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In this paper we consider the problem of estimating the matrix of regression coeffi-
cients in a multivariate linear regression model in which the design matrix is near singular.
Under the assumption of normality, we propose empirical Bayes ridge regression estima-
tors with three types of shrinkage functions, that is, scalar, componentwise and matricial
shrinkage. These proposed estimators are proved to be uniformly better than the least
squares estimator, that is, minimax in terms of risk under the Strawderman’s loss func-
tion. Through simulation and empirical studies, they are also shown to be useful in the
multicollinearity cases.
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1 Introduction

Consider a multivariate linear regression model in which a vector y of p responses depends
linearly on m independent variables z1, . . . , zm as

y = βtz + ε

where ε ∼ Np(0,Σ), zt = (z1, . . . , zm) and β is an m × p matrix of unknown regression
parameters. Writing

βt = (β1, . . . ,βm) and β = (β(1), . . . ,β(p))

we find that βi is the vector of regression coefficients associated with the independent
variables zi. With N independent observations on y and with the corresponding N values
on z denoted by an N ×m matrix Z of rank m, the regression model becomes

Y = Zβ + E,
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where

Y = (y(1), . . . ,y(p)) = (y1, . . . ,yN)t : N × p

and the N rows of E are i.i.d. Np(0,Σ). The least squares estimate of β(i) is given by

β̂(i) = (ZtZ)−1Zty(i), i = 1, . . . , p

which can be written compactly as

β̂ = (ZtZ)−1ZtY .

When some of the independent variables z1, . . . , zm are highly correlated, the matrix
ZtZ is near singular and the least squares estimator β̂ becomes unstable. In such a
situation, known as multicollinearity in the literature, the regression coefficient vector
βi corresponding to the highly correlated independent variable zi is shrunken or pulled
towards zero by using Stein-type estimators or ridge-regression type estimators proposed
by Hoerl and Kennard (1970). However, because of simplicity and ease of computation
since the least squares computing packages can also be used for ridge regression estimators
(see Sen and Srivastava, 1990, p 257), the ridge-regression estimator is a popular procedure
among practicing statisticians. The most commonly used ridge regression estimator is
given by

(ZtZ + K)−1ZtY , (1.1)

where K is an m ×m matrix chosen on the basis of some criteria; K is also sometimes
chosen as a diagonal matrix. Some authors, such as Breiman and Friedman (1997),

however, apply ridge regression estimators to β̂(i) separately for each of the p regressions
for the p response variables, namely, they consider

β̂(i)(ki) = (ZtZ + kiI)−1Zty(i), i = 1, . . . , p. (1.2)

While both (1.1) and (1.2) shrinks the matrix regression coefficients β, it is not clear if

either of them shrinks β̂i corresponding to the highly correlated variable zi.

In this paper we design the shrinkage in a manner that achieves the above mentioned
goal of shrinking the ‘culprit’ β̂i towards zero. In addition, we provide minimax estima-
tors under an appropriate loss function of the regression parameters. Attempts in the
past to obtain minimax adaptive ridge regression estimators of the matrix K in (1.1)
have not been successful, see for example, Brown and Zidek (1980, 82). On the other
hand, minimax estimators of Stein-type (shrinkage) have been proposed in the literature
for regression parameters by Bilodeau and Kariya (1989), Konno (1990, 1991) and Srivas-
tava and Solanky (2003). However, Srivastava and Solanky (2003) have shown that one
of the estimators proposed by Konno (1991) is the best among the many shrinkage esti-
mators available in the literature including the one proposed by Breiman and Friedman
(1997) whose minimaxity is not known. Thus in our comparison we shall include Konno’s
estimator, defined in Section 4.

The organization of the paper is as follows: In Section 2, we reduce the problem
to a canonical form and then propose empirical Bayes ridge regression estimators with
three types of shrinkage functions, that is, scalar, componentwise and matricial shrinkage.
In Section 3, these proposed estimators are proved to be uniformly better than the least
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squares estimator, that is, minimax in terms of risk under the Strawderman’s loss function.
In Section 4, we investigate risk-behaviors of the proposed esitmators, principal component
regression estimators and Konno’s estimator under the loss function Lj(ω, δ, (Z

tZ)j) =
(δ−β)t(ZtZ)j(δ−β), j = 0, 1, 2. These procedures are also applied to the chemometrics
data analyzed by Skagerberg, MacGregor and Kiparissides (1992) and compared through
prediction error estimated via the leave-one-out cross-validation. Through these numerical
and empirical studies, the minimax empirical Bayes ridge regression estimators are useful
in the multicollinearity cases.

2 Minimax Empirical Bayes Ridge Regression Esti-

mators

Following the notation of Srivastava and Khatri (1979, pp 54, 55), under the assumption
of normality,

β̂ ∼ Nm,p(β, (Z
tZ)−1,Σ).

For obtaining minimax estimators of β, we shall consider the loss function

L(ω, β̃, (ZtZ)2) = tr (β̃ − β)Σ−1(β̃ − β)t(ZtZ)2, (2.1)

for any estimator β̃ of β and ω = (β,Σ). This loss function was proposed by Strawderman
(1978), and it is most appropriate for multicollinearity case.

