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Abstract

This paper considers an infinitely repeated economy in which divis-
ible fiat money is used to trade goods. The economy has many market
places. In each period, each agent makes a production decision and
chooses a market place. In each market place, agents are randomly
matched to form a pair, and they trade their goods when both agree
to do so. There exist various classes of stationary equilibria. In some
equilibria, all the agents visit the same market place, while in others,
market places are specialized, i.e., at most one type of good is traded
in each market place. In some equilibria, each good is traded at a sin-
gle price, while in others, every good is traded at two different prices.
Each class itself consists of equilibria with infinitely many price and
welfare levels. However, it is shown that only the efficient single price
equilibria with specialized market places are evolutionarily stable. An
inefficient equilibrium is upset by the mutants who visit inactive mar-
ket places to establish a more efficient trading pattern than before. An
extension to the economy with multiple currencies is also examined.
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1 Introduction

In a transaction, one needs to have what his trade partner wants. However,
it is hard for, say, an economist who wants to have her hair cut to find a
hairdresser who wishes to learn economics. In order to mitigate this problem
of a lack of double coincidence of wants, money is often used as a medium
of exchange. If there is a generally acceptable good called money, then the
economist can divide the trading process into two: first, she teaches eco-
nomics students to obtain money, and then finds a hairdresser to exchange
money for haircut. The hairdresser accepts the money since he can use it to
obtain what he wants. Money is accepted by many people as it is believed
to be accepted by many.

Focusing on this function of money, Kiyotaki and Wright [10] formalize
the process of monetary exchange. In their model, agents are randomly
matched to form a pair and trade their goods when they both agree to do
so. This and the subsequent models, called the search theoretic models of
money, have laid a foundation of monetary economics. The purpose of the
present paper is to further develop the foundation by introducing the concept
of market places into the model with divisible fiat money presented by Green
and Zhou [6].

Market places are the places which agents choose to visit to meet trade
partners. They capture the following two aspects of actual trading processes.
First, matching rarely occurs in a completely random fashion in the real
economy. People go to a fish market as buyers to buy fish; many potential
workers use particular channels for job openings rather than simply walking
on streets to meet potential employers. There are market places where agents
look for their trade partners.

The second aspect is related to price competition. In order for price
competition to take place, there must be a possibility that a price cut leads to
an increase in sales. The standard search model incorporates this possibility
only in a limited way. While a seller may increase sales per visit by lowering
its price, it cannot increase the number of visits itself. In other words, even
if the seller cuts the price, it cannot differentiate itself from its competitors
and attract more customers. If there are many market places, sellers can
differentiate themselves from their competitors by visiting an inactive market
place. It turns out that this function of market places activates the price
adjustment mechanism in the present analysis.

In order to see how market places function, let us now briefly explain the



model and the results of the paper. Roughly speaking, the present model is
described as follows. It has an infinite number of periods and a continuum
of infinitely lived agents. There are infinitely many market places, each of
which consists of two physically identical sides, A and B. In each period, all
the agents simultaneously decide whether to produce a unit of goods or not
and choose a market place and one of its sides. In each market place, the
agents on side A are matched with those on side B in a random fashion to
form pairs, with the long side being rationed.! When two agents are matched
and find that one of them holds the good that the other wishes to consume,
they negotiate the price, which is modeled as a simultaneous offer game.

We adopt two approaches for the main analysis, an equilibrium approach
and an evolutionary approach. We first examine stationary equilibria of this
model. There exist various classes of stationary equilibria. Equilibria can
be classified based upon two characteristics, the degree of specialization of
market places, i.e., the number of goods traded in one market place, and
the degree of price dispersion, especially, whether each good is traded at a
single price or not. In some equilibria, all the agents visit the same market
place, while in others, market places are completely specialized, i.e., at most
one type of good is traded in each market place. In some equilibria, each
good is traded at a single price, while in others, each good is traded at two
different prices. Each class itself consists of a continuum of equilibria which
correspond to different price and welfare levels.

As we mentioned above, the equilibrium approach admits a multitude of
outcomes. The reason is the following. Suppose, for the sake of argument,
that all the sellers of the same type of good go to the same market places.
In the present model, the only way that a seller can increase the matching
probability is to switch to an empty market place to differentiate itself from
other sellers, but no buyer visits such a place if no seller is expected to
visit there. Therefore, no unilateral deviation to an empty market place
is profitable. In other words, the equilibrium approach cannot have agents
utilize empty places to start a new transaction pattern, including the one
with a price cut.

The evolutionary approach overcomes this coordination problem. It al-
lows a small group of agents, or mutants, to jointly visit inactive (empty of

!These sides are introduced to simplify some of the subsequent analysis. One story
would be that there are many beaches, and some agents row boats to meet those waiting
for them along the seashore. Of course, one should not take the present formulation too
literally, just as we should not take the standard random matching model too literally.



thin) market places and start a new transaction pattern. An equilibrium is
said to be evolutionarily stable if no group of mutants fares better than the
original population. It is shown that only efficient single price equilibria with
complete specialization are evolutionarily stable. An inefficient equilibrium
is upset by the mutants who visit inactive market places to establish a more
efficient trading pattern than before.

The present paper serves a microfoundation for the trading post approach.
This approach is initiated by Shapley and Shubik [18], and applied to a
situation with fiat money by Hayashi and Matsui [7]. Trading posts are
the places in each of which a prespecified pair of goods are traded. People
submit their goods to the designated trading posts. The goods they submit
to one side of a post are traded with the other type of goods submitted to the
opposite side. Agents obtain the goods on the opposite side in proportion to
the amount they submitted. The trading mechanism at trading posts is put
in a black box. On the other hand, the present paper explicitly models the
trading processes. At the same time, it prepares sufficiently many market
places that can be used for transactions, but does not specify which place
is used for which goods to be traded. Specialization of market places may
emerge endogenously. It is verified that the evolutionarily stable outcome
of the present model corresponds to the stationary equilibrium examined in
Hayashi and Matsui.?

Some mention has to be made of the existing search theoretic models
of money. In the beginning, these models (e.g., Kiyotaki and Wright [10])
assume indivisible commodities and fiat money, if any, mainly due to the
analytical difficulty of tracking inventory as different agents have different
experiences. Avoiding this difficulty, Trejos and Wright [20] and Shi [19] ad-
dressed the issues related to price levels. In order to do so, Trejos and Wright
introduced divisible commodities, while Shi presented a model in which each
household can simultaneously engage in infinitely many transaction activi-
ties. However, each transaction involves an indivisible unit of money. Green
and Zhou [6] presented a model with divisible fiat money. They partially
succeeded in solving it, restricting their analysis to a certain class of equilib-
ria.

2Iwai’s trading zone model [9] is also related to the present paper. Given the number
of commodities n, each agent chooses one of n(n — 1)/2 trading zones in which random
matching takes place. The matching probability in a certain zone is proportional to the
number of agents visiting the zone. Each agent can hold one unit of indivisible commodities
storable with some costs. He examined which commodity becomes a medium of exchange.



A new problem arised in Green and Zhou: there exist a continuum of
equilibria with different price and welfare levels. Green and Zhou expanded
the frontier of the search theoretic models of money, but at the same time,
it revealed the fundamental problem of indeterminacy associated with these
models.

A crucial reason for this indeterminacy is that, as we mentioned above,
the probability of matching is exogenous, and therefore, say, a seller cannot
attract more customers by lowering its price even if there is excess supply in
the market. The existence of market places allows the possibility of changes
in the probability of matching so that the price adjustment mechanism works.

Models with endogenous matching are not new in other fields. Directed
search models in labor economics and local interaction models in evolution-
ary game theory both have dealt with endogenous matching. Among them,
the closest to the present paper in terms of formulation of matching technol-
ogy are Moen [14] in labor economics, and Mailath, Samuelson, and Shaked
[11] in evolutionary game theory. Moen constructed a model in which firms
with different wage offers are assigned to different submarkets, and workers
choose a submarket to be matched with a firm in the same submarket. The
assignment of firms to submarkets is carried out by an exogenous mechanism.
Workers then observe the list of prices attached to these submarkets before
they choose a submarket to visit. There is a gap between Moen’s approach
and ours. In the sense that workers know where to go in order to obtain a job
at a specific wage, Moen’s approach is closer to Peters [16], who constructed
a model in which sellers publicly declare prices before buyers choose which
seller to visit, than search theoretic models in which one can infer but cannot
observe the price before matching. On the other hand, our approach follows
the tradition of search theory in the sense that the price is observed only
after traders are matched with each other.

Mailath et al. considered a situation in which players decide to go to
certain locations, in which they are randomly matched to play a prespecified
game. Search theoretic models of money have a richer structure than simple
finite games analyzed therein as well as addtional complexity due to changes
in agents’ money holdings.?

3Recently, Corbae, Temzelides, and Wright [2] wrote a paper on monetary economics
with endogenous matching. They considered a situation in which agents are matched to
form pairs in the way formalized by Gale and Shapley [5], i.e., the concept of core is
used to find optimal matching. In this sense, matching is not only endogenous but also
non-random. They mixed cooperative and noncooperative concepts in their analysis in



The rest of the paper is organized as follows. Section 2 presents our
framework. Section 3 defines and characterizes stationary equilibria, which
is followed by the welfare analysis and comments on the effects of short-run
monetary policies. Section 4 identifies the essentially unique evolutionarily
stable equilibrium. Section 5 extends the model to the economy with multiple
currencies and discusses some issues associated with it. Section 6 concludes
the paper. Appendices for lengthy proofs are also attached.

