the value of the statistic T in (1.2) or (1.3) is given by

T =



l1, if Z > 0,√
l21 + l2p, if l1 ≥ 0 ≥ lp,

−lp, if Z < 0.

The set of maximizing vectors {S1/2a, S1/2b} for the two-sample problem or {a, b}
for the one-sample problem is given by

{S1/2a, S1/2b} or {a, b} =



{h1, h1}, if Z > 0,{√

l1h1+
√

−lphp√
l1−lp

,
√

l1h1−
√

−lphp√
l1−lp

}
, if l1 ≥ 0 ≥ lp,

{hp,−hp}, if Z < 0.

Note that for the case of non-negative definite or non-positive definite Z, a =
±b and our proposed statistic T corresponds to maximized difference in scalar
variances. However for the case l1 > 0 > lp, a and b are not parallel and T
corresponds to difference in scalar covariances. The situation is clearly understood
by considering the simple case of one-sample problem with p = 2. In Figure 1 we
have depicted the concentration ellipse x′S−1x = 1 for 3 cases of Theorem 2.1.
In Case 1, S − I2 is positive definite. In this case a = b and we are looking at
the maximum variance. Similarly in Case 3, where S − I2 is negative definite, we
are looking at the minimum variance. Case 2 depicts the intermediate case. For
simplicity consider

S =
(

Var(x1) Cov(x1, x2)
Cov(x1, x2) Var(x2)

)
=
(

1 r
r 1

)
, r �= 0.
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1
a

b

1

a=-b

1

a=b

Case 1 Case 2 Case 3

Figure 1. Three cases of maximization.

Then a = (1, 0)′ , b = (0, 1)′ and

T = |Cov(x1, x2)| = |r|.
In this case our statistic T detects the deviation of the covariance Cov(x1, x2) from
0.

3. Evaluation of tail probability of asymptotic null distribution by tube
formula

In this section we evaluate the tail probability of the asymptotic null distri-
bution of our statistic using the tube formula for general dimension. For the case
p = 2, the exact form of the asymptotic null distribution is easy to evaluate and
given in Appendix D.

Considering the asymptotic distribution of Z in (2.1) or (2.2), in this section
let Z distributed according to the standard symmetric matrix normal distribution,
i.e., the elements zij , 1 ≤ i ≤ j ≤ p, of Z are independent normal random variables
with mean 0 and variance

Var(zij) =

{
1, if i = j,

1/2, if i < j.

Then by the invariance principle the asymptotic null distribution of T in (1.2) or
(1.3) is written as

lim
n→∞P (T > x) = P

(
max

a,b∈Rp

√
2a′Zb√

(a′a)(b′b) + (a′b)2
> x

)
,

where n = min(n1, n2) for the two-sample problem. Therefore the problem of
evaluating the asymptotic null distribution is reduced to the evaluation of the dis-
tribution of the maximum of a Gaussian random field, for which the tube formula
([Su], see also [KT1], [TK1]) can be employed.

The sample space S of the standard symmetric matrix normal variable Z is the
set of p× p real symmetric matrices with the inner product

〈A,B〉 = trAB, A,B ∈ S.
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By the correspondence

A = (aij) ↔ (a11, . . . , app,
√

2a12, . . . ,
√

2ap−1,p)

S can be identified with Rp(p+1)/2 as is done in [KT2]. Let K ⊂ S denote the cone

K = {ab′ + ba′ | a, b ∈ Rp}
and define

M = K ∩ Sp(p+1)/2−1 =
{
ab′ + ba′

‖ab′ + ba′‖ | a, b ∈ Rp

}
,

where

‖ab′ + ba′‖ = 〈ab′ + ba′, ab′ + ba′〉1/2 =
√

2((a′a)(b′b) + (a′b)2).

Then

(3.1) max
a,b∈Rp

√
2a′Zb√

(a′a)(b′b) + (a′b)2
= max

u∈M
〈u, Z〉

and our problem is reduced to the canonical form suitable for application of the
tube formula.

We first determine the global geometry of K and M .

Proposition 3.1. Let K2 denote the set of p × p real symmetric matrices of
rank less than or equal to 2. Let S+ and S− denote the set of positive definite
matrices and negative definite matrices, respectively. Then

K = K2 ∩ SC
+ ∩ SC

− ,

where AC denotes the complement of A.

