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1 Introduction

Our primary purpose is to study the impact of the secular decline in trade costs (Bairoch,

1985), broadly defined to include all impediments to the exchange of goods, on the spatial

distribution of economic activities when the number of regions is arbitrary. Indeed, models

of economic geography have so far focussed on a two-region setting (Krugman, 1991;

Fujita, Krugman and Venables, 1999). This makes the dynamic analysis very simple

since moving away from one region automatically implies that migrants (workers and

firms) go to the other region. Furthermore, it is not clear what the main result obtained

in economic geography, namely the existence of a core-periphery structure, becomes when

there are more than two regions. Indeed, a multi-regional economy is able to sustain

a much richer hierarchy. To the best of our knowledge, this is the first time that an

analytical treatment of a multi-regional economy with mobile factors is addressed.

Our secondary purpose is to allow for urban costs to be paid by workers when residing

in a particular region. In this perspective, the core-periphery model has been criticized

because it does not account for the growing urban costs associated with the concentration

of firms and workers within the same region (Helpman, 1998; Tabuchi, 1998; Papageorgiou

and Pines, 1999). By ignoring the costs imposed by urban life, this model would remain in

the tradition of international trade theory, and would thus fail to provide a fair description

of the working of a spatial economy. Introducing urban costs is both reasonable and

meaningful. It is reasonable because an increasing concentration of workers and firms

within a region generates rising congestion costs. It is meaningful because, in the absence

of such costs, when trade costs decrease the economy might move from full dispersion to

full agglomeration without passing through intermediate stages, a result that strikes us

as being very implausible.

In this paper, we extend the two-region model proposed by Ottaviano, Tabuchi and

Thisse (2001) to study the impact of falling trade costs on the equilibrium distributions

of firms and workers in the case of n regions, while permitting each region to have specific

urban costs (e.g., commuting and housing), which vary with the number of workers.

When the number of regions exceeds two, determining the equilibrium prices, wages,

and (indirect) utilities in each region becomes a hard task. Indeed, these expressions

typically depend on the whole distribution of the manufacturing sector across regions,

while they also vary with the region under consideration. In order to be able to work with a

tractable model, we make the simplifying assumption that regions are pairwise equidistant

so that trade costs are the same regardless of the origin and destination regions. Such an

assumption may be justified by the fact that distance-related transportation costs have
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become low enough while distance-unrelated costs such as tariffs, insurance, loading and

unloading are still relatively high. Likewise, communication costs are not very sensitive

to distance, but often involve high fixed costs (think of portable telephones).

Regarding urban costs, our modeling strategy is as follows. Although we acknowledge

the fact that both trade and commuting costs have been decreasing since the beginning

of the Industrial Revolution, we assume that interregional transport costs decrease while

urban commuting costs are constant for a given population size. This assumption is made

to capture the idea that, in modern economies, trade costs of manufactured goods keep

decreasing at a fast pace, while the decrease in commuting costs tends to slow down (and

maybe to rise) due to growing congestion and to higher opportunity time cost for urban

residents.

Our concept of equilibrium is standard, while we borrow a dynamics that has been

used in migration analysis (Ginsburgh, Papageorgiou and Thisse, 1985; Tabuchi, 1986;

Zeng, 2000). More precisely, in our model, the incentives to migrate away or toward

a particular region are given by the sum of utility differentials between this region and

the others. It is well known that proving the existence of a stable equilibrium when

there are more than two regions may be a problematic issue. For example, a limit cycle

may arise. More generally, characterizing the eigenvalues of a nonnumerical system is

often a formidable task. However, our model displays some nice features that allow us

to apply recent stability theorems without having to compute eigenvalues (Tabuchi and

Zeng, 2000). We will see that, under fairly weak conditions, a stable equilibrium always

exists. To the best of our knowledge, such a result has not been proven for the original

core-periphery model developed by Krugman (1993).

Previewing our main results, we will see that workers will move from small to large

urban regions when the desirability of the differentiated product rises or when the size of

the agricultural population falls (Proposition 1). Under some regularity conditions, we

then show that the number of workers residing in a region with low urban costs is always

larger than that in a region with high urban costs (Proposition 2). In Section 5, we study

how the size of urban regions changes when trade costs fall. More precisely, we show that

large urban regions grow in the early stages of economic integration but decline in the late

stages (Theorem 1). Unfortunately, we have not been able to characterize the evolution

of the urban regions when trade costs take “intermediate” values. Finally, in Section 6,

we consider the more difficult case of a stable equilibrium in which some regions have no

industrial sector. To this end, we restrict ourselves to linear urban costs. It is then shown

that the number of urban regions keeps decreasing when trade costs decrease from high

values to intermediate values. In this case, the core of the economy is made of a shrinking
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number of regions. However, when trade costs keep decreasing, this process is reversed

and the number of urban regions rise (Theorem 2). In other words, once trade costs are

sufficiently low, the market solves the congestion problem induced by the agglomeration of

industry in a small number of regions by redistributing firms and workers among a larger

number of regions. It should be clear that the implications of such results are important

for the formation of integrating economies, such as the European Union or NAFTA.

Although we do not deal with differential regional growth, it seems fair to say that

our paper contributes to the debate regarding the spatial implications of economic devel-

opment. In the development literature, a high degree of urban concentration is expected

to arise during the early phases of growth. As development proceeds, deconcentration

would occur because the economy can afford to spread infrastructure, while the initial

urban giants become high cost and congested places that are less attractive locations for

producers and workers (Vining and Kontuly, 1978; Alonso, 1980). Since it is reasonable

to interpret the value of internal trade costs as an index of economic development, we

may conclude that our results suggest the existence of such a ∩-shaped relationship be-

tween economic development and the spatial distribution of activities. Interestingly, this

relationship accords with the observations made in some developed economies, according

to which industry would relocate outside the main urban regions (Champion, 1994; Geyer

and Kontuly, 1996).

The remainder of the paper is organized as follows. The model is presented in Section

2, while existence and stability of an equilibrium are dealt with in Section 3. Some

preliminary results are shown in Section 4. Sections 5 and 6 contain our main results

discussed above, while Section 7 concludes.

2 The model

The space-economy is made of n ≥ 2 regions (i = 1, · · · , n). Each region has one city

that has a given center but a variable size. As in urban economics, the city center stands

for a central business district (CBD) in which all firms locate once they have chosen to

set up in the corresponding region (Fujita and Thisse, 1996). The CBDs are given by n

points of the location space.

There are two factors, called A and L. Factor A is evenly distributed across regions

(A/n) and is spatially immobile. The assumption of a uniform distribution of A is made

in order to focus on the impact of differential urban costs on the distribution of activities.

Factor L is mobile between any two regions. Let λi ∈ [0, 1] denotes its share in region i
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and let

Λ ≡
{
λ = (λ1, · · · , λn);

n∑
i=1

λi = 1 and λi ≥ 0

}

For expositional purposes, we refer to the first sector as “agriculture” and to the second

sector as “manufacturing”. Accordingly, we call “farmers” the immobile factor A and

“workers” the mobile factor L.1 For this reason, we will refer to region accommodating

workers (λi > 0) as urban regions, while regions with no workers (λi = 0) are called rural

regions.

There are three goods in the economy. The first good is homogeneous. Consumers have

a positive initial endowment of this good, which is also produced in the agricultural sector

using factor A as the only input under constant returns to scale and perfect competition.

Technology in agriculture requires one unit of A in order to produce one unit of output.

We assume that this good can be traded freely between regions so that its price is the

same across regions. Hence this good is chosen as the numéraire. As a result, farmers’

income is equal to one in all regions.2

The second good is a horizontally differentiated product; it is supplied by using L as the

only input under increasing returns to scale and monopolistic competition. Technology

in manufacturing requires φ units of L in order to produce any amount of a variety,

i.e. the marginal cost of production of a variety is set equal to zero. Each firm in the

manufacturing sector has a negligible impact on the market outcome in the sense that it

can ignore its influence on, and hence reactions from, other firms. To this end, we assume

that there is a continuum of potential firms. There are no scope economies so that, due to

increasing returns to scale, there is a one-to-one relationship between firms and varieties.

Clearly, regardless of the regional distribution of firms and the value of trade costs, the

total number of firms in the whole economy is given by N = L/φ, which is assumed to

be larger than 1. Although this might seem restrictive at first sight, this property allows

us to focus on the spatial redistribution of industry per se.

Because each firm sells a differentiated variety, it faces a downward sloping demand.

Since there is a continuum of firms, each one is negligible and the interaction between any

two firms is zero. However, as will be seen below, aggregate market conditions of some

1We want to stress the fact, however, that the role of factor A is to capture the idea that some inputs
(such as land or some services) are nontradable while some others have a very low spatial mobility (such
as low-skilled workers). For example, the first sector could be reinterpreted as the traditional one and
the second sector as the modern one.

2Recall that the choice of the numéraire is a difficult issue in general equilibrium model with imperfect
competition.
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kind affects any single firm. This provides a setting in which individual firms are not

competitive (in the classic economic sense of having infinite demand elasticity) but, at

the same time, have no strategic interactions with one another. Finally, interregional trade

flows go from one CBD to another. As discussed in the introduction, the corresponding

trade costs are assumed to be identical between any two regions:

τij =




τ > 0 for i 
= j

0 for i = j

Thus, each variety can be traded at a positive cost of τ units of the numéraire for each

unit carried from one region to another, regardless of the variety, τ accounting for all the

impediments to trade. The underlying geography is simple: the n regions are located

along a circumference, while shipping a good from one region to another involves going

through the center of the circumference.

