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1. Introduction

Consider an unemployed worker who is searching for a job. Suppose that “uncertainty”

about labor market conditions has increased. Does this change induce her to search longer and

more intensively, or shorter and less intensively? The answer to this question has utmost impor-

tance both in macroeconomics concerning the aggregate unemployment rate and microeconomics

explaining worker behavior. The purpose of this paper is to show that the answer is drastically

different depending on what kind of “uncertainty” is involved. If an increase in “uncertainty”

is an increase in the variance of the wage offer distribution that the worker thinks she faces, the

worker searches longer. If an increase in “uncertainty” is a decrease in her confidence about

the wage distribution, the worker searches shorter.

In the tradition of Frank Knight, the former type of “uncertainty,” which is reducible

to a single distribution with known parameters, is risk, while the latter type of “uncertainty,”

which is irreducible, is true uncertainty (see Knight, 1921, and also see Keynes, 1921, 1936).

While risk and uncertainty are clearly distinct concepts, they have not been treated separately in

economics in an explicit way, at least until recently. This may be because of the celebrated

theorem of Savage (Savage, 1954) which shows that if the decision maker’s behavior complies

to certain axioms, her preference is represented by the expectation of some utility function which

is computed by means of some single probability measure. Uncertainty that the decision maker

faces is thus reduced to risk with some probability measure. However, Ellsberg (1961) presented

an example of preference under uncertainty that cannot be justified by Savage’s expected utility

framework. The decision maker’s behavior described in Ellsberg’s paradox, which is not at all

irrational, clearly violates some of Savage’s axioms.

Gilboa (1987), Gilboa and Schmeidler (1989) and Schmeidler (1989) weaken Savage’s

axioms to settle debates caused by Ellsberg’s paradox. They axiomatize the preference which

is represented by the minimum among the expected utilities each of which is computed by an

element of some set of probability measures. This preference is called the maximin expected

utility or the Choquet expected utility. This is a natural extension of preference under uncertainty

to the case in which the information is too imprecise to summarize it by a single probability

measure. This type of uncertainty is called the Knightian uncertainty.
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This paper applies the idea of the Knightian uncertainty to the job search model, and

compare the effect of its increase on the worker’s search behavior with that of an increase in risk.

To this end, we extend the stylized model of job search without recall (see, for example, Sargent,

1987, p.66) by assuming that the unemployed worker’s preference is represented by the maximin

expected utility / Choquet expected utility axiomatized by the authors cited above. Since we

focus on the role of the Knightian uncertainty, we assume the time-consistent intertemporal

structure in the worker’s preference over time. Under these setting, we show that the optimal

stopping rule exists, that this optimal stopping rule has a reservation property, and that the

reservation wage is characterized by a functional equation.

Then, we exploit the functional equation determining the reservation wage to examine

the effect of an increase in the Knightian uncertainty. In the traditional framework where

uncertainty is specified by a single probability distribution, an increase in uncertainty, that is,

an increase in risk, is modeled by a mean-preserving spread of the given distribution. Then,

it turns out that the mean-preserving spread, that is, an increase in risk, causes an increase in

the reservation wage (see Rothschild and Stiglitz, 1970, 1971, or Section 2.1 of this paper).

Thus, the unemployed worker is inclined to keep searching for a job when risk has increased.

In contrast, we formulate the Knightian uncertainty in such a way that the worker does not

have confidence that a given wage distribution is the true one, and that instead she assumes

a set of probability distributions and maximizes the minimum of expected utilities based on

each probability distribution. We then show that the reservation wage is decreased when the

Knightian uncertainty increases, and hence, the worker tends to accept the job offer more quickly.

This result conforms our intuition that, when people lose confidence in their forecast about what

happens in the future, they generally prefer certainty to uncertainty. An immediate acceptance

of the wage offer implies that the uncertainty is turned into certainty.

The organization of the paper is as follows. Section 2 explains the main result of this

paper by using a simple example based on the uniform distribution of the wage offer. Technical

discussions are kept at the minimum in this section. Section 3 bridges non-technical Section

2 and technical Section 4 in explaining the maximin expected utility, Choquet expected utility,

and some continuity problems which must be solved. Section 4 presents the main result in
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a general framework. This section also explains how the result of Section 2 is derived from

the general framework. Proofs of the main theorems of Section 4 are relegated to Section 5.

The definitions and some mathematical results about the Choquet capacity, which are extensively

utilized in Section 4, are collected in the Appendix. Any lemma in the Appendix will be referred

to as Lemma A .

2. An Example: Risk versus Knightian Uncertainty

Let us first consider a simple job search model (for example, see a stylized example of

Sargent, 1987, p.66). In each period, an unemployed worker draws a wage offer, from a wage

distribution1 F0. The worker is assumed to know the true distribution F0. If the unemployed

worker accepts the offer, he earns that wage from this period on. If he decides not to, he gets

unemployment compensation, c 0, in this period2 and will make a draw again in the next

period. Let T denote the period that the worker accepts the wage offer. The unemployed

worker’s objective is, by choosing a suitable stopping rule, to maximize his expected life-time

income

E0

∞

∑
t 0

β tyt

where

yt
c for t T
wT for t T

Under general conditions on F0, (1) there exists the optimal stopping rule and (2) the stopping

rule has a reservation property. That is, the optimal stopping rule is to accept the wage offer if

it is no smaller than the reservation wage R and to wait for another offer if otherwise, where the

reservation wage R is determined by a choice between accepting this period’s offer or waiting

for next period’s offer:3

R c
β

1 β

Z ∞

R
1 F0 x dx (1)

1F0 x denotes the probability that the wage offer is no greater than x.
2The basic structure of the model is unchanged if instead we assume that the unemployed worker pays a search

cost, rather than he gets an unemployment compensation. In the case of the search cost, we have c 0.
3Eq 1 is easily derived from Corollary 2 in Section 4.4 as a special case.
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If we further specify the wage distribution to be a uniform distribution over a b where

0 a b, we have an explicit solution of the reservation wage. We further assume that

b c because otherwise continuing the search forever would be trivially optimal, and that the

parameters of the model satisfy the following conditions:

b a β 2c a b (2)

and 2 c a β 2c a b (3)

to assure that R a b holds. Then by 1 , we have

R c
β

1 β

Z b

R

b x
b a

dx c
β b R 2

2 1 β b a
(4)

By solving this quadratic equation, we get4

R 1
β

b 1 β a D1 2 (5)

where D 1 β b a b a β 2c a b

2.1. Increased Risk: Mean-preserving Spread

Suppose that “uncertainty” over wage offers is slightly increased for the worker. In the

above example, the wage distribution may be slightly more dispersed by γ, over a γ b γ .

See Figure 1, where F0 (the dotted line) is the probability distribution function of the uniform

distribution over a b and the solid line is the one of the new uniform distribution over

a γ b γ . This is a mean-preserving spread, characterizing increased risk (see, Rothschild and

Stiglitz, 1970). If this is the case, 4 is modified to

R c
β b γ R 2

2 1 β b a 2γ
(6)

4Let us conjecture that R a b in order to derive 4 from 1 . We then verify that the reservation wage R
thus derived in 5 certainly satisfies this condition under 2 and 3 .