Proof. If a ∝ b then ab′ + ba′ ∝ aa′ is of rank 0 or 1. If a and b are linearly
independent then

ab′ + ba′ =
1
2

((a+ b)(a+ b)′ − (a− b)(a− b)′) .
Here a + b and a − b are linearly independent. By Sylvester’s law ab′ + ba′ has 1
positive and 1 negative characteristic root. Furthermore note that all matrices of
rank 2 with 1 positive and 1 negative characteristic root can be written as ab′ + ba′

again by Sylvester’s law. This proves the proposition. �

From this proposition we see that M = K ∩ Sp(p+1)/2−1 is a manifold with
boundary and the boundary consists of matrices of rank 1:

∂M = {A ∈M | rankA = 1} = {hh′ | h ∈ Sp−1} ∪ {−hh′ | h ∈ Sp−1}.
Note that each of the two components of ∂M forms a manifold of dimension p− 1.
We shall show that except for p = 2 the boundary ofM has a singularity in the sense
that at u ∈ ∂M the tangent cone (supporting cone) Su(M) of M is not convex.
Because of this singularity the critical radius of M is 0 for p ≥ 3 as discussed in
[TK2]. For the case p = 2, S is identified with R3 and we can fully describe K and
M . For illustrative purpose this is done in Appendix B. The relative interiorMO of
M consists of matrices with one positive and one negative root and forms a manifold
of dimension 2p − 2. In the following we denote the smallest cone containing MO

and ∂K by KO =
⋃

c>0 cM
O, ∂K =

⋃
c>0 c ∂M, respectively.

Let Ḡm denote the upper probability of χ2 distribution with m degrees of
freedom. From the standard argument of the tube formula, we know that the order
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Table 1. Probability of positive definiteness of Z.

p P (Z > 0)
2 0.1464466
3 0.0249209
4 0.0024567
5 0.0001401
6 0.0000046
7 8.8 × 10−8

of the tail probability of the projection of Z onto KO, is of the order O(Ḡ2p−1),
i.e.,

(3.2) P

(
sup

u∈MO

〈u, Z〉 > t
)

= P

(
max
u∈M

〈u, Z〉 > t
)

= O
(
Ḡ2p−1(t2)

)
as t→ ∞.

Here 2p − 1 is the dimension of KO. Similarly the order of the tail probability of
the projection of Z onto ∂K is of the order O(Ḡp):

(3.3) P

(
max
u∈∂M

〈u, Z〉 > t
)

= O
(
Ḡp(t2)

)
= O

(
t−(p−1)Ḡ2p−1(t2)

)
as t→ ∞.

Note that (3.2) corresponds to the second case of Theorem 2.1 and (3.3) corresponds
to the cases 1,3 of Theorem 2.1. Therefore simply by counting the dimensions of
KO and ∂K we have the following proposition.

Proposition 3.2. Under the asymptotic null distribution

P (Z > 0 or Z < 0 | T > t) = O
(
t−(p−1)

)
as t→ ∞.

This proposition shows that as far as small P -values are concerned, the case of
a = ±b in the maximization of (1.2) or (1.3) can be ignored. The statement of this
proposition will be strengthened in Proposition 3.8

Actually the unconditional probability of the case a = ±b becomes very small
as p becomes large. Table 1 lists the probabilities of Case 1, i.e., the probability
of Z being positive definite, for dimensions p = 2, 3, . . . , 7. We see that for p ≥ 4,
the unconditional probability is negligible at the usual significance levels of 5% or
1%. The probabilities in Table 1 were calculated by a recurrence formula given in
Lemma 3.5 below.

We now determine various differential geometric quantities of K and M . Actu-
ally most of the calculations have been done in [KT2]. The local geometry of ∂M
is given by the following proposition. Since the two components of ∂M are entirely
similar, we only consider the non-negative definite part of ∂M . Since the relation
between the geometries of M and K is trivial we only state results in terms of K.

Proposition 3.3. Let y = h1h
′
1 ∈ ∂M . Choose h2, . . . , hp such that

{h1, . . . , hp} is an orthonormal basis of Rp. The tangent cone Sy(K) of K at y is
given by

Sy(K) = span
{
h1h

′
j + hjh

′
1, j = 1, . . . , p

}⊕ {−qq′ | h′1q = 0} ,
where ⊕ denotes the orthogonal sum. The convex hull C(Sy(K)) of Sy(K) is

C(Sy(K)) = span
{
h1h

′
j + hjh

′
1, j = 1, . . . , p

}⊕ {A ≤ 0 | h′1Ah1 = 0}
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and the normal cone Ny(K) = C(Sy(K))∗ is

Ny(K) = C(Sy(K))∗ = {A ≥ 0 | h′1Ah1 = 0} .
The non-zero characteristic roots of the second fundamental form of K at y with
respect to A ∈ Ny(K) is given by {−lj, j = 2, . . . , p}, where l2, . . . , lp are charac-
teristic roots of A.

