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Abstract
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1. Introduction

This paper investigates infinitely repeated prisoner-dilemma games, where the
discount factor islessthan but closeto 1. We assume that players not only imperfectly but
also privately monitor their opponents’ actions. Players cannot observe their opponents
actions directly, but can only observe their own private signals that are drawn according
to a density function over closed intervals conditiona upon the action profile played.
There are no public signals.

We assume that players private signals are conditionally independent, i.e., players
can obtain no information on what their opponents have observed by observing their own
private signals. We show that the Folk Theorem holds in that every individually rational
feasible payoff vector can be sustained by a sequentia equilibrium in the limit of the
discount factor. This result is permissive, because we require almost no conditions
concerning the accuracy of players private signals.

The study of repeated games with private monitoring is relatively new. Most earlier
works in this area have assumed that monitoring is either perfect or public and have
investigated only perfect public equilibria. It iswell known that under a mild condition,
every individually rational feasible payoff vector can be sustained by a perfect public
equilibrium in the limit of the discount factor, provided that monitoring is imperfect but
public.* Perfect public equilibrium requires that the past histories relevant to future play
are common knowledge in every period. This common knowledge property makes
equilibrium analyses tractable, because players' future play can always be described asa
Nash equilibrium.?

Asthe signa is not public in the present paper, the Folk Theorem is not immediate
and the problem is more delicate. When monitoring isonly private, it isinevitable that an
equilibrium sustaining implicit collusion depends on players private histories, and
therefore, the past histories relevant to future play are not common knowledge. This
makes equilibrium analyses much more difficult, especialy in the discounting case,
because players’ future play cannot be described as a Nash equilibrium. Even when a
player is certain that a particular opponent has deviated, the other players will typically
not share this certainty, and they will be unable to coordinate on an equilibrium that
punishes the deviant in the continuation game. Nevertheless a more complicated
argument establishes the Folk Theorem.

Hence, we have the Folk Theorem with completely public signals on the one hand,
and we have the Folk Theorem even with completely private signals on the other hand.

To the best of my knowledge, Radner (1986) isthefirst paper on repeated gameswith
private monitoring. Radner assumed no discounting, and showed that every individually
rational feasible payoff vector can be sustained by a Nash equilibrium.® The two papers

! See Fudenberg, Levine, and Maskin (1994). For the survey, see Pearce (1992).

2 With imperfect public monitoring, Obara (1999) and Kandori and Obara (2000) investigated the
role of private strategiesthat depends on the chosen actions aswell asthe observed public signals.
They showed that efficiency can be drastically improved by using private strategies.

% See also Lehrer (1989) for the study of repeated games with no discounting and with private
monitoring. Fudenberg and Levine (1991) investigated infinitely repeated games with



by Matsushima (1990a, 1990b) appear to be thefirst to investigate the discounting case.
Matsushima (1990a) provided an Anti-Folk Theorem, showing that it is impossible to
sustain implicit collusion by pure strategy Nash equilibria when private signals are
conditionally independent and Nash equilibria are restricted to be independent of
payoff-irrelevant private histories. The present paper establishes the converse result: the
Folk Theorem holds when we use pure strategy Nash equilibria that can depend on
payoff-irrelevant private histories.

Matsushima (1990b) conjectured that a Folk Theorem type result could be obtained
even with private monitoring and discounting when players can communicate by making
publicly observable announcements. Subsequently, Kandori and Matsushima (1998) and
Compte (1998) proved the Folk Theorem with communication. Communication
synthetically generates public signals and consequently it is possible to conduct the
dynamic analysis in terms of perfect public equilibria as in the paper by Fudenberg,
Levine and Maskin (1994) on the Folk Theorem with imperfect public monitoring. The
present paper assumes that players make no publicly observable announcements.

Interest in repeated games with private monitoring and no communication has been
stimulated by a number of recent papers, including Sekiguchi (1997), Bhaskar (1999),
Piccione (1998), and Ely and Valimaki (1999). Sekiguchi (1997) investigated arestricted
class of prisoner-dilemma games on the assumption that monitoring was almost perfect
and that players private signals were conditionally independent. Sekiguchi was the first
to show that an efficient payoff vector can be approximated by a mixed strategy Nash
equilibrium payoff vector even if players cannot communicate. By using public
randomization devices, Bhaskar and Obara (2000) extended Sekiguchi’s result to more
general games.

Piccione (1998) and Ely and Vaimaki (1999) also considered repeated
prisoner-dilemma games when the discount factor is close to 1, and provided their
respective Folk Theorems. Both papers constructed mixed strategy equilibria in which
each player is indifferent between the right action and the wrong action irrespective of
her opponent’s possible future strategy. Piccione used dynamic programming techniques
over infinite state spaces, while Ely and Valimaki used two-state Markov strategies. Both
papersinvestigated only the almost-perfect monitoring case, and most of their arguments
rely heavily on this assumption.*

Mailath and Morris (1998) investigate the robustness of perfect public equilibria
when monitoring is amost public, i.e., each player can always discern accurately which
private signal her opponent has observed by observing her own private signal. The
present paper does not assume that monitoring is almost public.

In consequence, this paper has many substantial points of departure from the earlier
literature. We assume that there exist no public signas, players make no publicly
observed announcements, and there exist no public randomization devices. We do not
require that monitoring is either almost perfect or almost public. Hence, the present paper
can be regarded as the first work to provide affirmative answers to the possibility of
implicit collusion with discounting when monitoring is truly imperfect and truly private.

discounting and with private monitoring in terms of epsilon-equilibria
*In the last section of his paper, Piccione provides an example in which implicit collusion is
possible even if players’ private observation errors are not infinitesimal.



As such, this paper may offer important economic implications within the field of
industrial organization. In the real economy, communication between rival firms
executives is restricted by Anti-Trust Law, on the assumption that such communication
enhances the possibility of a self-enforcing cartel agreement.® Moreover, in redlity, firms
usually cannot directly observe the prices or quantities of rival firms and the aggregate
level of consumer demand is stochastic. Instead, each firm's only information about its
opponents actions within any particular period, is its own realized sales level and,
therefore, each firm cannot know what its opponents have observed. These
circumstances tend to promote the occurrence of price wars, as each firm cannot know
whether afall initsown salesisdueto afall in demand or asecret price cut by arival firm.
In this way, it has been widely believed that a cartel agreement is most likely to be
breached when each firm’s monitoring of its opponents actions is truly private.® In
contrast, the present paper shows that collusive behavior is possible even if
communication is prohibited and each firm obtains no public information on the prices or
quantities of itsrivals.

Thetechnical aspect of the present paper isclosely related to Piccione (1998) and Ely
and Valimaki (1999), particularly the latter. The paper is aso related to Matsushima
(1999), which investigated the impact of multimarket contact on implicit collusion in the
imperfect public monitoring case and provided the efficiency result by using theidea of a
review strategy equilibrium. Our equilibrium construction may be viewed as extending
the equilibrium construction of Ely and Valimaki combined with that of Matsushima to
general private signal structures.

