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Abstract 
 

This paper investigates infinitely repeated prisoner-dilemma games, where the discount 
factor is less than but close to 1. We assume that monitoring is imperfect and private, and players’ 
private signal structures satisfy the conditional independence. We require almost no conditions 
concerning the accuracy of private signals. We assume that there exist no public signals and no 
public randomization devices, and players cannot communicate and use only pure strategies. It is 
shown that the Folk Theorem holds in that every individually rational feasible payoff vector can 
be approximated by a sequential equilibrium payoff vector. Moreover, the Folk Theorem holds 
even if each player has no knowledge of her opponent’s private signal structure. 
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1. Introduction 
 

This paper investigates infinitely repeated prisoner-dilemma games, where the 
discount factor is less than but close to 1. We assume that players not only imperfectly but 
also privately monitor their opponents’ actions. Players cannot observe their opponents’ 
actions directly, but can only observe their own private signals that are drawn according 
to a density function over closed intervals conditional upon the action profile played. 
There are no public signals. 

We assume that players’ private signals are conditionally independent, i.e., players 
can obtain no information on what their opponents have observed by observing their own 
private signals. We show that the Folk Theorem holds in that every individually rational 
feasible payoff vector can be sustained by a sequential equilibrium in the limit of the 
discount factor. This result is permissive, because we require almost no conditions 
concerning the accuracy of players’ private signals. 

The study of repeated games with private monitoring is relatively new. Most earlier 
works in this area have assumed that monitoring is either perfect or public and have 
investigated only perfect public equilibria. It is well known that under a mild condition, 
every individually rational feasible payoff vector can be sustained by a perfect public 
equilibrium in the limit of the discount factor, provided that monitoring is imperfect but 
public.1 Perfect public equilibrium requires that the past histories relevant to future play 
are common knowledge in every period. This common knowledge property makes 
equilibrium analyses tractable, because players’ future play can always be described as a 
Nash equilibrium.2 

As the signal is not public in the present paper, the Folk Theorem is not immediate 
and the problem is more delicate. When monitoring is only private, it is inevitable that an 
equilibrium sustaining implicit collusion depends on players’ private histories, and 
therefore, the past histories relevant to future play are not common knowledge. This 
makes equilibrium analyses much more difficult, especially in the discounting case, 
because players’ future play cannot be described as a Nash equilibrium. Even when a 
player is certain that a particular opponent has deviated, the other players will typically 
not share this certainty, and they will be unable to coordinate on an equilibrium that 
punishes the deviant in the continuation game. Nevertheless a more complicated 
argument establishes the Folk Theorem. 

Hence, we have the Folk Theorem with completely public signals on the one hand, 
and we have the Folk Theorem even with completely private signals on the other hand. 

To the best of my knowledge, Radner (1986) is the first paper on repeated games with 
private monitoring. Radner assumed no discounting, and showed that every individually 
rational feasible payoff vector can be sustained by a Nash equilibrium.3 The two papers 

                                                 
1 See Fudenberg, Levine, and Maskin (1994). For the survey, see Pearce (1992). 
2 With imperfect public monitoring, Obara (1999) and Kandori and Obara (2000) investigated the 
role of private strategies that depends on the chosen actions as well as the observed public signals. 
They showed that efficiency can be drastically improved by using private strategies. 
3 See also Lehrer (1989) for the study of repeated games with no discounting and with private 
monitoring. Fudenberg and Levine (1991) investigated infinitely repeated games with 



 3 

by Matsushima (1990a, 1990b) appear to be the first to investigate the discounting case. 
Matsushima (1990a) provided an Anti-Folk Theorem, showing that it is impossible to 
sustain implicit collusion by pure strategy Nash equilibria when private signals are 
conditionally independent and Nash equilibria are restricted to be independent of 
payoff-irrelevant private histories. The present paper establishes the converse result: the 
Folk Theorem holds when we use pure strategy Nash equilibria that can depend on 
payoff-irrelevant private histories. 

Matsushima (1990b) conjectured that a Folk Theorem type result could be obtained 
even with private monitoring and discounting when players can communicate by making 
publicly observable announcements. Subsequently, Kandori and Matsushima (1998) and 
Compte (1998) proved the Folk Theorem with communication. Communication 
synthetically generates public signals and consequently it is possible to conduct the 
dynamic analysis in terms of perfect public equilibria as in the paper by Fudenberg, 
Levine and Maskin (1994) on the Folk Theorem with imperfect public monitoring. The 
present paper assumes that players make no publicly observable announcements. 

Interest in repeated games with private monitoring and no communication has been 
stimulated by a number of recent papers, including Sekiguchi (1997), Bhaskar (1999), 
Piccione (1998), and Ely and Valimaki (1999). Sekiguchi (1997) investigated a restricted 
class of prisoner-dilemma games on the assumption that monitoring was almost perfect 
and that players’ private signals were conditionally independent. Sekiguchi was the first 
to show that an efficient payoff vector can be approximated by a mixed strategy Nash 
equilibrium payoff vector even if players cannot communicate. By using public 
randomization devices, Bhaskar and Obara (2000) extended Sekiguchi’s result to more 
general games. 

Piccione (1998) and Ely and Valimaki (1999) also considered repeated 
prisoner-dilemma games when the discount factor is close to 1, and provided their 
respective Folk Theorems. Both papers constructed mixed strategy equilibria in which 
each player is indifferent between the right action and the wrong action irrespective of 
her opponent’s possible future strategy. Piccione used dynamic programming techniques 
over infinite state spaces, while Ely and Valimaki used two-state Markov strategies. Both 
papers investigated only the almost-perfect monitoring case, and most of their arguments 
rely heavily on this assumption.4 

Mailath and Morris (1998) investigate the robustness of perfect public equilibria 
when monitoring is almost public, i.e., each player can always discern accurately which 
private signal her opponent has observed by observing her own private signal. The 
present paper does not assume that monitoring is almost public. 

In consequence, this paper has many substantial points of departure from the earlier 
literature. We assume that there exist no public signals, players make no publicly 
observed announcements, and there exist no public randomization devices. We do not 
require that monitoring is either almost perfect or almost public. Hence, the present paper 
can be regarded as the first work to provide affirmative answers to the possibility of 
implicit collusion with discounting when monitoring is truly imperfect and truly private. 