First, note that D 0 by b a and by 2 . Second, note that the conjugate solution to the quadratic equation
4 :

R
1
β

³
b 1 β a D1 2

´
violates the condition because R b by D 0 and by the fact that 1 β b 1 β a b, which is equivalent to
1 β b a 0. Third, note that we have R b since we get R b if and only if b c, which holds under our

assumption. Finally, note that R a because R a if and only if 2 c a β 2c a b , which holds since we
have 3 . The conjecture is thus verified.
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Denote the solution R to this equation by R γ as a function of γ. Then, the implicit function

theorem shows that

dR γ
dγ γ 0

β b R R a
b a 1 β b a β b R

where R in the right-hand side is given by 5 . Since a R b by 2 and 3 ,

dR γ
dγ γ 0

0

This result shows that increased “uncertainty” in the form of increased risk (a mean-preserving

spread) increases the reservation wage.

2.2. Increased Knightian Uncertainty: δ -Approximation of ε -Contamination

In the case of the mean-preserving spread, the worker is still certain of the shape of the

wage distribution. It is a uniform distribution a γ b γ , spreading out the original distribution

by exactly γ. The worker has firm confidence about the new wage distribution.

In reality, however, the worker may not have such firm confidence on the wage distri-

bution when economic conditions are changed. The worker may become uncertain about the

shape of the wage distribution itself. The wage distribution may be different from the uniform

distribution over a b with a positive (though small) probability. Moreover, the worker may

have no idea about the shape of the wage distribution if in fact it is different. It may still

be uniform and spreading out by γ ( a γ b γ ), but the worker does not have any confidence

about the value of γ. It may be wildly different from uniform distribution. This “uncertainty”

that the worker faces clearly cannot be reduced to a change in parameters of known distribution.

Thus, the “uncertainty” here is the Knightian uncertainty.

The problem that the worker faces is similar to that of a Bayesian statistician who con-

fronts “uncertainty” in a prior distribution of the Bayesian learning process. One procedure that

the Bayesian statistician often follows is to introduce a set of priors obtained by “contaminating”

a single hypothetical prior and then to investigate the robustness of the learning process. This

procedure is often called as ε -contamination.5 We follow this Bayesian tradition in formulating

the Knightian uncertainty by “contaminating” the original wage distribution.
5See, for example, Berger (1985) and Wasserman and Kadane (1990). For the use of ε -contamination in economics,

see Epstein and Wang (1994, 1995).
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We formulate the worker’s problem in three steps. Firstly, following the ε -contamination

literature, we specify the uncertainty that the worker faces by a set of distributions, rather than by

a single distribution in the traditional framework. Secondly, we postulate an appropriate optimal

search problem of the worker facing this multi-distribution uncertainty, using the framework of

Gilboa and Schmeidler (1989). Thirdly, we examine whether the optimal strategy has the

reservation wage property and if it has, whether increased uncertainty increases the reservation

wage.

In order to follow the ε -contamination literature, we need to be a bit formalistic. Let

W be a Borel subset of and W be the Borel σ -algebra on W . Let P0 be the probability

measure on W corresponding to F0. In our example, W is a b , and P0 is the uniform

distribution over a b . Let be the set of all probability measures on W and let ε 0.

In our example, is the set of all probability measures corresponding to distributions over

a b . Then, ε -contamination of the original distribution is the set of probability measures on W

defined by

0 1 ε P0 ε µ µ (7)

In fact, if ε 0, then 0 P0 , and the problem is reduced to the traditional search one. An

increase in ε implies that the worker becomes less certain that P0 is in fact the true distribution.

Thus, an increase in ε can be interpreted as an increase in the Knightian uncertainty.6

There is, however, one technical problem in the above formulation. This formulation

implies that the value of inf P A P 0 changes discontinuously at A W when A approaches

W (an illustrative example is given below in Figures 2 and 3), and this discontinuity makes dy-

namic analysis of this paper much complicated mathematically with no further economic insights

(see Section 3.2). To avoid this mathematical problem, we use in this section the following

δ -approximation of ε -contamination.

Let δ be a small positive number, and let P0 δ be

P0 δ µ A δ µ A P0 A

6The formal definition of more Knightian uncertainty is given in Section 4.5.
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The δ -approximation of ε -contamination, δ , is defined by

δ 1 ε P0 ε µ µ P0 δ (8)

Note that P0 0 . Thus, by appropriately choosing a small δ we can approximate 0

by δ as close as we want.

The ε -contamination and its δ -approximation are best explained in our uniform-distri-

bution example by Figures 2 and 3. In our example, we have W a b . In Figure 2, the

ε -contamination of P0, 0, is given by the set of all probability distribution functions above

1 ε F0 and below 1 ε F0 ε for all x a b .7 It is evident from this figure that

inf P a x P 0 is equal to 1 ε F0 x for all x a b , and that we have inf P a x P

0 1 at x b. Thus, inf P a x P 0 becomes discontinuous at x b. In Figure 3, the

δ -approximation of ε -contamination of P0, δ , is given by the set of all probability distribution

functions which are (i) above 1 ε F0 for x a y and above 1 ε F0 ε F0 1 δ 1

for x y b , where F0 y 1 δ , and (ii) below 1 ε F0 εF0 δ for x a z and below

1 ε F0 ε for x z b , where F0 z δ .8 It is evident by construction that inf P a x P

δ is continuous for all x a b , whereas inf P a x P 0 is discontinuous at x b.

The figures also show that the δ -approximation of ε -contamination, δ , expands toward the

ε -contamination, 0, as δ decreases, and that we can “approximate” the latter by the former as

close as possible by appropriately choosing a small δ .

To concentrate our attention on the Knightian uncertainty itself, we assume that the

unemployed worker faces the same uncertainty characterized by δ in each period. That is, we

assume that the observation of the wage offer does not affect the future uncertainty. Thus,

we do not consider explicitly the worker’s learning about the uncertainty. This assumption is
7From 7 , we get the following alternative expression for 0:

0 P A P A 1 ε P0 A

From this expression, we immediately know that there is a lower bound for P as described in Figure 2.
Moreover, the inequality in the definition must hold for the complement of A. This implies that there is also an
upper bound for P , as described in this figure.

8From 8 , we get the following alternative expressions for δ :

δ P A P A 1 ε P0 A if P0 A 1 δ ; and
P A 1 ε P0 A ε P0 A 1 δ 1 if P0 A 1 δ

We get the lower bound of P A in Figure 3 immediately from this expression. The upper bound of P A is
obtained by substituting for A its complement in the above formula.
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a reasonable one for the Knightian uncertainty. If the uncertainty were specified by a single

distribution of some distribution family with an unknown parameter, say, a normal distribution

with an unknown mean and a known variance, some updating procedure together with a conjugate

prior over the parameter space would be used to detect the true value of the unknown parameter

(see DeGroot, 1970 and Rothschild, 1974). In contrast to this case, the worker here does not

know even the type of the true distribution, let alone its parameters (recall that a distribution in

δ can be a member of any of uncountably many parametric families). The uncertainty that the

worker faces is much broader and deeper. In fact, it is shown that a commonly-used update

rule may not resolve the Knightian uncertainty at all in some cases.9

Since the Knightian uncertainty is now defined by a set δ of distributions rather than

a single distribution, we must redefine the objective function accordingly. We postulate that the

unemployed worker’s objective is to maximize the minimum of his expected discounted future

income

min
Z

W
I w dP w P δ (9)

where I w is the discounted future income which is a bounded measurable function of the

observed offer w.10 The exact formula I w is complicated and shown in Section 4.2 so that it

is not shown here. Gilboa and Schmeidler (1989) show that if the worker’s behavior complies

to certain axioms, his objective function is in fact representable by an expression similar to 9 .