Furthermore, we consider the situation in which players have limited knowledge of
their private signal structures as follows. Each player knows her own private signal
structure, but does not know her opponent’s private signal structure. Hence, each player’s
strategy depends on her own private signa structure, but is independent of her
opponent’s private signal structure. We clarify whether the Folk Theorem can be
achieved by using only players strategies that depend only on their own private signal
structures.

Each player behaves according to a mapping that assigns a strategy for this player to
each possible conditional density function over her own private signal. Their mappings
are assumed to be common knowledge, but each player does not know which strategy in
the range of the opponent’s mapping is actually played. It is also assumed common
knowledge that players private signal structures satisfy the conditional independence.

® See such industrial organization textbooks as Scherer and Ross (1990) and Tirole (1988).
Matsushima (1990b), Kandori and Matsushima (1998), Compte (1998), and Aoyagi (2000)
provided ajustification of why communication is so important for the self-enforcement of a cartel
agreement.

® Stigler (1964) is closely related. Moreover, Green and Porter (1984) investigated repeated
guantity-setting oligopoly when the market demand is stochastic and firms cannot observe the
quantities of their rival firms. They assumed that firms can publicly observe the market-clearing
price. In contrast, the present paper assumes that there exist no publicly observable signals such as
the market-clearing price.



We require that every pair of strategies in the ranges of their mappings are sequential
equilibria and approximately sustains the same payoff vector.

We establish the Folk Theorem even with the above informational constraint. That is,
for every individually rational feasible payoff vector, there exists a profile of mappings
assigning each possible private signal structure a sequentia equilibrium that
approximately sustains this payoff vector.

The organization of the paper is as follows. Section 2 defines the model. Section 3
presents the Folk Theorem. Section 4 providesthe outline of its proof. Section 5 provides
the complete proof. Section 6 considers the situation in which players have limited
knowledge of their private signal structures. Section 7 concludes.



2. TheModd

An infinitely repeated prisoner-dilemma game I'(6)= ((A,u,Q,)._1,,6,p) is
defined as follows. In every period t > 1, players 1 and 2 play a prisoner-dilemma game
(A,U),,. Wedenote j=i,i.e, j=1wheni=2,and j=2 wheni=1. Player i's
set of actionsisgivenby A ={c,d}.Let A=A x A,. Player i's instantaneous payoff
function is given by u:A—->R . We assume that u(c)=1, u(d)=0 ,
u(d/c;)=1+x>1, and u(c/d;)=-y, <0, where we denote c=(c,c) and
d=(d,,d,). We assume that x, + X, <Yy, +Y,, i.e, the payoff vector (11) is efficient.
The feasible set of payoff vectors V c R is defined as the convex hull of the set
{(@1),(0,0),(x+ x;,—¥,),(—=Y,,1+ X,)} . The discount factor is denoted by 6 €[0,1) .

At the end of every period, player i observes her own private signa .. The set of
player i's private signals is defined as Q, =[0]]. Let Q=Q, xQ,. A signa profile
o = (o, m,) €Q isdetermined according to a conditional density function p(w|a). Let
p (w|a) = j p(wla)dw,; . We assume that player i's private signal structure has full

;€
support, i.e., that p,(w|a)>0 for all ac A and al o, €Q,.” We may regard u (a) as
the expected value defined by

u(a)= j”i(a)i’ai)pi(a)ila)da)i ;
;e

where 7, (®,,a) istherealized instantaneous payoff for player i whenplayer i chooses
action a, and observes her own private signa o, . For every subset W — Q. , let
pW|a)= I p (o |2)dw, .

w; W,

An example is the model of a price-setting duopoly. Actions ¢, and d, are regarded
as the choices of high price A,(c;) and low price 4 (d.), respectively, for firm i's
commodity, where 4,(c) > 4,(d,) > 0. Firm i's saleswhen privatesigna o, isobserved
is given by g (®;)>0. The realized instantaneous profit for firm i is given by
m(w,8)=2(8)q(»)-C(q(®)) , where C(q)=0 is firm i's total cost of
production.

Weassumethat p,(w,|a) iscontinuouswith respectto w, €Q, . From thiscontinuity,
it follows that for every & e[0,], we can choose subsets Q. (&) c Q, and Q" (&) c O,
satisfying that
P(Q(©)NQ o)

p.(Q |c)
(2 (E)NQ |c/d)

p(Q [c/d))

&=p(Q(&)]c) =

= p(Q(&)lc/d) =

"We assume it only for simplicity. We can derive the same results without this assumption.



_RE@ N d) _ p@ (©)NQ’|d/c)
p(Q" |d) p (7 [d/c))
The probability of Q: (&) is the same between ¢ and c/ d;, and is equal to &. The

probability of Q' (&) conditional on Q; isequal to &, irrespective of ¢ and ¢/ d ;- The

probability of € (£) conditional on Q" isthe same between d and d/c;, and isequal
to &.

We assume that players private signal structures satisfy the minimal information
requirement in that for each i {12},

p.(-la)= p(-|a") foral acA andal a’' eA/{a}.
From the minimal information requirement, it follows that we can choose subsets
Q cQ,Q cQ,and Q cO satisfying that

p(Q o) < p( |c/d)),

p(Q7 d) < p( [d/c)),
and

P (€ [d/c)) < p(Q [d).

We assume aso that players private signal structures satisfy the conditional
independence in that
p(w|a) = p, (o |a)p,(w,|a) foral acA andal o Q.

A private history for player i up to period t is denoted by
h =(a(r),o (7)., e (AxQ)", where a,(r) € A is the action chosen by player i in
period 7, and w,(7) €Q, is the private signal observed by player i in period 7. The
null history for player i isdenotedby h°.Let h' = (h',h}) . Theset of all private histories
for player i is denoted by H,. A (pure) strategy for player i is defined as a function
S:H, > A. The set of strategies for player i isdenotedby S.Let S=S xS,. Player
I's normalized long-run payoff induced by a strategy profile se S after period t when
her private history up to period t —1 is h™ is denoted by

vi(6,5h™) =(1-8)ED 5y (a) s, h™].
t=1
A strategy profile s € S issaid to be asequential equilibriumin T'(o) if foreach i =12,
every s €S, every t=12,...,andevery K ' e H,,
v.(5,8,h ™) >v (5,s/s,h™).

Player i's normalized long-run payoff induced by a strategy profile s S is denoted by
V(5,9 =V, (5,5, h°). Let v(5,9) = ((5,9),V,(5,9)).

