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Abstract

We present a brief overview of recent developments on discounted
repeated games with (imperfect) private monitoring. The literature ex-
plores the possibility of cooperation in a long-term relationship, where
each agent receives imperfect private information about the opponents’
actions. Although this class of games admits a wide range of applica-
tions such as collusion under secret price-cutting, exchange of goods
with uncertain quality, and observation errors, it has fairly complex
mathematical structure due to the lack of common information shared
by players. This is in sharp contrast to the well-explored case of re-
peated games under public information (with the celebrated Folk The-
orems), and until recently little had been known about the private
monitoring case. However, rapid developments in the past few years
have revealed the possibility of cooperation under private monitoring
for some class of games. Journal of Economic Literature Classification
Numbers: C72, C73, D43, D82, L.13, L41

*To appear in the symposium issue of Journal of Economic Theroy on repeated games
with private monitoring. This is an outgrowth of my presentation at International Con-
ference on Game Theory at Stony Brook 1996 and Cowles Foundation Conference on
Repeated Games with Private Monitoring 2000. I thank George Mailath for helpful com-
ments and discussion.



1 A Simple, Hard Open Question

The theory of repeated games provides a formal framework to explore the
possibility of cooperation in long-term relationships, such as collusion be-
tween firms, cooperation among workers, and international policy coordina-
tion. The extensive literature has by now established that efficiency can be
achieved under fairly general conditions (the Folk Theorems). However, vir-
tually all those existing results heavily rely on one crucial assumption, which
does exclude a number of important applications. The key assumption in
the existing literature is that players share common information about each
other’s actions. The present article provides an overview of rapidly growing
recent literature, which relaxes this restrictive assumption.

In the perfect observability case (see, for example, the Folk Theorem by
Fudenberg and Maskin [19]), players commonly observe actual actions, and
in the imperfect monitoring case explored by the majority of the existing
literature (see Green and Porter [20], Abreu, Pearce and Stacchetti [3] and
Fudenberg, Levine and Maskin [18]), players observe a common signal in
each period, which is an imperfect indicator of the actions taken in the
current period. For example, in the model of collusion proposed by Green
and Porter, each firm secretly chooses its own output level and all the firms
commonly observe the market price. The market price reflects the firms’
actions (quantities supplied), but it is also subject to demand shocks. Hence
the market price provides imperfect but commonly shared information about
the actual actions taken by the firms.

In contrast, consider the situation where firms offer secret price cutting
to their customers. The firms are not able to observe others’ secret offers,
but they can obtain some information from their own sales. When a firm’s
sales slump, it might be caused by the secret price cutting of its rival firms.
It is not, however, a perfect indicator, as the slumped sales might also be
caused by low demand. Note the similarity and difference between Green
and Porter’s model and the secret price cutting story. Both assume that
the players’ actions are imperfectly monitored, but in the former the play-
ers publicly observe the same signal (the market price) while in the latter
each player receives private information (one’s own sales). As we will see
in detail in Section 2, this seemingly minor change makes a substantial dif-
ference in terms of the tractability of the model. In contrast to our nearly
perfect understanding of the (perfect or imperfect) public monitoring case,
our knowledge about repeated games with imperfect private monitoring is
quite limited. However, in the past few years, this has become an active field
of research, and a number of new findings have been obtained. A majority



of those were presented in the Cowles Foundation Conference on Repeated
Games with Private Monitoring in April, 2000 and are put together in the
current special issue of Journal of Economic Theory.

1.1 The Model and Applications

Let us now formally define a discounted repeated game with (imperfect)
private monitoring. Players ¢ = 1,..., N repeatedly play the same stage
game over infinite time horizon, ¢ = 0, 1,.... In each stage, player ¢ chooses
action a; € A; and then observes a signal w; € ;. The action a; and signal
w; are player i’s private information. The probability of private signals

w = (w1, ,wn) depends on the current actions profile a = (aq,...,an)
and is denoted by p (w|a). Player i’s expected payoff in the stage game is
given by gi(a) = u;i(a;,w;)p (w| a), where u; represgnts player ¢’s realized

payoff'. Each player i maximizes discounted payoff 2 g;(a(t))ét, where
a(t) is the action profile at ¢ and 6 € (0,1) is the discount factor. Note
that the existing models of repeated games with public monitoring can be
regarded as (degenerate) special cases of this formulation. The case with
w; = a for all 7 corresponds to the perfect monitoring case, while the case
with wy = -+ = wy represents the imperfect public monitoring case. As one
can see, the model of repeated games with private monitoring is fairy simple,
yet we have only limited knowledge about what the players can achieve in
such a game. This is probably one of the best known long-standing open
questions in economic theory.