Housing is the third good in our economy. When they live in a certain region, workers

are urban residents who use housing and commute to the regional CBD where they work.

To keep things simple, all the urban costs borne by a worker who chooses to reside in

region i (land rents, commuting and congestion costs, pollution) are subsumed in a cost

function θi(λi), which varies with the size of the corresponding population of workers.

This function is assumed to satisfy the following properties:

θi(0) = 0 θi(1) <∞ θ′i(y) ≥ 0 i = 1, · · · , n and y ∈ [0, 1]

Unlike trade costs that are the same between any pair of regions, urban costs are region-

specific, reflecting the fact that living conditions may vastly differ across urban regions

for the same population size (because of natural amenities, better transport facilities or

local public services).

Preferences over the first two goods are identical across individuals and described by

a quasi-linear utility with a quadratic subutility, which is supposed to be symmetric in

all varieties:

U(q0; q(x), x ∈ [0, N ]) = α

∫ N

0

q(x)dx− β − γ

2

∫ N

0

[q(x)]2dx (1)

−γ
2

[∫ N

0

q(x)dx

]2
+ q0

where q(x) is the quantity of variety x ∈ [0, N ] and q0 the quantity of the numéraire. The

parameters in (1) are such that α > 0 and β > γ > 0. In this expression, α expresses

the intensity of preferences for the differentiated product, whereas β > γ means that

consumers are biased toward a dispersed consumption of varieties (varietas delectat).
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If the consumption of the homogeneous good is positive, maximizing (1) under the

budget constraint∫ N

0

p(x)q(x)dx + q0 = wi + q0 − θi(λi) (2)

(where wi denotes the wage prevailing in region i and q0 is the initial endowment of the

numéraire) yields the following first-order conditions:

α− (β − γ)q(x) − γ

∫ N

0

q(y)dy = p(x) x ∈ [0, N ]

or

q(x) = a− (b+ cN)p(x) + c

∫ N

0

p(y)dy x ∈ [0, N ] (3)

where

a ≡ α

β + (N − 1)γ
b ≡ 1

β + (N − 1)γ
c ≡ γ

(β − γ)[β + (N − 1)γ]

Substituting (2) and (3) into (1), we obtain the indirect utility of a worker residing in

this region:

Vi =
a2N

2b
− a

∫ N

0

p(x)dx+
b + cN

2

∫ N

0

[p(x)]2dx− c

2

[∫ N

0

p(x)dx

]2
+ q0

+wi − θi(λi) (4)

In accord with empirical evidence (Head and Mayer, 2000; McCallum, 1995), we as-

sume that markets are regionally segmented so that each firm chooses a delivered price

which is specific to the region in which its variety is sold. Let pij(x) be the price of variety

x produced in region i and sold in region j, and qij(x) the demand in region j for variety x

produced in region i. To ease the burden of notation, we drop x hereafter. Consequently,

operating profits of a firm established in region i can be written as

Πi(λ) =
n∑

j=1

(pij − δijτ)qij

(
A

n
+ λjL

)

where δij = 1 when i 
= j and 0 otherwise. We assume throughout this paper that trade

costs are such that it is always profitable for any firm to export from one region to another.
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As to equilibrium wages, they are determined as follows. First, by maximizing firms’

profits with respect to prices, we obtain3

pii =
2a + cτ(1 − λi)N

2(2b + cN)

pji = pii +
τ

2
for i 
= j

qii = a− (b+ cN)pii + cN

n∑
k=1

λkpki = (b + cN)pii

qji = a− (b+ cN)pji + cN
n∑

k=1

λkpki = (b+ cN)(pji − τ) for i 
= j

Second, due to free entry and exit, profits net of fixed costs are zero in equilibrium. As

in Krugman (1991), the equilibrium wages are determined by a bidding process between

firms for workers, which ends when no firm can earn a strictly positive profit at the

equilibrium market prices. In other words, all operating profits are absorbed by the wage

bills. Hence, the wage prevailing in region i is determined as follows:

wi(λ) =
Πi

φ
=

1

φ

n∑
j=1

(pij − δijτ)qij

(
A

n
+ λjL

)

=
(b + cN)N

L

n∑
j=1

(
pjj − δijτ

2

)2(
A

n
+ λjL

)

=
(b + cN)N

L

[
n∑

j �=i

(
pjj − τ

2

)2
(
A

n
+ λjL

)
+ p2

ii

(
A

n
+ λiL

)]

=
(b + cN)N

L

[
n∑

j=1

(
pjj − τ

2

)2
(
A

n
+ λjL

)
+

(
piiτ − τ 2

4

)(
A

n
+ λiL

)]

3It is reasonable to assume that each firm’s demand is decreasing in the total number of varieties
because consumers spread their purchases over more varieties. Furthermore, it is also reasonable to
assume that a consumer’s demand for the differentiated product increases with N because more varieties
makes this good more attractive compared to the numéraire. Computing the partial derivatives of the
above demand function, we immediately see that ∂qii/∂N < 0 and ∂(qiiN)/∂N > 0.
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Accordingly, the indirect utility of a worker living in region i can be computed as follows:

Vi(λ) =
a2N

2b
− a

n∑
j=1

λjNpji +
b + cN

2

n∑
k=1

λjNp
2
ji −

c

2

(
n∑

j=1

λjNpji

)2

+q0 + wi − θi(λi)

=
a2N

2b
− aN

[
pii +

τ(1 − λi)

2

]
+

(b+ cN)N

2

[
p2

ii + (1 − λi)τ
(
pii +

τ

4

)]

−cN
2

2

[
pii +

τ(1 − λi)

2

]2
+

(b + cN)N

L

[
n∑

j=1

(
pjj − τ

2

)2
(
A

n
+ λjL

)

+τ
(
pii − τ

4

)(A
n

+ λiL

)]
+ q0 − θi(λi) (5)

As expected, the indirect utility Vi(λ) depends on the whole distribution λ.

3 Existence and stability of a spatial equilibrium

We now move to the definition and the stability of a spatial equilibrium. The distribution

λ∗ ∈ Λ is a spatial equilibrium when no worker may get a higher utility level by moving

to another region. Formally, a distribution λ∗ is an equilibrium if V ∗ exists such that

Vi(λ
∗) = V ∗ if λ∗

i > 0

Vi(λ
∗) ≤ V ∗ if λ∗

i = 0
(6)

In words, this means that, in equilibrium, workers’ utility in urban regions is (weakly)

higher than in rural regions, while the utility level is constant across urban regions. Since

Vi(λ) is continuous in λ ∈ Λ as shown by (5), Proposition 1 of Ginsburgh et al. (1985)

implies that a spatial equilibrium exists.

In order to study the stability of a spatial equilibrium, we assume that local labor

markets adjust instantaneously when some workers move from one region to the other.

More precisely, wages are adjusted in each region for each firm located therein to earn

zero profits. Hence, during the adjustment process, the utility level of a worker residing

in region i is given by Vi(λ).

The above spatial equilibrium conditions turn out to be equivalent to the following

zero migration conditions:

dλji(t) = 0 for all j, i = 1, . . . , n (7)

where dλji(t) is the (net) migration from region j to region i during the infinitesimal time

interval dt at time t. Following a now well-established tradition in migration modeling, we
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focus on an adjustment process in which workers spread themselves among several regions,

being attracted (repulsed) by regions providing high (low) utility levels. In particular, we

assume that migration dλji is proportional to the utility difference if population in region

j is positive. Then, the dynamical system of equations is such as

dλi

dt
≡

n∑
j=1

dλji

dt
for i = 1, . . . , n (8)

where the speed of adjustment has been normalized to one, and where

dλji

dt
≡




Vi(λ) − Vj(λ) if λi > 0, λj > 0

min{0, Vi(λ) − Vj(λ)} if λi > 0, λj = 0

max{0, Vi(λ) − Vj(λ)} if λi = 0, λj > 0

0 if λi = 0, λj = 0

It is readily verified that
∑n

i=1 dλi/dt = 0 since the total population of workers remains

constant during the adjustment process. This dynamics can be justified by the assumption

that migration decisions are made on the basis of pairwise comparisons between regions in

that the net migration from region j to region i is proportional to their utility differential

Vi−Vj if population in region j is positive. As a consequence, the sum of the net migration

flows of region i is such that

dλi

dt
=

n∑
j=1

[Vi(λ) − Vj(λ)] = n

[
Vi(λ) − 1

n

n∑
j=1

Vj(λ)

]
(9)

if population in region j is positive. Expression (9) also means that regions with a

utility level higher (lower) than the average level across regions have a growing (declining)

population of workers (and firms).4

4Observe that (9) bears some resemblance with Weibull’s (1995) replicator dynamics used recently by
Fujita et al. (1999): dλi/dt = [Vi(λ) −