                                                                                                                                               
discounting and with private monitoring in terms of epsilon-equilibria. 
4 In the last section of his paper, Piccione provides an example in which implicit collusion is 
possible even if players’ private observation errors are not infinitesimal. 
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As such, this paper may offer important economic implications within the field of 
industrial organization. In the real economy, communication between rival firms’ 
executives is restricted by Anti-Trust Law, on the assumption that such communication 
enhances the possibility of a self-enforcing cartel agreement.5 Moreover, in reality, firms 
usually cannot directly observe the prices or quantities of rival firms and the aggregate 
level of consumer demand is stochastic. Instead, each firm’s only information about its 
opponents’ actions within any particular period, is its own realized sales level and, 
therefore, each firm cannot know what its opponents have observed. These 
circumstances tend to promote the occurrence of price wars, as each firm cannot know 
whether a fall in its own sales is due to a fall in demand or a secret price cut by a rival firm. 
In this way, it has been widely believed that a cartel agreement is most likely to be 
breached when each firm’s monitoring of its opponents’ actions is truly private.6 In 
contrast, the present paper shows that collusive behavior is possible even if 
communication is prohibited and each firm obtains no public information on the prices or 
quantities of its rivals. 

The technical aspect of the present paper is closely related to Piccione (1998) and Ely 
and Valimaki (1999), particularly the latter. The paper is also related to Matsushima 
(1999), which investigated the impact of multimarket contact on implicit collusion in the 
imperfect public monitoring case and provided the efficiency result by using the idea of a 
review strategy equilibrium. Our equilibrium construction may be viewed as extending 
the equilibrium construction of Ely and Valimaki combined with that of Matsushima to 
general private signal structures. 

Furthermore, we consider the situation in which players have limited knowledge of 
their private signal structures as follows. Each player knows her own private signal 
structure, but does not know her opponent’s private signal structure. Hence, each player’s 
strategy depends on her own private signal structure, but is independent of her 
opponent’s private signal structure. We clarify whether the Folk Theorem can be 
achieved by using only players’ strategies that depend only on their own private signal 
structures. 

Each player behaves according to a mapping that assigns a strategy for this player to 
each possible conditional density function over her own private signal. Their mappings 
are assumed to be common knowledge, but each player does not know which strategy in 
the range of the opponent’s mapping is actually played. It is also assumed common 
knowledge that players’ private signal structures satisfy the conditional independence. 

                                                 
5 See such industrial organization textbooks as Scherer and Ross (1990) and Tirole (1988). 
Matsushima (1990b), Kandori and Matsushima (1998), Compte (1998), and Aoyagi (2000) 
provided a justification of why communication is so important for the self-enforcement of a cartel 
agreement. 
6 Stigler (1964) is closely related. Moreover, Green and Porter (1984) investigated repeated 
quantity-setting oligopoly when the market demand is stochastic and firms cannot observe the 
quantities of their rival firms. They assumed that firms can publicly observe the market-clearing 
price. In contrast, the present paper assumes that there exist no publicly observable signals such as 
the market-clearing price. 
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We require that every pair of strategies in the ranges of their mappings are sequential 
equilibria and approximately sustains the same payoff vector. 

We establish the Folk Theorem even with the above informational constraint. That is, 
for every individually rational feasible payoff vector, there exists a profile of mappings 
assigning each possible private signal structure a sequential equilibrium that 
approximately sustains this payoff vector. 

The organization of the paper is as follows. Section 2 defines the model. Section 3 
presents the Folk Theorem. Section 4 provides the outline of its proof. Section 5 provides 
the complete proof. Section 6 considers the situation in which players have limited 
knowledge of their private signal structures. Section 7 concludes. 
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2. The Model 
 

An infinitely repeated prisoner-dilemma game Γ  is 
defined as follows. In every period , players 1 and 2 play a prisoner-dilemma game 
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7 We assume it only for simplicity. We can derive the same results without this assumption. 
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A strategy profile  is said to be a Nash equilibrium in  if for each  
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Since each player’s private signal structure has full support, the set of Nash equilibrium 
payoff vectors is equivalent to the set of sequential equilibrium payoff vectors. Note that 
the set of sustainable payoff vectors is compact. 
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3. The Folk Theorem 
 

A feasible payoff vector  is said to be individually rational if it is more than or 
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Folk Theorem: Suppose that players’ private signal structures satisfy the minimal 
information requirement and the conditional independence. Then, every individually 
rational feasible payoff vector is sustainable. 
 

This theorem is in contrast to the Anti-Folk Theorem provided by Matsushima 
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8 
Section 5 provides the complete proof of the Folk Theorem. The proof will be divided 

into three steps, i.e., Steps 1, 2, and 3. Step 1 shows that the payoff vectors (1,1), (1,0), 
(0,1) and (0,0) are sustainable, where (1,1) is an efficient payoff vector. Since Step 1 
includes the logical core of the theorem, it would be helpful to provide the outline of Step 
1 in the next section. 

 
8 Bhaskar (2000) investigated the robustness of equilibria to payoff perturbation in repeated 
games. He pointed out that when the payoff perturbation does not violate the additive separability 
of utility functions and players’ private signal structures satisfy the conditional independence, the 
equilibria constructed in the present paper are not robust to this payoff perturbation. As Bhaskar 
mentioned by himself, this result crucially depends on the assumption that the additive 
separability is common knowledge among the players even with payoff perturbation. In the paper 
we put ourselves on the strong stand that the additive separability assumption only schematizes 
and simplifies the phenomena under investigation, in which the payoff functions may not be 
exactly additive-separable. 
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4. Efficient Sustainability: Outline 
 

This section provides the outline of Step 1 that shows why (1,1), (1,0), (0,1) and (0,0) 
are sustainable. 