The private monitoring case includes a number of important economic
applications. We have already discussed collusion under secret price cutting.
Another prominent example is exchange of goods with uncertain quality.
Two players © = 1,2 exchange goods, and the quality of the goods is ran-
domly determined by the unobservable effort level of the supplier. Here, a;
and w; correspond respectively to player i’s effort and the quality of good she
receives, both of which are her private information. Finally, in any repeated
game, if players are subject to observation errors, the resulting game be-
comes one with private monitoring. (Here, w; corresponds to i’s observation
of actions by other players, say, a_; plus some noise?.)

!This formulation makes sure that realized payoff conveys no more information than
is already contained in a; and w;. In the secret price cutting story, firm i’s realized profit
u; depends on its price a; and sales w;. Also note that this is without loss of generality,
as we can always redefine private signal as w; = (wi, u;).

2 As player i’s realized payoff may well be a function of the actual actions as opposed to
the observed actions, the realized payoff may convey some additional information. Hence



1.2 An Illustration of the Current State of Art - Prisoner’s
Dilemma

Let us now briefly summarize the current state of our knowledge about
repeated games with various information structures. For the reader’s con-
venience, | will exemplify the general results in terms of repeated prisoner’s
dilemma game, whose stage payoff table is given by Table 13.

C D
1,1 —LL1+g
1+g,-1 0,0

T Q

Table 1

In the perfect monitoring case, any outcome which dominates the mini-
max payoff profile* (0,0) can be sustained by a subgame perfect equilibrium
of the repeated game, when discount factor § is close to 1 (the Folk Theo-
rem by Fudenberg and Maskin [19]). This result holds for any game with a
generic choice of stage game payoff functions.

Under imperfect public monitoring, basically the same region of payoffs
can be sustained when the publicly observable signal w € Q takes on suffi-
ciently many values. In the prisoner’s dilemma game, the Folk Theorem by
Fudenberg, Levine and Maskin [18] implies that for a generic signal distri-
bution p (w|a), the same area of payoffs as in the perfect monitoring case
can be (approximately) sustained, if discount factor is sufficiently close to
one, as long as € contains at least three elements®.

In contrast, we do not yet have a fully general characterization of payoffs
achieved under imperfect private monitoring. In fact, although it deceivingly

one may assume that player i’s signal consists of her observation and realized payoff
(and that the latter is subject to random shocks so that it does not perfectly reveal
others’ actions). Alternatively, we may assume that the game is terminated with a certain
probability ¢ in each stage, and the players observe or receive the actual (total) payoff only
after the game is terminated. (Note that when players do not discount, this is isomorphic
to the game with discount factor 1 — ¢, where the players receive no more information
than their observations.)

3Here, we assume g,1 > 0 (D is a dominant strategy) and 1 > g — I ((C, C) is Pareto
efficient).

*Player ’s minimax payoff, min,_, max., g:(a), is the payoff which she can guarantee
herself in any equilibrium. It corresponds to 0 in the prisoner’s dilemma game.

°In general, the folk theorem holds for a generic choice of payoff function and signal
distribution, as long as |Q| > |Ai|+|A;|—1 for each pair of players ¢ # j. One can check that
the ”individual and pairwise full rank conditions” assumed in Fudenberg-Levine-Maskin
folk theorem is generically satisfied under this condition.