Proof. All the results are given in Section 2 of [KT2] except for the descrip-
tion of the tangent cone Sy(K). Differentiating y = h1h

′
1 with respect to h1 gives

the first term of Sy(K). Now consider x = h1h
′
1 − εqq′ ∈ KO, h′1q = 0, ε > 0, in a

neighborhood of y. This gives the second term of Sy(K). �

Note that at y ∈ ∂M , Sy(K) and its convex hull C(Sy(K)) are different and
Sy(K) is not convex. As discussed in [TK2], this implies that the critical radius
of M is zero and the tube formula applied to MO is not entirely valid. We shall
discuss this point below in more detail.

MO andKO are smooth and we summarize results onMO andKO from [KT2].

Proposition 3.4. Let y ∈ MO and write the spectral decomposition of y as
y = l1h1h

′
1 + lphph

′
p, l1 > 0 > lp, l

2
1 + l2p = 1. Choose h2, . . . , hp−1 such that

{h1, . . . , hp} is an orthonormal basis of Rp. The tangent space of Sy(K) of K at y
is

Sy(K) = span
{
hih

′
j + hjh

′
i, i = 1, p, j = 1, 2, . . . , p

}
.

The normal space Ny(K) of K at y is

Ny(K) = Sy(K)∗ = span
{
hih

′
j + hjh

′
i, 2 ≤ i ≤ j ≤ p− 1

}
.

The non-zero characteristic roots of the second fundamental form of K at y with
respect to A ∈ Ny(K) is given by{

− lj
l1
,− lj
lp
, j = 2, . . . , p− 1

}
,

where l2, . . . , lp−1 are characteristic roots of A.

Given the above geometrical quantities we can now employ the tube formula for
approximating the tail probability of asymptotic null distribution of our statistic
T . Calculations of the tube formula for this case is very similar to those in [KT2]
and in Section 3.2 of [TK2].

Let l1 ≥ · · · ≥ lp denote the characteristic roots of Z. The exact tail probability
of T is given

P (T > t) = 2P (l1 > t, Z > 0) + P
(
l21 + l2p > t

2, l1 > 0 > lp
)

(3.4)

= 2F1(t) + F2(t) (say).

The joint density function of l1, . . . , lp is given by

f(l1, . . . , lp) = d(p) exp

(
−1

2

p∑
i=1

l2i

) ∏
1≤i<j≤p

(li − lj)(3.5)

= d(p) exp

(
−1

2

p∑
i=1

l2i

)
det
(
lp−j
i

)
1≤i,j≤p

,
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where

(3.6) d(p) =
1

2p/2
∏p

i=1 Γ(i/2)
.

Let

B1(t) = {l1 > t, ∞ > l2 > · · · > lp > 0} ,
B2(t) =

{
l21 + l2p > t

2, l1 > 0 > lp, ∞ > l2 > · · · > lp−1 > −∞} .
Following the derivation in [KT2] and the example of Section 3.2 of [TK2], it
is shown that the tube formula approximation to F1(t) and F2(t) is obtained by
ignoring the order constraint l1 ≥ l2 and lp−1 ≥ lp in integrating the joint density:

P (T > t) � P̃ (T > t) =

{
2
∫

B1(t)

+
∫

B2(t)

}
f(l1, . . . , lp) dl1 . . . dlp(3.7)

= 2 F̃1(t) + F̃2(t).

Now we employ the techniques of [Ku] for evaluating F̃1(t) and F̃2(t). Define

Uk(q1, . . . , qk) =
∫

· · ·
∫

∞>l1>···>lk>0

exp

(
−1

2

k∑
i=1

l2i

)
det
(
l
qj

i

)
1≤i,j≤k

k∏
i=1

dli,(3.8)

Vk(q1, . . . , qk) =
∫

· · ·
∫

∞>l1>···>lk>−∞
exp

(
−1

2

k∑
i=1

l2i

)
det
(
l
qj

i

)
1≤i,j≤k

k∏
i=1

dli,(3.9)

where q1, . . . , qk are non-negative integers. Uk was introduced in Section 2 of [Ku]
and can be evaluated by the following recurrence formula.