Fix an integer T  arbitrarily, which is chosen sufficiently large. Fix a discount 
factor  arbitrarily, which is chosen close to 1. Fix an integer r , 
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either player  have observed at most  private signals that belong to  during the 
cooperative phase or all the private signals that she have observed during the punishment 
phase belong to Ω . Otherwise we will say that the T  times repeated play fails the 
review of player . When the T  times repeated play passes the review of player i , 
player  will certainly play the cooperative behavior according to the strategy 
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the next period. When the T  times repeated play fails the review, she will play the 

                                                 
9 The idea of review strategy was originated by Radner (1985) and explored by Abreu, Milgrom 
and Pearce (1991), Matsushima (1999), Kandori and Matsushima (1998), and Compte (1998). 
These papers made future punishment triggered either by bad histories of the public signals 
during the review phase, or by bad messages announced at the last stage of the review phase. In 
contrast to these works, the present paper assumes the non-existence of such public signals or 
messages. 
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punishment behavior according to the strategy is , instead of is , with a positive 
probability. 

By applying the idea of the construction addressed by Ely and Valimaki (1999), 
accompanied with an extended version of the Law of Large Numbers, we can show that 
there exist iξ , 

i
ξ , and r  for each  such that the payoff vectors )(* Ti }2,1{∈i ),( sδv , 
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and Valimaki proved that ( , ( , )( , and (  are sustainable when monitoring 
is almost perfect.
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10 We can generalize their result to the case that there exists a private 
signal for each player i  such that the likelihood ratio between the action profiles c  and 

 is almost zero. With this almost zero likelihood ratio condition, by making the 
punishment phase triggered by the occurrence of the neighborhood of this signal, we can 
prove that even if monitoring is not almost perfect, ( ,  ) , and (  are all 
sustainable.
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We can apply the idea of Ely and Valimaki or its generalization to the Markov 
strategies with sufficiently large T . By choosing r  more than Tp  but less 
than T , we can make the likelihood ratio between the T  times repeated choice of the 
action profile  and the T  times repeated choice of the action profile  that player i  

observes at least r  private signals that belong to Φ , almost zero. For example, 

suppose that . Then, the likelihood ratio is equal to 

)(* Ti )|( * cii Ω

jdc /c

(*ri

1+

1

)(* Ti

) −=T

*
i

T T

ji

ii

dc
c )

)/|
)|(

*

*

Ω
Ω

ip
p
(

( , which 

is close to zero when T  is sufficiently large. Hence, by regarding the T  times repeated 
game as the component game, we can prove the existence of such iξ , 

i
ξ *ri, and . )(T

However, in contrast to the case of T , equalities (1) does not imply that 1= s , s , 

1/ ss , and 2/ ss  are Nash equilibria in the case of T . We denote by  the set of 
strategies for player i  satisfying that player i  chooses the same action whenever in the 
same review phase, i.e., for every t , every t , every h , and every 

1>

1=′

ii SS ⊂ˆ

Hi∈1...2,1= ...2, i
t−

                                                 
10 Obara (1999) independently explored the same idea of construction as Ely and Valimaki in the 
study of private strategies with imperfect public monitoring. 
11 See Sections 3 and 4 of the earlier version of the paper (Matsushima (2000)). 
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i
t
i Hh ∈−′ 1 , 

ii Ss ∈

,...,1{ Tt∈

)()( 11 −′− = t
ii

t
ii hshs  if  for some integer k . TkttkT )1(1 +≤′≤≤+

Note that ii Ss ˆ∈  and ii Ss ˆ∈ . Equalities (1) imply only that 

)/,(),( iii ssvsv δδ =  and )/,(),( iii ssvsv δδ =  for all . ii Ss ˆ∈
Hence, in order to complete the proof that s , s , 1/ ss , and 2/ ss  are Nash equilibria, we 
have to check also that 

)/,(),( iii ssvsv δδ ≥  and )/,(),( iii ssvsv δδ ≥  for all . ii Ss ˆ∉
Note from the definitions of is  and is , and the full-support assumption, that all we have 
to check is that 

)/,(),( iii ssvsv δδ ≥  for all . ii Ss ˆ∉
The conditional independence guarantees that during the first T  periods, the past 

history of the private signals for player  provides player  with no information about the 
opponent  future play, as long as the opponent  strategy belongs to S . This, 
together with equalities (1), implies that if 

i i
sj′ sj′ j

ˆ

is  is not the best reply to js , then there exist 

 and  such that T
iii ATa ∈))(),...,1(a(

either ),()/,( svssv iii δδ >  or ),()/,( svssv iii δδ > , 
and that the strategy s  suggests player  to choose the action a  in each period 

 and to play the strategy 
i i )(ti

} T
ihis |  after period T , i.e., 1+

)()( 1 tahs t
ii =−  for all t  and all , T,...,1= i

t
i Hh ∈−1

and 
T
i

T
i hihi ss || =  for all h . i

T
i H∈

Since the action d  is dominant for player i  in the component game, we can assume 
without loss of generality that there exists  such that 

i

}1,...,1{ −Tτ ∈

ii dta =)(
t ∈

 for all , and a  for all 
. 

},...,1{ τ∈t ii ct =)(
},...,1{ T+τ

For every , we define a strategy for player , },...,0{ T∈τ i τ,is , by 

T
i

T
i hihi ss ||, =τ  for all h , i

T
i H∈

i
t
ii dhs =− )( 1

,τ  for all t , },...,1{ τ∈
and 

i
t
ii chs =− )( 1

,τ  for all t . },...,1{ T+∈ τ
Note that 0,ii ss = , and 

)/,()/,()/,(),( ,0, iiTiiiii ssvssvssvsv δδδδ === .                     (2) 
All we have to check is that for every , },...,0{ T∈τ
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)/,(),( ,τδδ iii ssvsv ≥  and )/,(),( ,τδδ iii ssvsv ≥ .12 
With no substantial difficulty, we can show that )/,(),( ,τδδ iii ssvs ≥v  for all 

.},...,0{ T∈τ 13  However, it is not immediate to check whether it holds that 
)/, ,τδ iss(),(δ ii vsv ≥  for all . For example, suppose that r  

again. Consider the situation in which players behave according to the strategy profile 
},...,0{ T∈τ 1)(* −= TTj

τ,/ iss

T

. The probability that all the private signals that player  observes during the first 

 periods belong to Ω  is equal to p , and therefore, the 
probability that player  will play the punishment behavior from period T  is equal to 

j

c|*
j

j

ττ −ΩΩ T
jjij pdc )()/| **

j (
1+

ττξ −ΩΩ T
jjijji cpdcp )|()/|( *** . 