looks like a simple homework exercise, just constructing any equilibrium
(apart from the repetition of the stage game equilibrium) is far from trivial
for the reasons explained in the next section. Hence, Sekiguchi [33] came
as a surprise, which was the first to construct an equilibrium that can ap-
proximately sustain the cooperative payoff (1,1) in the prisoner’s dilemma
game under private monitoring, assuming that the monitoring structure is
nearly perfect. Sekiguchi’s work initiated the rapidly growing literature,
and Bhaskar and Obara [8] extended Sekiguchi’s construction to support
any point Pareto dominating (0,0), when monitoring is private but almost
perfect. Piccione [31] introduced a completely different, useful technique
to support essentially the same area under almost perfect monitoring. All
those works employ some conditions on payoffs and/or information struc-
ture, but Ely and Valimaki [15], who extended Piccione’s technique, man-
aged to remove those assumptions and proved the folk theorem for the pris-
oner’s dilemma with private monitoring, when monitoring is almost perfect.
A strong result is obtained recently by Matsushima [29], who further ex-
tended Ely and Valimaki’s construction to show that their folk theorem
continues to hold even if monitoring is far from perfect, as long as private
signals are distributed independently (given an action profile).

2 The Difficulties Associated with Private Moni-
toring

Why is the private monitoring case so different from the (perfect or imper-
fect) public monitoring case? Basically, when players do not share common
information, we encounter two major difficulties. Firstly, the games un-
der private monitoring lack the recursive structure in the sense of Abreu,
Pearce and Stacchetti [3], so that the set of equilibria does not possess a
simple characterization. Secondly, at each moment of time, players must
conduct statistical inference (not only to detect potential deviations, as in
the imperfect public monitoring case, but also) on what others are going to
do, which can be quite complex. Let us explain each of them in turn.
Under public monitoring, players can condition their actions on com-
monly observed events. In perfect monitoring case, all strategies share this
nature, and the majority of existing literature in imperfect public monitor-
ing case focuses on such behavior, called public strategies. Public strategies
specify actions in each stage depending only on the history of commonly ob-
served signal (hence the history of one’s own action is ignored). Equilibria
in this class of strategies (perfect public equilibrium) turned out to be rich



enough to obtain the various Folk Theorems for the public monitoring case.

When players condition their future action plans on commonly observed
events, after any history, they play a Nash equilibrium of the remaining
game, which is identical to the original infinitely repeated game. This means
that, after any history, the set of continuation payoffs is always equal to the
equilibrium payoff set of the repeated game. This is the recursive structure
explored by Abreu, Pearce and Stacchetti [3]. Note that the continuation
payoffs at time ¢ is generated by current stage game payoffs and the continu-
ation payoffs at t+1. We can write down this relationship as W, = B(Wy41),
where Wj is the set of continuation payoffs at time s. Thanks to the recur-
sive structure, the set W* of perfect public equilibrium payoffs in (perfect
or imperfect) public monitoring case is characterized by simple fixed point
(or ’self-generating’) equation, W* = B(W™*).

Under private monitoring, however, such a simple characterization is no
longer available. At each moment ¢, player ¢ conditions her action on the his-
tory of her action and private signal, (a;(0),...,a;(t — 1), w;(0), ...,w;(t — 1)),
which is only known to her. We call it her private history and denote it by
hf. On the equilibrium path in a private monitoring game, the probability
distribution of private histories is common knowledge, and they are taking
mutual best replies. This means that the continuation play at time ¢t > 0
on the equilibrium path is a correlated equilibrium of the repeated game,
where the private histories play the role of correlation device. Note that
the correlation device (hf, ..., hY;) becomes increasingly more complex over
time, so the set of continuation payoffs (the associated correlated equilib-
rium payoffs) generally changes. A part of the stationary structure in the
public monitoring case is lost here. Compte [11] considers a repeated pris-
oner’s dilemma game with private monitoring where defection is irreversible,
and he shows that a kind of stationarity can be recovered by introducing a
correlation device at ¢ = 0. He constructed an equilibrium where efficiency
is achieved as the discount factor tends to 1.