Lemma 3.5 (Theorem 2.2 of [Ku]). Uk(q1, . . . , qk) satisfies the following recur-
rence relation:

Uk(q1, . . . , qk)

= (−1)k−1Uk−1(q2, . . . , qk)I(q1 = 1)
+(q1 − 1)Uk(q1 − 2, q2, . . . , qk)

+2
k∑

j=2

(−1)j 1
2

1
2 (q1+qj)

U1(q1 + qj − 1)Uk−2(q2, . . . , qj−1, qj+1, . . . , qk)

(k ≥ 2, q1 ≥ 1), with the initial condition

U1(q) = I(q = 1) + (q − 1)U1(q − 2) (q ≥ 1),

U1(0) =
√
π/2,

where I(·) denotes the indicator function.

Similarly Vk(q1, . . . , qk) can be evaluated by the the following recurrence for-
mula. The proof is entirely the same as Theorem 2.2 of [Ku] and omitted.

Lemma 3.6. Vk(q1, . . . , qk) satisfies the following recurrence relation:

Vk(q1, . . . , qk)
= (q1 − 1)Vk(q1 − 2, q2, . . . , qk)

+2
k∑

j=2

(−1)j 1
2

1
2 (q1+qj)

V1(q1 + qj − 1)Vk−2(q2, . . . , qj−1, qj+1, . . . , qk)
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(k ≥ 2, q1 ≥ 1), with the initial condition

V1(q) = (q − 1)V1(q − 2) (q ≥ 1),

V1(0) =
√

2π.

Using Uk and Vk the tube formula approximations F̃1(t), F̃2(t) to F1(t), F2(t)
are evaluated as follows.

Proposition 3.7. For k = 1, . . . , p, let

τp−k+1 = d(p)(−1)k−12(p−k−1)/2 Γ
(
p− k + 1

2

)
×Up−1(p− 1, . . . , p− k + 1, p− k − 1, . . . , 0)

and for k = 3, 5, . . . , 2p− 1, let

(3.10)

ω2p−k+2 = d(p)
∑

1≤l<m≤p, l+m=k

(−1)l−12(2p−k)/2

×Γ
(
p− l+ 1

2

)
Γ
(
p−m+ 1

2

)
×Vp−2(p− 1, . . . , p− l + 1, p− l− 1, . . . , p−m+ 1, p−m− 1, . . . , 0),

where d(p) is given in (3.6) and Uk, Vk are given in (3.8), (3.9). Then F̃1(t), F̃2(t)
in the formal tube formula approximation P̃ (T > t) = 2F̃1(t) + F̃2(t) to the tail
probability P (T > t) are written as

F̃1(t) =
p∑

k=1

τp−k+1Ḡp−k+1(t2),

F̃2(t) =
2p−1∑

k=3, k:odd

ω2p−k+2 Ḡ2p−k+2(t2).

Proof. Consider the determinant term det(lp−j
i )1≤i,j≤p in the joint density

(3.5) of the characteristic roots of Z. For F̃1 expand this determinant as

det
(
lp−j
i

)
1≤i,j≤p

=
p∑

k=1

(−1)k−1lp−k
1 det



lp−1
2 · · · lp−k+1

2 lp−k−1
2 · · · 1

...
...

...
...

lp−1
p · · · lp−k+1

p lp−k−1
p · · · 1




=
p∑

k=1

(−1)k−1lp−k
1 det

(
l
p−j−I(k≤j)
i+1

)
1≤i,j≤p−1

.

Now l1 and l2, . . . , lp can be separately integrated out. Integration with respect to
l1 gives ∫ ∞

t

lp−k
1 e−l21/2 dl1 = 2(p−k−1)/2 Γ

(
p− k + 1

2

)
Ḡp−k+1(t2).

Integration with respect to l2, . . . , lp gives Up−1. This proves the expansion of F̃1.
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For F̃2, expand the determinant det(lp−j
i )1≤i,j≤p as

det
(
lp−j
i

)
1≤i,j≤p

=
∑

1≤l<m≤p

(−1)l+m+p−1

× det
(
lp−l
1 lp−m

1

lp−l
p lp−m

p

)
det
(
l
p−j−I(l≤j)−I(m−1≤j)
i+1

)
1≤i,j≤p−2

.

Now l1, lp and l2, . . . , lp−1 can be separately integrated out. Integration with respect
to l1, lp gives∫

l21+l2p>t2, l1>0>lp

(
lp−l
1 lp−m

p − lp−m
1 lp−l

p

)
e−(l21+l2p)/2 dl1dlp

= {(−1)p−m − (−1)p−l} 2(2p−l−m−2)/2

×Γ
(
p− l + 1

2

)
Γ
(
p−m+ 1

2

)
Ḡ2p−l−m+2(t2).

Note that

(−1)p−m − (−1)p−l =

{
0 if m+ l is even,
2(−1)p−m if m+ l is odd .