Definition 1: A payoff vector v=(v,,v,) e R’ is sustainable if for every ¢>0, and
every infinite sequence of discount factors (6™);,, satisfying lim 8™ =1, thereexistsan

infinite sequence of strategy profiles (s™)._, such that for every large enough m, s™ isa



sequentia equilibriumin T'(6™), and for each i {12},
V—e< limv(@™s")<v +e.

A strategy profile s S issaid to be a Nash equilibriumin I'(5) if for each i =1,2,
andevery 5 €S,
v, (5,8) 2V, (5,s/9).
Since each player’s private signal structure has full support, the set of Nash equilibrium

payoff vectors is equivalent to the set of sequential equilibrium payoff vectors. Note that
the set of sustainable payoff vectorsis compact.



3. The Folk Theorem

A feasible payoff vector v €V issaid to beindividually rational if it is more than or
equal to the minimax payoff vector, i.e., v>(0,0). Let

7= (0, Xy gng 22 = (A2 TR )
"1ty 1+y,
Note that the set of all individually rational feasible payoff vectors is equivalent to the
convex hull of the set {(1,1),(0,0), 2", Z?} . The Folk Theorem is provided as follows.

Folk Theorem: Suppose that players private signal structures satisfy the minimal
information requirement and the conditional independence. Then, every individually
rational feasible payoff vector is sustainable.

This theorem is in contrast to the Anti-Folk Theorem provided by Matsushima
(1990a). Matsushima showed that the repetition of the one-shot Nash equilibrium is the
only Nash equilibrium if players’ private signals are conditionally independent and only
pure strategies are permitted, which are restricted to be independent of payoff-irrel evant
histories. A strategy profile s is said to be independent of payoff-irrelevant histories if

foreachi=12,every t =12,...,every h' eH,,andevery h'' eH,,
§ly =Sl whenever p(hils h) = p(hi|sh*) foral h; eH,,

where p;(hj|s,h') is the probability anticipated by player i that the opponent j
observes private history h} e H; when player i observes private history h' eH,,
provided that both players behave according to seS . The independence of
payoff-irrelevant histories implies that whenever a player anticipates the opponent’s
future strategy in the same way then she plays the same strategy. In contrast to
Matsushima (1990a), the present paper establishes the Folk Theorem when players
private signals are conditionally independent and only pure strategies are permitted, but
which depend on payoff-irrelevant histories®

Section 5 provides the compl ete proof of the Folk Theorem. The proof will be divided
into three steps, i.e., Steps 1, 2, and 3. Step 1 shows that the payoff vectors (1,1), (1,0),
(0,1) and (0,0) are sustainable, where (1,1) is an efficient payoff vector. Since Step 1
includesthelogical core of the theorem, it would be helpful to provide the outline of Step
1inthe next section.

8 Bhaskar (2000) investigated the robustness of equilibria to payoff perturbation in repeated
games. He pointed out that when the payoff perturbation does not violate the additive separability
of utility functions and players’ private signal structures satisfy the conditional independence, the
equilibria constructed in the present paper are not robust to this payoff perturbation. As Bhaskar
mentioned by himself, this result crucialy depends on the assumption that the additive
separability is common knowledge among the players even with payoff perturbation. In the paper
we put ourselves on the strong stand that the additive separability assumption only schematizes
and simplifies the phenomena under investigation, in which the payoff functions may not be
exactly additive-separable.
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4. Efficient Sustainability: Outline

This section providesthe outline of Step 1 that showswhy (1,1), (1,0), (0,1) and (0,0)
are sustainable.
Fix an integer T >0 arbitrarily, which is chosen sufficiently large. Fix a discount

factor & € (0,)) arbitrarily, which is chosen close to 1. Fix an integer r, (T) €{1,..., T},
and two real numbers & < (0,1) and g € (0,) arbitrarily, which will be specified later.

Consider the following Markov strategies for player i that consist of 2T states, i.e.,
states (c;, 7) and states (d,, 7) for z=1...,T . When player i's state is (a,7), player i
chooses the action a . When player i's stateis (a,7r) and 7 <T , player i's state in the
next period will be (a,,7+1) . When player i's stateis (¢, T) and player i has observed
at most r (T) private signals that belong to Q; during the last T periods, player i's
state in the next period will be (c;,1) . When player i's stateis (¢, T) and player i has
observed at least 1 (T) +1 private signals that belong to Q, player i's state in the next
period will be (c 1) with probability 1— & , and (d, 1) with probability & . When player
i's stateis (d.,T) andal theprivate signalsthat player i hasobserved duringthelast T
periodsbelong to Q. , player i's statein the next period will be (¢ ,1) . When player i's
stateis (d.,T) and player i hasobserved at |east one private signal that does not belong
to Q, player i's state in the next period will be (¢ 1) with probability 1-¢ , and
(d;, 1) with probability & . We define two strategies for player i , § and s, as the
Markov strategies that start with states (c,,1) and (d.,1), respectively.

The T periods starting with state (c 1) (state (d,,1)) is regarded as the cooperative
phase (the punishment phase, respectively). The strategies § and s are regarded as the
review strategies starting with the cooperative phase and the punishment phase,
respectively.® Wewill say that the T times repeated play passesthereview of player i if
either player i have observed at most r (T) private signalsthat belong to Q: during the
cooperative phase or al the private signals that she have observed during the punishment
phase belong to Q.. Otherwise we will say that the T times repeated play fails the
review of player i . When the T times repeated play passes the review of player i,
player i will certainly play the cooperative behavior according to the strategy § from
the next period. When the T times repeated play fails the review, she will play the

® The idea of review strategy was originated by Radner (1985) and explored by Abreu, Milgrom
and Pearce (1991), Matsushima (1999), Kandori and Matsushima (1998), and Compte (1998).
These papers made future punishment triggered either by bad histories of the public signas
during the review phase, or by bad messages announced at the last stage of the review phase. In
contrast to these works, the present paper assumes the non-existence of such public signals or

messages.
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punishment behavior according to the strategy s , instead of §, with a positive

probability.
By applying the idea of the construction addressed by Ely and Valimaki (1999),
accompanied with an extended version of the Law of Large Numbers, we can show that

there exist &, ¢, and r, (T) for each i {1,2} such that the payoff vectors v(5,5),
v(5,8/s) , v(5,8/s,) , and v(5,s) approximate (11) , (10) , (0) and (0,0) ,
respectively, and that for each 1 €{1,2} ,

Vi(5,5)=v(5,5/s) and v(5,5) =v(5,5/5). L)
Ely and Valimaki investigated the Markov strategies only in the case of T =1. They
assumed that monitoring is almost perfect, and showed the existence of such &, ¢, and

r’(T).Inthecaseof T =1, equalities (1) imply that all strategiesfor player i arethe best
repliesto S, that is,
V.(0,5)=V,(5,5/g) foral se§.