Furthermore, when a player deviates, she knows that the distribution of
private histories are altered, which is not known to other players. Hence,
after a deviation, the distribution of the correlation device (private histories)
is no longer common knowledge, and therefore the continuation play off the
equilibrium path is not even an equilibrium of the original game®. Hence, the

6 Alternatively, one can view the continuation game at time ¢ as a Bayesian game,
where the beliefs on types h! are given by conditonal distributions Pr(h’;|ht). (This is
somowhat non-standard definition, as the conditional type distributions are not derived
by a common prior.) Then, the contiuation strategy profile, which specifies the play on
and off the equlibrium path, can be regarded as a Bayesian Nash equlibrium of this game.



recursive structure found in the public monitoring case, i.e., the property
that the continuation payoff after any history is chosen from the identical set
of equilibrium payoffs, is lost under private monitoring. As a result, the set of
equilibria cannot be characterized by the simple self-generation condition,
which played a major role in the analysis of the public monitoring case.
Amarante [4] shows that certain aspects of the recursive structure survive
in the private monitoring case. In particular, a version of the successive
approximation method 7 to find equilibrium payoff set remains to be true.

The second difficulty is that checking incentives in each stage requires
fairly complex statistical inference. To determine the best strategies at each
moment of time, players must know what others are going to do. This is
immediate under public monitoring when they use public strategies, as the
future action plans are always common knowledge. Under private monitor-
ing, however, each player must make a statistical inference about others’
private histories to determine what they are going to do. In other words,
player i should calculate conditional distribution Pr(h’|hl) by Bayes’ rule
in each stage t, and this can become increasingly more complex as time
passes by. Hence, checking a player’s incentives after all histories is typically
quite demanding (even though others are using relatively simple strategies),
and as a result just constructing any equilibrium (other than the repetition
of the one-shot Nash equilibrium) under private monitoring turns out to be
a non-trivial task.

Finally, note that even in the public monitoring case, we encounter the
same difficulties as described above, once we consider strategies that are
not public (i.e., the ones where current action depends on one’s own past
actions; we call such strategies private). Hence closely related techniques
and results are obtained both for private equilibria in public monitoring case
and for private monitoring case. Kandori [23] and Obara [30] (combined to
appear in [25]) show that private equilibria can payoff-dominate any public
equilibrium in repeated games with imperfect public monitoring. Mailath,
Matthews and Sekiguchi [28] demonstrate various methods to construct pri-
vate equilibria in finitely repeated games with public monitoring.

"This method considers a finite (T') repetition of stage game plus arbitrary terminal
payoff function, whose range is a sufficently large bounded set. It is shown that a strategy
profile in the infinitely repeated game is an equilibrium if and only if it is the limit of the
equilibrium of the T-stage game (as T — 00).



3 Prior Contributions

There are some prior contributions which manage to bypass the aforemen-
tioned difficulties.

No Discounting or e-Rationality: Firstly, efficient equilibria under
private monitoring have been obtained in the case with no discounting or
approximate optimization (where € loss in the average discounted payoff is
tolerated), by Radner [32], Fudenberg and Levine [17] and a series of papers
by Lehrer (for example, see [26]). In those settings, each player has to devi-
ate infinitely often to get any payoff improvement, and as a result checking
incentives is relatively easy. However, as this property no longer holds in
discounted case with full rationality, the proposed equilibrium strategies in
those works do not work, once we have any amount of discounting and full
rationality. The continuity between the discounted and undiscounted cases
remains to be seen.

Communication: Secondly, Compte [9] and Kandori and Matsushima
[24] demonstrated that introducing communication at each stage of a re-
peated game solves the aforementioned difficulties, and they proved the folk
theorems. At each stage, players are asked to reveal their private signals,
and they can tell a lie if that is profitable. However, by constructing equi-
libria where one’s report is used to police other players and does not affect
one’s own future payoff, players can be induced to tell the truth. Given
this idea, we can construct equilibrium strategies which only depend on the
publicly observable history of communication. This is similar to the perfect
public equilibria in the public monitoring case. With analogous assumptions
to Fudenberg, Levine and Maskin [18)’s pairwise full rank condition, the folk
theorem is obtained when there are at least three players®. Recent paper
by Aoyagi [1] demonstrates an alternative way to construct an efficient equi-
librium with communication. He shows that a version of the secret price
cutting example discussed in Section 1.1 has a special information structure
to facilitate nearly efficient collusion by a simple equilibrium with communi-
cation, which works quite differently from Compte or Kandori-Matsushima.