2 Model

We consider an infinite repetition of an economy which is inhabited by a
continuum of agents with measure one. Time is discrete and indexed by
t=1,2,.... There are K types of agents, 1,..., K. The generic element is
denoted by k. Assume K > 3. The mass of each type is 1/K. There are K
types of commodity goods, 1,..., K, and good 0, or fiat money. An agent
of type k obtains utility v > 0 if he consumes one unit of good k. Every
commodity good is perishable and indivisible. He can produce at most one
unit of good k + 1 (mod K) in each period. Its production cost is zero. We
assume that agents do not produce goods unless they expect to sell the goods
with a positive probability.* On the other hand, fiat money is non-perishable
and divisible. Each agent can hold any amount of fiat money with no cost.
We assume that agents immediately discard fiat money which they never
expect to use.® M is the total nominal stock of fiat money.

There are countably many market places, indexed by z = 1,2,3,.... Each
market place has two physically identical sides, A and B.

Each period consists of the following four stages.

Stage 1: Agents simultaneously decide whether to produce goods or not and
choose a market place and one of its sides.

Stage 2: In each market place, a random matching takes place. The match-
ing technology is frictionless, though the long side is rationed. Also, the

the sense that core is used within each period, while across periods, a noncooperative
equilibrium concept is adopted.

4This assumption corresponds to the existence of an infinitesimal production cost. It
eliminates equilibria in which gift giving occurs between anonymous agents.

5This assumption corresponds to the existence of an infinitesimal holding cost of fiat
money.



matching is uniform. Formally speaking, if the measure of the agents
visiting side A is ma, that of the agents visiting side B is np, and
among those visiting side B are the agents who belong to set S with
its measure being ng, then the probability that an agent visiting side
A meets someone in S is min{ng/na,ns/ng}.b

Stage 3: If a type k agent and a type k+1 (mod K') agent are matched, the
type k agent offers a price pg, and the type k + 1 (mod K) agent bids
a price pg. The type of each agent is observable to his partner, but
not his money holdings. We assume that ps = oo if the type k agent
did not produce his good at Stage 1. No trade takes place in any other
type of matching, and in such a case, agents do not make any further
move, i.e., they skip Stage 4.

Stage 4: If ps < pp, then the type k agent exchanges his good for pg units
of fiat money, and the type k+ 1 (mod K) agent exchanges pg units of
fiat money for the good, and consumes it.”

From now on, we say “a seller meets a buyer” when a type k£ agent meets a
type k + 1 (mod K) agent.

The subsequent analysis uses Markov strategies, according to which ac-
tions depend only on the current money holdings of the agent in question.®
Formally, a Markov strategy is defined to be a triple o = (A, 0, ) where

e \: R, — N x{A, B}: a location strategy,
e 0: R, — R U{oo}: an offer strategy, and
o 3:R, — R,: a bidding strategy.

In this expression, A\(n) = (z, s) implies that the agent who takes A and holds
1 units of money chooses side s of market place z. Production decisions are

6 Although we can construct a one-to-one and onto mapping between two sets of agents
with different measures, we assume that rationing still occurs if the measure of one set is
different from that of the other.

"The subsequent analysis will not be affected at all even if we change the rule on which
price to use as long as the price is between pg and pgp.

8We use the word “Markov” more restrictively than used in some other contexts in the
sense that Markov strategy in our definition is independent of the current location and the
current distribution of other agents’ money holdings. However, even if such an alternative
definition is adopted, the subsequent results remain unchanged.



reflected in offer strategies, i.e., o(n) = oo implies that the agent does not
produce, while o(n7) = p < oo implies that the agent produces a good and
offers p if he meets a buyer. We assume ((n) < 7, i.e., the buyer cannot
bid beyond his current money holdings. The set of all Markov strategies is
denoted by . In the sequel, we allow deviating agents to take full-fledged
strategies. A full-fledged strategy is a function from the set of the entire per-
sonal histories, into the set of appropriate actions.” The set of all strategies
is denoted by .

Moreover, we impose symmetry across types on Markov strategies in the
subsequent arguments.'® However, we allow different agents of the same type
to take different strategies. Henceforth, we represent a symmetric strategy
profile by the strategy of type k agents. For example, for a location strategy
A, A(n7) = (1, A) means that the agents of all types with money holdings 7
visit (1, A), and A (1) = (K + k + 1, B) means that type k agents with 7 visit
side B of market place K + (k+ 1 (mod K)), type k + 1 agents with 7 visit
side B of market place K + (k + 2 (mod K)), and so on.

We denote by p a distribution on money holdings and strategies: pu({n};{c})
is the fraction of the agents who take o and hold 7 units of money, which
we write p(n; o) whenever it causes no confusion. Notice that we have ex-

tended the notion of symmetry, imposing it on distributions. Given u, pyx is

its marginal distribution on strategies, i.e., us (') aef w(R, ;%) is the frac-

tion of the agents taking strategies in ¥’ C X. Similarly, ug is its marginal
distribution on money holdings.

The transition of an agent’s money holdings 7 is straightforward. Suppose
that the agent takes o. If he meets a seller with (o’,7") = (X, 0, 5),7n'),
and if B(n) > o'(1'), then his money holdings become n — o'('). If, on
the other hand, the agent meets a buyer with (¢/,1) = ((X, 0, 3),7n’), and
if 5'(n') > o(n), then his money holdings become n + o(n). Otherwise, n
remains unchanged.

9 A personal history contains his past transaction records, especially, the current money
holdings and the type of the current trade partner, and some observable aggregate data.
We do not specify which aggregate data are observable since it does not affect the subse-
quent analysis.

10We call a Markov strategy profile o = (01, S O’K) symmetric if, when all type k
agents take o* and money holdings distributions of all types are identical, the probability
that a type k agent is matched with a type k + i (mod K) agent is the same as the
probability that a type k+ 1 (mod K) agent is matched with a type k4 i+ 1 (mod K)
agent for any ¢ =1,..., K — 1 and offer prices and bid prices are common.



Given t, each agent tries to maximize the discounted average of future

stage payoffs, i.e.,
E {(1 —8)Y 6, Qt} :
T=t

where § € (0,1) is a common discount factor, u, is u if he obtains his
consumption good at period 7, and zero otherwise, and €); is the informa-
tion available at period t. In particular, we denote the above expression by
Vt(o,n'; pt) if he takes o with 1, money holdings at period ¢, and the dis-
tribution at period t is p'. Hereafter, we suppress superscripts t’s to write
V (0, 7n; 1) whenever it causes no confusion.

3 Stationary Equilibria

3.1 Equilibrium Concept

To begin with, we define stationary distribution. A distribution p is said to
be stationary if p is transformed into g when all the agents do not revise
their strategies, and their money holdings follow the above transition rule.!
We are now in the position to define our equilibrium concept.

Definition 1 A stationary distribution p is a stationary (symmetric Markov
perfect) equilibrium iff only Markov strategies are taken, and no agent has an
incentive to deviate with any money holdings, i.e., for all ¢ in the support of
ps, allé € ¥, and all n € Ry,

Vio,m;p) >V (6,m; ).

This definition implies that an equilibrium should satisfy a requirement sim-
ilar to subgame perfection with regard to money holdings. Note that in any
Markov perfect equilibrium, the agent produces his production good if and
only if he expects to meet a buyer whose bid is no more than his intended
offer with a positive probability:.

1 This definition implies that agents never discard money on the path of a stationary
distribution.



3.2 Equilibria with No Specialization

First of all, there exist equilibria in which only one market place is used.
These equilibria correspond to those found in the complete random matching
model of Green and Zhou [6]. Suppose that all the agents go to the same
market place, and moreover, they are evenly distributed between sides A
and B, and offer and bid a common price p, if possible. Then no agent has
an incentive to change his location strategy since a visit to another market
place gives him no utility, and the situation is exactly the same if he visits
the other side. It is also verified that they have no incentive to change their
offer and bidding strategies if the price p is sufficiently high.

In this class of equilibria, each agent may end up in selling a good even
if he has a sufficient amount of money to buy his consumption good. Con-
sequently, the support of the distribution of money holdings is a countable
set.!? There are a continuum of equilibria with different price and welfare
levels.

3.3 Single Price Equilibria with Complete Specializa-
tion

In this subsection and the next, we consider equilibria with completely spe-
cialized market places, i.e., those in which at most one type of good is traded
in each market place.

Given a price level p > 0, a single price equilibrium with complete special-
ization and with p (henceforth, a p-SPFE) is a stationary equilibrium in which
every good is traded at p. The canonical p-SPE, p,, is defined as follows:

o 1y (0505) =1—m,

® Lip (p; Up) =m,

where m = M /p is the total real stock of fiat money, and o, = (\,, 0,, 8,) is
a Markov strategy such that

_J (k,B) if n > p,
.)\p(n)_{(k:—kl,A) if n<np,

2The reader should refer to Green and Zhou for the formal description of this class of
equilibria.

10



if 5 < p,
°0p(n){p n<p

oo ifn>p,
p ifn>p,
com={b Izt

In short, non-money holders go to side B of an appropriate market place to
meet the buyers of their production goods. While money holders, who have
p units of money, go to side A of an appropriate market place to meet the
sellers of their consumption goods. Figure 1 illustrates who goes where on the
equilibrium path of the canonical p-SPE, and Figure 2 gives the transition of
each agent’s money holdings. Note that p, is stationary. We now state and
prove that these canonical distributions are indeed stationary equilibria.