Integration with respect to l2, . . . , lp−1 gives Vp−2. Letting k = m+ l and rearrang-
ing terms according to the value of k gives the expansion of F̃2. �

In Appendix C we list F̃1(t), F̃2(t) for p = 2, . . . , 5.
It is of considerable interest to explicitly evaluate the leading term of the tube

formula approximations for general p, because the leading term of the tube formula
is always valid as shown in [TK2].

Proposition 3.8. The order of F1(t) and F2(t) (as t→ ∞) in (3.4) is the same
as the order of F̃1(t) and F̃2(t), respectively, and given by

F1(t) ∼ 2(p−3)/2 P (Zp−1 > 0) Ḡp(t2),(3.11)

F2(t) ∼ 2p−5/2 Ḡ2p−1(t2),(3.12)

where P (Zp−1 > 0) denotes the probability that (p−1)× (p−1) symmetric matrix
normal random variable is positive definite.

Proof. The leading term of F̃1(t) or F1(t) is

d(p) 2(p−2)/2 Γ(p/2)Up−1(p− 2, . . . , 0) Ḡp(t2).

Now Up−1(p− 2, . . . , 0) = P (Zp−1 > 0)/d(p− 1), d(p)/d(p− 1) = 1/{21/2 Γ(p/2)}.
This proves (3.11). Next, the leading term of F̃2(t) or F2(t) is

d(p) 2(2p−3)/2 Γ(p/2) Γ((p− 1)/2) Vp−2(p− 3, . . . , 0) Ḡ2p−1(t2).

Now Vp−2(p − 3, . . . , 0) = 1/d(p − 2), d(p)/d(p − 2) = 1/{2 Γ(p/2)Γ((p − 1)/2)}.
This proves (3.12). �

Proposition 3.8 provides a more precise statement of Proposition 3.2.
If M has positive critical radius, then the tube formula approximation is valid

in the sense that in (3.7), P (T > t) = P̃ (T > t)(1 + R(t)), where the remainder
term R(t) is of exponentially small order in t as t→ ∞. An exponential bound for
the remainder term R(t) in terms of the critical radius was given in [KT1].
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However in our case M has zero critical radius and the tube formula is only
partly valid. From [TK2] we see that the terms of the tube formula F̃2 for KO

is valid for the degrees of freedom greater than p = dim ∂K. In other words, the
error F2(t) − F̃2(t) is of the same order as the order of F1(t) or F̃1(t). Therefore if
we use the tube formula approximation F̃2(t) for F2(t), then F1(t) or F̃1(t) is of no
use. We state this fact as the following theorem.

Theorem 3.9. Under the asymptotic null distribution, the tail probability of
our statistic T of (1.2) or (1.3) is evaluated as

P (T > t) =



ω2p−1Ḡ2p−1(t2) + ω2p−3Ḡ2p−3(t2) + · · · + ωp+2Ḡp+2(t2)

+Rp(t), p : odd,
ω2p−1Ḡ2p−1(t2) + ω2p−3Ḡ2p−3(t2) + · · · + ωp+1Ḡp+1(t2)

+Rp(t), p : even,

where ωm is defined in (3.10), the order of the remainder term Rp(t) is O(Ḡp(t2)).

It is of interest to investigate the term of order O(Ḡp(t2)) in F2(t) − F̃2(t).
Since the formal tube formula breaks down at this order, we need to examine the
multiple integral in F2(t) and F̃2(t) much more closely.

For p ≥ 3 define

(3.13) ηp = −d(p) 2p/2 Γ
(p

2

) ∫
0>lp>lp−1

∞>l2>···>lp−1

exp

(
−1

2

p−1∑
i=2

l2i

) ∏
2≤i<j≤p

(li − lj)
p∏

i=2

dli.

Then we have the following proposition.

Proposition 3.10. Let p ≥ 3. As t→ ∞
(3.14) F2(t) − F̃2(t) = ηp Ḡp(t2) + o

(
Ḡp(t2)

)
,

where d(p) is given in (3.6).

We give an outline of a proof of Proposition 3.10 in Appendix E. Combining
(3.14) with the leading term of F1(t) we can strengthen Theorem 3.9 as follows.

Theorem 3.11. The term of order Ḡp(t2) in the remainder term Rp(t) of
Theorem 3.9 is evaluated as
(3.15)

Rp(t) =
{ {ωp + ηp + 2(p−1)/2 P (Zp−1 > 0)}Ḡp(t2) + o

(
Ḡp(t2)

)
, p : odd,

{ηp + 2(p−1)/2 P (Zp−1 > 0)}Ḡp(t2) + o
(
Ḡp(t2)

)
, p : even,

where ωm is defined in (3.10).