Note that this probability is strictly convex with respect to τ , which implies that the 
payoff difference )/,()/,( 1,, −− ττ δδ iiii ssvssv  is decreasing with respect to . This, 
together with equalities (2), implies that 

τ
)()/,( , vss iii δδ τ > , sv  for all . 

Hence, it follows that 

}11{ −∈ Tτ ,...,

s , s , 1/ ss , and 2/ ss  are not Nash equilibria when . 1(* −TTrj ) =

In spite of it, we can show, by choosing  more than but close to Tp , that )(* Trj )|( * cjj Ω

s , s , 1/ ss , and 2/ ss  are all Nash equilibria, as follows. We can choose r  

satisfying that the probability that player  observes exactly  private signals that 

belong to Ω  during the first T  periods is larger than 

)(* Tj

j )(* Trj

*
j

)|()/|(
1

** cpdcp jjijj Ω−Ω
, 

when players behave according to the strategy profile s . This implies that the increase of 
the probability that the opponent  will play the punishment behavior, i.e., play the 
strategy 

j

js , from period T  is sufficiently large when player  changes the strategy 1+ i is  
into the strategy τ,is . This holds, irrespective of the number of periods  in which player 

 chooses the action d  against the suggestion by the strategy 
τ

i i is  during the first  
periods. Hence, it follows that 

T
)/,(), 1, −≥ τδδ ii ssvs(iv  for all , and 

therefore, that 
}1,..., −Tτ 1{∈

s , s , 1s/s , and 2s/s  are all Nash equilibria. 
The idea of the specification of r  is closely related to Matsushima (1999). 

Matsushima investigated infinitely repeated games with discounting where monitoring is 
imperfect and public. In every period, players play T  different prisoner-dilemma games 
at one time, and observe T  different public signals. Matsushima showed that by choosing 
the number T  sufficiently large, we could make the efficient payoff vector sustainable 
under imperfect public monitoring whenever it is sustainable under perfect monitoring. 

)(* Ti

                                                 
12 Kandori and Matsushima (1998) constructed their own review strategy equilibria, in which 
players make informative communication at long intervals. They assumed the conditional 
independence, which plays the similar role to that in the present paper in simplifying the analysis. 
13 The derivation of these inequalities crucially depends on the specification that the threshold for 
the review in the punishment phase is set equal to T . See the complete proof in the next 
section. 

1−
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Hence, the efficient payoff vector is sustainable even if the discount factor is far less than 
unity and monitoring in each prisoner-dilemma game is truly imperfect. Matsushima 
constructed the trigger strategy profile where the future punishment is triggered by the 
fact that the number of the prisoner-dilemma games in which the bad signal has been 
observed at one time is more than the threshold . Matsushima proved the efficient 
sustainability by specifying this threshold  in the same way as in Step 1. Here, the 
incentive constraint that a player  has no strict incentive to choose  in all games at one 
time, is binding. This binding constraint corresponds to the inequalities that 

)(* Tri

)(* Tri

i id

)/,(),( iii ssvsv δδ =  for all s  in the present paper. Hence, it follows that in the end, 
the present paper and Matsushima (1999) resolve themselves into the same existence 
problem of the threshold . 

iŜi ∈

)(T*ri
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5. The Proof of the Folk Theorem 
 

The proof of the Folk Theorem is divided into three steps. 
 
Step 1: We show that (1,1), (1,0), (0,1) and (0,0) are sustainable. Consider the situation in 
which players T times repeatedly play the prisoner-dilemma game. For every 

, and every , we denote by  the probability that player 
 observes exactly  private signals that belong to Ω  during the T periods when she 

chooses the action c  in all the periods and the opponent  chooses the action d  in the 
first  periods and chooses the action c  in the last T  periods. Let 

. 

r ∈{ ,..., }0
i

r

≡i TrF * ),,( τ

T },...,0{ T∈τ

),τ

),,(* τTrfi

i
*

j
r

i

′r ,

j

j r−

∑
=′

r

r
i Tf

0

*(

 
Lemma 1: For every positive real number z , there exists an infinite sequence of 
positive integers ( (  satisfying that 

0>
))*r Ti T=

∞
1

1)0,),((lim ** =
∞→

TTrF iiT
,                                                           (3) 

lim ( )*

T

ir T
T→∞

= )|( * cp ii Ω ,                                                          (4) 

and 
zTTrTf iiT

≥
∞→

)0,),((lim ** .                                                         (5) 

 
Proof: It follows from the Law of Large Numbers that for every , 0>ε

1)0,,(lim
)|(:

*

*

=∑
<Ω−

∞→
εcp

T
rr

iT
ii

Trf . 

This implies that there exists an infinite sequence of positive real numbers  such 

that 

∞
=0))(( TTε

0)(lim =
∞→

T
T

ε , and 1)0,,(lim
)()|(:

*

*

=∑
<Ω−

∞→
Tcp

T
rr

iT
ii

Trf
ε

. 

Note that for every large enough T , there exists r  in the neighborhood of Tp  
such that Tf . Hence, we can choose  satisfying that 

)|( * cii Ω

zTri >)0,,(* ( ))r Ti T=
∞

1(*

)()|()( *
*

Tcp
T
Tr

ii
i ε<Ω− , 

zTTrTf ii ≥)0,),(( ** , 
and for every r  satisfying that T , )()}()|({ ** TrrTcp iii >>+Ω ε

zTrTfi ≤)0,,(* . 

Note that 
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0})()()|({lim
*

* =−+Ω
∞→ T

TrTcp i
iiT

ε , 

and therefore, 
)0,),((lim ** TTrF iiT ∞→

 

∑
<Ω−

∞→
≥

)()|(:

*

*

)0,,(lim
Tcp

T
rr

iT
ii

Trf
ε

∑
>>+Ω

∞→
−

T
Tr

T
rTcpr

iT
i

ii

Trf
)(

)()|(:

*

*
*

)0,,(lim
ε

 

1})()()|({lim1
*

* =−+Ω−≥
∞→ T

TrTcpz i
iiT

ε . 

Q.E.D. 
 