∑n
j=1 λjVj(λ)]λi. The two dynamics yield identical stationary

states since they both solve (6). Furthermore, the stability conditions of equilibrium in both dynamics
turn out to be the same as (12) and (13) as shown by Tabuchi and Zeng (2000). There are differences,
however. Workers out-migrate (in-migrate) from region i if its utility Vi is lower (higher) than the
interregional weighted average utility in the replicator dynamics whereas workers out-migrate (in-migrate)
if Vi is lower than the interregional unweighted average utility in ours. By using the replicator, one makes
the regions with high utility even more attractive, thus affecting the pace of adjustment.. Yet, (9) is
simpler to handle because it does not involve any crossed term λiλj (i, j = 1, . . . , n and i 
= j) and leads
to analytical results.
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In order to study the stability of a spatial equilibrium, we must evaluate the sum of

the pairwise utility differentials used in (9). To this end, we set

Si(λi) ≡ (C1τ − C2τ
2)λi − C3τ

2λ2
i − θi(λi)

where

C1 ≡ aN(b + cN)(3b + 2cN)

(2b + cN)2

C2 ≡ N(b + cN)

8(2b + cN)2

[
4(2b + cN)

cNA

nL
+ 12b2 + 4bcN − 3c2N2

]

C3 ≡ cN2(b + cN)(8b + 5cN)

8(2b + cN)2

It is readily verified that C1 > 0, C3 > 0, C2 + C3 > 0. However, C2 may be negative

when c is very large, namely when varieties are very close substitutes. Throughout the

rest of paper, we will assume that the product is sufficiently differentiated for C2 to be

positive. This entails very little loss of generality. Clearly, Si(0) = 0.

Unlike Vi(λ) that depends on the whole distribution λ, the function Si(λi) depends

only upon the size of region i. In addition, the following lemma will allow us to use Si(λi)

instead of Vi(λ) in the stability analysis of equilibria. The proof is given in Appendix A.

Lemma 1 For i = 1, · · · , n, we have:
n∑

j=1

[Vi(λ) − Vj(λ)] =
n∑

j=1

[Si(λi) − Sj(λj)] (10)

Hence, the RHS of (10) is additively separable with respect to the λi’s, i.e., there are

no crossed terms λiλj with i 
= j. This lemma implies that

Vi(λ) − 1

n

n∑
j=1

Vj(λ) = Si(λi) − 1

n

n∑
j=1

Sj(λj) i = 1, ..., n

For a given distribution λ, this means region i yields a welfare level higher (lower) than

the average welfare if and only if Si(λi) is larger (smaller) than the average value of the

Sj(λj)
’s. Hence, the migration equation (9) becomes

dλi

dt
= n

[
Si(λi) − 1

n

n∑
j=1

Sj(λj)

]

thus making the stability analysis much simpler. From now on, we refer to Si(λi) as the

“pseudo-surplus” of region i. This function may be used to study the properties of an
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equilibrium. If λ∗ is a spatial equilibrium with m ≤ n urban regions ij (j = 1, . . . , m)

then it must be that

Si1(λ
∗
i1

) = · · · = Sim−1(λ
∗
im−1

) = Sim(λ∗
im) if λ∗

ij
> 0

Sij (λ
∗
ij

) = 0 if λ∗
ij

= 0
(11)

and conversely. So, (6) and (11) are equivalent. Although Si(0) = 0, observe that

there may exist an equilibrium at which all the pseudo-surpluses are negative and equal.

However, if the equilibrium involves at least one rural region, the pseudo-surpluses of all

urban regions are nonnegative and equal.

Consider an equilibrium with m urban regions such that

S ′
i1(λ

∗
i1) ≤ · · · ≤ S ′

im−1
(λ∗

im−1
) ≤ S ′

im(λ∗
im)

When m < n, Tabuchi and Zeng (2000) show that λ∗ is (locally) stable if the following

two conditions hold:

S ′
im−1

(λ∗
im−1

) < 0 and
∑m−1

j=1

S′
im

(λ∗
im

)

S′
ij

(λ∗
ij

)
> −1 (12)

Sij (λ
∗
ij

) > 0 j = 1, · · · , m (13)

When the manufacturing sector is concentrated into a single region (m = 1), these two

conditions boil down to S1(1) > 0. Furthermore, when m = n, the sole condition (12)

ensures stability. Finally, the equilibrium is unstable when the second inequality in (12)

is reversed.5

4 On the size of regions

It turns out to be possible to figure out how the size of urban regions is affected by an

increase in the desirability of the industrial good or by a decrease in the number of farm-

ers, two trends that have characterized the evolution of developed economies since the

beginning of the Industrial Revolution. Let m be the number of regions with manufac-

turing workers. We may then predict the directions of migration between large and small

regions as follows.

Proposition 1 When the desirability of the differentiated good (α) rises or when the

agricultural population (A) falls, workers migrate from regions whose industrial share is

smaller than the average (1/m) to large regions whose industrial share is larger than the

average.

5When the second inequality in (12) becomes an equality, the equilibrium may be stable or unstable.
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Proof. Assume first that α increases up to α̂. From the definition of Si, it follows that

C2 and C3 are unchanged while a increases up to â = aα̂/α so that C1 increases up to

Ĉ1 ≡ C1α̂/α. Set

Ŝi(λi) ≡ (Ĉ1τ − C2τ
2)λi − C3τ

2λ2
i − θi(λi) i = 1, . . . , m

Since λ∗ is an equilibrium, we have

m∑
j=1

[Ŝi(λ
∗
i ) − Ŝj(λ

∗
j)] =

m∑
j=1

[Ŝi(λ
∗
i ) − Ŝj(λ

∗
j) − Si(λ

∗
i ) + Sj(λ

∗
j)]

=
m∑

j=1

[(Ĉ1 − C1)τλ∗
i − (Ĉ1 − C1)τλ

∗
j ]

= (Ĉ1 − C1)τ

m∑
j=1

(λ∗
i − λ∗

j) = (Ĉ1 − C1)τ(mλ∗
i − 1)

Therefore, when α increases, dλi/dt has the same sign as mλ∗
i − 1, thus implying that

large regions become larger while small regions become smaller.

Similarly, when A decreases, C2 decreases while C1 and C3 remain unchanged. Hence

the conclusion follows. ��

Hence, a stronger preference for the differentiated product as well as a smaller popu-

lation of farmers fosters a higher level of geographical concentration of the manufacturing

sector. Unfortunately, the effects of other parameters’ change are ambiguous.

Let us re-index for the moment the regions as follows:

λ∗
i > 0 for i = 1, . . . , m and λ∗

j = 0 for j = m+ 1, . . . , n

Since λ∗ is a stable equilibrium, we know from the stability condition (12) that at most

one expression S ′
i is nonnegative, all the others being negative.

Definition 1 The spatial equilibrium λ∗ is said to be regular if S ′
i(λ

∗
i ) < 0 for i =

1, . . . , m; otherwise, it is called irregular.

Clearly, any regular equilibrium is stable. The next result states some sufficient conditions

allowing us to rank regions in terms of the size of their manufacturing sector in the case

of a regular spatial equilibrium.

Proposition 2 Consider a regular equilibrium λ∗ = (λ∗
1, . . . , λ

∗
i , . . . , λ

∗
n). If the urban

costs are convex and if θi(y) ≤ θj(y) for some i, j ∈ {1, . . . , n}, then we have λ∗
i ≥ λ∗

j .

Furthermore, λ∗
i = λ∗

j > 0 implies that θi(λ
∗
i ) = θj(λ

∗
j ).
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Proof : (i) The statement is obvious for i = m+1, . . . , n since λ∗
i = 0. Let i ∈ {1, . . . , m}

and assume that θi(λ
∗
i ) ≤ θj(λ

∗
j) while λ∗

j > λ∗
i holds for some j ∈ {1, . . . , n}. Then, it

must be that λ∗
j > 0 so that j ∈ {1, . . . , m}. Since the equilibrium is regular, we have

C1τ − C2τ
2 < 2C3τ

2λ∗
i + θ′i(λ

∗
i ) i = 1, ...,m (14)

Furthermore, since λ∗ is an equilibrium while both λ∗
i and λ∗

j are strictly positive, we have

Si(λ
∗
i ) = Sj(λ

∗
j) so that

C1τ − C2τ
2 = C3τ

2(λ∗
i + λ∗

j) +
θj(λ

∗
j ) − θi(λ

∗
i )

λ∗
j − λ∗

i

(15)

Combining (14) and (15), we get

C3τ
2(λ∗

j − λ∗
i ) +

θj(λ
∗
j) − θi(λ

∗
i )

λ∗
j − λ∗

i

< θ′i(λ
∗
i )

Then, the mean value theorem implies that ξ ∈ [λ∗
i , λ

∗
j ] exists such that

C3τ
2(λ∗

j − λ∗
i ) +

θj(λ
∗
j) − θi(λ

∗
j)

λ∗
j − λ∗

i

+ θ′i(ξ) < θ′i(λ
∗
i ) (16)

Because θi(·) is convex, we have θ′i(ξ) ≥ θ′i(λ
∗
i ). Furthermore, since θj(λ

∗
j ) − θi(λ

∗
j) ≥ 0,

C3 > 0 and λ∗
j − λ∗

i > 0, we obtain

C3τ
2(λ∗

j − λ∗
i ) +

θj(λ
∗
j) − θi(λ

∗
j)

λ∗
j − λ∗

i

+ θ′i(ξ) > θ′i(λ
∗
i )

thus contradicting (16). Accordingly, we have λ∗
i ≥ λ∗

j .