Hence, it follows that equalities (1) are sufficient for S, s, S/s, and S/s, to be Nash
equilibria, and, therefore, simply by constructing the Markov strategieswith T =1, Ely
and Valimaki proved that (1)), (1,0), (0,1, and (0,0) are sustainable when monitoring
is almost perfect.’® We can generalize their result to the case that there exists a private
signal for each player i such that the likelihood ratio between the action profiles ¢ and
c/d, is aimost zero. With this almost zero likelihood ratio condition, by making the
punishment phase triggered by the occurrence of the neighborhood of this signal, we can
prove that even if monitoring is not almost perfect, (11), (1,0), (0,1), and (0,0) are al

sustainable.™
We can apply the idea of Ely and Valimaki or its generalization to the Markov

strategies with sufficiently large T. By choosing r.’ (T) more than Tp (2 |c) but less
than T, we can make the likelihood ratio between the T times repeated choice of the
action profile ¢ andthe T times repeated choice of the action profile c/d; that player i

observes at least r, (T)+1 private signals that belong to ®;, aimost zero. For example,
supposethat 1 (T) =T —1. Then, thelikelihood ratio is equal to (w)T , Which
P (€ |c/d))
is close to zero when T is sufficiently large. Hence, by regarding the T times repeated
game as the component game, we can prove the existence of such &, S and r, (T).
However, in contrast to the case of T =1, equalities (1) does not imply that S, s,

S/s,,and S/s, are Nash equilibriain the case of T >1. We denote by é c § the set of
strategies for player i satisfying that player i chooses the same action whenever in the
same review phasg, i.e., for every t=12..., every t'=12..., every h™* e H,, and every

19 Obara (1999) independently explored the same idea of construction as Ely and Valimaki in the
study of private strategies with imperfect public monitoring.

1 See Sections 3 and 4 of the earlier version of the paper (Matsushima (2000)).
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ht’—lE Hi,

s(h=s(h'™ if KT+1<t<t'<(k+1)T for someinteger k.
Notethat 5 €S and s, € S . Equalities (1) imply only that

v(5,8)=v(5,5/5) and (5,9 =Y (3,s/s) foral 5 €.
Hence, in order to complete the proof that S, s, S/s;, and S/s, are Nash equilibria, we
have to check also that

V.(0,S)2Vv/(5,S/5) and v,(5,9) > V.(d,s/s) foral s ezé,.
Note from the definitionsof § and s, and the full-support assumption, that all we have
to check is that

vi(5,5)2v(5,5/s) foral 5 25.

The conditional independence guarantees that during the first T periods, the past
history of the private signalsfor player i providesplayer i with noinformation about the

opponent j's future play, as long as the opponent j's strategy belongs to éj . This,
together with equalities (1), impliesthat if § isnot the best reply to §;, then there exist
seS and (a(d),...,a(T)) e A" such that

either v, (6,5/5) >V,(6,5) or v,(6,s/s) >V (6,5),
and that the strategy s suggests player i to choose the action a(t) in each period
te{l..., T} andto play the strategy § |hr after period T +1, i.e,,

s(h™)=a(t) foral t=1..,T andal ™" eH,,
and

S |hF=§ |hiT forall h" eH,.
Since the action d, is dominant for player i in the component game, we can assume
without loss of generality that there exists 7 €{1,...,T —1} such that

at)=d for dl te{l..z} , ad a(t)=c for Al

te{r+1...,T}.
For every 7 €{0,.., T}, we define astrategy for player i, § ., by

S. hr=5 |- foral W eH,,

5.(h")=d foral tef{l..,z},
and

5.(hY=c foral te{r+1..T}.
Notethat § =§ ,, and

Vi(5,9) =V, (5,5/5,)=V(5,5/5;) =V (5,5/s). )
All we haveto check isthat for every 7 €{0,..., T},
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vi(5,8)2v,(5,5/5,) and v,(5,9) >V, (5,8/5,)
With no substantial difficulty, we can show that v,(5,s)>V,(0,s/S,) for all
r€{0,..., T} . However, it is not immediate to check whether it holds that
v,(6,8) 2V, (6,8/5 ) for dl 7r€{0,.,T} . For example, suppose that rj*(l')zT—l

again. Consider the situation in which players behave according to the strategy profile
§/5 ;. The probability that all the private signals that player j observes during the first

T periods belong to Q) is equal to p,(Q] |c/d)" p,(Q|c)" ", and therefore, the

probability that player | will play the punishment behavior from period T +1 isequal to
&Py (@ leld) (@) 1o)"

Note that this probability is strictly convex with respect to z, which implies that the

payoff difference v;(6,5/5,)—-V,(5,5/5,,) is decreasing with respect to z . This,

together with equalities (2), implies that v,(5,5/5 ) >V,(0,S) for al re{1..,.T-1.
Hence, it followsthat S, s, 5/, and S/, arenot Nash equilibriawhen r/ (T) =T -1.

In spite of it, we can show, by choosing r; (T) morethan but closeto Tp, (] |c), that
S, s, S/s, and §/s, are al Nash equilibria, as follows. We can choose r/(T)
satisfying that the probability that player j observes exactly rj* (T) private signals that
belong to Q*j during thefirst T periodsislarger than

1
p,(Q]lc/d)-p,(Q]c)’

when players behave according to the strategy profile S. Thisimpliesthat theincrease of
the probability that the opponent j will play the punishment behavior, i.e., play the

strategy s, , fromperiod T +1 issufficiently large when player i changesthe strategy §
into the strategy § . . Thisholds, irrespective of the number of periods z inwhich player

I chooses the action d, against the suggestion by the strategy § during the first T
periods. Hence, it follows that v (5,5)>Vv(0,5/§,,) for dl re{1..T-1, and
therefore, that S, s, S/s,, and S/s, areall Nash equilibria.

The idea of the specification of r. (T) is closely related to Matsushima (1999).

Matsushima investigated infinitely repeated games with discounting where monitoring is
imperfect and public. In every period, playersplay T different prisoner-dilemma games
at onetime, and observe T different public signals. Matsushima showed that by choosing
the number T sufficiently large, we could make the efficient payoff vector sustainable
under imperfect public monitoring whenever it is sustainable under perfect monitoring.

12 Kandori and Matsushima (1998) constructed their own review strategy equilibria, in which
players make informative communication at long intervals. They assumed the conditional
independence, which playsthe similar roleto that in the present paper in simplifying the analysis.
13 The derivation of these inequalities crucially depends on the specification that the threshold for
the review in the punishment phase is set equal to T —1. See the complete proof in the next
section.
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Hence, the efficient payoff vector is sustainable even if the discount factor isfar lessthan
unity and monitoring in each prisoner-dilemma game is truly imperfect. Matsushima
constructed the trigger strategy profile where the future punishment is triggered by the
fact that the number of the prisoner-dilemma games in which the bad signal has been

observed at one time is more than the threshold r" (T) . Matsushima proved the efficient
sustainability by specifying this threshold r. (T) in the same way asin Step 1. Here, the
incentive constraint that aplayer i hasno strict incentiveto choose d, inall gamesat one
time, is binding. This binding constraint corresponds to the inequalities that
V.(0,S)=V,(5,S/g) foral 5 e é in the present paper. Hence, it follows that in the end,
the present paper and Matsushima (1999) resolve themselves into the same existence
problem of the threshold r. (T).
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5. The Proof of the Folk Theorem

The proof of the Folk Theorem is divided into three steps.