Thus, our formulation is consistent with theirs.11

Under these settings we can show (see Section 4) that (1) there exists the optimal

stopping rule and (2) the optimal stopping rule has a reservation property. Furthermore, it turns

9We could incorporate explicitly some updating rule which is adopted for the Knightian uncertainty. Nishimura
and Ozaki (2001) use the Dempster-Shafer rule, which is given some axiomatic foundation by Gilboa and Schmeidler
(1993), to show that there are cases in which the adoption of the Dempster-Shafer rule does not resolve at all the
uncertainty characterized by 0.

10The minimum is attained since I is assumed to be bounded and measurable, and δ is weak * compact by the
Alaoglu theorem.

11They employ a mixture space as a prize space and show that if the decision maker’s behavior complies to certain
axioms, his objective function is represented by

min
½ Z

W
u I w dP w

¯̄̄̄
P

¾
(10)

for some weak * closed convex set of probability charges (for the definition of the probability charge, see the
Appendix) and for some utility index u which is unique up to a positive affine transformation.
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out that R is characterized as the solution to the following equation for sufficiently small ε 0

and δ 0:

R c
β

1 β

Z ∞

R
1 ε P0 w w x dx

c
β

1 β
1 ε

Z ∞

R
P0 w w x dx

c
β 1 ε b R 2

2 1 β b a
(11)

(see right after Corollary 2 in Section 4.4). By solving this equation, we can write R as R ε

as a function of ε . The implicit function theorem shows that

dR ε
dε ε 0

β b R 2

2 1 β b a 2β b R

where R in the right-hand side is given by 5 . Since R b by 2 and 3 ,

dR ε
dε ε 0

0

which shows that an increase in the Knightian uncertainty, specified by an increase in ε ,

decreases the reservation wage.12 This is exactly the opposite to an increase in risk, specified by

an increase in γ. As we already mentioned in the Introduction, this makes sense economically.

When they become less confident in what happens in the future, people may prefer “certainty”

much more to “uncertainty.” The uncertainty is resolved immediately when the worker accepts

the wage offer. Hence, an increase in the Knightian uncertainty is likely to persuade the worker

to cancel a further search.

Section 4 extends this example to a more general setting and show that qualitatively the

same result holds even in the general case.

3. Some Technical Issues

Before proceeding with a formal analysis of Section 4, we deal in this section with two

technical issues concerning dynamical analysis. In Section 4, we assume the objective function

is intertemporally well-defined. Preferences need to be “continuous” for this property to hold.

12A similar result holds globally, not only locally. See right after Theorem 2 in Section 4.5.
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The maximin preferences illustrated by the Example in the previous section are not well-suited

for the characterization of this continuity requirement. Thus in Section 3.1, we reformulate

preferences as those represented by a Choquet integral with a convex probability capacity. In

Section 3.2, we explain problems that may arise if the capacity is not continuous in the Choquet-

integral-cum-probability-capacity formulation. We thus impose the continuity assumption directly

on the probability capacity.

3.1. Representation by Choquet Integral with Convex Capacity

In this section, we use probability capacity, Choquet integral and other related concepts,

which are explained in the Appendix. Let P0 be the probability measure corresponding to

the uniform distribution over a b as in Section 2.2. Let ε 0 and δ 0. Then, define

θδ : W 0 1 by

A θδ A
1 ε P0 A if P0 A 1 δ

1 ε P0 A ε P0 A 1 δ 1 if P0 A 1 δ
(12)

Then, Lemma A1 in the Appendix shows that θδ is a convex probability capacity. Furthermore,

it turns out that the core of θδ satisfies core θδ δ . Therefore, it follows that

I
Z

W
I w dθδ w min

Z
W

I w dP w P core θδ

min
Z

W
I w dP w P δ

where the integral in the left-hand side of the above relations is the Choquet integral. The

first equality of the above relations holds by Lemma A8 in the Appendix. This shows that the

maximin preferences given by 9 are identical to the preferences which are represented by the

Choquet integral with the convex capacity 12 .

Gilboa (1987) and Schmeidler (1989) show that if the worker’s behavior complies to

certain axioms, his objective function is in fact representable by a Choquet integral with some

convex probability capacity. Thus, our formulation is consistent with theirs.13

For mathematical tractability (see Section 3.2), we formulate a general search model

under the Knightian uncertainty in the next section with preferences represented by a Choquet
13Gilboa (1987) employs a general prize space and Schmeidler (1989) employs a mixture space as a prize space,

and they show that if the decision maker’s behavior complies to certain axioms, his objective function is represented
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integral with a convex probability capacity. It should, however, be kept in mind that we lose

some mathematical generality by this procedure, though not much in economics. In particular,

although the maximin representation and the Choquet representation of the preference coincide

exactly for the case of the δ -approximation of ε -contamination, they are not always so. In

fact, while the preferences represented by a Choquet integral with a convex capacity is a proper

subset of the maximin preferences, the converse is not necessarily true.14

3.2. Problems with Non-Continuous Capacity

The convex capacity which is not continuous poses technical difficulty in a dynamic

context. To see this point, let us consider the capacity θ0 corresponding to the original

ε -contamination.15 It can be shown that θ0 is not continuous.16 Let I w¡ w denote the

discounted future income when the wage offer w¡ has been observed today and the wage offer

w will be observed tomorrow. Then, it turns out that

Z
W

I w¡ w dθ0 w 1 ε
Z

W
I w¡ w dP0 w ε inf

w2W
I w¡ w (14)

by Z
W

u I w dθ w (13)

for some convex probability capacity θ and for some utility index u which is unique up to a positive affine
transformation.

14By Lemma A8, 13 is always reduced to 10 . This footnote discusses that the converse is not necessarily true.
Let be an arbitrary weak * closed convex set of probability charges. If there exists a convex capacity θ with
which the Choquet integral is identical to 10 with this , it must be that A θ A inf inf P A P (let
I be the indicator function of a set A). Therefore, we need to have that inf be convex and that core inf .
However, the latter equality may not hold and inf may not even be convex. (See Huber and Strassen, 1973, for
both counter-examples.)

15The convex capacity θ0 is defined by

A θ0 A

8<: 1 ε P0 A if A W

1 if A W

and it holds that core θ0 0 ( in the definition of 0 is now understood to be the set of all probability charges,
rather than probability measures).

16To see this, consider the increasing sequence of sets, Wn n, each of which is not equal to W and such that
nWn W . Such a sequence exists, for example, when W is an open interval.
It should be noted that θ0 satisfies some weaker continuity requirement on the capacity defined on the Borel

σ -algebra. If this weaker continuity requirement is satisfied, 15 below turns out to be analytic in w . Analyticity
is a weaker property than measurability. To handle analytic functions, much more mathematical sophistication is
required than to handle measurable functions. Epstein and Wang (1995) refer to Dellacherie and Meyer (1988) to
cope with analytic functions in a dynamic asset pricing model.
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For the unemployed worker’s objective function is well-defined over time, 14 must be measur-

able in w¡ today because yesterday the worker had computed the expectation of 14 over w¡.