(ii) Using Si(λ
∗
i ) = Sj(λ

∗
j) and the definition of Si(λi), it is readily verified that

λ∗
i = λ∗

j > 0 implies that θi(λ
∗
i ) = θj(λ

∗
j). ��

The assumption of convex urban costs has been shown to hold under fairly general

conditions in urban economics (Fujita, 1989, p.145). The regular equilibrium condition

S ′
i(λ

∗
i ) < 0 (i = 1, . . . , m) is more demanding, but it constitutes a simple sufficient

condition for stability. Under these two assumptions, the proposition above says that,

regardless of the value of τ , regions with low (high) urban costs always have a large (small)

share of the industrial sector. In other words, regions with poorer urban infrastructure

attract less firms from the industrial sector, although workers’ welfare is the same in all

urban regions (i = 1, ...,m). By contrast, farmers enjoy a lower welfare level in regions

having poor urban infrastructure than those living in regions having good infrastructure

because the former regions accommodate less firms and, therefore, produce fewer varieties

than the latter.
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5 The effect of decreasing trade costs

In this section, we focus on the case in which all regions are urban and study how their

size is affected by decreasing trade costs. To this end, it is convenient to renumber the

regions as follows:

S ′
1(λ∗

1) ≤ · · · ≤ S ′
n−1(λ

∗
n−1) ≤ S ′

n(λ∗
n)

Since λ∗ is a stable equilibrium, we know from the stability condition (12) that, while

the sign of S ′
n may be positive, zero or negative, all the other S ′

i (i = 1, . . . , n− 1) must

be negative.

When trade costs are given by τ , we denote the corresponding interior equilibrium by

λ∗(τ) = (λ∗
1(τ), . . . , λ∗

n(τ))

with λ∗
i (τ) > 0. Assume that (12) holds so that λ∗(τ) is stable for each τ . Since∑n

k=1 λ
∗
k(τ) = 1, it must be that

dλ∗
n(τ)

dτ
= −

n−1∑
k=1

dλ∗
i (τ)

dτ
(17)

Since Si(λi) is also a function of τ , we may denote it as Si(λi, τ). For convenience, we

also set

S ′
i ≡

∂Si(λi, τ)

∂λi

∣∣∣∣
λi=λ∗

i

zi ≡
n∑

j=1

∂(Si − Sj)

∂τ
= (C1 − 2C2τ)(nλ∗

i − 1) − 2C3τ

[
n(λ∗

i )2 −
n∑

j=1

(λ∗
j)

2

]
(18)

In equilibrium, it must be that
∑n

j=1[Si(λ
∗
i (τ), τ) − Sj(λ

∗
j (τ), τ)] = 0. Differentiat-

ing this equation yields the following system of linear equations whose unknowns are

dλ∗
i (τ)/dτ :

−(n− 1)S ′
i

dλ∗
i (τ)

dτ
+

n∑
j = 1
j 
= i

S ′
j

dλ∗
j(τ)

dτ
= zi i = 1, . . . , n (19)

Let

D =




−(n − 1)S′
1 − S′

n S′
2 − S′

n · · · S′
n−1 − S′

n

S′
1 − S′

n −(n − 1)S′
2 − S′

n · · · S′
n−1 − S′

n
...

...
. . .

...
S′

1 − S′
n S′

2 − S′
n · · · −(n − 1)S′

n−1 − S′
n
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and Di be the matrix obtained from D by replacing the i-th column with




z1

z2

...
zn−1


 = (C1 − 2C2τ)




nλ∗
1 − 1

nλ∗
2 − 1
...

nλ∗
n−1 − 1


− 2C3τ




n(λ∗
1)

2 −∑n
j=1

(
λ∗

j

)2

n(λ∗
2)

2 −∑n
j=1

(
λ∗

j

)2

...

n(λ∗
n−1)

2 −∑n
j=1

(
λ∗

j

)2




Using (17), it is readily verified that the solution to the system (19) is given by

dλ∗
i (τ)

dτ
=

|Di|
|D| i = 1, . . . , n− 1 (20)

where |Di| (respectively |D|) is the determinant of the matrix Di (respectively D).

Next, we may establish the following result which will be useful in studying the evo-

lution of the industry distribution.

Lemma 2 If (12) holds at equilibrium λ∗, then

dλ∗
i (τ)

dτ
=

1

n2|D|
n∏

k = 1
k 
= i

(−nS′
k)

[
n∑

k=1

zi − zk

(−S′
k)

]
i = 1, . . . , n (21)

The proof is given in Appendix C.

We can now sketch the idea underlying the results that will be proven below. The last

term of (21) may be rewritten as follows:6

zi − zk

−S′
k

=
n∂(Si−Sk)

∂τ

−S′
k

= n
∂(Si−Sk)

∂τ
∂(Si−Sk)

∂λk

(22)

In order to understand the meaning of this expression, we fix λi and consider the impact

on λk of a change in τ , while keeping the equilibrium condition Si = Sk. Then, we have

−dλk(τ)

dτ
= −

∂(Si−Sk)
∂τ
∂Sk

∂λk

=
∂(Si−Sk)

∂τ
∂(Si−Sk)

∂λk

so that the third expression in (22) measures the marginal impact of τ on λk (up to n).

Therefore, if (22) is negative, region k experiences net in-migration from region i at a

regular equilibrium with S ′
i < 0 for all i = 1, · · · , n.

6Recall that Si (resp. Sk) depends on τ and λi (resp. τ and λk).
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Since the population of workers is fixed, when some regions become larger due to

the change in trade costs, some others must become smaller. Among the regions that

experience a decreasing population, let h be the region with the largest increase (or

smallest decrease) in the equilibrium utility level. On the other hand, among the regions

whose population rises, let l be the region with the smallest increase (or largest decrease) in

the equilibrium utility level. Finally, let region e be a region with unchanging population

size. Formally, we have:


zh = min
i

{
∂Si

∂τ
;
dλ∗

i (τ)

dτ
> 0

}
dλ∗

e(τ)

dτ
= 0

zl = max
i

{
∂Si

∂τ
;
dλ∗

i (τ)

dτ
< 0

} (23)

Note that regions h, e, l may not exist simultaneously, but at least one of them does. By

construction, a decrease in τ induces migration from region h to region l, implying that

utility is higher in region l. That is, ∂(Sl − Sh)/∂τ < 0, a result that is consistent with

the fact that zh > zl.

Consider now a regular equilibrium. Then, in (21), the sign of a change in λ∗
i (τ) is

determined by the sign of
∑n

k=1(zi − zk)/(−S ′
k). From (18), it follows that each zi − zk in

(21) is given by

n(λ∗
i − λ∗

k){C1 − 2[C2 + C3(λ∗
i + λ∗

k)]τ}

Hence, when trade costs are high (τ > C1/2[C2 + C3(λ
∗
i + λ∗

k)]), a decrease in τ makes

larger regions (λ∗
i > λ∗

k) larger, while smaller regions (λ∗
i < λ∗

k) become smaller. By

contrast, when trade costs are low (τ < C1/2[C2 + C3(λ
∗
i + λ∗

k)]), the opposite holds.

This argument is developed in a more systematic way in what follows. For analytical

simplicity, in the remainder of this section we consider asymmetric equilibria in which

there exist regions i, j such that λ∗
i 
= λ∗

j . Furthermore, we assume

τ 
= C1

2C2 + 2C3(λ
∗
i + λ∗

j)
for all i, j = 1, . . . , n and i 
= j (24)

Therefore, there exist regions i and j such that zi 
= zj. Condition (24) excludes only a

finite number of values of τ out of a continuum. This does not induce any significant loss

of generality.

Three types of interior equilibria may emerge according to the sign of S ′
n. In Figure

1a, a regular equilibrium in which S ′
n < 0 is represented. The cases of irregular equilibria
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with S ′
n = 0 and S ′

n > 0 are depicted in Figures 1b and 1c, respectively. In what follows,

each case is discussed in order.

Figure 1: Regular and irregular equilibria with urban regions

5.1 Regular equilibrium (S′
n < 0)

In the case of a regular equilibrium, Lemma 2 allows us to rewrite (23) as follows:




zh = min

{
zi;

n∑
k=1

zi − zk

−S′
k

> 0

}
n∑

k=1

ze − zk

−S′
k

= 0

zl = max

{
zi;

n∑
k=1

zi − zk

−S′
k

< 0

} (25)

By definition, zh > ze > zl. Region e may not exist. However, both regions h and l do

exist in any regular equilibrium as shown by Lemma D in Appendix. In what follows, we

use the following definition of “large” and “small” regions.

Definition 2 Region i is said to be large if λ∗
i ≥ max{λ∗

l , λ
∗
e, λ

∗
h} and small if λ∗

i ≤
min{λ∗

l , λ
∗
e, λ

∗
h} for i 
= l, e, h. When max{λ∗

l , λ
∗
e, λ

∗
h} > λ∗

i > min{λ∗
l , λ

∗
e, λ

∗
h}, the region

is called medium.