Theorem 1 For all p > M, and all 0, the canonical p-SPE p,, is a stationary
equilibrium.

Proof: We denote V (o, {p; pp) by Vi for £ € N,.13 We divide the proof into
two cases:

Case 1: m > %

In this situation, the sellers are lying on the short side. Therefore, the
buyers are rationed (except in the case of m = 1/2), while the sellers are not.
Let r = 1_7’” Then we have the following value functions:

Vo =0V4,
Vi=r((1=8)u+0Viy)+(1—7)6V,, £>1.

Solving this system of equations, we obtain

v, 1 or SR v />0
e=r 1—b+or| 1qor)™ =7

The only incentive compatibility condition that we need to verify is the
one under which no money holder becomes a seller. It is given by

Viz Vi, €21,

13For general 7, we have V (0,,m;p1,) =V (ap, [p; up) where [z] is the integer part
of x.

11



which is equivalent to

)4

Since we have § < 1 and r > 0, this inequality holds.

Case 2: m < %

In this situation, the buyers are lying on the short side. Therefore, the

sellers are rationed, while the buyers are not. Let r = 2. Then, we have

1-m
the following value functions:

Vo =roVi+ (1 —1) Vi,
Vi=(1—=-0)u+dVi_y, €>1.

Solving this system of equations, we obtain

w:(1—5‘1+15r>u, 0> 0.

The only incentive compatibility condition that we need to verify is the
one under which no money holder becomes a seller. It is given by

VizréVepr +(1—r)oVy, €21,
which is equivalent to
(1-6)(1-6Yu>0, £>1.

Thus, this condition holds. |

3.4 Dual Price Equilibria with Complete Specializa-
tion

In the present model, since there can be more than one market places for a
specific transaction, there is no a priori reason that a single price prevails.
In fact, there are equilibria in which the same goods are traded at different
prices. The simplest class of such equilibria is given below.

A dual price equilibrium is a stationary equilibrium in which each good
is traded at two different prices. In particular, given p > 0 and an integer

12



n > 2, we consider a dual price equilibrium with complete specialization and
with two price levels p and np (henceforth, we call it (p, np)-DPE) which has
two classes of viable market places, low-price markets, in which goods are
traded at price p, and high-price markets, in which goods are traded at price
np.

In such an equilibrium, the low-price markets are in excess demand; for
if not, all the buyers go there. On the other hand, the high-price markets
are in excess supply; for if not, all the sellers go there.!*

The canonical (p,np)-DPE, ppnp, is given in Table 1 together with the
following description. In Table 1, the entry for (o, 7n) (0 = o1,0,; 7 = 0, p,np)
iS fh(pnp) (0, 7), €8, Hpnp)(Tn,0) = ho,. These values are determined in the
sequel.

c\n| O ) np
o1 ho1 hq 0
Onp hon 0 hn

Table 1: Canonical (p, np)-DPE

In this distribution, o; = (\;, 0;, 3) (i = 1,n) is given by

((K+kB) ifn=mnp.
) (k+1,4) if np >n > (*p,
* \i(n)= (k, B) it *p>mn>np,
| (k1 1,4)  ifn<p,
( (K +k,B) if n > np,
) (k+1,A) it np >n > 0*p,
o \,(n) = (k, B) it 'p>n>p,
\(K+k+1A) itn <p,
won [P < orCp<n<np
)= oo otherwise,

14Tn labor economics, Montgomery [15] shows the existence of equilbria with wage dis-
persion by using a similar idea.

13



np if n <p,
® o,(n)=1qp if&p<n<np,
oo otherwise,

np ifn > np,
o f(n)=<Kp ifnp>n>p,
(n ifn<p,

for some integer ¢* such that n > ¢* > 1. Given p, n, and ¢, the value of ¢*
is determined in Appendix A so as to satisfy agents’ incentive constraints off
the equilibrium path. In this description, market places 1,..., K correspond
to the low-price markets, while K + 1,...,2K correspond to the high-price
markets.

The above strategies look complicated partly because they specify agents’
behavior not only on the equilibrium path, but also off the equilibrium path.
On the equilibrium path, we have

0'1(0)
o1(p)

((k + 1,A),p, ')u
((k7B)7 ',]3),

and

on(0) = (K +k+1,A),np,-),
on(np) = (K +k, B), -, np).

There are two groups of agents in the market. The first group consists of the
agents who take o7, using the low-price markets. While the second group
consists of those who take o, using the high-price markets. Each agent in
both groups probabilistically alternates between a buyer and a seller. Figure
3 shows where agents go in this equilibrium, and Figure 4 gives the transition
of each agent’s money holdings. Some agents are rationed and stay in the
same state, which is omitted in the figure.

We now examine some necessary conditions for the canonical (p, np)-DPE
to form a stationary equilibrium under any 6 € (0, 1). First of all, since both
(01,0) and (0, 0) are in the support of £ ,p), non-money holders must be
indifferent between the low-price markets and the high-price markets. Let
7 = hg1/h1 be the ratio of the sellers to the buyers in the low-price markets,
and 7 = hy,/hg, be the ratio of the buyers to the sellers in the high-price
markets. As is mentioned above, both 7 and 7 are strictly between zero and

14



one. Let \N/o be the value for the non-money holders who take 0. After some
calculations, it is written as
~ or
V —
O 1467

u.

Similarily, let Vo be the value for the non-money holders who take o,,. Then
it is written as

or
1+ o7

Vo = u.
The condition \70 = ‘70 implies 7 = 7. Henceforth, we denote Vi and 170 by
Vo and 7 and 7 by r.

Next, the agents with p units of money must go to the low-price markets
as buyers according to the equilibrium strategy. Consider the following devi-
ation. An agent goes to the low-price market as a seller to save money up to
np, goes to the high-price markets as a buyer, and returns to the equilibrium
strategy. No agent has an incentive for such a deviation if and only if

Tjg%i3§«1—&u+ﬁWDZ5m4«1—®u+5%%

which is equivalent to

5n—l
r> .
e T

This inequality holds for any § close to 1 if and only if » > 1/n holds.

On the other hand, agents with np units of money must go to the high-
price markets as buyers according to the equilibrium strategy. Consider the
following deviation. An agent with np units of money goes to the low price
market as a buyer until he spends all the money and then returns to the
equilibrium strategy. No agent has such an incentive if and only if

(1—5)u+5V027’(l— {%]31& {%}n%.

After tedious calculations, it is verified that the above inequality holds for
any 0 close to 1 if and only if we have r < 1/n.

To sum up, a necessary condition that the canonical DPE is a stationary
equilibrium for all § is = 1/n. Moreover, this necessary condition is proven

15



to be sufficient. In other words, it is verified that, for all p, all n, and all ¢,
there exists £* such that o1 and o, are the best responses to fi(, ) if and
only if 7 = 1/n holds. See Appendix A for the detail of the proof.

When r = 1/n, we have

M
— = hy +nh, = n )
P n+1

so the low price is determined uniquely as % (n+1) M.

Theorem 2 For all integer n > 2, and all §, the canonical (1 (n + 1) M, (n + 1) M)-

DPE (L (nt )M (n+1)M) is a stationary equilibrium.®

3.5 Welfare Analysis

This subsection examines the welfare of various stationary equilibria. We
define

vm,md—“/ V (oum; i) du (o,m),
ZXR+

and

W (1) SV (1, ).

We regard W as the welfare of the economy. In other words, welfare is
assumed to be measured by the average value of all the agents. Moreover, W
is used as the criterion of efficiency. Formally, we call a stationary distribution
p efficient if ;1 maximizes W (u). The maximum value of W (x) is fu due
to the assumptions on production and matching technologies, according to
which one cannot produce and consume in the same period, and therefore,
in each period, at most a half of the entire population obtain u.

First, if only one market place is used as in the case of no specialization,
then the probability of a type k£ agent being matched with an agent of either
type k — 1 or k+ 1 is at most 2/K. Furthermore, at most only a half of the

15Strictly speaking, the canonical (p, np)-DPE is not a distribution, but a class of dis-
tributions since it does not completely specify ¢* and h = (ho1, hon, h1, ho). Therefore,
the precise statement is the following: for all integer n > 2, and all d, there exists £*

such that the canonical (£ (n+1)M,(n+ 1) M)-DPE (L (nt1)M,(nt1)M) with ¢£* and
h = (37h, 735 (1= h), 735 h, 535 (1 = h)) (h € (0,1)) is a stationary equilibrium.
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matched agents can obtain u. Therefore, the welfare for this case is at most

1
fU.

Next, we calculate the welfare of canonical single and dual price equilibria
with complete specialization.
(i) p-SPE:
(a) Case 1: m > 1, i.e. p < 2M.

W () = (1 =m) Vo +mVy
=(1—m)u.

(b) Case 2: m < %, ie. p>2M.
W (k) = mu.

In particular, W (p,) attains the maximum value when p = 2M, i.e.,
1
(i) (1 (n+1)M,(n+1)M)-DPE:

W (i o onn) ) = (hon + o) Vo + haVi + haVs
1

= U.
n+1

To sum up, the canonical 2M-SPE is efficient, while the other canonical
single price equilibria and all the canonical dual price equilibria are inefficient.

Theorem 3 The canonical 2M-SPE is efficient.

Is the reverse of the above statement true? That is, can we say that only
single price equilibria with complete specialization, like 2M-SPE, is efficient?
Without any qualification, the answer is no. Indeed, efficient equilibria are
not always the ones with complete specialization. The following equilibrium
with partially specialized market places serves a counter example.