This theorem recovers the term of order Ḡp(t2) in the formal tube formula
approximation for P (T > t) in Theorem 3.9. However from a practical viewpoint
there is a difficulty in applying (3.15) for large p, because exact evaluation of the
constant ηp for large p seems to be difficult. For p = 3, 4, 5, the values of ηp in
(3.13) are evaluated as

η3 =
1

2
√

2
, η4 =

3
2

+
4

3π
, η5 =

135
16

√
2

+
25
8π

− 81
8
√

2π
tan−1

(
1√
2

)
.

Evaluation of η5 is already quite laborious.
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Table 2. Limiting power behavior of three tests.

p = 4, Level of significance = 5%

(ψ1,ψ2,ψ3,ψ4) LR Roy TK
( 2, 2, 0, 0) 0.435 0.436 0.323
( 2, 0, 0, –2) 0.435 0.352 0.451

( 1.5, 1.5, –1.5, –1.5) 0.490 0.332 0.446
( 2, 0, –1, –1) 0.323 0.261 0.332

4. Some simulation results

In this section we present some simulation results concerning our proposed
statistic.

First we investigate accuracy of our tail probability approximation to the as-
ymptotic null distribution by simulation. We do not consider approximation of
(finite degrees of freedom) Wishart distribution by the symmetric matrix normal
distribution, because this approximation is not specific to our statistic.

Figure 2 shows the tube formula approximation for the dimensions p = 3, 4, 5.
In Figure 2 “simulated” (solid line) shows the simulated true tail probability of
our statistic based on simulation of size 100,000. “main term” (dotted line) is the
approximation using only the main term (3.12). “Thm3.9” and “Thm3.11” (dashed
lines) are based on the approximation in Theorems 3.9 and 3.11. Note that for p = 3
the approximation in Theorem 3.9 consists of only the main term. From the figures
we see that the approximation by Theorem 3.9 is practical for P -values below 5%
range but is not as good as our previous studies given in [KT1]. This suggests that
the case of zero critical radius poses some difficulty from the numerical viewpoint
as well. On the other hand the addition of the d.f. p term in Theorem 3.11 greatly
improves the approximation and is very satisfactory.

We now very briefly investigate the power behavior of our statistic. We only
compare the first order limiting power behavior of our statistic against the likeli-
hood ratio test and Roy’s maximum-minimum roots test. For more extensive power
comparison of existing test procedures against two-sided alternatives see [CP]. [PJ]
and [PA] give detailed power comparisons of existing tests against one-sided alter-
natives.

As the limit of contiguous alternatives, let Z be distributed according to the
symmetric matrix normal distribution with non-zero mean matrix Ψ. The covari-
ance structure of Z is the same as the null case. In the first order, the likelihood ratio
test and other omnibus type test procedures are equivalent and have non-central χ2

distribution with p(p+1)/2 degrees of freedom and non-centrality parameter tr Ψ2.
Roy’s maximum-minimum roots test is TR = max(l1,−lp). The significance level
is taken to be 5%. We obtain the upper 5 percentile of Roy’s maximum-minimum
roots test by generating 100,000 TR’s under the asymptotic null distribution. The
upper 5 percentile of our statistic was already obtained by the simulation study
of the previous paragraph. Then the power is computed by generating TR and
our static 100,000 times each under the limiting alternative distribution and by
counting the number of times these statistics exceed the 5 percentiles.

Note that Ψ can be assumed to be diagonal diag(ψ1, . . . , ψp) without loss of
generality. We only present the results for the case of p = 4. In Table 2, TK stands
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Figure 2. Tube formula approximation for p = 3, 4, 5.
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for our proposed statistic. The entries of the table are the values of the asymptotic
power.

From Table 2 our statistic tends to do better than other procedures when Ψ has
one large root and one small (i.e., negative but large in absolute value) root. On
the other hand Roy’s test is good when Ψ is positive definite or negative definite.
The likelihood ratio test seems to be a reasonable overall test.

Appendix A. Derivation of some formulae

Derivation of (1.1).

Note that Var(a′S1b − a′S2b) = Var(a′W1b)/n2
1 + Var(a′W2b)/n2

2. Let W =
(wij) be distributed according to Wishart distribution Wp(n,Σ), Σ = (σij). It
suffices to show that Var(a′Wb) = n(a′Σa)(b′Σb) + n(a′Σb)2. Using the fact that
Cov(wij , wkl) = n(σikσjl + σilσjk) we have

Var(a′Wb) = Cov
(∑

i,j

aibjwij ,
∑
k,l

akblwkl

)

= n
∑

i,j,k,l

aiakbjbl(σikσjl + σilσjk)

= n

(∑
i,k

aiakσik

)(∑
j,l

bjblσjl

)
+ n
(∑

i,l

aiblσil

)(∑
j,k

bjakσjk

)

= n(a′Σa)(b′Σb) + n(a′Σb)2.