Since we consider asymmetric equilibria, both region h and region l exist by Lemma

E in Appendix and, hence, large and small regions exist. Let

τih ≡ C1

2[C2 + C3(λ∗
i + min{λ∗

l , λ
∗
e, λ

∗
h})]

(26)

τil ≡ C1

2[C2 + C3(λ∗
i + max{λ∗

l , λ
∗
e, λ

∗
h})]

(27)

for i = 1, · · · , n, where λ∗
e is deleted when region e does not exist. Clearly, we have

τil ≤ τih; the larger λ∗
i , the smaller τih and τil. Although τil ≤ τjl and τih ≤ τjh when

λ∗
i > λ∗

j > 0, it is not possible to rank τjl and τih.

We have:

Lemma 3 Consider any asymmetric regular equilibrium. If i 
= e, we have:

(i) when τ > τih, large regions become larger while small regions become smaller;

(ii) when τ < τil, large regions become smaller while small regions become larger.
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Proof: From Lemmas D and E as well as from Definition 2, exactly one of the following

two cases applies to a large region or a small region. First, zi ≥ zh is equivalent to

(λ∗
i − λ∗

h)[C1 − 2C2τ − 2C3τ(λ∗
i + λ∗

h)] ≥ 0 (28)

Second, zi ≤ zl is equivalent to

(λ∗
i − λ∗

l )[C1 − 2C2τ − 2C3τ(λ∗
i + λ∗

l )] ≤ 0 (29)

Consider now the situation in which τ > τih. We have

C1 − 2C2τ − 2C3τ(λ∗
i + λ∗

l ) ≤ C1 − 2[C2 + C3τ(λ∗
i + min{λ∗

l , λ
∗
e, λ

∗
h})] < 0

In a large region i with λ∗
i ≥ λ∗

l , (29) holds, and hence zi ≤ zl. This implies that region i

becomes larger by Lemma D. Similarly, in a small region i with λ∗
i < λ∗

l , (28) holds, and

hence zi ≥ zh, implying that region i becomes smaller.

When τ < τil, we can similarly show that a large region becomes smaller while a small

region becomes larger. ��

Assume that τ decreases from some large threshold τ . First, let i be any large region.

Since τih is inversely related to λ∗
i , the larger the regional size of i, the larger the interval

[τih, τ ] for which the size of region i necessarily expands. By contrast, since τil is inversely

related to λ∗
i , the larger the regional size, the smaller the interval [0, τil] of trade costs for

which the regional size must shrink. When τ ∈ (τil, τih), we do not know how the size of

region i evolves. For example, as shown by the analysis of the two-region case, the whole

manufacturing sector may agglomerate into a single region (Ottaviano et al., 2001). The

reason for the existence of the domain (τil, τih) lies in the fact that some regions may

become rural when τ falls in this interval. This explains why the previous analysis cannot

cover the whole domain of τ -values.

Second, consider any small region i. As τ decreases from τ , the size of region i must

decrease up to τ = τih. Below τil, this region recoups some firms/workers and keeps

growing as τ falls. Again, for the same reason as in the case of large regions, we do not

know how a small region changes when τ ∈ (τil, τih).

Last, for a medium region, the evolution of its size as trade costs fall is undetermined.
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5.2 Irregular equilibrium (S′
n = 0)

In this case, we rewrite (21) as follows.


dλ∗
i (τ)

dτ
=

1

n2|D|
n−1∏
k=1

(−nS′
k)
zi − zn

−S′
i

for i = 1, . . . , n− 1

dλ∗
n(τ)

dτ
=

1

n2|D|
n−1∏
k=1

(−nS′
k)

n−1∑
k=1

zn − zk

−S′
k

(30)

The expression for region n in (30) is the same as that in (21), whereas the expression

for region i 
= n is different from that in (21). In this case, we cannot use (22) anymore

since S ′
n = 0. However, we can proceed as follows:

zi − zn

−S′
i

= −n
∂(Sn−Si)

∂τ
∂(Sn−Si)

∂λi

, i = 1, . . . , n− 1

which slightly differs from (22).

The first equation of (30) implies that region n plays a role similar to that of regions

l, e, h. That is, the changes in regions i = 1, · · · , n− 1 are determined only by the sign of

zi − zn. As a result, (26) and (27) reduce to

τih = τil =
C1

2[C2 + C3(λ∗
i + λ∗

n)]
≡ τin

For the same reason as before, i is a large region if λ∗
i > λ∗

n and a small region if λ∗
i < λ∗

n.

On the other hand, whether region n is large or small is determined by regions l, e, h

redefined as follows:


zh = min

{
zi; i < n,

n−1∑
k=1

zi − zk

−S′
k

> 0

}

e < n,

n−1∑
k=1

ze − zk

−S′
k

= 0

zl = max

{
zi; i < n,

n−1∑
k=1

zi − zk

−S′
k

< 0

}
(31)

Comparing with the regular equilibrium case, the new definitions exclude region n. With

these new definitions of h, e and l, τnh and τnl are the same as in (26) and (27) respectively.

Hence, Definition 2 is valid for region n.

If zn ≥ zk (k = 1, . . . , n−1) while at least one inequality is strict, then dλ∗
n(τ)/dτ > 0

and, hence, region n becomes smaller. If zn ≤ zk (k = 1, . . . , n − 1), and at least one
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inequality is strict, then dλ∗
n(τ)/dτ < 0 and, hence, region n becomes larger. Otherwise,

there exist two regions i∗, j∗ ∈ {1, . . . , n− 1} such that

min{zk; k = 1, . . . , n} = zj∗ < zn < zi∗ = max{zk; k = 1, . . . , n}
Then,

n−1∑
k=1

zi∗ − zk

−S′
k

> 0 and

n−1∑
k=1

zj∗ − zk

−S′
k

< 0

hold, implying that regions h and l exist. In this case, we have the following result.

Lemma 4 The statements of Lemma 3 hold for all regions i = 1, . . . , n at any irregular

equilibrium such that S ′
n = 0 provided that

τih = τil = τin for i = 1, . . . , n− 1

τnh =
C1

2C2 + 2C3(λ∗
n + min{λ∗

l , λ
∗
e, λ

∗
h})

τnl =
C1

2C2 + 2C3(λ∗
n + max{λ∗

l , λ
∗
e, λ

∗
h})

where regions h, e and l are defined by (31).

5.3 Irregular equilibrium (S′
n > 0)

We redefine regions h, e and l as follows:


zh = min

{
zi; i < n,

n∑
k=1

zi − zk

−S′
k

< 0

}

e < n,

n∑
k=1

ze − zk

−S′
k

= 0

zl = max

{
zi; i < n,

n∑
k=1

zi − zk

−S′
k

> 0

}

By comparison with the other two cases, the inequalities of the summations are reverse.

This is because the sum in (21) is multiplied by a negative term (−nS′
n). However, since

zh is still given by (23), regions h and l can be re-interpreted as in the regular equilibrium

case.

From S ′
n > 0, the stability condition (12) now becomes

∑n
k=1 1/(−S ′

k) < 0. Therefore,

if zi ≥ zh for region i 
= n, we have

n∑
k=1

zi − zk

−S′
k

= (zi − zh)
n∑

k=1

1

−S′
k

+
n∑

k=1

zh − zk

−S′
k

< 0
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This implies that dλ∗
i (τ)/dτ > 0 and, hence, region i becomes smaller. Similarly, we

can show that region i 
= n with zi ≤ zl becomes larger. For region n, the conclusion is

opposite because of the negative sign of S ′
n > 0. That is, region n becomes larger when

zn ≥ zh, and region n becomes smaller when zn ≤ zl.

It should be noticed that region h or region l exists at an asymmetric equilibrium, but

the regions may not exist simultaneously. Nevertheless, we obtain the same results as in

Lemma 3, except for region n.

Lemma 5 At any irregular equilibrium with S ′
n > 0,

(a) Lemma 3 holds for regions i = 1, · · · , n− 1

(b) The opposite results of Lemma 3 hold for region n.

Proof: (a1) If h exists but l does not exist, then zi ≥ zh holds for all i 
= n, or

(λ∗
i − λ∗

h)[C1 − 2C2τ − 2C3τ(λ∗
i + λ∗

h)] ≥ 0

This is equivalent to

τ >
C1

2C2 + 2C3(λ
∗
i + λ∗

h)
and λ∗

i ≤ λ∗
h (32)

τ <
C1

2C2 + 2C3(λ∗
i + λ∗

h)
and λ∗

i ≥ λ∗
h (33)

Condition (32) means that a small region with λ∗
i ≤ λ∗

h becomes smaller, which corre-

sponds to the latter part of Lemma 3 (i).

On the other hand, (33) implies that a large region with λ∗
i ≥ λ∗

h becomes smaller,

which is the former part of Lemma 3 (ii).

(a2) If l exists but h does not exist, we can similarly show that the former part of

Lemma 3 (i) and the latter part of Lemma 3 (ii).

(a3) If both regions h and l exist and if τ > τnh, then C1 − 2C2 − 2C3τ(λ∗
n + λ∗

l ) < 0.

If region i is large, (λ∗
i − λ∗

l )[C1 − 2C2 − 2C3τ(λ∗
n + λ∗

l )] < 0 holds, and hence, zi < zl.

That is, region i 
= n becomes larger. The other part can be shown in a similar way.