Let p be defined as follows:
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o 1(0;0) =3
b ,u(p,a) - %1
o 1

((k—1,4)  ifn=>2p,

° A(n) =1 (k,B) if 2p >n > p,
((k+1,A) if n <p.
(2p  if2p>n>p,

e o(n)=19p if n <p,
| 00 otherwise,
2p  ifn > 2p,

e B(n)=1qpr if 2p >n > p,
n if n <p.

Figure 5 shows where agents go in this equilibrium.
It is verified that, given ¢, u is a stationary equilibrium if r is sufficiently
small. At the same time, p is efficient since a half of the agents consume at

every period.

However, this equilibrium is not robust in the sense that it disappears as
an equilibrium if agents are sufficiently patient. To see it, consider a Markov

(3p;0) - % (1 - T)v
where 0 = (A, 0, 3) is a Markov strategy such that

strategy & = (X, 6, 5) defined as follows:

((k—1,4)  ifn>4p,

e \(n) =1 (k,B) if 4p >n > p,
((k+1,4) ifn<p,
(2p  ifdp>n>p,

e o(n)=1qp if n < p,
| 00 otherwise,
2p  ifn > dp,

e B(n)=1qp if 4p > n > p,
i if n <p.
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Note that replacing o with &, an agent can increase the frequency of consump-
tion, though he has to defer the opportunities of consumption. Therefore,
given r, if ¢ is sufficiently large, it is more profitable to take ¢ than o.

In order to present a formal result, we first define the following.

Definition 2 A strategy distribution u is a robust equilibrium (with respect
to discounting) if there exists § such that u is a stationary equilibrium for
any 6 € (6,1).

We then state the following result of which proof is relegated to Appendix
B.

Theorem 4 Any efficient robust equilibrium is a 2M-SPE.

Note that there are other robust equilibria that are inefficient. First, all
the canonical p-SPE’s with p > M are robust. It is also verified that for any
integer n > 2, there exists a robust canonical (£ (n+1)M, (n+ 1)M)-DPE.*6

3.6 Monetary Policies: Short-run

The effectiveness of monetary policies is one of the central issues in monetary
economics. This subsection, together with discussion in the next section,
presents some results related to this issue. In the short-run where we have a
multitude of equilibria, the analysis on monetary policies is meaningless due
to the indeterminacy of outcomes unless we impose some restrictions on the
behavior of the agents in the private sector, i.e., how agents react to a change
in monetary policies. We study the model under two different scenarios.
Consider first the scenario in which a change in money supply does not
cause any reaction of the agents, i.e., their strategies remain the same even
after M changes. To make the analysis simple, consider the canonical p-SPE
for some p, and assume that the government increases the money supply
from M to M’ by giving p units of fiat money each to some of the non-
money holders. This increases the fraction of money holders from M/p to
M'/p. Since they follow the strategies prescribed in the canonical p-SPE,
the price remains unchanged, and therefore, the real stock of money is also
increased to m’ = M’/p. The welfare changes from min{mu, (1 — m)u} to
min{m’u, (1 — m’)u}. Thus, the monetary policy is effective. An increase in

16See footnote 15.
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the real stock of money increases the welfare up to m = 1/2 and decreases
it beyond m = 1/2.

Next, if the agents adjust their strategies to keep the real stock of money
constant, then a change in money supply is completely neutralized unless it
triggers a disequilibrium adjustment process. To see this point, suppose that
the government gives pL ;\}M units of money to the money holders. Then all
the money holders have p’ = pM’ /M units of money. If all the agents notice
it and change their strategies to o,/, the strategy used in the canonical p'-
SPE, then no real variable is affected, and the monetary policy is completely
ineffective.

In the present framework, there is no force that makes prices, or the
strategies of the agents, react to a change in money supply, provided that
we stick to the equilibrium analysis. If we consider the process of price
adjustment, we have a totally different story. In order to express it, we now
turn to an evolutionary approach.

4 Evolutionary Stability

4.1 Stability Concept

This section examines the evolutionary stability of stationary distributions.
In order for a distribution to be evolutionarily stable, we require that the
original population fare at least as good as any small group of mutants in
the long-run provided that the agents are sufficiently patient. The formal
definition is given below.

Definition 3 A robust equilibrium g is said to be evolutionarily stable if
for all ¥ > 0, there exists § € (0,1) such that for all § € (§, 1), there exists
€ > 0 such that for all € € (0,€),

Vg, (M —e)p+en)+v>V(a(1—e)p+ei).
for all i with fig = pug.t7

This definition is similar to the definition of evolutionarily stable strategy
(Maynard Smith and Price [13]). However, the present definition has three

"The condition fir = pm is needed to ensure that mutants’ money holdings do not
increase by mutation.

20



differences from it. The first, and the most significant, difference is that
agents are patient in the present model. Therefore, comparison between the
original population and the mutants is made in terms of discounted average
payoffs instead of instantaneous payoffs. In calculating these values, it is
assumed that the fraction of the mutants remains “small”. Incorporating a
possibility of growing population of mutants complicates the analysis, which
we do not deal with in the present paper.

Second, the term « makes the concept weaker than otherwise. Due to this
term, the original population survives even if it is “a little” worse than the
mutants. In fact, in the present definition, mutants cannot invade the pop-
ulation unless they fare better than the original population in the long-run.
This reflects the idea that a “small” one-shot gain is considered negligible,
and only constant gains over time would be counted as a threat to the original
population. Our claim in the subsequent subsection is that most of equilibria
are invaded by mutants even with such a weak concept.

Finally, the mutant population may include “dummies”, i.e., those who
do not actually mutate. This way we save some cumbersome notation.

4.2 Result

This subsection shows that the class of the efficient single price equilibria
is the only evolutionarily stable distributions. To begin with, the follow-
ing theorem shows that any inefficient equilibrium cannot be evolutionarily
stable.

Theorem 5 Every evolutionarily stable equilibrium is efficient.

For the detail of the proof, see Appendix C.

To see the intuition behind the result, consider the following example.
Suppose that the economy is trapped in the canonical 4M-SPE, p45;. Then
there is an excess supply due to a high price. Also note that only market
places 1,..., K are used. Consider now the mutants who visit only market
places unused by the original population. In other words, suppose that a
small fraction e of money holders mutate at the beginning of period 1 to take
strategy ¢ = (/N\7 0, B) given by

S~ { K+ B) if g > 2M,
[ ] =
(K+k+1,A) otherwise,
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2M if n < 2M,
(n) = .
o0 otherwise,

~ 2M if n > 2M,
° B(n)= .
n otherwise.

The mutant distribution is denoted by f. It is given by

[i(4M;5) =

Y

fi(0;6) =

B Qo] =

Let ' = (1 — €) pans + €fi be the entire distribution after the mutation at
period 1. Since the mutants do not interact with the agents in the original
population, the distribution of the money holdings of the mutants evolves
independently of the original population. Note that the distribution of the
original population remains unchanged. On the other hand, the mutant
distribution at period 2 changes from i to i, which is given by

i? (2M;6) =

Y

N — DN =

It remains i thereafter. The entire distribution after period 2 is given by
/,ALt:(l—E),LL4M—|—6/jL2 t22

Thus, we obtain

. 1
vV (M4M>M) = ZU:

and _
V(/la/l) = 4 u,

which implies V (i, (1 — €)pans + €1) > V(pans, (1 — €)prans + €ft) + v for a
sufficiently small v and a sufficiently large §. Hence, the canonical 4M-SPE
is not immune to the invasion of these mutants.

In the above example, the mutants use empty market places to start an
efficient trading pattern. The same logic applies to an inefficient equilibrium
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in which all market places are visited by some agents. The only modification
is that instead of visiting empty market places, mutants visit thin market
places, which are used by sufficiently small fraction of agents. Migrating to
such places, the mutants can make the influence from the original population
arbitrarily small and attain a “near” efficient value.

Theorem 5 together with Theorem 4 implies the following corollary. It

states that any evolutionarily stable outcome is not only efficient but also a
2M-SPE.

Corollary 1 If p is evolutionarily stable, then p is a 2M-SPE.

Our next result states that the canonical 2M-SPE is evolutionarily stable.
Also, this result implies the existence of evolutionarily stable equilibrium.

Theorem 6 The canonical 2M-SPE is evolutionarily stable.

For the detail of the proof, see Appendix D.

Here, we draw a sketch of the proof. Note first that until some agents mu-
tate, agents in the original population maintain an efficient trading pattern.
They maintain the pattern even after some mutation occurs until they are
“infected” by the mutants either by direct contact or by indirect contagion.
If the fraction of mutants is sufficiently small, a sufficiently large fraction
of the original population can keep the original efficient trading pattern for
a sufficiently long time. In other words, the original population can get a
payoff sufficiently close to u/2. On the other hand, the mutants can obtain
at most “a little” above u/2 no matter how well they behave. Therefore,
mutants cannot invade the original distribution.

By Corollary 1 and Theorem 6, we conclude that the class of 2M-SPE,
which prescribes almost all agents to alternate between production and con-
sumption with a trading price of 2M, is the essentially unique evolutionarily
stable distributions.!®

5 Multiple Currencies

This section introduces an additional medium of exchange. Its main purpose
is to show that the present model has a potential of analyzing some issues

18We cannot say it is the unique distribution since we can replicate the canonical 2M-
SPE by distributing the population to other market places.
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on multiple currencies. Therefore, the analysis of this section is illustrative
rather than comprehensive.