However, it is well-known that infw2W I w¡ w is not necessarily measurable in w¡ even if I is

measurable jointly in w¡ w . More generally, the Choquet integral

Z
W

I w¡ w dθ w (15)

is not necessarily measurable in w¡ unless θ is continuous.

Although θ0 is not continuous, Lemma A1 shows that θδ defined by 12 is continuous.

Note that 15 is always measurable in w¡ when the capacity is continuous by the Fubini

property (Lemma A13). Thus, the worker’s objective is well-defined in this case. This is

why we use the δ -approximation of the ε -contamination in the previous section, instead of the

ε -contamination.

One mathematical advantage to formulate preferences with a Choquet integral with a

convex capacity, rather than maximin preferences, is that we can impose the continuity assumption

directly on the primitive of the model by assuming that the capacity is continuous. This

procedure greatly simplifies formal dynamic analysis without losing any economic insights.

4. The Formal Model

4.1. Stochastic Environment

Let W W be a measurable space, where W is a Borel subset of and W is the

Borel σ -algebra on W . We regard each element w W as an offer of wage in each single-

period. For any t 0, we construct the t-dimensional product measurable space W t
W t (we let

W 0 φ W ∞ ) and embed it in the infinite-dimensional product measurable space W ∞
W ∞

in a usual manner.17 We write a history of realized offers as 1wt w1 w2 wt W t ,

1w w1 w2 W ∞, and so on.
17More precisely, the construction is as follows: First, let W ∞ W W be the countably-infinite-dimensional

Cartesian product of W , and let W t W W be the t-dimensional Cartesian product of W . That is, W ∞ is the
set of infinite sequences w1 w2 , and W t is the set of finite sequences w1 wt , where i wi W . Second,
let W ∞ be the σ -algebra on W ∞ generated by the family of sets of the form E1 E2 , and let

(W t )
be the

σ -algebra on W t generated by the family of sets of the form E1 Et , where for each i, Ei W , that is, Ei is
a Borel set. Since W is a separable metric space,

(W t)
is identical to W

t
W W , the t-dimensional
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Let θ be a capacitary kernel, that is, let θ : W W 0 1 be a function such that

w W θw is a probability capacity on W W and

B W θ¢ B is W -measurable.

Throughout the paper, we assume that w θw is convex and continuous. We specify

the uncertainty about the offer of the next period when the current wage offer is w by the core

of θw. That is, we assume that the offer in each period is ‘distributed’ in a Markovian manner

according to core θw . While we now allow that the uncertainty is Markovian, we still retain

the assumption of no learning as in Section 2.2 by restricting θ to be time-homogeneous. To

incorporate a reasonable learning process into the case of the Markovian-Knightian uncertainty is

an important agenda of future research.

4.2. Objective Function

An income process 0y y0 y1 y2 is a -valued stochastic process which is W t -

adapted, that is, which satisfies t 0 yt is W t -measurable. Given an income process 0y, we

denote the continuation of 0y after the realization of a history 1wt by ty 1wt :

t y 1wt yt 1wt yt 1wt yt 1wt

Obviously, the continuation ty 1wt is W t -adapted given 1wt .

Given any adapted income process 0y and an initial wage offer w0 W , we define the

product measurable space of W . Third and finally, define the σ -algebra ˆ
W t on W ∞ (not on W t ) as the σ -algebra

generated by the family of cylinder sets E1 Et W W , where i Ei is a Borel set. In particular,
ˆ
W 0 φ W ∞ represents no information. Then, any function defined on W ∞ which is ˆ

W t -measurable takes on
the same value given the realization of w1 wt regardless of the realization of wt+1 wt+2 , and hence, it can
be identified with the function defined on (W t ). Exactly in this manner, we can embed

(W t) in ˆ
W t . Therefore,

we do not distinguish these two objects and use the notation W t to represent both. This convention is convenient
when we consider stopping rules which is defined on W ∞.
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lifetime expected income Iw0 0y by18

Iw0 0y lim
T !∞

y0 β
Z

W
y1 β

Z
W

y2 β
Z

W
yT θ dwT θ dw2 θw0

dw1 (16)

where β 0 1 is the discount factor and
R

W dθ is the Choquet integral with respect to a

capacitary kernel θ . Note that each element of the sequence defining I is well-defined by the

continuity of θ and by the Fubini property (Lemma A13), and that the limit exists (allowing

∞) since the sequence is non-decreasing by the nonnegativity of yt’s and by Lemma A4.

Furthermore, θ ’s continuity and the monotone convergence theorem (Lemma A12) imply that

0y w0 Iw0 0y y0 β
Z

W
Iw1 1y w1

θw0
dw1

which is called Koopmans’ equation.

When it happens to be the case that θ is a stochastic kernel, Eq 16 is reduced to

Iw0 0y lim
T !∞

y0 β
Z

W
y1 β

Z
W

y2 β
Z

W
yT dθ dθ dθw0

lim
T !∞

y0 β
Z

W
y1 dθw0

β 2
Z

W

Z
W

y2 dθ dθw0

β T
Z

W

Z
W

Z
W

yT dθ dθ dθw0

Ew0

∞

∑
t 0

β t yt

where the expectation operator E in the last line is taken with respect to the infinite-dimensional

product probability measure constructed from θ . When θ is not a stochastic kernel, the second

equality may not hold since yt and
R

W yt 1θ dwt 1 may not be co-monotonic (see Lemmas A7

and A9), and the third equality may not hold since the ‘product capacity’ is not well-defined

uniquely.19

18In Eq 16 , we suppressed the arguments of the integrand. If we did not, it would be

Iw0 0y

lim
T ∞

y0 β
Z

W

µ
y1 w1 β

Z
W

µ
y2 w1 w2 β

Z
W

yT 1wT θwT ¡1
dwT

¶
θw1

dw2

¶
θw0

dw1

Here, the t-th integral from the most inside is a function of w1 wT t . Then, the whole integral is a real
number since w0 is given. This definition implies that the randomness will be aggregated backward from the future
to the current period one by one in each period.

19Let X and Y be two measurable spaces, let Z X Y be the product measurable space,
and let µ and ν be a capacity on and , respectively. Consider a capacity σ on which satisfies

S T σ S T µ S ν T
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4.3. Stopping Rule and Optimization Problem

Each period the prospective worker is given an offer w. Upon observing the value of

w, she has two alternatives, to accept it or to reject it. If she accepts the offer, she will obtain

w each period from that period on; if she rejects the offer, she will get the unemployment

compensation c 0 that period and will be given a random offer again in the next period.

A 0 1 2 ∞ -valued random variable δ on W ∞
W ∞ is called a stopping rule

if it satisfies

t 0 1 2 δ t W t

where δ t abbreviates 1w δ 1w t . We allow δ to be ∞ for some history. We

denote the set of all stopping rules by ∆ . Given any stopping rule δ ∆ , define a process

0yδ yδ
0 yδ

1 yδ
2 by

t 0 yδ
t

c if δ t

wT if δ T T 0 1 t

Lemma 1 (Section 5) shows that 0yδ is W t -adapted, and hence it is actually an income

process. Given an initial wage offer w0 W , we denote the lifetime expected income under a

stopping rule δ ∆ by the symbol I for notational simplicity (there should be no confusion

about this):

Iw0
δ Iw0 0yδ

Similarly, given any t 1 and any history 1wt W t , we denote the income under δ ∆ after

the realization of 1wt by Iwt δ
1wt , that is,

Iwt δ
1wt Iwt tyδ

1wt

where t yδ
1wt is the continuation of yδ after the realization of 1wt as is defined in Section 4.2.