(b) The opposite results for region n can be shown similarly. ��

5.4 Dispersion/agglomeration/re-dispersion

Putting together Lemmas 3, 4 and 5 while using the inequalities τih ≤ C1/2C2 as well as

τil ≥ C1/2(C2 + C3), we obtain the following result.
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Theorem 1 Assume that trade costs fall and disregard the finite number of values of τ

given by (24). If S ′
n ≤ 0, then large regions become larger and small regions become smaller

as long as τ > C1/2C2, while large regions become smaller and small regions become larger

once τ < C1/2(C2 +C3). Furthermore, when S
′
n > 0, the direction of migration is reverse

for at most one region.

This theorem has several interesting implications. First, when trade costs are high

(τ > C1/2C2), their decrease triggers an agglomeration process in which each large region

attracts workers and firms from the small regions which shrink. By contrast, when trade

costs are small (τ < C1/2(C2 + C3)), the large regions lose workers and firms while the

small regions grow. Hence, agglomeration takes place in the early stages of economic

integration, while re-dispersion should occur in the late stages of the economic integration

process.

In order to show the importance of fixed costs for this process, it is worth noting that

the interval [C1/2(C2 + C3), C1/2C2] collapses at a single value zero when φ = 0. Since

C1/2(C2 + C3) ≤ τil ≤ τih ≤ C1/2C2

each region becomes an autarky producing the whole range of varieties. In this case, when

the urban cost functions are the same across regions, the market outcome implies an even

distribution of activities. When φ starts rising from zero, symmetry is broken, implying

that ups and downs arise in the regional distribution.

Second, it is not clear how region sizes change with intermediate trade costs (C1/2(C2+

C3) ≤ τ ≤ C1/2C2). In other words, it seems hard to predict the evolution of a multi-

regional system once trade costs are neither high nor small.

6 On the number of urban regions

So far, all regions were urban (λ∗
i > 0 for all i). However, it is important to figure out

how the number of urban regions is affected by a fall in trade costs. This means that we

must deal with equilibrium in which some regions have no manufacturing sector. In order

to achieve this goal, we impose additional restrictions on the urban cost functions. More

precisely, we assume that each urban cost is linear and regions are re-indexed according

to the values of unit costs:

θi(y) = θi · y and θi ≤ θi+1 i = 1, ..., n− 1
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This assumption is justified when the urban space is linear, each worker consumes a fixed

lot size for housing, and the commuting cost is proportional to distance. In this case,

Si(λi) can be rewritten as follows:

Si(λi) = C3τ
2[λo

i (τ) − λi]λi

where

λo
i (τ) ≡ C1τ − C2τ

2 − θi

C3τ 2

denotes the size of the manufacturing sector in region i for which Si(λi) = 0; we have

λo
i (τ) ≤ λo

j(τ) when i < j. Clearly, Si(λi) is a concave parabola passing through the

origin. Since λo
i (τ) may be negative, we set

λ�
i ≡ max{0, λo

i (τ)} i = 1, ..., n

and we also define

Lm ≡
m∑

j=1

λ�
j m = 1, ..., n

Since θi ≤ θi+1 and since Si(λi) is a concave parabola, we have:

λ�
i ≥ λ�

i+1 for i = 1, · · · , n− 1

Si(y) ≥ Si+1(y) for all y ≥ 0 and i = 1, · · · , n− 1

S ′
i(y) ≤ S ′

i+1(y) for all y ≥ 0 and i = 1, · · · , n− 1

As expected, for the same industrial size, pseudo-surpluses are higher in the regions

endowed with efficient transport infrastructure. Hence, in equilibrium, there is a negative

relationship between commuting costs and the size of urban regions.

In Figure 2, we depict the case of an equilibrium in which regions 1 and 3 are urban

while regions 2 and 4 are rural because the regional surplus of region 4 is lower than the

equilibrium surplus Si(λ
∗
i ) in the other three regions or because the initial endowment of

region 3 is zero. This figure is sufficient to show that several such stable equilibria may

exist. For example, regions 1, 2 and 3 could also be active in equilibrium if the initial

endowment of 2 were positive.

Figure 2: Equilibrium with urban and rural regions

In the next lemma, we identify sufficient conditions for a stable equilibrium to exist.
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Lemma 6 If

λo
i (τ) 
= 0 and Lj 
= 1 j = 1, . . . , n (34)

the system (8) has at least one stable equilibrium.

Proof : For any λ1 ≥ λ�
1, it must be that S1(λ1) ≤ 0 and λ1 ≥ λo

1(τ). Thus, for i = 2, ..., n

we may define λi(λ1|Si = S1) as the larger solution to

Si(λi(λ1)) = S1(λ1)

so that

λi(λ1|Si = S1) =
λo

i (τ) +
√

[λo
i (τ)]2 + 4[λ1 − λo

1(τ)]λ1

2

Clearly, λi(λ1) ≤ λ�
i for i = 2, . . . , n. Furthermore, Si(y) is strictly decreasing over

(λ�
i,∞).

Three cases may arise.

(i) If Ln < 1, then there exists a unique λ∗
1 > λ�

1 such that λ∗
1+
∑n

i=2 λi(λ
∗
1|Si = S1) = 1.

Hence,

λ ≡ (λ∗
1, λ2(λ

∗
1|S2 = S1), . . . , λn(λ∗

1|Sn = S1))

is a stable equilibrium.

(ii) If L1 > 1, then λ ≡ (1, 0, · · · , 0) is a stable equilibrium.

(iii) If the two conditions above are not met, there exists a region m ∈ {2, . . . , n} such

that

Lm−1 < 1 < Lm (35)

Since Lm−1 < Lm, λo
m(τ) > 0 and, hence, λo

i (τ) > 0 for all i = 1, . . . , m. Under (35),

Si(λi) = Sm(λm) has a single solution that belongs to the interval [λ�
i/2, λ

�
i]. This solution

is given by:

λi(λm|Si = Sm) =
λo

i (τ) +
√

[λo
i (τ)]2 + 4[λm − λo

m(τ)]λm

2
(36)

for i = 1, · · · , m− 1. Let

fm(λm, τ) ≡ λm +
m−1∑
i=1

λi(λm|Si = Sm)
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Since fm(0, τ) < 1 and fm(λ�
m, τ) > 1 from (35), we can always find a value λ∗

m in (0, λ�
m)

such that fm(λ∗
m, τ) = 1, thus implying that

λ ≡ (λ1(λ
∗
m|S1 = Sm), . . . , λm−1(λ

∗
m|Sm−1 = Sm), λ∗

m, 0, . . . , 0)

is an equilibrium.

By direct calculation, we obtain

∂fm(λm, τ)

∂λm

= 1 +
m−1∑
i=1

2λm − λo
m(τ)√

(λo
i (τ))2 + 4(λm − λo

m(τ))λm

= 1 +
m−1∑
i=1

S ′
m(λm)

S ′
i(λi(λm|Si = Sm))

and

∂2fm(λm, τ)

∂λ2
m

=

m−1∑
i=1

2[(λo
i (τ))2 − (λo

m(τ))2]

[(λo
i (τ))2 + 4(λm − λo

m(τ))λm]3/2
≥ 0 (37)

where the inequality follows from the definition of λo
i (τ) and θi ≤ θm for i = 1, · · · , m−1.

Since

∂f 2
m(λm, τ)

∂λ2
m

≥ 0, fm(λ∗
m, τ) = 1 > f(0, τ) and λ∗

m > 0

we have ∂fm(λ∗
m, τ)/∂λm > 0. Consequently,

1 +

m−1∑
i=1

S ′
m(λ∗

m)

S ′
i(λi(λ∗

m|Si = Sm))
> 0

Therefore, if

λm−1(λ
∗
m|Sm−1 = Sm) ∈ (λ�

m−1/2, λ
�
m−1] and S ′

m−1(λm−1(λ
∗
m|Sm−1 = Sm)) < 0

then λ is a stable equilibrium. Indeed, otherwise, (36) would imply λm−1(λ
∗
m|Sm−1 =

Sm) ∈ [λ�
m−1/2, λ

�
m−1] so that we would have λm−1(λ

∗
m|Sm−1 = Sm) = λ�

m−1/2. In this case,

the inequality Si(y) ≥ Si+1(y) would entail Sm(y) = Sm−1(y) and, hence, λ∗
m = λ�

m/2.

Accordingly, we would have

1 > Lm−1 = Lm−2 +
λ�

m−1

2
+
λ�

m

2
≥ fm(

λ�
m

2
, τ) = fm(λ∗

m, τ) = 1

a contradiction. ��

This lemma implies that a stable equilibrium always exists (except for a finite number

of τ -values) but it does not say anything about the uniqueness of such an equilibrium.
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However, when Ln < 1, there is a single stable equilibrium. This is because Si(λ) is

negative and decreasing on (λ�
i,∞).

In the sequel, we consider the evolution of the manufacturing sector distribution when

trade costs decrease from a sufficiently large value down to zero. In doing so, we assume

that (34) holds, thus excluding only a finite number of τ -values.

Let

mo ≡ min{m;m < n and ∃τ such that Lm(τ) > 1}

If mo does not exist, then the equilibrium configuration involves dispersion for any trade

cost value. So for the problem to be meaningful, we assume from now on that mo exists.