Suppose that there is another fiat money, called good 0*, which is of the
same nature as, but distinguishable from, good 0. Although this economy
also has a multitude of equilibria, we characterize only one class and analyze
the effects of changes in money supply. The class of equilibria we focus
on is the one in which both goods 0 and 0* are used in different market
places. One example is the situation in which two currencies coexist such as
a dual currency economy where dollar is used for specific transactions, while
domestic currency is used for other transactions.

Let M and M* be the nominal stocks of fiat monies 0 and 0*, respectively.
Consider the following canonical distribution:

where n and n*(= 1 —n) are the fractions of the agents who take o and o*,
respectively, and m = X and m* = ]\p{* are the total “real” stocks of fiat
monies 0 and 0%, respectively.

We let fiat money 0 be used in market places 1, ..., K, while fiat money
0*in K +1,...,2K. The strategy o = (\, 0, 3) is the same as 0, defined in
the canonical p-SPE whenever an agent does not hold 0*. To be precise, it

is defined as follows:

(k. B) ifn > p,
¢ AX(n,n") =4 (K+k,B) ifn<pandn*>p
(k+1,4) otherwise,

. o(n.7) = P if n < pand n* < p*,
oK otherwise,

if n > p,

o 3(n,n*) = if n <p and n* > p*,

I8

otherwise.
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Similarily, o* = (A*, 0*, 3*) is defined as follows:

(K +k, B) if n* > p*,
o X (n,n") =« (k,B) if n* < p*and n > p,
(K+Ek+1,A) otherwise,

p* if n* <p* and n < p,
00 otherwise,

p if n* > p*,

e B(n,n*)=1p if n* < p* and n > p,

*

n otherwise,

To preclude degenerate cases from the analysis, we assume that m, m*,
n —m, and n* —m™* are all strictly positive.

Theorem 7 For all p and p* satisfying % + ]g: < 1, and all 6 € (0,1),
the canonical distribution p is a stationary equilibrium if and only if either
mo— M op 221 — M (or both) holds.

n n* n

Proof: The only incentive constraint we have to check is whether or not
the agents are willing to switch from one currency to the other for their
transactions. The rest of the proof is omitted since it is essentially the same
as that of Theorem 1. Furthermore, for the if-part, we check only the case
of ™ = ’[LL > % Other cases can be proven in a similar manner.

J— *_ * . .
Let r = =% and r* = *—#-. Then the value functions are written as'

m

or s
V(U,gp;/,b):T 1— u, 520,

1—-0+or 1+ or

and

1—0+ or* 1+ or*

. s . or* =g
V(o™ lp*sp) =r"|1— u, £>0.

9In this proof, we denote V (o,m;pu) and V (o*,n*pu) for V (o,n,0; 1) and
V (0*,0,n*; 1), respectively.

25



Since r = r* holds, V (o, lp;u) = V(o*, €p*; 1) holds, too. Therefore, a non-
money holder is indifferent between the two currencies. Money holders are
strictly better off using what they possess before earning additional units of
money. Therefore, no agent has an incentive to deviate.

To show the only-if-part, suppose the contrary, i.e., that neither ™ = 7:
nor *— = 7: holds. We show the case of 2 < TZZ < % only. Other cases are
proven in a similar manner. In this case, a non-money holder taking o has
an incentive to switch to o*. For if he follows o, his value is

1
== 1—7
Yo ( 1+5nTm>u’

while if he took ¢*, his value would be

1
Vi=[1-—%|u
’ ( 1+6£—W>“'

and therefore, 2 < - < I implies V; > Vj. |
n 2

n*

Next, we analyze the effects of changes in money supply. Suppose that
the money supply of one currency, say, 0 changes. Then it may lead to
changes in two types of variables, price levels and the fraction of the users of
the two fiat money. In particular, a switch from one currency to the other
necessarily occurs if the price adjustment is not swift since one currency
is more attractive than the other until the price adjustment is completed.
Therefore, it is worthwhile to see how the fraction n of the agents using 0 is
adjusted, keeping the price levels constant.

o

Consider the case of ™ = < % first. Suppose that the issuer of fiat

e
money 0 increases its money supply a little to M’ > M so that 7: < mTl < %
holds where m’ = M’/p. Then fiat money 0 becomes more attractive than
0* as shown in the proof of Theorem 7. As a result, non-money holders
taking o start switching from 0* to 0. The fraction n increases until the
ratios of money holders to non-money holders become equal between the two
currencies. This adjustment process may lead to a new equilibrium. In this
equilibrium, the level of welfare is higher than before since the new ratio,
denoted m’/n’, is closer to the optimal ratio, 1/2, than the old one.

. *
Consider next the case of % =1

- > % In this case, the sum of the real
stocks of the two currencies is beyond the optimal level. Therefore, it may be
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beneficial for the money issuer to reduce its money supply. Suppose the issuer
of fiat money 0 reduces it. Then fiat money 0 becomes more attractive than
0*, and n increases as in the previous case. However, the more n becomes, the
more attractive 0 becomes than 0*. In particular, when n > n*, this process
may continue until no agent uses 0*.2° Over-issuance makes the currency
itself vulnerable. Therefore, the money issuers may have an incentive to
restrain themselves from collecting seigniorage too much. In the countries
which experience hyper-inflation, monopolizing the sole medium of exchange
is detrimental to the economy since this self-discipline works only when there
is a competitor.

The above result implies that competition between currencies imposes
discipline on the money issuers as argued by Hayek [8]. On the other hand,
if, by law, agents have to accept either money at the fixed rate, then the
above adjustment mechanism does not work, and we will have the problem
of over-issuance by the issuers who try to collect seigniorage. It is important
that people can choose which currency to use.

6 Concluding Remarks

We have analyzed a search theoretic model of money with market places. We
have adopted two solution concepts in the main analysis, stationary equilib-
rium and evolutionarily stable distribution.

We have viewed the equilibrium approach as a proxy for the short-run
situation. In some equilibria, one market place is used for all transactions,
while in others, markets are specialized; at most one commodity good is
traded in each market place. There are a continuum of equilibria with differ-
ent price and welfare levels. There also exist dual price equilibria, in which
the same good is traded at two different prices. We have also analyzed some
effects of monetary policies. Money supply can be changed without causing
a change in price level if agents do not alter their strategies. It corresponds
to the case of price rigidity, which is sometimes considered as a ground for
Keyensian economics. In such a case, the monetary policy is effective in that
it reduces, say, excess demand. On the other hand, if agents swiftly adjust
their behavior to the real stock of money, the monetary policy is ineffective.

20When n is very small, this process may converge to an asymmetric equilibrium since
an increase in n has a large effect on 7t.
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We have adopted the evolutionary approach as a proxy for the long-run
situation. In the long-run, those who fare better than others survive, while
those who do not do well shift from one strategy to a better one, or disappear
from the market. As a result, an efficient single price equilibrium prevails.
This evolutionary view of the markets is found in, among others, Alchian [1]
and Friedman [4].%'

When destroying some equilibrium by mutation, mutants utilize some
inactive places to establish a new transaction pattern. This idea of using
inactive places for deviation is similar to the ideas of the secret hand shake
in Robson [17] and the cheap-talk in Matsui [12]. In Matsui [12], an unused
message is sent to signal others that one is a new type. They take a more
efficient strategy profile than before only if they both send this new message.
In a similar manner, successful mutants of the present model choose inactive
market places to establish a more efficient trading pattern than before.??

To conclude the paper, four remarks are in order. First, the restriction
to Markov perfect equilibria plays a crucial role in the proof of the essential
uniqueness result of the evolutionarily stable outcome. For example, Markov
perfection excludes the possibility of punishment against mutants, e.g., sell-
ers’ price cut. Without the restriction, agents may take a strategy according
to which they trail the mutants who go to inactive places and behave as sellers
so that the mutants cannot increase the probability of matching with buyers
even if they cut the price. We do not think that this change in the results un-
dermines our analysis. Rather, the lack of retaliation and punishment against
price cut is an essential feature that makes the price adjustment mechanism
work, and the concept of Markov perfection expresses it in a simple form.

Second, the matching technology of the present model exhibits constant
returns to scale, i.e., the matching probability depends only on the relative
size of agents visiting side A and those visiting side B. Although it serves a
benchmark, one may wonder how the results would change if the matching
technology is that of increasing returns to scale, i.e., the larger the absolute

21Tt should be noted that the assumption of simultaneous trials is made for the sake of
analytical simplicity rather than realistic description of changes in behavior. In reality,
even if a seller cuts its price, she has to wait for a while to attract new customers. People
gradually realize that there is the new seller who sells goods cheaper than other stores.
Effectively speaking, when a seller tries an inactive market place with a new price, buyers
need to visit the seller not necessarily right after the seller’s trial, but only before it
disappears from the market. The effect of a price cut will appear only gradually.

22See also Ely [3] and Mailath, Samuelson, and Shaked [11].
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size of a market place, the greater is the matching probability. In such a case,
some results, especially, the one in Section 4 on evolution may be modified
since creating a small new market may not pay off. Indeed, such a new
market never appears if the degree of increasing returns to scale is too large
as in Iwai [9], in which the probability of matching goes to zero as the size of
the market tends to zero. If, on the other hand, the scale economy exists but
not too large, then the further the price is away from 2M, the more likely
is the corresponding equilibrium to be destroyed by the mutants creating a
new transaction pattern since a gain from a better seller-buyer ratio exceeds
a loss caused by the effect of scale economy.