Let 

)|()/|(
1

** cpdcp
z

iijii Ω−Ω
> ,                                                 (6) 

and choose ( (  satisfying the properties in Lemma 1. Note from equality (4) and 
the Law of Large Numbers that 

))*r Ti T=
∞

1

0),),((lim ** =
∞→

TTTrF iiT
.                                                            (7) 

For every r , we denote by  the probability that all the private 
signals for player  observed during the T periods belong to  when player  chooses 
the action d  in all the periods and the opponent  chooses the action d  in the first r  
periods and chooses the action  in the last T  periods. Note that 

T∈{ ,..., }0
i

),(** τTfi

j
r−

Ω i
** i

i j

jc

0)
)/|(

)|((lim
)0,(
),(lim **

**

**

**

=
Ω
Ω

=
∞→∞→

T

jii

ii

T
i

i

T cdp
dp

Tf
TTf .                                (8) 

Fix an infinite sequence of discount factors (  arbitrarily, which satisfies 
. We choose an infinite sequence of positive integers (  satisfying that 

)δ m
m=
∞

1

lim
m

m

→∞
=δ 1 )T m

m=
∞

1

lim
m

mT
→∞

= ∞ , , , γ δm m m

≡ ( )T lim
m

m

→∞
=γ 1

and for each  i = 1 2, ,

j
m

im

m

m
yTf >

−∞→
)0,(

1
lim **

γ
γ . 

From equalities (3), (7), and (8), we can choose an infinite sequence 
( , ,( , ) ),v vm m

i
m

i

m
i mξ ξ =

∞
1 2 1=  satisfying that ξ i

m
∈[ , ]0 1  and ξ

i

m ∈[ , ]0 1  for all , m = 1 2, ,...

lim ( , )
m

mv
→∞

= 11 , 

lim ( , )
m

mv
→∞

= 0 0 , 

and for each , and every large enough , i = 1 2, m

))}(0,),((1{
1

1 ** m
j

m
j

mm
ii

m
im

m
m
j vvTTrFv −−

−
−= ξ

γ
γ  
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))}(,),((1{
1

1 ** m
j

m
j

mmm
ii

m
im

m

j vvTTTrFx −−
−

−+= ξ
γ

γ ,          (9) 

and 

))(,(
1

** m
j

m
j

mm
i

m

im

m
m
j vvTTfv −

−
= ξ

γ
γ  

))(0,(
1

** m
j

m
j

m
i

m

im

m

j vvTfy −
−

+−= ξ
γ

γ .                                    (10) 

For every , we define  and  by m = 1 2, , ... Φ Ωi
m

i
T m* ⊂ Φ Ωi

m
i
T m** ⊂

Φ i
m* ≡ { : either  for at most ( ( ),..., ( ))ω ωi i

m
i
TT

m

1 ∈Ω ω i t( )∈Ω i
*

r Ti
m*( )  periods, or ω ξi

m
i i

mT( ) (*∉Ω ) }, 
and 

Φ i
m** ≡ { : either  for all ( ( ),..., ( ))ω ωi i

m
i
TT

m

1 ∈Ω ω i t( )∈Ω i
**

t T m∈{ ,..., }1 , or ω ξi
m

i i

mT( ) (**∉Ω ) }. 

We specify an infinite sequence of two strategy profiles ( , )s sm m
m=
∞

1  as follows. For every 
, and every , t m= 1,...,T h Hi

t
i

− ∈1

s h ci
m

i
t

i( )− =1 , and s h di
m

i
t

i( )− =1 . 
Recursively, for every , every t , and every , ...2,1=k },...,1{ τ++∈ mm kTkT h Hi

t
i

− ∈1

s h ci
m

i
t

i( )− =1  if   and *))1(),...,(( ii
m

i tTt Φ∈−−−− τωτω
 i

t
i

m
i chs =−− )( 1τ , 

s h ci
m

i
t

i( )− =1  if  and **))1(),...,(( ii
m

i tTt Φ∈−−−− τωτω
 i

t
i

m
i dhs =−− )( 1τ , 

i
t
i

m
i dhs =− )( 1  if  and *))1(),...,(( ii

m
i tTt Φ∉−−−− τωτω

 i
t
i

m
i chs =−− )( 1τ , 

i
t
i

m
i dhs =− )( 1  if  and **))1(),...,(( ii

m
i tTt Φ∉−−−− τωτω

 i
t
i

m
i dhs =−− )( 1τ , 

i
t
i

m
i chs =− )( 1  if (  and *))1(),...,( ii

m
i tTt Φ∈−−−− τωτω

 i
t
i

m
i chs =−− )( 1τ , 

i
t
i

m
i chs =− )( 1  if (  and **))1(),...,( ii

m
i tTt Φ∈−−−− τωτω

 i
t
i

m
i dhs =−− )( 1τ , 

i
t
i

m
i dhs =− )( 1  if  and *))1(),...,(( ii

m
i tTt Φ∉−−−− τωτω

 i
t
i

m
i chs =−− )( 1τ , 

and 

i
t
i

m
i dhs =− )( 1  if  and **))1(),...,(( ii

m
i tTt Φ∉−−−− τωτω

m
i

t
ii dhs =−− )( 1τ . 

Note that 
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s si
m

h i
m

i
T m| =  if ( ( , ), ..., ( )) *ω ωi i

m
i
mT1 ∈Φ

s si
m

h i
m

i
T m| =  if ( , ( ), ..., ( )) *ω ωi i

m
i
mT1 ∉Φ

s si
m

h i
m

i
T m| =  if ( , ( ), ..., ( )) **ω ωi i

m
i

mT1 ∈Φ

and 
s si

m

h i
m

i
T m| =  if . m

i
m

ii T **))(),...,1(( Φ∉ωω

Equalities (9) and (10) imply that 
v s v s sj

m m
j

m m
j
m

j
m( , ) ( , / )δ δ= v= ,                                        (11) 

v s v s sj
m m

j
m m

j
m

j
m( , ) ( , / )δ δ= v= ,                                        (12) 

and, therefore, 
lim ( , ) lim ( , / )
m j

m m

m j
m m

j
mv s v s s

→∞ →∞
= =δ δ 1, 

and 
lim ( , ) lim ( , / )
m j

m m

m j
m m

j
mv s v s s

→∞ →∞
= =δ δ 0 . 