Step 1: We show that (1,1), (1,0), (0,1) and (0,0) are sustainable. Consider the situation in
which players T times repeatedly play the prisoner-dilemma game. For every
r €{0,...,T},andevery 7 €{0,.., T}, wedenoteby f (r,T,7) the probability that player
i observes exactly r private signals that belong to Q. during the T periods when she
chooses the action ¢ in al the periods and the opponent j chooses the action d; in the
first r periods and chooses the action c; in the last T-r periods. Let

F(rnT,0)=Y T,
r'=0

Lemma 1: For every positive real number z> 0, there exists an infinite sequence of
positive integers (r. (T))7_, satisfying that

imE (' (N).T.0)=1, ©

im0 o @i, @
and

M (7 (1), 700> 2. ©

Proof: It follows from the Law of Large Numbersthat for every ¢ >0,
lim > f7(r,T,0)=1.

T
r:

@i
Thisimpliesthat there exists an infinite sequence of positive real numbers (¢(T))7_, such

that
lime(T) =0, and lim > £ (r, T,0=1.

Tow

r ‘% P (Q]]0)] <& (T)

Note that for every large enough T, there exists r in the neighborhood of Tp, (; | c)
such that Tf, (r,T,0) > z. Hence, we can choose (1, (T))7_, satisfying that

LD p@i1o)<em,

T, (r(T),T,0)> z,
and for every r satisfying that T{p.(Q; |[c) +&(T)} >r > (T),
T (r,T,0) < z.

Note that



16

lim{ (2 1)+ &) -0 o,
Too T
and therefore,
limF' (5’ (7). 7.0)
leim > £7(r,T,0) —lim > £7(r,T,0)
" %— P (] [e)|<&(T) ” rp Q) |c)+g(T)>%>r‘*_l(_T)
>1-zlim{ p,(©; |c)+g(T)—riT(T)} 1,
Q.ED.
Let
L (6)

> < x ,
P Ic/d)- p(© [c)

and choose (r; (T))7_, satisfying the propertiesin Lemma 1. Note from equality (4) and
the Law of Large Numbers that

lim (" (T),T,T) =0. (7)

For every r €{0,...,T}, we denote by f (T,z) the probability that al the private

signalsfor player i observed during the T periods belong to Q. when player i chooses
the action d; in al the periods and the opponent j chooses the action d; in the first r
periods and chooses the action ¢, inthelast T —r periods. Note that

Iimmzlim(M)TzQ (8)
o= f(T,0) ™= p(Q |d/c)
Fix an infinite sequence of discount factors (6™);., arbitrarily, which satisfies

lims™ =1. We choose an infinite sequence of positive integers (T™)”_, satisfying that

imT" =0, y"=(™", limy™ =1,

andforeach i =12,

jim 11/ = 0>y
v
From equalities (3), (7), and (8), we can choose an infinite sequence
(Vm,\_/m,(ém,g:‘“)iﬂjz)ﬁﬂ satisfying that Elm €[0]] and gi’“ e[0]] foral m=1.2,...,
limv™=(11),
Iim\_/m =(0,0),

and for each i =1,2, and every large enough m,

\_/jm =1-

LB F TR0 )
-7
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m

=1+ XJ —11/7/m am{l— Fl*(rl*(Tm),Tm,Tm)} (\—/Jm _\_/rjn) , (9)
and

m YT mes mem myom  m

V=T )

==Y, +1fym M TMOV -] (10)

For every m=12,..., wedefine ®"c Q' and @™ Q' by
D" ={ (0,(1),...,,(T™)) eQ" : either w;(t) € Q; for a most
r (T™) periods, or o (T™) Q' (E™)},
and
O ={ (@ ),...,0(T™) Q" : either w,(t) Q. forall
te{l.. T, or o (T™) eQ(EM}-
We specify an infinite sequence of two strategy profiles (s™,s™)%_, asfollows. For every
t=1..,T", andevery h"" eH,,
s"(h*)=c,and 5"(h"*) =d,.
Recursively, for every k=12..., every te{kT™ +1...,.KT" + 7}, and every h' e H,,
s"(hY=c if (0(t-7-T"),..,0(t—7-1))ed, and

s'(h)=q,

s"(h ) =c if (wt-7-T"),...,0,t-7-1)e®, and
S"(h ) =d,

s"(h Y =d if (0t-7-T),...,0(t—7-1) e ®, and
s"(h"=c,

") =d if (wt-7-T),...,0(t-7-1))ed and
s"(h ) =d,

s'(h ) =c¢ if (0t-7-T™),...,0(t-7-1)ed, and
s'(h ) =c,

s' ("M =c if (0t-7-T™),...,0(t-7-1))ed and
s (W™ =d,

s'(h M) =d if (0t-7-T"),...,0(t—7-1)¢d, and
s'(W"=c,

and
§i’“(h”) =d if (0(t-7-T"),...,0(t-7-1) gq)}” and
§im(ht_f_l) =d;.
Note that
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S =57 (@0, 0 (T <0
Sm|hTm =s" if (0,(1),...,0,(T")) gd",

§im|hTm =§"if (0,(D),....0,(T™) e @™,
and
§im|hTm = §1m if (@,@),....0,(T")) & q)?*m-

Equalities (9) and (10) imply that

v, (8", 8" =v,(8",5"/s]) =V, (11)
vi(8™,8") = v (6", s" 18 =T, (12)
and, therefore,
limv,(5",8") = limv,(5",5"/ s]) =1,
and

rITerolovj(ém,gm): rITLrT)Ovj(é““,gm/§].m):0.

We show below that 5™, s, 5"/ s}, and s™ /5" are Nash equilibriafor every large
enough m. For every 7 €{0,...,T™} ,and each i €{1,2} , we define astrategy for player i,
S% . by

ST | =§"| forall N < H,,
and | |
§T(W Y =d foral te{l..,z},and §7(H ") =c foral
te{r+1..T"}.
Note that §" =57, and
V(™8™ =V (6™, 8"/ §) =V, (6™, 8"/ §) = v (5™, 8"/ 8.
From the conditional independence, all we have to show isthat
v,(6",8M) 2 v,(6™,8"/5) and v,(6",s") 2V, (6", s"/5".) for
al
7 €{0,...,T"}.
First, we show that v,(6™,8") >v,(6",5"/S[") for al r€{0,..,T™} . The following

lemma is the same as Lemma 2 in Matsushima (1999) and, therefore, we will omit its
proof.