Derivation of (2.4).

The factor 1/
√
l1 − lp is only for normalization. Therefore we can take

b = (
√
l1, 0, . . . , 0,±

√−lp)′.

Then

a = Zb− b′Zb
2b′b

b

= (l1
√
l1, 0, . . . , 0,±lp

√−lp)′ − l21 − l2p
2(l1 − lp)

(
√
l1, 0, . . . , 0,±

√−lp)′

=
l1 − lp

2
(
√
l1, 0, . . . , 0,∓

√−lp)′.

Normalizing this we obtain a in (2.4).

Appendix B. The cone K for p = 2

For p = 2 the sample space S is identified with R3 and almost all Z ∈ S
has rank 2. Therefore we only need to identify S+ and S−. For real symmetric
Z = (zij)1≤i,j≤2 write u = z11, v = z22, w =

√
2z12. Then Z > 0 if and only if

u > 0, 2uv − w2 > 0.

If we make 45 degrees rotation in (u, v) plane and define s = (u + v)/
√

2, t =
(u− v)/√2. Then 2uv = s2 − t2 and

S+ = {(s, t, w) | s+ t > 0, s2 > t2 + w2}
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is a circular cone. S− = −S+ is the circular cone opposite to S+. Therefore K
is the cone obtained by subtracting two circular cones from R3. We see that for
p = 2, M = K ∩ S2 is a 2-dimensional manifold with smooth boundaries.

Appendix C. Explicit form of tube formula approximations
for small dimensions

Here we give a brief list of tube formula approximations of Proposition 3.7.
These following formulas were obtained by the applying the recurrence relations of
Lemmas 3.5 and 3.6.

p = 2 :

F̃1 =
1

2
√

2
(Ḡ2 − Ḡ1),

F̃2 =
1√
2
Ḡ3.

p = 3 :

F̃1 =
(
− 1

2
√

2
+

1
2

)
Ḡ3 − 1√

2π
Ḡ2 +

(
1

2
√

2
+

1
4

)
Ḡ1,

F̃2 =
√

2(Ḡ5 − Ḡ3).
p = 4 :

F̃1 =
(

1
2
√

2
− 1
π

)
Ḡ4 +

(
1

4
√

2
− 1

4

)
Ḡ3 +

(
− 3

8
√

2
+

1
π

)
Ḡ2

+
(
− 3

8
√

2
+

1
4

)
Ḡ1,

F̃2 = 2
√

2Ḡ7 − 7√
2
Ḡ5 +

7
2
√

2
Ḡ3.

p = 5 :

F̃1 =
(
− 1

4
√

2
− 1
π

+
1
2

)
Ḡ5 +

(
− 1√

2π
+

2
3π

)
Ḡ4 +

(
1

8
√

2
+

4
3π

− 1
2

)
Ḡ3

+
(

11
12

√
2π

− 2
3π

)
Ḡ2 +

(
1

8
√

2
− 2

3π
+

1
8

)
Ḡ1,

F̃2 = 4
√

2Ḡ9 − 9
√

2Ḡ7 +
15√

2
Ḡ5 − 5√

2
Ḡ3.

Appendix D. Exact asymptotic tail probability for p = 2

For the case p = 2, we can easily evaluate the exact tail probability of the
asymptotic null distribution. Note that for p = 2, 〈Z,Z〉 = l21 + l22 and the event
{l1 > 0 > l2} are independent. Furthermore P (l1 > 0 > l2) = 1/

√
2. Therefore for

p = 2

F2(t) =
1√
2
Ḡ3(t2).

Now we evaluate F1(t) =
∫

l1>t, l1>l2>0 f(l1, l2) dl1dl2. Integrating with respect to
l2 first then with respect to l1 gives∫ l1

0

f(l1, l2) dl2 =
l1√
2
e−l21/2

(
Φ(l1) − 1

2

)
− 1

2
√
π
e−l21/2 +

1
2
√
π
e−l21 ,
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∫ ∞

l1=t

∫ l1

l2=0

f(l1, l2) dl2dl1 =
e−t2/2

2
√

2
− 1 − Φ(t)√

2

−1 − Φ(t)√
2

e−t2/2 + (1 − Φ(
√

2t)),

where Φ is the cumulative distribution function of the standard normal distribution.
Noting that Ḡ2(t2) = e−t2/2, Ḡ1(t2) = 2(1 − Φ(t)) we obtain

P (T > t) =
1√
2
Ḡ3(t2) +

1√
2
Ḡ2(t2) − 1√

2
Ḡ1(t2) − 1√

2
Ḡ2(t2)Ḡ1(t2) + Ḡ1(2t2).