We show below that s m , s , m s sm
j
m/ , and s sm

j
m/

}2,1{∈i

 are Nash equilibria for every large 

enough . For every , and each , we define a strategy for player i , m },...,0{ mT∈τ
m
is τ, , by 

mT
i

mT
i h

m
ih

m
i ss ||, =τ  for all , i

T
i Hh

m

∈

and 
i

t
i

m
i dhs =− )( 1
,τ  for all t , and },...,1{ τ∈ i

t
i

m
i chs =− )( 1
,τ  for all 

},...,1{ mTt +∈ τ . 
Note that m

i
m
i ss 0,= , and 

)/,()/,()/,(),( ,0,
m
i

mm
i

m
Ti

mm
i

m
i

mm
i

mm
i ssvssvssvsv δδδδ === . 

From the conditional independence, all we have to show is that 
)/,(),( ,

m
j

mm
j

mm
j ssvsv τδδ ≥  and )/,(),( ,

m
j

mm
j

mm
j ssvsv τδδ ≥  for 

all 
},...,0{ mT∈τ . 

First, we show that )/,(),( ,
m
j

mm
j

mm
j ssvs τδδ ≥v  for all . The following 

lemma is the same as Lemma 2 in Matsushima (1999) and, therefore, we will omit its 
proof. 

},...,0{ mT∈τ

 
Lemma 2: For every T , and every r , there exists an integer 

 such that 
,...2,1= },...,0{ T∈

},...,0{),(* TrTi ∈τ
)1,,(),,( ** −≥ ττ TrfTrf ii  if , ),(* rTττ ≤

and 
)1,,(),,( ** −≤ ττ TrfTrf ii  if . ),(* rTiττ >
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The difference of the probabilities that the event Φ  does not occur in period T  
between the strategy profiles 

i
m* m

m
jss τ,/  and m

jss 1,/ −τ  is equal to 
m

iξ )}|()/|({ ** cpdcp iijii Ω−Ω )1,1),(( ** −− τmm
ii TTrf , 

which implies that 

)}/,()/,({
1

1
1,,

m
j

mm
j

m
j

mm
jm ssvssv −−

− ττ δδ
δ

 

jx= − ξi
m{ )/|( *

jii dcp Ω  

)}|( * cp ii Ω− )1,1),(( ** −− τmm
ii TTrf m

m

δ
γ
−1

( )v vj
m

j
m− . 

Lemma 2 implies that this payoff difference is non-increasing with respect to  if 
, but it is non-decreasing if . This, 

together with the equality 

τ
))(,(1 ** m

i
m

i TrTττ ≤≤ mm
i

m
i TTrT ≤< ττ ))(,( **

),
m

Tjs/,()/,( 0,
mm

j
m
j

mm
j svss δδ =v , implies that 

),()/,( ,
mm

j
m
j

mm
j svssv δδ τ ≤  for all  },...,0{ mT∈τ

if )/,( 1,
m
j

mm
j ssv δ )/,( 0,

m
j

mm
j ssv δ≤

m

. 

From equality (7), the latter equality of (9), , lim lim( )
m

m

m

m T

→∞ →∞
= =γ δ 1 lim ( , )

m

mv
→∞

= 11 , and 

lim ( , )
m

mv
→∞

= 0 0 , it follows that 
m

lim
( )m

m

m m i
m

T→∞ −
γ
δ

ξ
1

=
−→∞

lim
m

m

m i
mγ

γ
ξ

1
lim

( )

m

m t

t

T

m jT
x

→∞

=

−

∑
=

δ
0

1

, 

and, therefore, 

)}/,()/,({
1

1lim 0,1,
m
j

mm
j

m
j

mm
jmm

ssvssv δδ
δ

−
−∞→

 

jx= − x j{ )/|( *
jii dcp Ω )}|( * cp ii Ω− )0,1),((lim ** −

∞→
TTrTf iiT

. 

Note that 

)0,1,(* −Trfi
rT

ii
r

ii cpcp
rTr

T −−Ω−Ω
−−

−
= 1** )}|(1{)|(

)!1(!
)!1(  

)0,,()}|(1){1( *1* Trfcp
T
r

ii
−Ω−−= . 

Hence, it follows from Lemma 1 and inequality (6) that 

)}/,()/,({
1

1lim 0,1,
m
j

mm
j

m
j

mm
jmm

ssvssv δδ
δ

−
−∞→

 

jx= − x j{ )/|( *
jii dcp Ω )}|( * cp ii Ω− )0,1),((lim ** −

∞→
TTrTf iiT

 

jx≤ − x j{ )/|( *
jii dcp Ω zcp ii )}|( *Ω− 0< , 

and therefore, we have proved that )/,(),( ,
m
j

mm
j

mm
j ssvsv τδδ ≥  for all . },...,0{ mT∈τ

Next, we show that )/,(),( ,
m
j

mm
j

mm
j ssvsv τδδ ≥  for all . Note that },...,0{ mT∈τ

m mτττ −ΩΩ= T
jiiii

m
i cdpdpTf ))/|(()|(),( ****** ),(** mm

i
T TTfq τ−= , 
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where 

1
)|(

)/|(
**

**

>
Ω

Ω
≡

dp
cdp

q
ii

jii . 

Hence, it follows from equalities (10) that 
)/,( ,

m
j

mm
j ssv τδ  

))(,(
1

)()(
1
1 **

1

1 m
j

m
j

m
i

m

im

mT

t

tm
jm

m

vvTfy
m

−
−

+−
−
−

= ∑
+=

− τξ
γ

γδ
γ
δ

τ
 

m
j

T
T

t

tm
jm

m

vqy
m

m

τ

τ
δ

γ
δ −

+=

− +−
−
−

= ∑
1

1)()(
1
1 , 

and, therefore, 
)/,( 1,

m
j

mm
j ssv −τδ )/,( ,

m
j

mm
j ssv τδ−  

m
j

T
jm

mTm
T

m vqqy
m

m
m

)1())(
1
)(()1(

1

−+−
−

−
= −

−
− ττ

γ
γδ

δ
.                    (13) 

Given that  is large enough, we can assume that m

1
1

< <
δ m q , 

which, together with equality (13), inequality 
( )

, and inequality ( )
δ γ

γ

m T m

m j

m

y
− −

−
− <
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1
0

( )q v j
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m
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m
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if )/,( ,
m
j

mm
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m
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m
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j ssv τδ )/,( 1,

m
j
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j ssv +≤ τδ  

if )/,( 1,
m
j
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j ssv −τδ )/,( ,

m
j

mm
j ssv τδ≤ . 