Lemma 2: For every T=12..., and every r €{0,..,T}, there exists an integer
7 (T,r) €{0,..., T} suchthat

£ (r,T,0)> £ (r,T,c-2) if e <7 (T,r),
and

£ (r,T,0)<f (r,T,c=0) if r>7 (T,r).
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The difference of the probabilities that the event ®:™ does not occur in period T™
between the strategy profiles S/, and S/S[",_; isequal to

j,7-1
EM{p(Q c/d) - p (o)} £ (T™),T"-1,7-1),
which implies that
1
1-6""
=X, —&" p (@ |c/d))

{v,(8™,5™ /8" )~ v, (5™, 5" /5" )}

—R@ 1) T e
Lemma 2 implies that this payoff difference is non-increasing with respect to 7 if
1<z<7, (T™r (T™) , but it is non-decreasing if 7z, (T™,r (T™)<z<T™. This,
together with the equality v, (6™,8"/8) =v,;(6",5" /5T ) , implies that
v;(6™,8"1§") <v,(6",8") fordl 7 {0,..,T"}
if v;(6",8"/8) <v,;(6",5"/§).

From equality (7), the latter equality of (9), limy™ = lim(s™)" =1, limv™=(11), and

(v -v).

limv™ = (0,0), it follows that

TM-1

mo mo_ 2. (8™

lim—7, &M= lim-L— " im0 —x

moo (1— §™)T™ moe]— M meo M J
and, therefore,

H 1 m sm jasm m asm/asm

rInlﬁrgl_m{vj(é ,S"1§) -V (6,57 15])}

=X, = X{ P (& |c/d;) - p (QI [c)} li_r)ngi*(ri*(T)aT_lo)'
Note that

FT 10 = T R0 @ 1)

-(1- %){1— p(Q; [} (r,T,0).

Hence, it follows from Lemma 1 and inequality (6) that
Mfl 1_15m {v;(6™,8"1§7) ~v,(6",5"/5)}
=%, = x,{ p(Q] lc/d)) - p(Q] |} limTE’ (1 (T), T -10)
<x-x{ p(Q lc/d)) - p(Q [c)}z<0,
and therefore, we have proved that v, (6™,5™) >v,(6",8"/S]",) for al 7 €{0,..., T"}.
Next, we show that v,(6™,s") >v,(6",s"/§",) forall 7 {0,..,T"} . Note that

"0 =p(@ 1) (p(@7 |d/e) " =q" 7 T"TT),
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where
_p(@7]d/c)
=——— - >1
p (2 [d)
Hence, it follows from equalities (10) that
v,(6",s"I5")
_1- o
( yJ)Z(é )

t=r+1

1 §m —r.m
( yJ)Z(é I VAR

t=r+1

éf (T V)

and, therefore,
7 (5m,§m/§;‘}_1) -V, (5m,§m/§jrf‘,)

e & ARG (13

Given that m islarge enough, we can assume that

1
1<—<q,

myT™-1
which, together with equality (13), inequality (5)—7( y;) <0, and inequality

(@-1)v} >0, impliesthat for every 7 €{1,...,T"},
v, (6", 8" 18" ) 2v, (6", s"IS")
if v,(6",s"/§") 2v,(6",s"/§]"..),
and
v; (0", s" I5") <v, (6", s" S

if vi(6",8"/§. ) <v(6",s"/§").
These inequalities, together with equality v, (5™,s"/5) =V, (5m,§m/§.me) , imply that
v,(6",8") 2v,(6",s"/§) forall 7 (1., T"}.

From these observations, we have proved that 5™, s™, s™/ §j and s™/ S/ are Nash
equilibriafor every large enough m. Hence, (1,1), (1,0), (0,1) and (0,0) are sustainable.
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Step 2: We show that 2 and 7'? are sustainable. Consider z™ only. We can prove that

7% is sustainable in the same way.
Consider the situation in which players M times repeatedly play the prisoner-dilemma

game. For every r €{0,...,M}, and every 7 €{0,..., M}, we denote by f,(r,M,7) the
probability that player 2 observes exactly r private signals that belong to Q; during the
M periods when she chooses the action d, in all the periods, and the opponent 1 chooses
the action d, in the first 7 periods and the action ¢, in the last M —z periods. Let

F(r,M,7)=> £, (r'M,z) . We choose an infinite sequence of positive integers
r'=0

(r;y (M))5_, satisfying that
hI/Iim F(r,(M),M,0)=1, (14)

tim =00 p0;1d/0), (15)
and
1ty . (16)
YA (€22 [d) — p,(Q2; [d/ )}
In the same way as in Lemma 1, such a sequence (r, (M));,_, exists. Equality (15),
together with the Law of Large Numbers, implies that

lim M, (55 (M), M 0) >

hI/Iim F(r,(M),M,M)=0. (17)
We choose apositive real number b > 0 arbitrarily, which islessthan but closeto 1 ! ,
+Y:
satisfying that
lim Mf,* (r; (M),M ,0) > b . .
M= (L-b){p,(Q; [d) - p,(Q; |d/c)}
Let

vV =b(-y, 1+ X,) +(1-b)(LD) .
Note that v approximates z™, and
v, >z"%=0.
Fix an infinite sequence of discount factors (6™);., arbitrarily, which satisfies
lim 6™ = 1. Choose an infinite sequence of positive integers (M™)"_, satisfying that

rlanle:OO’ Zmz(5m)Mm,
and
Ln; 7" =1-b. (18)
For every m=12,..., we define
D" ={ (0,(2),...,0,(M™) e Q" : w,(t) € QO for at most
r,(M™) periods}.
Let (3™,s")>, betheinfinite sequence of the two strategy profiles specified in Step 1.
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We specify an infinite sequence of strategy profiles (S™),._, by
§"(h ™ =(c,d,) if 1<t<M™,
§" | =8 foral h" eH,,

forevery hl eH,,

S| w=5"if (2,(1),...,0,(M™)) € D3,

"
and
§En|h§m=§? if (0)2(1)’---1502(Mm)) g ®;.

According to the strategy S™, players choose the action profile (c;,d,) in the first M™
periods. From period M™ +1, player 1 certainly playsthe strategy S, whereas player 2
playsthe strategy )" (the strategy s, ) if the M times repeated play passes the review of
player 1 (failsthe review of player 1, respectively). Note that

V1(5m’ ") =(1- "~ Y1) + 2" F(r; (M ™,M™M m)\_/lm

+{1_ F2+(I’2+(|V| m)’ M m, M m)}\_/in] )
and

V(0™ 8") = (1- 7ML+ %) + 1"V,
Note from equalities (14), (17), and (18) that

limy(s™, §") =b(-y, 1+ %) +(1-b)(L) = V.
Hence, v(6™,8™) approximates Z" for every large enough m.