Lemma 2 (Section 5) proves that

Iw0
δ

w0
1 β

χfδ 0g c β
Z

Iw1
δ w1

dθw0
χfδ 0g (17)

If both of µ and ν are probability charges, such a product capacity σ is uniquely determined. However, if at least
one of them is not additive, there could be many capacities which satisfy the above relation. This implies that
the ‘product capacity’ cannot be determined uniquely from the ‘marginal capacity.’ For more details, see Ghirardato
(1997).
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Here, χ denotes the indicator function on W ∞.20 Eq 17 is Koopmans’ equation for a stopping

rule δ .

A stopping rule δ ∆ is optimal from w0 if

δ argmax Iw0
δ δ ∆

A stopping rule δ is admissible if it dictates more search as long as the observed offer is strictly

less than c. Any stopping rule which is not admissible is suboptimal since it is dominated by

the stopping rule which never stops, and hence, it can be safely ignored. When an optimal

stopping rule exists, we define the value function V ¤ : W by

w W V ¤ w Iw δ ¤
w

where we denote an optimal stopping rule from w by δ¤
w .

4.4. Existence and Characterization of Optimal Stopping Rule

Given random variables w, w0, , wt , let c w and t
i 0wi denote the random variables

defined by max c w and max w1 wt . Throughout the rest of this paper, we assume that

the primitives of the model satisfy the following two conditions:

E1. w0 t 0 W t w0

Z Z
c t

i 0wi θ 0 dwt θ 0
w0

dw1 ∞

E2. w0 limt!∞ W t w0
1 t β ¡1

where θ 0 is the conjugate of θ . The integrand in E1, c t
i 0wi, is the overly optimistic income

the worker expects in time t. This is overly optimistic because it is the highest offer up to time

t (our model is on search without recall). The integral in E1 is its overly optimistic ‘expectation’

evaluated at time 0. This is overly optimistic because it is evaluated by the conjugate of θ rather

20For example,

χ δ=t

(
1 if ω δ t , i.e., δ ω t

0 if ω δ t , i.e., δ ω t

Since δ is a stopping rule, χ δ=t and χ δ t are W t -measurable.
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than θ itself.21 E1 assumes that this is finite for any t. This optimistic ‘expected’ income, W t ,

grows as t increases since it takes the maximum offer up to time t. The left-hand-side of E2

defines the time-average of the rate of growth in W t . Hence, E2 as a whole assumes that this

time-average is lower than the worker’s impatience. When E2 holds, the effect caused by the

high income in a far future can be safely ignored since the worker’s impatience dominates the

income growth along any optimistic path. This is an analogue to the condition for the dynamic

programming technique introduced in Ozaki and Streufert (1996). If θ is simply a probability

measure, the left-hand side of E2 is 1 as long as the expectation of w is finite (Chung, 1974,

p.49), and hence, E2 is automatically satisfied.

Define a (constant) function V ¡ : W by w V ¡ w c 1 β and a function

V : W by w0

V w0 lim
T !∞

c w0 β
Z

c 1
i 0wi β

Z
c T

i 0wi θ dwT θw0
dw1

which is a well-defined W -measurable function (let yT c T
i 0wi in Eq 16 ). Clearly,

V ¡ V , and Lemma 3 (Section 5) shows that w0 V w0 ∞.

A W -measurable function V : W is admissible if it satisfies V ¡ V V . Note

that for any admissible stopping rule δ , I¢ δ is admissible. Let be the space of all admissible

functions from W into , and let B be the operator from into itself defined by

V w W BV w max
w

1 β
c β

Z
W

V w0 θw dw0 (18)

Lemma 4 (Section 5) shows that BV is admissible for any admissible function V , and hence,

that B is well-defined.

A function V is said to solve Bellman’s equation if BV V . We then have the

main result of this paper, summarized in the following theorem. The proof of this theorem and

those of other theorems and corollaries are relegated to Section 5.

Theorem 1. The value function V ¤ exists and is the unique admissible solution to Bellman’s

equation. Furthermore, V ¤ is attained by the stopping rule δ ¤ such that for all t 0, δ ¤ t
21When we prove that the solution to Bellman’s equation (specified later) is the value function, we apply the

method of “squeezing” (see Lemma 6 in Section 5). In order to “squeeze”, we need to bound the increment by the
Choquet integral with respect to the conjugate (Lemma A11). This is why we need to define the ‘expected’ income
via the conjugate capacity in E1.
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as soon as

wt
1 β

c β
Z

W
V ¤ wt 1 θwt dwt 1

holds; and δ ¤ t otherwise.

Let R : W be a W -measurable function defined by

w R w 1 β c β
Z

W
V ¤ w0 θw dw0

We call R w reservation wage at a state w, that is, when w is observed. We say that the

capacitary kernel θ is monotonic if for any weakly increasing function y : W and for any

x 0,

w0 w θw0 y x θw y x

The next result is an extension of Lippman and MaCall (1976, Theorem 1).

Corollary 1. If θ is monotonic, then R is weakly increasing in w.

The next result further characterizes the reservation wage when the capacitary kernel θ

is i.i.d., that is, when θ is independent of the current wage offer w.

Corollary 2. If the capacitary kernel θ is independent of the current wage offer, then the

reservation wage R w will be constant and is given by the solution R to the next equation:

R c
β

1 β

Z ∞

R
θ w w x dx

c
β

1 β

Z ∞

R
1 Fθ 0 x dx

where Fθ 0 is the “distribution” of θ 0 defined by Fθ 0 x θ 0 w w x .

As an application of Corollary 2, we show that 11 characterizes the reservation wage for

sufficiently small ε and δ in the Example of the δ -approximation of ε -contamination provided

in Section 2.2. First, let ε 0 be small enough to be such that R ε a where R ε is the
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solution to 11 . This is possible since R is continuous and R 0 a by 2 and 3 . Second,

let δ 0 be small enough to be such that a b a δ R ε . This is possible since R ε a.

Third, note that for any R a b a δ , it holds that

c
β

1 β

Z ∞

R
θδ w w x dx c

β
1 β

Z ∞

R
1 ε P0 w w x dx

by the definition of θδ . Finally, note that

R ε c
β

1 β

Z ∞

R ε
θδ w w x dx (19)

This holds because R ε solves 11 and becasue R ε a b a δ . Therefore, the continuity

of θδ , Corollary 2 and 19 imply that R ε in ( 11 ) is certainly the reservation wage.