These inequalities, together with equality )/,( 0,
m
j

mm
j ssv δ )/,( ,

m
Tj

mm
j mssv δ= , imply that 

),( mm
j sv δ )/,( ,

m
j

mm
j ssv τδ≥  for all . τ ∈{ ,..., }1 T m

From these observations, we have proved that s m , sm , s sm
j
m/  and s sm

j
m/  are Nash 

equilibria for every large enough . Hence, (1,1), (1,0), (0,1) and (0,0) are sustainable. m
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Step 2: We show that  and  are sustainable. Consider  only. We can prove that 
 is sustainable in the same way. 

z [ ]1 z [ ]2 z [ ]1

z [ ]2

Consider the situation in which players M times repeatedly play the prisoner-dilemma 
game. For every r , and every τ , we denote by  the 
probability that player 2 observes exactly  private signals that belong to Ω  during the 
M periods when she chooses the action  in all the periods, and the opponent 1 chooses 
the action d  in the first  periods and the action c  in the last  periods. Let 

. We choose an infinite sequence of positive integers 

 satisfying that 

},...,0{ M∈

τ
+ ′ Mrf2 ),,( τ

},...,0{ M∈
r

1

),,(2 τMrf +

2
+

τ−
2d

1

≡)

=

M

∑
=′

+
r

r
MrF

0
2 ,,( τ

( ( ))r M M2 1
+ ∞

1)0,),((lim 22 =++

∞→
MMrF

M
,                                                          (14) 

lim ( )
M

r M
M→∞

+

=2 )/|( 122 cdp +Ω ,                                                    (15) 

and 

)0,),((lim 22 MMrMf
M

++

∞→
>

)}/|()|({
1

122221

1

cdpdpy
y

++ Ω−Ω
+ .       (16) 

In the same way as in Lemma 1, such a sequence (  exists. Equality (15), 
together with the Law of Large Numbers, implies that 

( ))r M M2
+

=
∞

1

0),),((lim 22 =++

∞→
MMMrF

M
.                                                      (17) 

We choose a positive real number  arbitrarily, which is less than but close to b > 0 1
1 1+ y

, 

satisfying that 

)0,),((lim 22 MMrMf
M

++

∞→
>

)}/|()|({)1( 12222
2

1

cdpdpb
by

++ Ω−Ω−
. 

Let 
v b y x b* ( , ) ( )( ,≡ − + + −1 21 1 )11

M

. 
Note that  approximates , and v* z [ ]1

v z1 1
1 0* [ ]> = . 

Fix an infinite sequence of discount factors ( )  arbitrarily, which satisfies 
. Choose an infinite sequence of positive integers (  satisfying that 

δ m
m=
∞

1

lim
m

m

→+∞
=δ 1 )M m

m=
∞

1

lim
m

mM
→∞

= ∞ , , χ δm m m

≡ ( )

and 
lim
m

m b
→∞

= −χ 1 .                                                                          (18) 

For every , we define m = 1 2, , ...
Φ2

+ ≡m { :  for at most ( ( ),..., ( ))ω ω2 21 M m M m

∈Ω2 ω2 ( )t ∈Ω2
+

r M m
2
+ ( )  periods}. 

Let ( ,  be the infinite sequence of the two strategy profiles specified in Step 1. )s sm m
m=
∞

1
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We specify an infinite sequence of strategy profiles (  by ∞
=1)ˆ m

ms
),()(ˆ 21

1
2 dchs tm =−  if 1 , ≤ ≤t M m

m

h

m ss mT 11
1

|ˆ =  for all h , 11 H
mT ∈

for every , 22 Hh
mT ∈
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+

and 
m
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m ss mT 22
2

|ˆ =  if ( . ( ), ..., ( ))ω ω2 21 M m ∉Φ2
+

According to the strategy s , players choose the action profile (  in the first  
periods. From period , player 1 certainly plays the strategy 

mˆ
+1

), 21 dc M m

M m s , whereas player 2 
plays the strategy 

m
1

s m
2  (the strategy sm

2 ) if the M times repeated play passes the review of 
player 1 (fails the review of player 1, respectively). Note that 

)ˆ,(1
mm sv δ = − −( )(1 1χ m y ) mmmmm vMMMrF 122 ),),(([ +++ χ  

])},),((1{ 122
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Note from equalities (14), (17), and (18) that 
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m
+−=

∞→
δ + − =( )( , ) *1 11b v . 

Hence,  approximates  for every large enough . )ˆ,( mm sv δ ]1[z m
We show below that  is a Nash equilibrium for every large enough . Step 1 has 

proved that (  is a Nash equilibrium for every h  and every large 

enough . Since players’ private signal structures satisfy the conditional independence 
and the action d  is dominant for player 2 in the component game, it follows that the 
repeated choice of the action  during the first  periods is the best reply for player 

. Hence, all we have to check is that the repeated choice of the action  during the first 
 periods is the best reply for player 1 for every large enough . 

mŝ
|

2
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m
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For every , we define a strategy for player 1, , by },...,0{ mM∈τ ms τ,1̂
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The difference of the probabilities that the event Φ  does not occur in period M  
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m

mm ss τ,1̂/ˆ mm ss 1,1̂/ˆ −τ

)}/|()|({ 12222 cdpdp ++ Ω−Ω )1,1),(( 22 −− τmm MMrf , 
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which implies that 
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In the same way as in Lemma 2, it follows that for every M , and every 
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which is less than zero, because b  is less than 1
1 1+ y

. Hence, it follows that 

 for every large enough . )ˆ,()ˆ/ˆ,( 11,11
mmmmm svssv δδ < m
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Hence, we have proved that ]  is sustainable. Similarly,  is sustainable too. z [1 z [ ]2
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Step 3: Fix a positive integer K  and  individually rational feasible payoff vectors 
, arbitrarily, where v  for all  We 

show that 

K
),1,1v v K{ } { },...,1 },),1,0(),0,1({( ]2[]1[ zz∈}{k k K∈{ ,..., }1 .
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 is sustainable. Fix ( )  arbitrarily, which satisfies . Fix 

 arbitrarily. For every , let  be an infinite sequence of strategy 
profiles satisfying that for every large enough m ,  is a Nash equilibrium, and that 
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Since  is a Nash equilibrium in  for every large enough , it follows that },{ mks )( mδΓ m
m

s  

is a Nash equilibrium in Γ  for every large enough m . Hence, (( )δ m K
1

)
v

K

k

k

K
[ ]

=
∑

1  is 

sustainable. 
Since (1,1), (0,0), z , and z  are sustainable and the set of individually rational 

feasible payoff vectors is equivalent to the convex hull of the set {( , we 
have proved that every individually rational feasible payoff vector is sustainable. 