Note that this exact formula coincides with the tube formula F̃2+2F̃1 for p = 2 given
in Appendix C, except for remainder terms which is negligible with exponentially
small order. This should be the case because M has positive critical radius for
p = 2.

Appendix E. Outline of a Proof of Proposition 3.10

Here we give an outline of a proof of Proposition 3.10. Since full justification of
all the steps of the approximations takes too much space, we omit some justifications
of neglecting remainder terms. A complete memo of justifications can be obtained
from the authors upon request.

Note that the difference between F̃2 and F2 is due to the difference of the ranges
of integration and we can write

1
d(p)

(
F̃2(t) − F2(t)

)
=

∫
l1>0>lp

l2>···>lp−1
l21+l2p>t2

l2>l1 or lp−1<lp

exp

(
−1

2

p∑
i=1

l2i

)
det
(
lp−j
i

) p∏
i=1

dli(E.1)

=
∫

l1>0>lp
l2>···>lp−1

l21+l2p>t2

l2>l1

+
∫

l1>0>lp
l2>···>lp−1

l21+l2p>t2

lp−1<lp

−
∫

l1>0>lp
l2>···>lp−1

l21+l2p>t2

l2>l1 and lp−1<lp

.

It can be easily shown that the third term on the right hand side of (E.1) is negligible
with exponentially small order. Intuitively this is the case because the probability
of both l2 and lp−1 being greater than t in absolute value should be exponentially
smaller than the probability that just one of them is greater than t in absolute
value. By symmetry the first term and the second term on the right hand side are
equal. Therefore

1
d(p)

(
F̃2(t) − F2(t)

)
∼ 2

∫
l1>0>lp

l2>···>lp−1
l21+l2p>t2

lp−1<lp

exp

(
−1

2

p∑
i=1

l2i

)
det
(
lp−j
i

) p∏
i=1

dli.

We now argue that the main contribution to this integral comes from the region
where |lp|/l1 is close to 0. In fact consider the range −√

t > lp. Fix 0 < ε < 1.
Since l2p−1 > l

2
p > t on the range of integration we have

exp
(
−1

2
l2p−1

)
≤ exp

(
−1 − ε

2
t

)
exp
(
− ε

2
l2p−1

)
.
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From this it easily follows that there exists Cε such that∫
l1>0,−√

t>lp
l2>···>lp−1

l21+l2p>t2

lp−1<lp

exp

(
−1

2

p∑
i=1

l2i

)∣∣∣det
(
lp−j
i

)∣∣∣ p∏
i=1

dli ≤ Cε exp
(
−1 − ε

2
t

)
Ḡ1(t2)

for all t > 0. Therefore this range of integration is negligible with exponentially
small order. Similarly we can show that the range l2i > t

2, i = 2, . . . , p− 1, can be
ignored.

It follows that

1
d(p)

(
F̃2(t) − F2(t)

)
∼ 2

∫
l1>0>lp≥−√

t√
t≥l2>···>lp−1

l21+l2p>t2

−√
t≤lp−1<lp

exp

(
−1

2

p∑
i=1

l2i

)
det
(
lp−j
i

) p∏
i=1

dli.

Note that on this range of integration l1 is large:

l1 >
√
t2 − l2p ≥

√
t2 − t.

This implies that on our range of integration the main term of det(lp−j
i ) is the term

with the highest degree in l1, i.e.,

det
(
lp−j
i

) ∼ lp−1
1

∏
2≤i<j≤p

(li − lj).

Now we integrate l1 out. Using∫ ∞
√

t2−l2p

lp−1
1 exp

(
−1

2
l21

)
dl1 ∼ tp−2 exp

(
− t

2

2

)
exp

(
l2p
2

)

we have
1
d(p)

(
F̃2(t) − F2(t)

)
∼ 2tp−2 exp

(
− t

2

2

)

×
∫

0>lp≥−√
t√

t≥l2>···>lp−1
−√

t≤lp−1<lp

exp

(
−1

2

p−1∑
i=2

l2i

) ∏
2≤i<j≤p

(li − lj)
p∏

i=2

dli.

Proposition 3.10 follows from this because 2tp−2e−t2/2 ∼ Γ(p/2)2p/2Ḡp(t2).
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