4.5. Increase in Uncertainty

Let θ 1 and θ 2 be two capacitary kernels. According to Epstein and Zhang (1999), we

say that θ 2 represents more Knightian uncertainty than θ 1 if there exists a weakly increasing,

surjective and convex function g : 0 1 0 1 such that

w B θ 2
w B g θ 1

w B

It immediately follows that if θ 1
w is convex and continuous for each w, which we henceforth

assume, and if θ 2 represents more Knightian uncertainty than θ 1, then θ 2
w is also convex and

continuous for each w. It also follows that if θ 2 represents more Knightian uncertainty than θ 1,

then

w core θ 2
w core θ 1

w (20)

which justifies our definition of more Knightian uncertainty22. Let R1 and R2 be a reservation

wage of an unemployed worker with θ 1 and θ 2, respectively. The next result shows that the

reservation wage decreases if the Knightian uncertainty increases.

Theorem 2. If θ 2 represents more Knightian uncertainty than θ 1, then w R2 w R1 w .
22For further motivation of this definition of more Knightian uncertainty, see Epstein and Zhang (1999, Theorem

3.1).
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As an application of Theorem 2, we show that an increase in ε decreases the reservation

wage for any δ 0 in the Example of the δ -approximation of ε -contamination provided in

Section 2.2. (Recall that we made only a local analysis there.) Let δ 0 and let ε2 ε1 0.

Write δ explicitly as ε
δ to denote its dependence on ε . Finally, suppose that θ i

δ is the

probability capacity corresponding to εi
δ . Then, it turns out that

A θ 2
δ A

1 ε2
1 ε1

θ 1
δ A if θ 1

δ A 1 ε1 1 δ

δ ε2δ ε2
δ ε1δ ε1

θ 1
δ A

ε2 ε1 1 δ
δ ε1δ ε1

if θ 1
δ A 1 ε1 1 δ

which shows that θ 2
δ is a convex transformation of θ 1

δ , and hence, θ 2
δ represents more Knightian

uncertainty than θ 1
δ . Then, Theorem 2 shows that an increase in ε decreases the reservation

wage.

5. Lemmas and Proofs

Lemma 1. 0yδ is W t -adapted.

Proof. This is immediate since for any t 0, yδ
t ∑t

T 0 wT χfδ T g cχfδ tg and the components

in the right-hand side are all W t -measurable.

Lemma 2. For any δ ∆ , it holds that

Iw0
δ

w0
1 β

χfδ 0g c β
Z

Iw1
δ w1

dθw0
χfδ 0g

Proof. This holds because

Iw0
δ

lim
T !∞

yδ
0 β

Z
yδ

1 β
Z

yδ
T dθ dθw0

lim
T !∞

yδ
0 β

Z
yδ

1 β
Z

yδ
T dθ dθw0

χfδ 0g

yδ
0 β

Z
yδ

1 β
Z

yδ
T dθ dθw0

χfδ 0g

lim
T !∞

w0 β
Z

w0 β
Z

w0 dθ dθw0
χfδ 0g
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c β
Z

yδ
1 β

Z
yδ

T dθ dθw0
χfδ 0g

lim
T !∞

1 β T 1

1 β
w0 χfδ 0g c β

Z
yδ

1 β
Z

yδ
T dθ dθw0

χfδ 0g

w0
1 β

χfδ 0g c β lim
T !∞

Z
yδ

1 β
Z

yδ
T dθ dθw0

χfδ 0g

w0
1 β

χfδ 0g c β
Z

lim
T !∞

yδ
1 β

Z
yδ

T dθ dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z

Iw1
δ w1

dθw0
χfδ 0g

where the last equality but one holds by the monotone convergence theorem (Lemma A12).

Lemma 3. w0 W V w0 ∞

Proof. Let w0 W , and let δ and t̂ be such that

δ β and t t̂ W t w0
1 t δ¡1

Such δ and t̂ exist by E2. Then,

V w0

lim
T !∞

c w0 β
Z

c 1
i 0wi dθ 0

w0
β T

Z Z
c T

i 0wi dθ 0
wT ¡1

dθ 0
w0

lim
T !∞

W 0 w0 βW 1 w0 β TW T w0

lim
T !∞

W 0 w0 βW 1 w0 β t̂¡1W t̂¡1 w0 β t̂δ¡t̂ β T δ¡T

W 0 w0 βW 1 w0 β t̂¡1W t̂¡1 w0
β δ t̂

1 β δ

where the first inequality holds by Lemmas A2, A9 and A10. The last line of the whole

inequality is finite by E1 and the fact that δ β .

Lemma 4. BV ¡ V ¡, BV V , and for any admissible function V , BV is admissible.

Proof. The first claim holds because w0

BV ¡ w0 max
w0

1 β
c β

Z
V ¡ w1 θw0

dw1

max
w0

1 β
c

1 β
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V ¡ w0

The secnd claim holds because w0

BV w0

max
w0

1 β
c β

Z
V w1 θw0

dw1

max
w0

1 β
c β

Z
lim

T !∞
c w1 β

Z
c T

i 1wi dθ dθw0

max
w0

1 β
lim

T !∞
c β

Z
c w1 β

Z
c T

i 1wi dθ dθw0

max
w0

1 β
lim

T !∞
c w0 β

Z
c 1

i 0wi β
Z

c T
i 0wi dθ dθw0

max
w0

1 β
V w0

V w0

where the third equality holds by the monotone convergence theorem (Lemma A12). The final

claim follows from the first two claims and the fact that BV BV 0 whenever V V 0.

Lemma 5. For any w0 W ,

limt!∞ β t
Z Z Z

V wt dθ 0
wt¡1

dθ 0
w1

dθ 0
w0

0

Proof. Let w0 W , and let δ and t̂ be such that

δ β and t t̂ W t w0
1 t δ¡1

Such δ and t̂ exist by E2. Then, for any t t̂,

β t
Z Z

V wt dθ 0
wt¡1

dθ 0
w0

β t
Z Z

lim
T !∞

c wt β
Z

c 1
i 0wt i dθ 0

wt

β T
Z Z

c T
i 0wt i dθ 0

wt+T ¡1
dθ 0

wt
dθ 0

wt¡1
dθ 0

w0

lim
T !∞

β t
Z Z

c wt β
Z

c 1
i 0wt i dθ 0

wt

β T
Z Z

c T
i 0wt i dθ 0

wt+T ¡1
dθ 0

wt
dθ 0

wt¡1
dθ 0

w0
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lim
T !∞

β t
Z Z

c t
i 0wi β

Z
c t 1

i 0wi dθ 0
wt

β T
Z Z

c t T
i 0 wi dθ 0

wt+T ¡1
dθ 0

wt
dθ 0

wt¡1
dθ 0

w0

lim
T !∞

β t
Z Z

c t
i 0wi dθ 0

wt¡1
dθ 0

w0
β t 1

Z Z
c t 1

i 0wi dθ 0
wt

dθ 0
w0

β t T
Z Z

c t T
i 0 wi dθ 0

wt+T ¡1
dθ 0

w0

lim
T !∞

β tW t w0 β t 1W t 1 w0 β t TW t T w0

lim
T !∞

β tδ¡t β t 1δ¡ t 1 β t T δ¡ t T

β δ t

1 β δ

where the first inequality holds by Lemmas A2, A9 and A10; the first equality holds by the

monotone convergence theorem (Lemma A12); and the third inequality holds by Lemma A9.

The last line of the whole inequality converges to 0 as t ∞ by the fact that δ β .