[ ]1 [ ]2

, ),( , ), , }[ ] [ ]0 0 11 1 2z z

Hence, we have completed the proof of the Folk Theorem. 
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6. Limited Knowledge 
 

This section investigates the situation in which players have limited knowledge of 
their private signal structures. Each player i  knows her own monitoring ability , but 
does not know her opponent’s monitoring ability p . Hence, player i  must behave 
according to a strategy that does not depend on . 

pi

j

p j

For each i , fix an arbitrary compact and nonempty subset P  of conditional 
density functions on player i  private signal, which satisfy the minimal information 
constraint. Let P P . Each player i  only knows which element of P  is the 
correct conditional density function for her own private signal. It is common knowledge 
that the correct conditional density function belongs to . It is also common knowledge 
that players’ private signal structures satisfy the conditional independence. A mapping 
that assigns each element of P  a strategy for player i  is denoted by . Let 

, and . Player i  behaves according to the strategy 
 irrespective of her opponent’s monitoring ability . 

= 1 2, i
*

ρ

s'
P*
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i
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(p p1 1

* *≡ ×1
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→
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i iP: *
iS

)

ρ ρ ρ≡ ( , )1 2

ρi i ip S( ) ∈
ρ), ( ))p2 2

p Pj j∈ *

The following proposition states that the Folk Theorem holds for every  even 
if players have no knowledge of their opponents’ signal structures. 

p P∈ *

 
Proposition: For every individually rational payoff vector v , every ( )  
satisfying , and every , there exists ( )  such that for every , 

and every large enough m,  is a sequential equilibrium in Γ , and for each 
,  
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Proof: Fix (  arbitrarily, where . Note from the compactness of  that 
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The specifications of  and  in the above way guarantee that such a ( )  can be 
specified independently of . Here, we must note that it is necessary to make the 
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 are Nash equilibria and, therefore, sequential equilibria, and that these 
strategy profiles approximately sustain (1,1), (1,0), (0,1), (0,0), and , respectively. In 
the same way as the above arguments, we can prove also that there exists (  such 
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Hence, we have proved that 
v
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k

K
[ ]

=
∑

1  is sustainable. 

Since the set of individually rational feasible payoff vectors is equivalent to the 
convex hull of the set {( , we have proved this proposition. },),1,0(),0,1(),1,1 }]2[]1[ zz

Q.E.D. 
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7. Conclusion 
 

The present paper investigated infinitely repeated prisoner-dilemma games with 
discounting, where players are sufficiently patient and monitoring is imperfect and 
private. We provided the Folk Theorem when players’ private signal structures satisfy the 
conditional independence, and showed that the Folk Theorem holds even if players have 
no knowledge of their opponents’ private signal structures. In the paper we required no 
conditions concerning the accuracy of private signals except the minimal information 
requirement. 

Whether the Folk Theorem holds even without conditional independence is an open 
question. The conditional independence simplified the way to check whether the review 
strategy profiles constructed in the paper are sequential equilibria. Hence, all we have to 
do was to show that there exists no strategy preferred to the review strategy that is the 
same as the review strategy after the first review phase and does not depend on private 
signal histories during the first review phase. Without conditional independence the 
problem is more complicated, because there may still exist a strategy preferred to the 
review strategy that does depend on private signal histories even during the first review 
phase. When the private signal history observed by a player in the middle of the review 
phase implies that with high probability the opponent has already received many bad 
signals and recognized that the review was failed, the player may have no incentive to 
choose the cooperative action in the remainder of the review phase. 

In the same way as the present paper, we may be able to establish the Folk Theorem 
even without conditional independence, if for each i  there exist subsets Ω Ω , 

, and  satisfying that for every ω , and every ω , 
}2,1{∈

jj Ω∈
i i
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Ω Ωi
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),/|(),|( ****
jjiijii cdpdp ωω ′Ω<Ω , 

and 
),|(),/|( jiijjii dpcdp ωω ′Ω<Ω ++ , 

where  is the probability that the event W  occurs when players choose 
 and player  observes ω . When such subsets do not exist, we may need to 

explore a further extended form of review strategies, probably combined with a device of 
punishment and reward on hyperplanes a la Matsushima (1989) and Fudenberg, Levine, 
and Maskin (1994). 

),|( jii aWp ω

j
ii Ω⊂

Aa∈ jj Ω∈

The present paper considered only repeated prisoner-dilemma games. We can extend 
our efficiency result to a class of games with more than two actions as follows. Suppose 
that a player i  has an action d  other than the actions c  and , and there exist 

 and α  such that 
′i i d i

α ∈[0, ]1 ′ ∈[ , ]0 1
u c d u c u c di i i i( / ) ( ) ( ) ( / )′ ≤ + −α α1 , 

)|()/|()1()|()/|( **** cpdcpcpdcp jjijjjjijj Ω>Ω−+Ω>′Ω αα , 
u d d u d u d ci i i i( / ) ( ) ( ) ( / )′ ≤ ′ + − ′α α1 , 

and 
)/|()1()|()/|( ******

ijjjjijj cdpdpddp Ω′−+Ω′<′Ω αα  
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)/|( **
ijj cdp Ω< . 

Since the action d  is worse than a mixture of the actions c  and , player i  have no 
incentive to choose  when her opponent plays the strategy constructed in the paper. 

′i i d i

′di

The more intensive study of private monitoring in general repeated games with more 
than two actions and more than two players,14 and also in general stochastic games, 
should be expected to start in the near future. 

                                                 
14 For the three or more player case with almost perfect monitoring, see, for example, Bhaskar and 
Obara (2000), and Ely and Valimaki (1999). 
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