We show below that S™ is a Nash equilibrium for every large enough m. Step 1 has
proved that (§" |thm S |h2Mm) is a Nash equilibrium for every h"" and every large
enough m. Since players private signal structures satisfy the conditional independence
and the action d, is dominant for player 2 in the component game, it follows that the

repeated choice of the action d, during the first M™ periods is the best reply for player
2. Hence, all we haveto check isthat the repeated choice of the action ¢, during thefirst
M ™ periodsisthe best reply for player 1 for every large enough m.

For every 7 €{0,...,M ™}, we define a strategy for player 1, §"., by

8" |thm foral h"" eH,,

&,

and
§ (h™)=d, foral te{l..,7},and §. (") =c, forall
te{r+1..,M"}.
Note that §" = §7,. From the conditional independence, all we have to check is that
Vi(6™,8") > v, (6™, 8"/ F) fordl r<{0,..M"}.
The difference of the probabilities that the event ®;™ does not occur in period M™
between strategies $"/§". and S"/§,_; isequal to
{P(Q5 1d) - p,(Q; 1d/ &)} £, (r;(M™),M™~1,7-1),
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which implies that
1

1-6"

{Vl(é‘m!ém/%r,nz) _Vl(ém’émléi,r—l)} =Y- { pz(Qz |d)
R 1d/e)} £ (5 (MT)M"~Lr-1) Ao (7 - ).
In the same way as in Lemma 2, it follows that for every M =1.2,..., and every
r €{0,..., M}, thereexistsaninteger z, (M,r) €{0,..., M} such that
f,(r,T,0)> £, (r,T, =0 if £ <7,(T,r),
and
£,(r,T,0) < £(r,T,z=0) if e>7,(T,r).
Hence, this payoff differenceis non-increasing with respect to 7 if 7 <z, (T,r), butitis
non-decreasing if 7>z, (T,r). Thisimplies that if there exists r €{1,...., M ™} such that
Vi (6™, 8"/8") > v, (6™, 8, then
either Vi (6™,8"/87) > v, (6™, 8") or
vl(ém,émléme) >y (5™, 8").
From equality (18), it follows that

M™-1
m m 2™ e

lim—~ = lim lim =0 _(@d=b7
moo (1—")M™ mowl— 4T mee M7 b

which, together with limv™ = (1,1), and limv™ = (0,0), implies that
H 1 m amj/a m am/a +
ﬂmm{vl(a 'S /§,1)_V1(5 'S /S.L,o)} :yl_{pz(Qzld)

+ (1_b)2 ; o+

- pz(Qz |d/(:1)} b |\I/|Imo Mfz (rz (M)’M _110)'

Note that
f, (r,M -10)

(M -1)! N r + M —1-r
=——n,(Q;|d/ 1-p(Q;|d/
T~y P 1476 - p(@; /o))

r + -1+
=@1- V){l_ p(Q; [d/ )} £, (r,M,0).
Hence, it follows from equality (15) and inequality (16) that

. 1 m amya m amjam
M—[Toll_é‘m{vl(é 'S /SA,l)_Vl(é‘ 'S /%0)}

=Y - {pz(Q“d) - pz(Q“d/Cl)}
%Jﬂiﬂl MF, (r; (M), M ,0)

_(1-b’(+y)
by,

<Y
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which is less than zero, because b is less than . Hence, it follows that

1+y,
Vi (6™,8"/87) <v,(6™,8") for every large enough m.

Note from limv™ = (0,0) and equality (17) that
limv,(6™,8"/§7.)) = lim y"{F; (r;(M™),M"™,M™)V"
+@-F(r,(M™),M™ MMV} =0.
Since limy,(s™,8™) =V, >0, it followsthat v (0™,8" /8T, ) <V (6™, 8") forevery large

enough m.
Hence, we have proved that z is sustainable. Similarly, z'? is sustainable too.
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Step 3. Fix a positive integer K and K individually rational feasible payoff vectors
v VR arbitrarily, where VM e{(11), (1,0),(0.1), 2", 2%} for dl k {1,...,K}. We

ZK:v“‘]
show that kle issustainable. Fix (6™);,, arbitrarily, which satisfies lim 6™ =1. Fix

&> 0 arbitrarily. For every k e{L...,K}, let (s*™)*_, beaninfinite sequence of strategy

profiles satisfying that for every large enough m, s“™ is a Nash equilibrium, and that
foreach i {12},

v —e<limy (0™, s M) <vi 4 g
m—oo

We specify an infinite sequence of strategy profiles (;m)‘;j]:l satisfying that for every
i {12}, and every k €{1,...,K},
s (K=" (),
and for every t > K +1,
s () = %™ (A7) if t = KT + k and
(a(z),o,(7r)) = (a(Kr+k),o (Kr+k)) for al

T e{l,...,t~}.
Note that for each i {12},

$(6™) % (87, )

1 =m
lImy (67,8 ) = lim =
2 (MK
k=1
iv_{k} ZK:\/{"}
e[ ——g, 4],
K K

Since s“™ isaNash equilibriumin T'(6™) for every large enough m, it follows that s

K
1 z Vil

is a Nash equilibrium in T((6™)%) for every large enough m . Hence, k:lK is

sustainable.
Since (1,1), (0,0), z", and z'? are sustainable and the set of individually rational
feasible payoff vectorsis equivalent to the convex hull of the set {(0,0),(11), 2™, 2%} , we

have proved that every individually rational feasible payoff vector is sustainable.
Hence, we have completed the proof of the Folk Theorem.
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6. Limited Knowledge

This section investigates the situation in which players have limited knowledge of
their private signal structures. Each player i knows her own monitoring ability p,, but

does not know her opponent’s monitoring ability p; . Hence, player i must behave
according to astrategy that does not depend on p; .

For each i =1,2, fix an arbitrary compact and nonempty subset P of conditional
density functions on player i's private signal, which satisfy the minimal information
constraint. Let P" = P x P, . Each player i only knows which element of P is the

correct conditional density function for her own private signal. It is common knowledge

that the correct conditional density function belongsto P’ . It isalso common knowledge
that players private signal structures satisfy the conditional independence. A mapping

that assigns each element of P~ a strategy for player i is denoted by p:P" — S. Let
p=(p.p,). and p(p) = (o(P.). p2(P,)). Player i behaves according to the strategy
p.(p) €S irrespective of her opponent’s monitoring ability p; € Pi* .

The following proposition states that the Folk Theorem holds for every p e P” even
if players have no knowledge of their opponents’ signal structures.

Proposition: For every individually rational payoff vector veV , every (6™):,
satisfying lims™ =1, and every &> 0, there exists (p™)%_, such that for every peP’,
and every large enough m, p™(p) is a sequential equilibriumin I'(6™), and for each
i=12,

v —g<Ilimv (6™ p"(p)) <V +¢.