Lemma 6. For any δ ∆ and for any admissible function V ,

lim
t!∞

Iw0
δ

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

V wt dθwt¡1
χfδ t¡1g dθwt¡2

χfδ 1g dθw0
χfδ 0g 0

Proof. By the iterative applications of Eq 17 , we have for any t 0,

Iw0
δ

w0
1 β

χfδ 0g c β
Z

Iw1
δ w1

dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g

c β
Z

Iw2
δ

1w2
dθw1

χfδ 1g dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

Iwt δ
1wt dθwt¡1

χfδ t¡1g dθwt¡2
χfδ 1g dθw0

χfδ 0g

Therefore, for any t 0,

Iw0
δ

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g
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c β
Z

V wt dθwt¡1
χfδ t¡1g dθwt¡2

χfδ 1g dθw0
χfδ 0g

β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

Iwt δ
1wt dθwt¡1

χfδ t¡1g dθwt¡2
χfδ 1g dθw0Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

V wt dθwt¡1
χfδ t¡1g dθwt¡2

χfδ 1g dθw0
χfδ 0g

β
Z

β
Z w2

1 β
χfδ 2g β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

Iwt δ
1wt dθwt¡1

χfδ t¡1g dθw1Z w2
1 β

χfδ 2g β
Z wt¡1

1 β
χfδ t¡1g

c β
Z

V wt dθwt¡1
χfδ t¡1g dθw1

χfδ 1gdθ 0
w0

χfδ 0g

β
Z

β
Z

β
Z

Iwt δ
1wt V wt dθ 0

wt¡1
χfδ t¡1g dθ 0

w1
χfδ 1gdθ 0

w0
χfδ 0g

β t
Z Z Z

Iwt δ
1wt V wt χfδ t¡1gdθ 0

wt¡1
dθ 0

w1
dθ 0

w0

β t
Z Z Z

max Iwt δ
1wt χfδ t¡1g V wt dθ 0

wt¡1
dθ 0

w1
dθ 0

w0

β t
Z Z Z

V wt dθ 0
wt¡1

dθ 0
w1

dθ 0
w0

where a series of inequalities in the middle holds by successive applications of Lemma A11, and

the last inequality holds by the admissibility of V . Finally, Lemma 5 completes the proof.

Lemma 7. Any admissible solution to Bellman’s equation is the value function.

Proof. Let V be any admissible solution to Bellman’s equation, and let w0 W . This paragraph

shows that V w0 Iw0
δ for any δ ∆ . Let δ ∆ be any stopping rule. Then, that V solves

Bellman’s equation implies that for any t 0,

V w0

w0
1 β

χfδ 0g c β
Z

V w1 dθw0
χfδ 0g
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w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z
V w2 dθw1

χfδ 1g dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

V wt dθwt¡1
χfδ t¡1g dθwt¡2

χfδ 1g dθw0
χfδ 0g

Hence, Lemma 6 proves the claim by the admissibility of V . This paragraph shows that there

exists a stopping rule δ ∆ such that V w0 Iw0
δ . Let δ be the stopping rule such that for

all t 0, δ t as soon as

wt
1 β

c β
Z

W
V wt 1 θwt dwt 1

holds; and δ t otherwise. Then, that V solves Bellman’s equation implies that for any t 0,

V w0

w0
1 β

χfδ 0g c β
Z

V w1 dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z
V w2 dθw1

χfδ 1g dθw0
χfδ 0g

w0
1 β

χfδ 0g c β
Z w1

1 β
χfδ 1g c β

Z wt¡1
1 β

χfδ t¡1g

c β
Z

V wt dθwt¡1
χfδ t¡1g dθwt¡2

χfδ 1g dθw0
χfδ 0g

Again, Lemma 6 proves the claim by the admissibility of V .

Lemma 8. Both of limn!∞ BnV ¡ and limn!∞ BnV are admissible solutions to Bellman’s

equation.

Proof. BnV ¡ is weakly increasing and BnV is weakly decreasing by Lemma 4, and hence,

the limits exist. Lemma 4 also shows that these limits are admissible. Finally, the limits solve

Bellman’s equation by the monotone convergence theorem (Lemma A12).

Proof of Theorem 1. The first half of the claim follows immediately from Lemmas 7 and 8.

The second half of the claim also follows immediately from the proof of Lemma 7.
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Proof of Corollary 1. It suffices to show that V ¤ is weakly increasing in w by the monotonicity

of θ and the definition of R. This, however, follows immediately from the facts that BV is

weakly increasing whenever so is V by the monotonicity of θ , that V ¡ is weakly increasing

(actually it’s constant), and that V ¤ limn!∞ BnV ¡.

Proof of Corollary 2. By the definition of the reservation wage, R is constant. Furhermore, R

satisfies the first equation because

R
1 β

c β
Z

W
V ¤ w θ dw

c β
Z ∞

0
θ w V ¤ w x dx

c βV ¤ R β
Z ∞

V ¤ R
θ w V ¤ w x dx

c βV ¤ R β
Z ∞

V ¤ R
θ w w 1 β x dx

c
β

1 β
R β

Z ∞

R 1¡β
θ w w 1 β x dx

c
β

1 β
R

β
1 β

Z ∞

R
θ w w x dx

where the first equality holds by the definition of R; the second equality holds by the definition

of Choquet integral; the third, fourth, and fifth equalities hold since V ¤ solves Bellman’s equation;

and the final equality holds by the change of variable. To show the second equality, note that

for almost all x, it holds that θ w w x θ w w x (see the proof of Lemma A12).

Then, it follows that

Z ∞

R
θ w w x dx

Z ∞

R
θ w w x dxZ ∞

R
θ w w x c dxZ ∞

R
1 1 θ w w x c dxZ ∞

R
1 θ 0 w w x dx
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Proof of Theorem 2. For each i 1 2, let Bi and V i¤ be the operator defined by 18 and the

value function corresponding to θ i. Then, V w

B2V w max
w

1 β
c β

Z
W

V w0 θ 2
w dw0

max
w

1 β
c β

Z
W

V w0 θ 1
w dw0

B1V w

where the inequality holds by Lemma A8 and 20 . Therefore, it follows that V 2¤ V 1¤ by

this, the fact that BiV 0 BiV whenever V 0 V , and that V i¤ limn!∞ Bi nV ¡ by Lemmas 7

and 8. Finally, we conclude that w

R2 w 1 β c β
Z

W
V 2¤ w0 θ 2

w dw0

c β
Z

W
V 1¤ w0 θ 2

w dw0

c β
Z

W
V 1¤ w0 θ 1

w dw0

R1 w 1 β

where the first inequality holds by the remark made right before, and the second inequality holds

by Lemma A8 and 20 .

APPENDIX

This appendix provides some mathematics for the theory of Choquet capacity, which we

rely upon in the text. We omit the proof whenever it is easily available somewhere in the

literature (see, for example, Dellacherie (1970), Shapley (1971) and Schmeidler (1972, 1986)

among others).

Probability Capacity and Probability Charge Let S be a measurable space, where

is a σ -algebra on S. A probability capacity on S is a function θ : 0 1 which

satisfies

θ φ 0
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θ S 1

and A B A B θ A θ B

A probability capacity is convex if

A B θ A B θ A B θ A θ B (21)

while it is concave if the inequality in 21 is reversed. A probability capacity is a probability

charge if the inequality in 21 holds with an equality.