For m = 1, . . . , n− 1, solve λo
m = 0. If C2

1 > 4C2θm, then there exist two real roots:

τ+
m ≡ C1 +

√
C2

1 − 4C2θm

2C2

τ−m ≡ C1 −
√
C2

1 − 4C2θm

2C2

Set

m+ ≡
{

min{m;Lm(τ+
m) > 1} if there is m satisfying Lm(τ+

m) > 1

n if no m satisfies Lm(τ+
m) > 1

m− ≡
{

min{m;Lm(τ−m) > 1} if there is m satisfying Lm(τ−m) > 1

n if no m satisfies Lm(τ−m) > 1

Since Li(τ
−
i ) = Li−1(τ

−
i ) < 1 for i = 1, . . . , mo (we set L0(τ) ≡ 0), it always holds that

mo < m−. Furthermore, since

λo
i (τ

−
m) =

θm − θi

C3(τ−m)2
≥ θm − θi

C3(τ+
m)2

= λo
i (τ

+
m) for i = 1, . . . , m

we have Lm(τ−m) ≥ Lm(τ+
m), so it always holds that m− ≤ m+. Hence we have

mo < m− ≤ m+

Since we assume that mo exists, we know that Ln(τ) > 1 holds for some τ . Therefore,

each of the two equations Lm+(τ) = 1 and Lm−(τ) = 1 always has two real roots. Define

the larger root of Lm+ = 1 as τ+ and the smaller root of Lm− = 1 as τ−. Then, since

Lm+(τ+
m+) > 1 and Lm+(τ+) = 1 it must be that τ+ > τ+

m+ ; similarly, we have τ− < τ+
m− .

For any m, set

τm ≡ 2
∑m

i=1 θi

mC1

27



For any given value of m, computing ∂Lm/∂τ shows that Lm is non-decreasing in τ for

τ < τm and non-increasing in τ for τ > τm. Therefore, Lm(τm) = maxτ Lm(τ).

Although there may exist several stable equilibria, we can choose a typical one which

displays the feature of agglomeration cascades.

Theorem 2 Assume that urban costs are linear. As trade costs decrease, there is a path

of stable equilibria such that the number of urban regions varies as follows.

(i) For large trade costs (τ > τ+), there is a single stable equilibrium and each region

accommodates a positive share of the manufacturing sector. The number of urban regions

suddenly decreases from n to m+ − 1 when τ reaches τ+.

(ii) For τ ∈ (τmo , τ
+), the number of urban regions decreases or remains constant.

The number of urban regions is never smaller than mo.

(iii) For τ ∈ (τ−, τmo), the number of urban regions increases or remains constant.

(iv) At τ = τ− the number of urban regions suddenly increases from m− − 1 to n. For

low trade costs (τ < τ−), there is a single stable equilibrium and each region accommodates

a positive share of the manufacturing sector.

Proof: By definition, we have

Lm(τ) =

m∑
i=1

λ�
i(τ) =

m∑
i=1

C1τ − C2τ
2 − θi

C3τ 2
for τ ∈ [τ−m , τ

+
m]

For all m, Lm is non-decreasing on [0, τm] and non-increasing on [τm,∞). Therefore, it

is quasi-concave and reaches its maximum at τm. From Lmo(τmo) > 1 and mo ≤ m+, it

follows that 1 < Lmo(τmo) ≤ Lm+(τmo). Since Lm+(τ) is quasi-concave and Lm+(τ+) = 1,

we see that τmo < τ+. Similarly, τmo > τ−.

(i). For τ > τ+, we have

0 ≤ λ�
n(τ) ≤ . . . ≤ λ�

m+(τ) ≤ λ�
m+(τ+) ≤ λ�

m+(τ+
m+) = 0

so λ�
i(τ) = 0 for i = m+, . . . , n. Therefore,

Li(τ)

{
≤ Lm+(τ) if i ≤ ma

= Lm+(τ) if i ≥ ma

Since Lm+(τ) < Lm+(τ+) = 1, we have Li(τ) < 1 for i = 1, . . . , n in either case. Conse-

quently, the unique stable equilibrium is such that each region has firms and workers. For

τ very close to τ+, the population in regions m+, · · · , n becomes very small. Eventually,

when τ = τ+, the population in each region i = m+, · · · , n becomes simultaneously zero,
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thus implying that the number of urban regions drops down to m+ − 1. This equilibrium

is regular and, hence, stable.

The same argument applies, mutatis mutandis, to case (iv) in which τ ≤ τ−.

Before proceeding, observe that there may exist several equilibria when τ ∈ (τ−, τ+).

Among them, we choose the following one. For any given τ ∈ (τ−, τ+), there exists a

unique value m(τ) ≥ mo such that Lm(τ)−1(τ) < 1 < Lm(τ)(τ). Using the proof of Lemma

6, there is a stable equilibrium given by

λ� = (λ1(λ
∗
m(τ)|S1 = Sm(τ)), . . . , λm(τ)−1(λ

∗
m(τ)|Sm(τ)−1 = Sm(τ)), λ

∗
m(τ), 0, . . . , 0)

where fm(τ)(λ
∗
m(τ), τ) = 1. Note that in this equilibrium, only m(τ) regions are urban.

(ii). Let us first show that the following inequality holds for any τ ∈ (τmo , τ
+):

Lm(τ)(x) > 1 for all x ∈ [τmo , τ ] (38)

If τ ≥ τm(τ), then

Lm(τ)(x) ≥ Lm(τ)(τ) > 1 for all x ∈ [τm(τ), τ ]

Lm(τ)(x) ≥ Lm(τ)(τmo) ≥ Lmo(τmo) > 1 for all x ∈ [τmo , τm(τ)] (39)

If τ < τm(τ), then (39) implies that (38) holds.

The inequality (38) implies that the number of urban regions cannot exceed m(τ)

when trade costs take the value x ∈ [τmo , τ ]. Since this holds true for any τ ∈ (τmo , τ
+),

the number of urban regions does not increase when τ decreases from τ+ to τmo .

Likewise, the following inequality tells us that the number of urban regions does not

decrease when τ < τ o:

Lm(τ)−1(x) < 1 for all x ∈ (0, τ)

This inequality holds since τ < τmo ≤ τm(τ)−1. This covers Case (iii).

In addition, for any m < mo, we have Lm(τ) < 1 for all τ . Then, at any equilibrium

with m < n urban regions, it must be that Si(λ
∗
i ) < 0 for any urban region. This implies

that this equilibrium is unstable. As a result, mo is the smallest number of urban regions

at any stable equilibrium. ��

Consequently, for sufficiently large or sufficiently small trade costs, each region has a

share of the manufacturing sector. In this case, the market outcome satisfies the main
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assumption of the foregoing section, explaining why results are consistent. However, for

intermediate values of these costs, the number of urban regions typically varies. Under

linear urban costs, it first decreases and then increases. Hence, urban concentration first

arises while re-dispersion comes afterwards. In addition, the minimum number of urban

regions may exceed 1, implying that the highest degree of agglomeration within the econ-

omy may involve several regions. This shows how the presence of urban costs may prevent

the full agglomeration into a single core region.

On the other hand, if the urban costs in region 1 are sufficiently small such that

L1(τ1) > 1, or equivalently, θ1 ≤ C2
1/4(C2 + C3), then industry fully agglomerates into

a single region for intermediate values of the trade costs. Consequently, when trade

costs decrease while urban costs do not, the economy would move from dispersion to the

emergence of an urban giant and, then, would display gradual deconcentration.

Of course, some parts of the equilibrium path described in Theorem 2 may not arise.

This is so when trade costs are so high (Case (i)) for no interregional trade to occur.

Even the part corresponding to Case (ii) may not show. This happens when there are

no farmers (A = 0). Because of the existence of urban costs, the decrease in trade costs

induces a gradual dispersion of the industrial sector over a growing number of regions, as

in Helpman (1998).

Although our path of stable equilibria seems to involve unit changes in the number of

cities, we cannot exclude the simultaneous disappearance or emergence of several urban

regions. For example, starting from Sm > 0, the equilibrium becomes irregular (S ′
m > 0)

before the smallest urban region m becomes rural. In this case, the stability condition

(12) is violated so that the size of region m may jump down to zero. From this moment

on, we do not know which path the economy will follow when there are multiple equilibria.

7 Concluding remarks

This paper suggests that the secular fall in transport and communication costs should lead

to a possibly strong concentration of mobile activities, which will eventually be followed

by a re-dispersion of these activities. In other words, the general pattern of activities

as trade costs fall would be more or less ∩-shaped. However, much work remains to be

done in order to understand how regions evolve when trade costs take intermediate values,

while it is also important to figure out how the medium regions react to decreasing trade

costs.

Our model has dismissed the fact that commuting costs have decreased together with

trade costs. So, it would be interesting to study the impact of their relative change on the
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spatial structure of industry. Finally, it should be kept in mind that our model considers

a given and fixed set of economic activities. In particular, the number of firms is the same

regardless of the value of trade costs. In this respect, the observed decline of the industrial

sector within big cities does not necessarily imply the economic and social decline of these

areas. The continuous decrease in communication and transport costs gives rise to new

economic activities that are typically information-oriented, and which, therefore, tend

to grow in large metropolises. Thus, one task for future research is to investigate this

question in a setting allowing firms and workers to locate “out in the burds”.
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which is identical to (10).