Proof: Fix (6™)%_, arbitrarily, where lim 5™ = 1. Note from the compactness of P’ that

there exist € >0, € >0, ¥,:P" - 2%, ¥":P" 2%, and ¥/ : P —» 2% such that

g >e,andforevery p, eP’,

e =p (¥ (p)lc)=p (¥ (p)Id)=p(¥ (p)ld/c),
and

a=p (¥ (p)lc/d)=p(¥ (p)ld/c)=p (¥ (p)ld).
For every p. e P, we set the associated sets Q. , Q" , and Q. in the proof of the Folk
Theorem equivalent to W, (p,), ¥, (p,), and ¥, (p,) , respectively. Hence, we can
choose (' (T))7y, (T™rys (MM, and (V7 v",(E™,EM),1,) iy independently of

P, € Pi* , Which were introduced in the proof of the Folk Theorem. This implies that we

can choose §", s and §" independently of p, € P'. We denote §™", s™* and §™",
instead of §™, 5" and §", respectively.

We specify (p")<, as follows. For every p. eP’, every t=12,.., and every
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A (P) h=§"" | if & (1) =§"" (h™) foral ze{l,...t-1,
and
p"(P) | maximizes player i's long-run payoff for S
a(r)=§"" (W™ forsome re{l,...,.t-1.
The specificationsof Q; and Q. in the above way guarantee that such a (p")7_, can be
specified independently of p; e Pj* . Here, we must note that it is necessary to make the

values &' =&" =7 and & =& =¢, independent of p, R If not, then the best reply
for player i when the history W™ is off the equilibrium path, i.e, when
a(r)=§™P (W™ forsome 7 {d,...,t =1, might depend on the opponent’ s strategy, i.e.,
on the opponent’s private signal structure p; e Pj* . It follows from the specification of
(P based on (577)r_, that p"(p) |,.» maximizes player i's long-run payoff for

0

p(p,) if a(r)=§"" (™) for some 7 €{1,...,.t -1} . In the same way as ("), we
can specify (o) and (5", based on s™* and §™", respectively.
The proof of the Folk Theorem impliesthat for every p e P", and every large enough

m, (A"(P), 25 (P.)) » (A" ( pl)!f_)?( P)) (2:1( P25 (P,)) s (2:1( P, 5 (P,)) » and
(2"(P), P5'(P,)) areNash equilibriaand, therefore, sequential equilibria, and that these
strategy profiles approximately sustain (1,1), (1,0), (0,1), (0,0), and Z", respectively. In
the same way as the above arguments, we can prove also that there exists (p™);._, such
that for every peP’, and every large enough m, (p"(p), p5'(p,)) is a sequentia
equilibrium and approximately sustains z?

Fix a positive integer K and K individually rational feasible payoff vectors
vi¥ v arbitrarily, where V¢ e{(12),(1,0),(0,1), 2", 2%} for dl k €{1,...,K}. Let
(p™*™)>_, denote the function satisfying that for every p e P* and every large enough
m, p*™(p) is a sequential equilibrium and approximately sustains Vi . We specify
(o™=, satisfying that for every i {12}, every p, eP ,andevery k e{L,...,K},

(P )(hik_l) = Pi{k'm}(pi )(hio) )
and for every t > K +1,
AP (™) = p*™(p)(R") if t= KT +k and
(@ (2),0,(2) = (& (K + K),0,(Ke+K)  for
r=1...,1t.

Note that for every peP , and every large enough m, p™(p) is a sequential
1

equilibrium in T((6™)X ), and that for each i e{1,2},
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Kk
. 1 - 2EM K vE™ M (p)
limy((5™*, p"(p) = lim <5 ——
2. (6™«
k=1
iv{k} iv_{k}
e[k —g, kL +¢&].
K K
K
e

Hence, we have proved that th is sustainable.

Since the set of individually rational feasible payoff vectors is equivalent to the
convex hull of the set {(1,1), (1,0),(0,1), 2, Z#"} , we have proved this proposition.
Q.E.D.
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7. Conclusion

The present paper investigated infinitely repeated prisoner-dilemma games with
discounting, where players are sufficiently patient and monitoring is imperfect and
private. We provided the Folk Theorem when players' private signal structures satisfy the
conditional independence, and showed that the Folk Theorem holds even if players have
no knowledge of their opponents’ private signal structures. In the paper we required no
conditions concerning the accuracy of private signals except the minimal information
requirement.

Whether the Folk Theorem holds even without conditional independence is an open
question. The conditional independence simplified the way to check whether the review
strategy profiles constructed in the paper are sequential equilibria. Hence, all we have to
do was to show that there exists no strategy preferred to the review strategy that is the
same as the review strategy after the first review phase and does not depend on private
signal histories during the first review phase. Without conditional independence the
problem is more complicated, because there may still exist a strategy preferred to the
review strategy that does depend on private signal histories even during the first review
phase. When the private signal history observed by a player in the middle of the review
phase implies that with high probability the opponent has already received many bad
signals and recognized that the review was failed, the player may have no incentive to
choose the cooperative action in the remainder of the review phase.

In the same way as the present paper, we may be able to establish the Folk Theorem

even without conditional independence, if for each i e{1,2} there exist subsets Q; < Q. ,
QF cQ,and Q < satisfying that for every o, € Q;, and every o} €Q,,

p,(QT |Cy(0])< Q(QT |C/djl('0;))

p(Q d,o)) < p (@ |d/c o)),
and

P (QF |d/Cj’(Dj)< P (QF |d’(’3;)1
where p (W [a,0;) istheprobability that the event W < €, occurswhen players choose
ae A and player j observes ; € Q; . When such subsets do not exist, we may need to

explore afurther extended form of review strategies, probably combined with a device of
punishment and reward on hyperplanes ala Matsushima (1989) and Fudenberg, Levine,
and Maskin (1994).

The present paper considered only repeated prisoner-dilemma games. We can extend
our efficiency result to a class of games with more than two actions as follows. Suppose
that a player i has an action d’/ other than the actions ¢, and d,, and there exist

a €[0]] and o’ €[0,]] such that
u(c/d))<au(c)+(@A-a)u(c/d,),
p; (@ [c/d)) >ap; (@] [)+(1~a)p;(Q] |c/d;) > p;(Q] |0),
u(d/d)<a'y(d)+1-a’)y(d/c),
and
p,(Q] [d/d) <ap(Q] |d)+(1-a')p;(Q] |d/c)
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<p, (@] ld/c).
Since the action d is worse than a mixture of the actions ¢, and d,, player i have no
incentive to choose d/ when her opponent plays the strategy constructed in the paper.

The more intensive study of private monitoring in general repeated games with more
than two actions and more than two players,'* and also in general stochastic games,
should be expected to start in the near future.

1 For the three or more player case with almost perfect monitoring, see, for example, Bhaskar and
Obara (2000), and Ely and Valimaki (1999).
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