As one may argue that communication is readily available in a number
of applications, we have to examine carefully the motivation to study the
private monitoring case without communication. First note that there are
some cases where communication is simply not feasible. The example of
exchange of goods discussed in 1.1 may be regarded as a stylized version

8In the two-player case, the folk theorem can be obtained by infrequent communication.
This is based on the idea of Abreu, Milgrom and Pearce [2] that delaying the release of
information helps to achieve efficiency.



of the medieval long distance trade, where there was no effective means
of communication between the traders living in the different areas. More
importantly, even in the modern age communication to facilitate collusion
between firms is often infeasible, as it is deemed illegal by the antitrust
law. An important motivation to study the case without communication
is to determine the effectiveness of such provision in the anti trust law, as
we already know that full collusion is possible with communication under
mild assumptions. Secondly, if communication is subject to some noise,
the resulting game becomes again the one with private monitoring, as is in
the observation error model we discussed in Section 1.1. Lastly, from the
point of view of pure theory, it is important to determine what is possible
if players share no common information.

Partial Observation: There are also related prior contributions to ex-
amine specific classes of private monitoring games. The case where each
player’s action is perfectly observed by a subset of players is examined by
Kandori [22], Ellison [13] and Ben-Porath and Kahneman [6]. A leading
example is a random matching game, where each player only observes what
her opponents have done to her. In the former two papers, it is shown
that efficient outcome is achieved without communication in repeated pris-
oner’s dilemma with random matching, by means of ’contagion’ strategies.
Kandori also shows the folk theorem provided that what one observes in
today’s match is (honestly) passed on to her next match. Ben-Porath and
Kahneman showed the folk theorem with communication. A general char-
acterization of equilibrium without communication in this class is subject
to the same difficulties discussed in the last section, and it is yet to be
obtained.

4 Insights from Two-Period Examples

In this section we present, by means of simple two-period examples, some of
the basic ideas of the papers appearing in this issue. Consider a two-stage
game whose first period game is given by the prisoner’s dilemma game in
Table 1. At the end of the first stage, each player ¢ = 1,2 receives a private
signal w; € {c,d}, whose distribution depends on the action profile in the
first stage, denoted by a € {C, D} x {C,D}.

4.1 Coordinated Punishment

Firstly, let us assume that the second stage game is given by Table 2.



X |Y
X 122100
Y | 0,0]1,1

Table 2

If errors in the signals (i) occur with small probabilities and (ii) are
sufficiently correlated”’, then cooperation (C,C) can be achieved by much
the same way as in the perfect/public monitoring case. It is easy to check
that the ” coordinated punishment strategy”,

(*) playing C in the first period and then choosing X

if and only if one’s own action and signal were C' and ¢

is an equilibrium. A natural conjecture is that there should be continuity
between the public monitoring case and the private monitoring case with
highly correlated signals. However, Mailath and Morris [27] present an
example where this fails. They go on to show that the continuity holds under
some assumptions. Specifically, if an equilibrium in public a monitoring
game gives strict incentives and specifies current action depending on a
finite history of public signal, then there is a similar equilibrium in the
private monitoring game with highly correlated signals

If the private signals are independent (given each action profile), in con-
trast, cooperation (C,C) cannot be sustained by any pure strategy, even
though observability is nearly perfect. Suppose both players adopt strategy
(*) above and assume that player 1 receives w; = d. By the equilibrium
expectations player 1 believes that this is an ”"error” and opponent actually
played C'. As”errors” are not correlated across players and occur with small
probabilities, player 1 also believes that the opponent is observing ¢ with a
high probability, as player 1 chose C' in the first period. Hence 1 believes
that the opponent is going to choose X with a high probability, and she
is not willing to "punish’ the opponent even though her highly informative
signal takes the value d.

However, Bhaskar and van Damme [7] show that cooperation (C,C) can
be sustained with a large probability by (i) mixed strategies in stage one
and (ii) public randomization in stage two. If the players mix in the first
period, the players receive correlated information, (a1,w;) and (ag2,ws), even
though the signals are independent. Note that a; and w; (¢ # j) are highly
correlated, as errors are rare. With this correlation device, the players can

"'We say that we have an error if we have w; = d when a2 = C, and so on. The errors
are positively correlated if my opponent is more likely to get an error when I get one.