B. Lemma B

Let Dij be the submatrix of D obtained by deleting the i-th row and j-th column. We

then have:
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Lemma B. If (12) holds at the equilibrium λ∗, then

|D| > 0

|Dii| =
1

n

(
1 +

n∑
k = 1
k 
= i

S ′
n

S ′
k

)
n−1∏

k = 1
k 
= i

(−nS′
k) i = 1, . . . , n− 1 (40)

|Dij | = (−1)i−j+1(S ′
i − S ′

n)

n−1∏
k = 1

k 
= i, k 
= j

(−nS′
k) i, j = 1, . . . , n− 1, i 
= j (41)

Proof.(i) Using some basic properties of determinants, we obtain

|D| =

∣∣∣∣∣∣∣∣∣∣∣∣

−(n− 1)S ′
1 − S ′

n S ′
2 − S ′

n S ′
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n · · · S ′
n−1 − S ′

n

nS ′
1 −nS′

2 0 · · · 0

nS ′
1 0 −nS′

3 · · · 0
...

...
...

. . .
...

nS ′
1 0 0 · · · nS ′

n−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

[
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n +

n−1∑
k=2

S ′
1(S ′

k − S ′
n)

S ′
k

]
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k=2

(−nS′
k)

=
1

n

(
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n

S ′
k

)
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k=1

(−nS′
k) > 0,

where the inequality follows from the stability condition (12).
(ii) We first consider the case of i > 1. By definition of Dii and some properties of

determinants, we have

|Dii| =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(n − 1)S′
1 − S′

n · · · S′
i−1 − S′

n S′
i+1 − S′

n · · · S′
n−1 − S′

n

...
. . .

...
...

. . .
...

S′
1 − S′

n · · · −(n − 1)S′
i−1 − S′

n S′
i+1 − S′

n · · · S′
n−1 − S′

n

S′
1 − S′

n · · · S′
i−1 − S′

n −(n − 1)S′
i+1 − S′

n · · · S′
n−1 − S′

n

...
. . .

...
...

. . .
...

S′
1 − S′

n · · · S′
i−1 − S′

n S′
i+1 − S′

n · · · −(n − 1)S′
n−1 − S′

n

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(n − 1)S′
1 − S′

n S′
2 − S′

n · · · S′
i−1 − S′

n S′
i+1 − S′

n · · · S′
n−1 − S′

n

nS′
1 −nS′

2 · · · 0 0 · · · 0
...

...
. . .

...
...

. . .
...

nS′
1 0 · · · −nS′

i−1 0 · · · 0
nS′

1 0 · · · 0 −nS′
i+1 · · · 0

...
...

. . .
...

...
. . .

...
nS′

1 0 · · · 0 0 · · · −nS′
n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
[
− (n − 1)S′

1 − S′
n +

n−1∑
k = 2
k 
= i

S′
1(S

′
k − S′

n)
S′

k

] n−1∏
k = 2
k 
= i

(−nS′
k)

=
1
n

(
1 +

n∑
k = 1
k 
= i

S′
n

S′
k

) n−1∏
k = 1
k 
= i

(−nS′
k).

Next, for i = 1, we have

|D11| =

∣∣∣∣∣∣∣∣∣∣∣∣

−(n− 1)S ′
2 − S ′

n S ′
3 − S ′

n S ′
4 − S ′

n · · · S ′
n−1 − S ′

n

nS ′
2 −nS′

3 0 · · · 0

nS ′
2 0 −nS′

4 · · · 0
...

...
...

. . .
...

nS ′
2 0 0 · · · −nS′

n−1

∣∣∣∣∣∣∣∣∣∣∣∣
=

[
−(n− 1)S ′

2 − S ′
n +

n−1∑
k=3

S ′
k − S ′

n

S ′
k

S ′
2

]
n−1∏
k=3

(−nS′
k)

=
1

n

(
1 +

n∑
k=2

S ′
n

S ′
k

)
n−1∏
k=2

(−nS′
k)

(iii) We consider only the case where j < i. By straightforward calculation, we know

|Dij |

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−(n − 1)S′
1 − S′

n S′
2 − S′

n · · · S′
j−1 − S′

n S′
j+1 − S′

n · · · S′
i−1 − S′

n S′
i − S′

n S′
i+1 − S′

n · · · S′
n−1 − S′

n

nS′
1 −nS′

2 · · · 0 0 · · · 0 0 0 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

nS′
1 0 · · · −nS′

j−1 0 · · · 0 0 0 · · · 0

nS′
1 0 · · · 0 0 · · · 0 0 0 · · · 0

nS′
1 0 · · · 0 −nS′

j+1 · · · 0 0 0 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

nS′
1 0 · · · 0 0 · · · −nS′

i−1 0 0 · · · 0

nS′
1 0 · · · 0 0 · · · 0 0 −nS′

i+1 · · · 0

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

nS′
1 0 · · · 0 0 · · · 0 0 0 · · · −nS′

n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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= (−1)i−j+1(S ′
i − S ′

n)
n−1∏

k = 1
k 
= i, k 
= j

(−nS′
k)

C. Proof of Lemma 2

For i = 1, . . . , n− 1, it follows from (20) that

dλ∗
i (τ)

dτ
=

(−1)i

|D|
n−1∑
j=1

(−1)jzjDji

Using (40) and (41) in Appendix B, this expression becomes

(−1)i

|D|
n−1∑
j = 1

j �= i

zj(−1)−i+1(S ′
j − S ′

n)
n−1∏
k = 1

k �= i

k �= j

(−nS′
k) +

zi

n|D|
(

1 +
n∑

k = 1

k �= i

S ′
n

S ′
k

) n−1∏
k = 1

k �= i

(−nS′
k)

which is equal to

1

n|D|
n−1∏

k = 1
k 
= i

(−nS′
k)

[
zi +

n−1∑
j=1

zj +
n−1∑
j=1

S ′
n

S ′
j

(zi − zj)

]

=
1

n2|D|
n∏

k = 1
k 
= i

(−nS′
k)

n∑
k=1

zi − zk

−S′
k
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For region n,

dλ∗
n(τ)

dτ
= −

n−1∑
i=1

dλ∗
i (τ)

dτ

= − 1

n2|D|
n∏

k=1

(−nS′
k)

(
n−1∑
i=1

n∑
k=1

zi

−S′
k

−
n−1∑
i=1

1

−nS′
i

n∑
k=1

zk

−S′
k

)

= − 1

n2|D|
n∏

k=1

(−nS′
k)

( n∑
i=1

zi

−nS′
i

n∑
k=1

1

−S′
k

+
zn

nS ′
n

n∑
k=1

1

−S′
k

−
n∑

i=1

1

−nS′
i

n∑
k=1

zk

−S′
k

− 1

nS ′
n

n∑
k=1

zk

−S′
k

)

=
1

n2|D|
n∏

k = 1
k 
= n

(−nS′
k)

n∑
k=1

zn − zk

−S′
k

D. Lemma D

Lemma D. If λ∗ is an asymmetric regular equilibrium, then regions h and l always

exist. Furthermore, when trade costs decrease, one and only one of the following three

relationships holds for each region i:

Case 1 : zi ≥ zh ⇒ region i shrinks (42)

Case 2 : zi = ze ⇒ the size of region i does not change (43)

Case 3 : zi ≤ zl ⇒ region i expands (44)

Proof: Let zi∗ = max{zi; i = 1, . . . , n} and zj∗ = min{zi; i = 1, . . . , n}. Since λ∗ is

asymmetric, zi∗ > zj∗ must hold and, hence,

n∑
k=1

zi∗ − zk

−S′
k

≥ zi∗ − zj∗

−S′
j∗

> 0

n∑
k=1

zj∗ − zk

−S′
k

≤ zj∗ − zi∗

−S′
i∗

< 0

Consequently, regions h and l always exist.
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In any regular equilibrium, −S′
k > 0 holds for all k = 1, . . . , n. In Case 1, since

zi ≥ zh, we have:

n∑
k=1

zi − zk

−S′
k

= (zi − zh)

n∑
k=1

1

−S′
k

+

n∑
k=1

zh − zk

−S′
k

≥
n∑

k=1

zh − zk

−S′
k

> 0

Therefore, using (21) yields dλ∗
i (τ)/dτ > 0, implying that i becomes smaller. Cases 2 and

3 can be dealt with in a similar way.

For any region i, if neither (42) nor (43) holds, then
∑n

k=1(zi − zk)/(−S ′
k) < 0 holds

by (25). In this case, zi ≤ zl must be satisfied, which is precisely (44). Finally, more than

one of (42)-(44) cannot hold simultaneously. ��

E. Lemma E

Lemma E. The following holds for any region k:

(i) zk = zh if and only if λ
∗
k = λ∗

h;

(ii) zk = zm if and only if λ
∗
k = λ∗

m;

(iii) zk = zl if and only if λ
∗
k = λ∗

l .

Proof : (i) From (18), we have

0 = zk − zh = n(λ∗
k − λ∗

h)[C1 − 2C2τ − 2C3τ(λ∗
k + λ∗

h)]

Then, (i) follows from (24). It can be shown that (ii) and (iii) hold by a similar argu-

ment. ��
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