Third, we have analyzed the effects of evolutionary pressure without any
specification of explicit dynamics. Although we have obtained the efficiency
result, analyses with explicit dynamics would deepen our understanding of
the process of price adjustment.

Fourth, Section 5 has extended our model to an economy with multiple
currencies. To further study such an economy, we may introduce issuers
explicitly, examining their incentives to issue fiat money, and the way they
interact with each other. We leave these studies for the future research.
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Appendices

A Incentive Compatibility Conditions in the
Canonical DPE

We show that for all §, there exists an integer ¢* (1 < ¢* < n) such that
o1 and o, are the best responses to fi(,np) Whenever 7 = 1/n. The proof is
divided into two parts.

Part 1: First, we determine ¢*. For this purpose, we introduce the following
auxiliary strategies, value functions, and conditions.
Let 7 = h()l/hl. Then let

‘70 = 5\71, and
Vi =7 ((1 — 5)u+517g_1) + (1 =7V, £>1.

This is an auxiliary value function. It corresponds to the auxiliary strategy
according to which an agent uses the low-price markets only, irrespective of
the agent’s money holdings. Also, let # = h,,/hg,. Then let

Vo = 76V, + (1 — 7)6Vh,
Vi =6""",, 1<{<n, and
V= (1= 8)u+ 6V

This is another auxiliary value function. It corresponds to another auxiliary
strategy. If one has money holdings less than p, he goes to the high-price
market as a seller. If he has money holdings greater than or equal to p but
less than np, he goes to the low-price market as a seller. If he has money
holdings greater than or equal to np, he goes to the high-price market as a
buyer.

We choose ¢*, 7, and 7 so that the following conditions are satisfied.

14
>

[CO | Vo = Vb

i
>

[C1 ]|V,

v

if 1 <</,

[C2 |V, <V,if t* < (<.
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From the description of Vs and [C1], we obtain

- or or N
‘6:1+5#F:y+ﬁuzvb (1)

Then we obtain 7 = 7. From now on, this common ratio is denoted by 7.
Then sequentially applying (1) to Vs, we obtain

0> 1. 2)

or = -
1—06+6r 1+ or

m_m_[

Similarly, using the description of V’s and (1), we obtain

V= 5"4%% 1<t<n. (3)
It is verified that W is concave in /£, and that W is convex in ¢. Therefore,
if we prove that Vi > V1 and V < V hold for some r, then there exists
7* between 1 and n such that [C1] and [C2] hold. Indeed, it is verified that
Vi > ‘71 holds if » > 1/n. After tedious calculation, it is also verified that
V,, <V, holds if r = 1/n. Thus, if r = 1/n, then there exists * between 1 and
n such that [C1] and [C2] hold. Moreover, if § is close to one, then V; > V4
is approximately equivalent to r > 1/n, while V, <V, is approximately
equivalent to r < 1/n (still, both inequalities hold if r = 1/n). Thus, in the
limit of § going to one, r = 1/n necessarily holds. |

Part 2: Next, in the case of r = 1/n, we show that all the incentive com-
patibility conditions hold whenever [C0],[C1], and [C2] hold.

Using V’s and Vs, we can write the value function in the canonical DPE
as follows:

Vo=V if £ =0,
. v, if 1 <0<,
Vil=19 ¢ .

Vi if 0 <l <n,

(1=0)u+oVy, ifl>n.

The incentive compatibility conditions that we need to verify are the
following ones:

e With regard to non-money holders:
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CO0’ Non-money holders are indifferent between selling at the low-price
market and selling at the high-price market.

e With regard to money holders with p (0 < ¢ < ¢*):

C1SR they never want to sell at the high-price market.
C1SP they never want to sell at the low-price market.

e With regard to money holders with p (¢* < ¢ <n):

C2SR they never want to sell at the high-price market.
C2BP they never want to buy at the low-price market.

e With regard to money holders with p (¢ > n):

C3SR they never want to sell at the high-price market.
C3SP they never want to sell at the low-price market.

C3BP they never want to buy at the low-price market.
To start with, we prove the following fact:
Fact 1 6" “ ' —r(1+6+...+6" ") >0.

Proof of Fact 1: By [Cl], we have Vi > Ve, while, by [C2], we have
Viey1 < Vipegq. Then we have

or

m (Vé* - Vé*) + Vé*—i—l - %*—H > 0.

It follows that we have

ST —r (1464 + 6T >0

CO0’ : This condition is equivalent to [CO].

C1SR : This condition is given by

Vi >rdVy, +(1—r)oV, 0<e< 7,

33



which is equivalent to

(1—®<u—5+5mr—(Tj?:§)_5ﬂ>uza (4)

Since (4) holds if £ = 1, and the left hand side of (4) is increasing in ¢,
it always holds.

C1SP : This condition is given by
Vi 2oV, 0<e<im. (5)

o If ¢ < (*, (5) is equivalent to

O—éﬂ(l—(Tj?;§y>u2Q

which always holds.
e If / = ¢*, (5) holds since
‘/gt - “V/g*
> Ve ([C1])
= Vs
= 0Vjy
C2SR : This condition is given by
Vi vV, +(1—=r)éV, <l <n,
which is equivalent

(1=9)
)
This holds since, by Fact 1,

("t —r (4. 40" u>0.

(571—(—1 —r (1 4.+ 5n—€—1)) > 577,—5—1 o 5n—€*—1 +r (5n—€ 4.+ 5n—£*—1)
— 5n—£—1 (1 o 56—6*) +r (5n—£ L+ 5n—£*—1)
> 0.
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C2BP : This condition is given by
Vizr((1=0)u+dVi,)+(1—r)oV) £ <{l<n,
which is equivalent to
(1—=0+0dr)V,=6rV, —(1—=06)ru>0. (6)
o If /=1/¢*+1, (6) holds since
Lh.s. of (6) = (1 =64 0r) Vieyqy — 0rVie — (1 = 0) ru
> (1—=6+06r)Vieyy — 0rVie — (1= 0)ru ([C2))
= 0.
o If /> ("4 1, (6) is equivalent to
(5”4—7’(1—1—...—1—5"4))1420.
This holds since, by Fact 1,

5n—£ —r (1 4+ 577,—() > 5n—€ . 5n—€*—1 4 (571—5-1-1 4+ 5n—€*—1)
— 5n—€ (1 . 56—(*—1) Ny (5n—f+1 4.+ 5n—€*—1)
> 0.

C3SR : This condition is given by
Vi >réVy, +(1—=r)oV) (>n,
which is equivalent to
(1—=190)((1+6r) V) —oru) > 0.
This holds since, by the monotonicity of Vj,

Lhs. > (1 —0) ((1 4 6r) Vo — dru) = 0.

C3SP : This condition is given by
Vi 2oV, f2n (7)

We decompose ¢ > n into in + j where ¢ is an integer greater than or
equal to 1, and 7 is an integer between 0 and n — 1, then we have
V. = (1 — 51) u+ o'V (8)

in+j
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o If j <n—1, by (8), (7) is equivalent to
(1=08)(1—=6)Yu+06" (V) —dVS,) >0.

This holds since
— if j < 0%, it is followed by [C1SP],
— if 7 > £*, it holds that V; = 6Vj4;.
o If j=n—1, by (8), (7) is equivalent to
(1=6)(1=6)u+0" (V- —0oVr)>0.
This holds since
— if £* <n —1, it holds Vn_l = (5‘771.
— if * =n — 1, it holds that
Lhs = (1= 8) (1= 6) u+ 6" (Vs = 677
1=0) (1= &) u+d (Vs —0V)  (C1)

C3BP : This condition is given by
Vizr((1=080)u+oVy,)+(1—r)oV; (>n. 9)

e If j = 0 (recall the decomposition of £), by (8), (9) is equivalent
to

(1=0)(1=6""A=r)ut+6"(Vi—r((1=0)u+dVy ) —(1—r)dVyr) >0.

This holds since
— if /* < n —1, it holds that

Lhs. = (1—68) (1= 671 (1= r)u+ 06" (1—0) ((1 +or) TV, — ru)

(1-
1-81=-8)1-r)u
0,

v
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— if /* =n — 1, it holds that

Vi—r((1=8)u+6V,)—(1—r) oV

n n

1—5+5r)m—r((1—5)u+5x7n_1>

(
>(1=6+0r)V, —r ((1 —0)u+ 5Vn—l> ([C2))
0.

e If j >0, by (8), (9) is equivalent to

(1—9) (1—5’) (l—r)u—}—&i(v;-*—r((l—5)u+5Vj*_1)—(1—7’)51/]-*) > 0.

This holds since

— if 7 < 0*, it holds that

Vi=r ((L=0)u+aVi) - (1—r)oV;,

—if 7 > ¢*, it is derived from [C2BP].

B Proof of Theorem 4

The proof is proceeded by stating the following claims. All the claims are
concerned with realizations in any equilibrium that satisfies the assumptions
of the theorem.

Claim 1: Almost all the agents either produce or consume in every period.
Proof. Otherwise, some welfare loss is incurred.

Claim 2: In every market place, the fraction of the agents visiting Side A
is the same as the fraction of those visiting Side B.
Proof. Otherwise, some fraction of agents fail to be matched, which
contradicts Claim 1.