10



utilize the coordinated punishment, where player ¢ plays X if and only if
(aj,w;) = (C,¢). The public randomization in the second stage, in con-
trast, is necessary for a somewhat subtle reason. In the mixed strategy
equilibrium, the players are indifferent between C' and D, and the equilib-
rium payoff should be, in particular, equal to the payoff associated with D.
When the signals are accurate, this is detected with a large probability and
punishment is triggered in the second period. Hence, if the punishment is
severe, the overall payoff becomes low. If we mitigate the punishment by
public randomization, however, we can increase the equilibrium payoff, and
the efficient payoffs can be approximately achieved!©.

The coordinated punishment idea, originally proposed in the earlier ver-
sion of Bhaskar and van Damme [7] in a two period example, was substan-
tially extended by Sekiguchi [33] to infinitely repeated games. Specifically,
he showed that the symmetric efficient payoff can be sustained in the pris-
oner’s dilemma game with private monitoring, provided that the signals are
sufficiently accurate and the discount factor is close to 1. The equilib-
rium is basically a mixture of the trigger strategy and permanent defection,
where the original game is divided into K independent repeated games,
each of which is played in every K period. This has the same effects as
restarting the game anew in each period with a certain probability. We
can see in this construction the crucial features of the above example; the
use of mixed strategy and public randomization (i.e., restarting the game
anew). Bhaskar and Obara [8] managed to provide a very much simplified
version of Sekiguchi’s equilibrium and showed that asymmetric payoffs can
also be sustained. They also consider the prisoner’s dilemma with /N play-
ers. Sekiguchi [34] relaxes some assumptions on the information structure
in his original paper, by introducing a new method of identifying equilibrium
paths without fully constructing the equilibrium strategies.

Compte [10] shows that it is vital to restart the game in their equilibria:
the grim trigger strategies, where the game is never stared anew, achieve no
cooperation when discount factor is close to unity under private monitoring.
As this is true even if the observability is nearly perfect, Compte’s result
suggests that a certain discontinuity exists between perfect and almost per-
fect private monitoring case. A recent paper by Ely [14], in contrast, shows
that the discontinuity is resolved if we view the grim trigger strategies as
degenerate correlated equilibria. Namely, he shows that there exists a se-

!0Fgsentially the same issue arises in the literature on the Stackelberg game under
observation errors (Bagwell [5] and van Damme and Hurkens [12]). See Bhaskar and van
Damme [7] for details.

11



quence of correlated equilibria under private monitoring converging to the
grim trigger strategies, as the signaling noise goes to zero.
4.2 Uncoordinated Punishment

Let us go back to the two stage example and suppose that the second stage
game is now given by Table 3.

Xo | ¥
X, 5615
Y: 16,0 0,1

Table 3

This is essentially the matching pennies game, with unique equilibrium
being the equal mix of each action. Note that X; is a rewarding action
that gives high payoffs to the opponent, while Y; offers low payoffs and can
potentially be used as punishment. Assume that signals are independent
and have small probabilities of errors, and consider the following action plan
in the second stage. If player ¢’s signal was d, she plays the punishing action
Y; for sure. If the signal was ¢, on the other hand, she mixes X; and Y;
in such a way that the overall probability of taking X; or Y; is just equal
to 1/2 (the mixed strategy equilibrium of the second stage game). Given
this action plan, the opponent has an incentive to play C' in the first stage
(as long as the gain from deviation ¢ is not too large), because defection
increases the probability of punishment Y;. As a result, cooperation (C, ()
in the first stage followed by the unique (mixed strategy) equilibrium in the
second stage can be sustained as an equilibrium. This is the basic idea in
Kandori [21]'.  The crux of the matter is that each player is indifferent
between rewarding and punishing actions, so that she does not object to
play the latter when she receives a ’bad’ signal. The basic idea may be
phrased as ” uncoordinated punishment”, to be contrasted to the coordinated
punishment discussed above.