A capacity θ is continuous from below if

Ai i A1 A2 A3 θ iAi lim
i!∞

θ Ai

A capacity θ is continuous from above if

Ai i A1 A2 A3 θ iAi lim
i!∞

θ Ai

A capacity θ is continuous if it is continuous both from below and from above. Note that

any finite measure is continuous, and that continuity and finite additivity (that is, 21 with the

inequality replaced by the equality) together imply countable additivity.

The conjugate of a probability capacity θ is the function θ 0 : 0 1 defined by

A θ 0 A 1 θ Ac

where Ac denotes the complement of A in S. The core of a probability capacity θ , core θ , is

defined by

core θ P A P A θ A

where is the set of all probability charges on S . Note that a probability charge in the

core of a continuous capacity is countably additive and hence a probability measure.

Lemma A 1. Given a probability measure P on S and a weakly increasing function f :

0 1 0 1 such that f 0 0 and f 1 1, define the function f P : 0 1 by

A f P A f P A

Then f P is a probability capacity. Furthermore, f P is concave (resp. convex, continuous)

when f is a concave (resp. convex, continuous) function.
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Lemma A 2. Suppose θ is a probability capacity. Then θ is concave (resp. convex) if and only

if θ 0 is convex (resp. concave).

Lemma A 3. If θ is a convex probability capacity, then core θ is non-empty.

Choquet Integral Let L S be the space of -measurable functions from S into ,

and let B S be the subspace of L S which consists of the bounded functions. Then, the

Choquet integral of u L S with respect to a probability capacity θ is defined byZ
udθ

Z
S

u s θ ds
Z 0

¡∞
θ s u s x 1 dx

Z ∞

0
θ s u s x dx

unless the expression is ∞ ∞.

Two functions u v L S are said to be co-monotonic if s t S u s u t v s

v t 0.

Lemma A 4 (Monotonicity). Let θ be a probability capacity. Then,

u v B S u v
Z

udθ
Z

vdθ

Lemma A 5 (Positive Homogeneity). Let θ be a probability capacity. Then

u B S a b
Z

a bu dθ a b
Z

udθ

where a in the left-hand side is understood to be a constant function.

Lemma A 6. Let θ be a probability capacity. Then

u B S
Z

udθ 0
Z

udθ

Lemma A 7 (Co-monotonic Additivity). Let θ be a probability capacity. If u v B S are

co-monotonic, then Z
u v dθ

Z
udθ

Z
vdθ
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Lemma A 8. If θ is a convex probability capacity, then

u B S
Z

udθ min
Z

udP P core θ

Lemma A 9. If θ is a convex (resp. concave) probability capacity, then

u v B S
Z

u v dθ resp.
Z

udθ
Z

vdθ

Lemma A 10. If θ is a convex probability capacity, then

u B S
Z

udθ
Z

udθ 0

Lemma A 11. If θ is a convex probability capacity, then

u B S
Z

udθ
Z

vdθ
Z

u v dθ 0

Proof. This holds because Z
udθ

Z
vdθZ

udθ
Z

v u u dθZ
udθ

Z
v u dθ

Z
udθZ

v u dθZ
u v dθ 0Z
u v dθ 0

where the first inequality holds by Lemma A9, the third equality holds by Lemma A6, and the

last inequality holds by Lemma A4.

Lemma A 12 (Monotone Convergence Theorem). (a) Let θ be a probability capacity which

is continuous from below and let un
∞
n 0 be a sequence of -measurable functions such that

u0 u1 u2 u3 and
R

u0 dθ ∞. Then,

lim
n!∞

Z
un dθ

Z
lim
n!∞

un dθ
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(b) Let θ be a probability capacity which is continuous from above and let un
∞
n 0 be a

sequence of -measurable functions such that u0 u1 u2 u3 and
R

u0 dθ ∞. Then,

lim
n!∞

Z
un dθ

Z
lim
n!∞

un dθ

Proof. (b) follows from (a) if we let un and θ be un and θ 0 in (a). We thus prove only

(a). We first note that it holds that

θ u x θ u x

for almost all x. Obviously, θ u x θ u x holds for all x. On the other hand,

x θ u x is weakly decreasing in x, and hence, continuous in x except on at most

countably many points. Let x be a point at which x θ u x is continuous. Then,

θ u x lim
n!∞

θ u x 1 n θ u x

Therefore, (a) holds because

lim
n!∞

Z
undθ

lim
n!∞

Z 0

¡∞
θ un x 1 dx

Z ∞

0
θ un x dx

lim
n!∞

Z 0

¡∞
θ un x 1 dx

Z ∞

0
θ un x dxZ 0

¡∞
lim
n!∞

θ un x 1 dx
Z ∞

0
lim
n!∞

θ un x dxZ 0

¡∞
θ n un x 1 dx

Z ∞

0
θ n un x dxZ 0

¡∞
θ limn!∞ un x 1 dx

Z ∞

0
θ limn!∞ un x dxZ 0

¡∞
θ limn!∞ un x 1 dx

Z ∞

0
θ limn!∞ un x dxZ

lim
n!∞

undθ

where the first and last equalities hold by the definition of the Choquet integral; the second

and sixth hold by the remark we have just made; the third holds by the Lebesgue monotone

convergence theorem; the fourth holds by θ ’s continuity from below; and the fifth holds by the

strict inequality defining the set.
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Note that by the monotone convergence theorem (Lemma A12), all of the above lemmas

concerning the Choquet integral hold true for any continuous capacity θ and for any function

u L S whenever the integral is well-defined.

Capacitary Kernel and Fubini Property A mapping θ : S 0 1 is a capacitary

kernel (from S to S) if it satisfies

s S θs is a probability capacity on S and

B θ¢ B is -measurable.

In particular, if θs is a probability measure for all s, θ is called stochastic kernel.

Lemma A 13 (Fubini Property). Let θ be a capacitary kernel such that s θs is continuous.

Then for any -measurable function u, the mapping

s
Z

u s s θs ds

is -measurable.

Proof. Given E and s S, we denote by E s the s-section of E: E s s0 S s s0

E . We first prove that the mapping s θs E s is -measurable for any E . Define

by

E s θs E s is -measurable

Then the collection of finite disjoint unions of rectangles is a subfamily of because, if

E n
i 1 Ai Bi where Ai Bi and Ai Bi A j B j φ for i j, then

θs E s max
N 0½f1 2 ng

θs i2N 0Bi I\i2N 0 Ai
s

and the right-hand side is -measurable. It remains to show that is a monotone class. To this

end, let En
∞
n 1 and En E. Then En s E s for any s S and limn!∞ θs En s θs E s

by the continuity of θs , which implies E . The similar argument applies to decreasing

sequences. We now prove the theorem for the simple functions which is sufficient thanks to the

monotone convergence theorem (Lemma A12). Let u be a simple function on S S. Then, we
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can write u s s ∑n
i 1 aiχEi

s s , where 0 a1 an, χ is the indicator function, and

Ei is a partition of S S. It follows that

s S
Z

u s s θs ds
Z n

∑
i 1

aiχEi
s s θs ds

Z n

∑
i 1

aiχEi s s θs ds

n

∑
i 1

ai ai¡1 θs
n
k i Ek s

n

∑
i 1

ai ai¡1 θs
n
k iEk s

where a0 0 and the third equality holds by the definition of Choquet integral. Then the claim

follows since the last expression is -measurable by the first paragraph.
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