Claim 3: In every market place, each type of good is traded at a single
price, if traded at all.
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Proof. Suppose the contrary, i.e., that some goods are traded at p
and p’ > p in some market place. It follows that there are two types of
sellers, one offers p, the other offers p’. Moreover, from Claim 1, both
sellers should be able to sell goods without fail. Then sellers offering
p has an incentive to deviate and offer p’. Repeating this deviation
sufficiently many times, the seller can accumulate enough (additional)
money to buy an extra good, which is a contradiction.

Claim 4: If a positive fraction of type k agents visit a certain market place,
then agents of type other than £ — 1 and k& + 1 (mod K) never visit
the other side of this market place. Therefore, each market place must
belong to one of the following three categories:

(i) “one-good” market places, i.e., those of which type k agents visit
one side, and only k — 1 type agents or only type k + 1 (mod K)
agents visit the other side;

(il) “two-good” market places, i.e., those of which type k agents visit
one side, and only both type k — 1 agents and type k + 1 (mod
K) agents visit the other side;

(iii) unused market places, i.e., those places that no agent visits.
Proof. Otherwise, some fraction of agents fail to trade.

Claim 5: There exists no market place in which two types of goods are
traded.
We put the proof at the end of this appendix since it is cumbersome.

Claim 6: Every good is traded at the same price.
Proof. From Claim 5, a buyer can buy his consumption good without
fail at every market place in which it is sold. Therefore, he has an
incentive to buy at a cheaper market place.

Claim 7: The price equals 2M.
Proof. If the price is strictly greater than 2M, the fraction of buyers
is strictly less than a half, which contradicts Claims 1 and 2.
On the other hand, if the price is strictly less than 2M, there exist
some buyers with money holdings greater than or equal to 2p or some
sellers with money holdings greater than or equal to p; for if not, some
agents hold fiat money they never expect to use and must have already
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discarded. In order to constantly induce buyers who hold 2p units or
more, some money holders become sellers. However, the sellers who
hold money have an incentive to become buyers since the earlier they
consume, the higher is the expected value due to stationarity.

Proof of Claim 5: Suppose the contrary, i.e., that there exists a market
place in which two types of goods are traded. We assume, due to symmetry,
that market places 1,..., K are such places. From Claim 4, we may assume
that some of type k — 1 agents and some of type k + 1 agents visit Side A of
market place k and some type k agents visit Side B of market place k. Let
the proportion of type £ — 1 agents in Side A be r (0 < r < 1). We denote
the price at which trades are made between type k — 1 agents and type k
agents by p, and the price between type k + 1 agents and type k agents by

/

p.

Part 1: We show that p < p'. First, p < p’ holds, for if not, due to
symmetry, a type k agent has an incentive to go to market place k — 1 as a
buyer, buying at p’, and k+ 1 as a seller, selling at p > p/. By this deviation,
the agent not only reduces the uncertainty but saves some money (note that
the uncertainty comes from the fact that he does not know whether he meets
a seller or a buyer). Suppose next that p = p’. Then every good is traded at
price p in every market place (including the market places in which only one
type of good is traded). Some agents of type k with money holdings ' > p
visit Side B of market place k on the equilibrium path. Thus, we have?

V)=r(1=0)u+dV(n—p)+Q-r)éV(n+p).
Their incentive compatibility conditions are

V(') >r((1—=0)u+dV(n —p),
Vi) >1—=r)oV(n+p).

Then we have
(I=0)u+dV(n —p)=V{)=0V(+p). (10)
One of the incentive compatibility conditions for an agent with ' — p is

V(n'—p) =V (n).

23We omit o, p in the subsequent expressions.
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Then we have

1

i > .
V(”>—1+5“/

(11)
by (10). On the other hand, an agent with 1’ 4 p has the following condition:

V(' +p) = %V (n')

T :
TS

5 u+ oV (1)
>(1=8)u+dV (7)),

V() +V (1)

>

by (10) and (11). Then we have
V(n'+p) =6V (n+2p).

Inductively, we obtain

1

V(n' +np) = m

u, Vn e N.

However, we have

lim V (7' + np) = oo,

n—0oo

which contradicts

Vin) <u VneR,.

Part 2: We choose p € R, m,n € N such that mp = p, np = p/, and m and
n have no common divisor but 1 if we can find such numbers; otherwise, we
choose p,e € R,, m,n € N such that p = mp, p’ = np+ e, m and n have no
common divisor but 1, and ¢ is small enough.

Given an 7], we define the following Markov strategy o = (A, o, ).

(k=1,4) ifn>7q+1p,
* \(n) =1 (k,B) if 74 0p>n > 7+ mp,
(k+1,A) if n <+ mp,
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np  if 7+ 0p>n> i+ mp,
eo(n)=1p if n < 7+ mp,
o0 otherwise,

p  ifn>7q+0p,
e B3(n)=<p ifG+p>n>q+mp,
n it n <+ mp.

where ¢ = 3mn + m + n. There is room for arbitrage, and this strategy
enables an agent to buy at the lower price p and sell at the higher price p'.
We show that every agent can obtain more than %u by taking o, which will
be a contradiction.

Suppose that an agent with money holdings n € [1, 7+ p+np) takes the
above strategy. Then we construct a probability space P" which governs the
stochastic process of this agent’s money holdings. Moreover, this stochastic
process is a time-homogeneous Markov process with the state space [7, 7 +
p + np). We let LY 7,7+ mp) and H & [7 + 05,7 + (p + np).

We define various stochastic processes. First, a stochastic process (S*);>0
on P7 is recursively defined as follows:

e S9=0.

o Fort > 1,

g )0 ST =1 el or ST =0 ¢ H,
1 ST =g ¢ L, or ST =0, € H.

This stochastic process switches to 1 when 7 enters the region of H, and to
0 when it enters L.

Next, stochastic processes (Nt )is0 and (N§;)i>0 on P7 are recursively
defined as follows:
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e Fort > 1,

. Nt +1 if St =0,n € H,
N = Nt-1 .
TH otherwise.
. N+l ifSt =1, €L,
N HL — Nt .
L otherwise.

(Nt ) (resp. (N%,)) counts the number of times that 1 moves from L to H,
(resp. H to L).

Finally, stochastic processes (N§)i>0 and (N§);>0 on P7 are recursively
defined as follows:

° N%:Ng:().

e Fort > 1,

Nt N};l +1 if he buys his consumption goods at period ¢,
B NE? otherwise,

N§ = {N g_l +1 if he sells his production goods at period t,

N& 1 otherwise.

(NE) (resp. (N%)) counts the number of the periods at which the agent acts
as a buyer (resp. seller).

Lemma 1 There exists a positive constant N such that

Proof of Lemma 1: We define random variables 77’s on P" as follows:

(=1 =

U%;} [7717"'777{—1 ¢ Lvnfe L777£+17---777t—1 ¢ H;nt S H]
Moreover, we define D, P as*

(- (—
D=2+ |—=]+|—=

I.

n
P =rl=" % (1—7“)“777”.

24|z | is the least integer more than or equal to x.
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Then we have

iD(1—P)""'P

hE

sup  E7[r"] <

n€[n,n+Eep+np) 1

NISE

where E" is the expectation operator under P7. By a Markov property, we
have

Nt 1
lim —££ > a.s.
t—oo sup En [17]
> — .S.
5 a.s
>0 a.s.

On the other hand, we have
Niw < Nyp < Npy + 1.

Combining these inequalities, we obtain

Nt Nt P
lim £ = lim 22 > _ >0 as.
t—o0 t t—o0 D
Let N = P/D, and this completes the proof of the lemma. |

Using Lemma 1, we have

7
Ny =Nz (14 T ) v (14

= 3n+1)Nk; — (3m+3) Ni,,.

l+n—m
n

1) N

Since N + N& =t holds, we have
ot 1 t 1 t
Ng > §+§(3n+1)NHL—§(3m+3)NLH.
After some calculation, we obtain

Nt 1 1

inf B s - L _ _
llgglft _2+2(3(n m)—2)N as.
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that is to say, any agent taking this strategy can obtain goods at more than
a half of the entire periods. Thus, if ¢ is sufficiently close to 1, this strategy
attains more than %u on average. Since this is true for every agent, it leads

to a contradiction.
|

C Proof of Theorem 5

Note first that, in upsetting the original population, we do not necessarily
use the most “plausible” mutants. Which mutants are plausible are often
situation-dependent, and the proof becomes too complicated to handle if we
start addressing the plausibility of mutation. One example which we think is
plausible is described in the main text. Also, in the following, when we say
“the tth period”, we mean the tth period after mutation occurred.

Consider p with W (u) < gu. Let v > 0 satisfy v < § (%u — W(p)). Then
it suffices to show that there exists ¢ such that for any 6 > 9§, there exists €
such that for any € € (0,€), we can find a mutant population f such that

o IELH = KH,
o /i satisfies the following conditions:

(1) Vg, (T =€) p+en) <W(n)+7,
(i) V (1, (1 —€) p+ei) > W (1) =,
(iii) W (i) > %u—’y.

For if these inequalities hold, we have

V(i (1= )it i) = V (i, (1= € b ef)) =7 > =W (1) — 4o

> 0,

and therefore, p is not evolutionarily stable.

Next, take any ¢ > 0. Then we can find K market places which are
visited by at most € fraction of the population on the equilibrium path in
total: call them Ko +1,..., Ko + K.