"Kandori [21] considers the same stage game repeated in each stage; a strictly domi-
nated action C is introduced to the game in Table 3, where (C, C') achieves the symmetric
efficient payoffs. By the same argument, it is shown that (C,C) can be sustained in the
first stage. This shows that cooperation can be sustained in a finitely repeated game even
though the stage game has a unique equilibrium, when the monitoring structure is private.
Also note that repeating the two-stage equlibrium is an equilibrium of the ininfinitely
repeated version of this game, and to the best of my knowledge this is the first example
of an equilibrium in private monitoring game which is not a repetition of one-shot Nash
equlibrium.

12



Piccione’s paper [31] introduced a general technique to construct unco-
ordinated punishment in infinitely repeated games. Note that, if we had
more than two stages, constructing a similar example to the one presented
above would be fairly complex, as computing one’s beliefs about the oppo-
nent’s private history is a tedious task even after a few stages (the second
difficulty discussed in Section 2). Piccione introduced an ingenious idea,
which makes this problem irrelevant. He considers the repeated prisoner’s
dilemma with private monitoring, and constructed an equilibrium strategy
represented by an automaton with countably many states. Piccione showed
that it is possible to construct an automaton in such a way that each player
is always indifferent to play C' and D no matter which state the opponent
s in. Piccione’s construction is similar to the two period game where the
second stage game is given in Table 4.

X |Y
X |1,1]0,1
Y | 1,0 ] 0,0

Table 4

Note that in Table 4 each player is always indifferent between X and Y
no matter what the opponent does. Hence she can reward (by playing X)
or punish (Y') the opponent according to her private signal, irrespective of
the opponent’s behavior in the second stage game. Likewise, in Piccione’s
equilibrium each player does not have to compute her beliefs about what her
opponent has been observing, which provides a drastic simplification of the
analysis (the second difficulty mentioned in Section 2 is resolved). Piccione
endogenously derives continuation games similar to Table 4 by showing that
the system of dynamic programming equations for value functions has a
relevant solution. With some restrictions, Piccione showed the folk theorem
for the prisoner’s dilemma, when monitoring error tends to zero.

Piccione’s construction is substantially simplified independently by Ely
and Valimaki [15] and Obara [30] (to appear in Kandori and Obara [25]).
They showed that construction similar to Piccione’s can be obtained by just
two states, and this sweeping simplification broke new ground and provided
the possibility to extend the analysis in various directions. Ely and Vali-
maki managed to remove information or payoff restrictions for the previous
folk theorems for the prisoner’s dilemma with almost perfect monitoring,
and they also examine more general stage games. Obara emphasizes that
the same construction can be used to construct private equilibria in public

13



monitoring case!?, and showed that sometimes private strategy equilibria

dominates public equilibria. Obara [30] and a recent paper by Ely and
Valimaki [16] characterize the maximum payoffs associated with those class
of equilibria.

A recent paper by Matsushima [29] further extends the above ideas to
prove the folk theorem for the prisoner’s dilemma even though the monitor-
ing is far from perfect. This paper combines the idea of Ely, Valimaki and
Obara and Abreu, Milgrom and Pearce [2]. The latter showed that delay-
ing the release of information can improve efficiency. Matsushima redefines
the stage game as the T times repetition of the original stage game, where
information is pooled for a statistical testing to determine future payoffs.
Matsushima showed that it is possible to modify Abreu et al’s statistical
testing to make ’always cooperate for T periods’ and ’always defect for T
periods’ indifferent and all other strategies strictly worse. This effectively
reduces the stage game strategies into those two. Given this, and when T
is large, the resulting stage game is the one with almost perfect monitoring
(note that deviating T times can easily be detected, when T is large), and
the two-state automata construction of Ely-Valimaki-Obara, which works
when monitoring is nearly perfect, can be applied to prove the folk theorem.

Bhaskar (see [7] and [8]) questions the robustness of those works built on
the uncoordinated punishment idea. He shows that those mixed strategy
equilibria do not admit Harsanyi’s purification, if the payoff perturbations
are additively separable, as the repeated game payoffs are.

12 An advantage of this class of equlibria is that the beliefs about the opponent’s state is
irrelevant, and this means that the strategies work irrespective of the degree of correlation
of the signals. In particular, they also work when the signals are perfectly correlated,
which is nothing but the public monitoring case.
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