In the following, we construct a mutant population such that (i)-(iii)
hold. In doing so, we have mutants visit inactive, i.e., either empty or thin,
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market places and start an efficient transaction pattern. First, by introducing
mutants, the average payoff of the original population may increase. If,
however, the fraction € of mutants is sufficiently small, this increase can be
bounded from above by «. This will prove (i). Second, we would like to set
a lower bound for the average payoff of the mutants. A problem arises when
there is no empty market places. In this case, the mutants have to face the
original population that may do harm to them. However, since there are
countably many places, we can always find some places which are visited by
a sufficiently small fraction of the original population, denoted by €. Visiting
such places, the mutants keep their efficient trading pattern for sufficiently
long periods. This will prove (ii) and (iii). A formal analysis is given below.

Consider mutants who visit market places K. +1,..., Ko+ K. We define

I'=(1-¢¢,
N'=(1—-e)(1-¢),
N' =,
t: Nt

Nt + 2Kt
L S N

Nt + 2Kt

=14 (1-#) N+ (1) N,
Nt-i—l _ TAt]\A[t’
Nt-i—l — ftﬂft.

In the above expressions, I! is an upper bound of the measure of infected
agents at period t where infected agents are either the agents in the original
population visiting Ko + 1,..., Ko + K, or those who have been affected
by infected agents. We call other agents normal irrespective of their being
mutants or not. N (resp. N ) is a lower bound of the measure of normal
agents of the original (resp. mutant) population. Thus, 7 (resp. ) is a
lower bound of the ez ante probability that a normal agent in the original
(resp. mutant) population remains normal in the next period. Then we
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obtain

1
At
o t—1 (142K H2KFTY 117
R T, ()
. 1
r= t=1 (142K +2K7i™\ 1L °
ORI, ()
Therefore, it is verified that for any 7" € N, we can make 7!, 7%, ... 7T, 7

arbitrarily close to 1 by making € and € sufficiently small.

(i): We define a sequence (Vt)tzl with V' € [0, 2] as follows:

V= (Wt(/,L) — W () + 57"‘“) +(1—7) %u vt,

where W¥(u) is the expected value for the original population at time ¢, and
therefore, Wt(u) — 6W' () is nothing but their one-shot payoff at time ¢

if they face only each other. V' is an upper bound of V' (u, (1 — €) u + €fi).
And we have

7 +Z(st1H (1u_wt )+5TH (7" —wr i)
(12)

Note that given ¢ we can make the second and the third terms arbitrarily
small if we take a sufficiently large T, a sufficiently small ¢ > 0, and a
sufficiently small ¢ > 0 in that order.

(ii): We define (V*)¢>1 with V' € [0, 1u] as follows:
V= 7 (W) — W () + V) L v,

where W¥(f1) is the expected value for the mutant, and therefore, W*(f1) —
SWH1([1) is nothing but their one-shot payoff at time ¢ if they face only each
other. Then V' is a lower bound of V (ji, (1 — €) pu + ¢ji). And we have

V Wl 25t IH t(ﬂ)+5TH7:t (ZT—H—WT_H([L)).

t=1 13)
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Note that given 6 we can make the second and the third terms arbitrarily
small if we take a sufficiently large T, a sufficiently small ¢ > 0, and a
sufficiently small ¢ > 0 in that order.

(iii): We define 77 as follows:

2

DO | —

7 it {nf|uu ({n <n'}) >

and divide the proof into two cases, n > 0 and n = 0. In both cases,
the mutants choose market places which are visited by a sufficiently small
fraction of the original population, and start a new transaction pattern with
a different price p*.

Case 1: n > 0.

In this case, we let p* = 1. We then partition the mutants into two sets
St and S5 of equal sizes so that a mutant with money holdings 7 at the time
of mutation belongs to Sy if n < p*, and Sy if n > p*, respectively (if there is
a mass at n = p*, then we divide them so that the sizes of the two sets are
equal). Such two sets can be found by way of the definition of p* = 7.

Suppose now that an agent holds 7y units of money at the time of mu-
tation and belongs to S;. Then he ignores 7y, starts with producing his
production good, and alternates production and consumption, trading goods
at the price of p*. On the other hand, if he belongs to Sy, which implies
No > p*, then he ignores ny — p*, and starts with consuming his consumption
good with the rest of the behavior being the same as those in set S;.

Formally, we define Markov strategies 5’f,70 = (;\1,]0, 0, B), &5,]0 = (5\2,,0, 0, B)
as follows:

5\ ( )_ (K6’+kaB) 1f772770+p*7
e (Ko +k+1,A) otherwise.

5\ ( ) (K6’+kaB) 1f7727707
[ ] =
2o U] (Ko +k+1,A) otherwise.
° 0(n)=p"
Bn) pr o ifnp=pt,
[ ] =
1 n otherwise.
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A mutant in Sy (¢ = 1,2) takes oy, if his money holdings are 7y at the time
of mutation.

In this mutant distribution, agents in S7 and Sy alternate their moves,
and a mutant in S; is matched with another in Sy for transaction with a
sufficiently high probability, and vice versa. Therefore, we have

1 1
W () = FU> U= 7.
Case 2: 1= 0.
This case is equivalent to pg(n = 0) > % In order to construct a dis-

tribution in which the buyer-seller ratio is one-to-one, we need to distribute
money from the “rich” to the “poor”. Let N and 7 be a pair of a positive
integer and a positive number such that %—fraction of agents have at least 1
units of money. We can find such a pair since M > 0 holds. Among mutants,
let these agents constitute set 7T;, and let the rest of the mutants be in set
Ts. Let p* = n/N.

Take an agent in 77 with the money holdings of 7y at the time of mutation.
Note ng > Np*. His location strategy is

S (1) = {(K6/+I<:,B) if n > no — (N — 1)p,
" (Ke +k+1,A) otherwise.

In other words, he acts as a buyer N times at the beginning as if his initial
money holdings were Np*.

Next, take an agent in 75. she ignores her initial money holdings 79, and
starts her new life as a seller. To be precise, her location strategy is

5\ ( )7 (Kg—l—]{},B) 1f772770—|—p*’
20 11 (Ke +k+1,A) otherwise.

Every agent in 77 and 75 offers p* and bids p* if possible.

If these mutants take the above-mentioned strategies, then in N periods,
the fraction of buyers becomes a half since the agents in 77 repeat buying
goods for N consecutive times with a sufficiently high probability, distribut-
ing money to those in 75. From the Nth period on, they alternate between
sellers and buyers unless they meet someone from the original population,
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the probability of which is negligible. Thus, the average value of the mutants

satisfies |

The right hand side of the above inequality tends to su (> W(u)) as 6 goes
to one (note that N does not depend on ¢). Hence, we can find ¢ such that
for any 6 > 0, we have

W(g) > -u—~. (14)

Note that (14) holds independent of ¢ and K. Thus, for any ¢, we can
find sufficiently large 7" and € such that for any € € (0,€), there exists a
mutant population f such that (12) and (13) hold. |

D Proof of Theorem 6

Theorem 1 implies that the canonical 2M-SPE satisfies the condition (i) of
Definition 3.
We denote the canonical 2M-SPE by u = pops, and a candidate mutant

distribution by ji. To simplify notation, we denote [ aef (1 —€) p+ efi

Lemma 2 For all v > 0, and all ¢ € (0, 1), there exists € (v, d) > 0 such that
for all € € (0,€(7,9)), the following equation holds:

1

Vi(p 1) > gu—7.

We omit the proof since we can prove this Lemma similarily as done in
Appendix C.

Lemma 3

1 1-=96
S (L 18
V(u,u)_(2+ 1 )u
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Proof of Lemma 3: We consider the following maximization problem:

o

max (1 —9) Z 6",

{bt,st,it}°

T=1
I
st. u = (bt + —zt) U
2
bt + 8¢ + it =1
mo = M
my = My_1 + 2M (St — bt)
me—1
by <
"= oM

bt7 Sty Uty TNy 2 07

where b; (resp. s;) is the fraction of the mutants who are matched with those
in the original population as buyers (resp. sellers), and i; is the fraction of
the mutants who are matched with each other. This is a social planner’s
problem for the group of mutants, ignoring the strategic feasibility and the
friction such as the possibility of not being matched. Thus, if we let u* denote
the maximum value of the problem, then V' (ji, 1) < u* holds.

Solving this problem, we obtain

SR
u =3 1 u.
This concludes the proof of the lemma. |

Now, we proceed the proof of the theorem. Given a sufficiently small v,
let 0 be a positive number in (1 — 23, 1). Next, given v and § € (0, 1), define
€(v/2,9) as in the proof of Lemma 2. Then, by Lemma 2 and Lemma 3, we
have

for all € € (0,€(v/2,6)), and all i satisfying the equation of Condition (ii) of
Definition 3, which concludes the proof of the theorem. |
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(3,0) (1,p)

side A side B
market place 1

(1,0) (2,p) (2,0) (3,p)
side A side B side A side B
market place 2 market place 3

(7,m): type ¢ with money holdings 7

Figure 1: Who goes where in p-SPE; K = 3.
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Figure 2: Transition of an agent in p-SPE: Case of m = %



(k—1,0)

side A

side B

market place k

(k—1,0)

(k,np)

side A

side B

market place K + k

(7,m): type ¢ with money holdings 7

Figure 3: Canonical (p,np)-DPE



Cp o 4+ 1)p (+2)p (n+1)p

Transition of o
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Transition of o,
@ . States reached on the equilibrium path

Figure 4: Transitions in (p, np)-DPE



(k —1,0)

(k+1,3p)

side A side B
market place k

(i,m): type ¢ with money holdings 7

Figure 5: Efficient equilibrium with partial specialization and dual prices