Let P be anm×m orthogonal matrix such that P (ZtZ)−1P t = D = diag (d1, . . . , dm)
for d1 ≥ . . . ≥ dm > 0. Then, with

X = P β̂ and Θ = Pβ, (2.2)

we find that

X ∼ Nm,p(Θ,D,Σ). (2.3)

In terms of the above transformations, the above loss function (2.1) becomes

L(ω, Θ̃,D−2) = tr (Θ̃ − Θ)Σ−1(Θ̃ −Θ)tD−2. (2.4)

where Θ̃ = Hβ̃ is an estimator of Θ. Writing

Xt = (x1, . . . ,xm) and Θt = (θ1, . . . , θm),

we find that xi’s are independently distributed as

xi ∼ Np(θi, diΣ), i = 1, . . . , m.

Here di’s are known numbers but Σ is unknown which can be estimated by n−1S where

S = (Y − Zβ̂)t(Y − Zβ̂), n = N −m,

and is distributed independently of xi, i = 1, . . . , m, as Wp(n,Σ). Thus, the problem
reduces to that of estimating θi from xi which has covariance diΣ, the inequality in
covariances of xi is through the known numbers di.

Three types of empirical Bayes ridge regression estimators of Θ are proposed in the
following subsections.
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2.1 Scalar shrinkage empirical Bayes estimator

In the model xi ∼ Np(θi, diΣ), i = 1, . . . , m, where d1 ≥ . . . ≥ dm, we suppose that θi

has a prior distribution Np(0, λΣ). Then the posterior distribution of θi given xi has

Np(θ̂
B

i (λ), (d−1
i + λ−1)−1Σ) where θ̂

B

i (λ) is the Bayes estimator of θi given by

θ̂
B

i (λ) = xi − di

di + λ
xi, (2.5)

and the Bayes estimator of Θ is Θ̂
B
(λ) where {Θ̂B

(λ)}t = (θ̂
B

1 (λ), . . . , θ̂
B

m(λ)). Since xi

is marginally distributed as Np(0, (di + λ)Σ), we have that E[
∑m

i=1 xt
iS

−1xi/(di + λ)] =
mp/(n − p − 1). Taking this moment into account, we consider the solution λ∗ of the
equation

m∑
i=1

xt
iS

−1xi/(di + λ∗) = (mp− 2)/(n− p+ 3). (2.6)

Also let λs0 be the root of the equation

m∑
i=1

di − dm

di + λs0

=
pm− 2

2p
, (2.7)

and define the estimator λ̂SB of λ by

λ̂SB = max(λ∗, λs0). (2.8)

We thus get the estimator Θ̂
SB

= (θ̂
SB

1 , . . . , θ̂
SB

m )t where

θ̂
SB

i = θ̂
B

i (λ̂SB) = xi − di

di + λ̂SB
xi, (2.9)

which we call the scalar shrinkage empirical Bayes estimator, denoted by SB.

Theorem 1. Assume that pm ≥ 3. Then the scalar shrinkage empirical Bayes

estimator Θ̂
SB

is minimax under Strawderman’s loss (2.4).

2.2 Componentwise shrinkage empirical Bayes estimator

Suppose that θi has a priori distribution Np(0,Σ
1/2ΛΣ1/2) for Λ = diag (λ1, . . . , λp).

Then the posterior distribution of θi given xi has Np(θ̂
B

i (Λ,Σ),Σ1/2(d−1
i Ip+Λ−1)−1Σ1/2)

where θ̂
B

i (Λ,Σ) is the Bayes estimator of θi given by

θ̂
B

i (Λ,Σ) =
(
d−1

i Σ−1 + Σ−1/2Λ−1Σ−1/2
)−1

d−1
i Σ−1xi

=xi − diΣ
1/2(diIp + Λ)−1Σ−1/2xi. (2.10)

Since xi is marginally distributed as Np(0,Σ
1/2(diIp + Λ)Σ1/2), the estimate of the pa-

rameter Λ may be based on S and X by using their mariginal distributions.
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Let H be an orthogonal matrix such that HSH t = L = diag (`1, . . . , `p), `1 ≥ · · · ≥
`p. For j = 1, . . . , p, let λ∗j be the solution of the equation

m∑
i=1

(ht
jxi)

2/`j

di + λ∗j
= c0, j = 1, . . . , p, (2.11)

where H t = (h1, . . . ,hp) and c0 = (m − 2)/(np + 2). Also let λc0 be the solution of the
equation

m∑
i=1

di − dm

di + λc0

=
m− 2

2
, (2.12)

and define the estimator λ̂CB
j of λj by

λ̂CB
j = max(λ∗j , λc0), j = 1, . . . , p. (2.13)

We thus consider the estimator Θ̂
CB

= (θ̂
CB

1 , . . . , θ̂
CB

m )t given by

θ̂
CB

i = xi − diH
tΨiHx, (2.14)

which we call the componentwise shrinkage empirical Bayes estimator, denoted by CB,
where Ψ = diag (ψ

(i)
1 , . . . , ψ

(i)
p ) for

ψ
(i)
j =

1

di + λ̂CB
j

, j = 1, . . . , p. (2.15)

Theorem 2. Assume that m ≥ 3. Then the componentwise shrinkage empirical

Bayes estimator Θ̂
CB

is minimax under Strawderman’s loss (2.4).

We can also propose a convex combination of θ̂SB
i and θ̂

CB

i as an estimator of θi. For
example,

θ̂
CC

i (c) =
cdi

cdi + d1
θ̂

SB

i +
d1

cdi + d1
θ̂

CB

i , (2.16)

where c is a constant, may be considered as a viable estimator. In the simulation and
empirical studies given in Section 4, we put c = 5. This combined estimator of Θ is

denoted by Θ̂
CC

(c). When di is large, the combined estimator θ̂
CC

i (c) is close to the

scalar shrinkage empirical Bayes estimator θ̂
SB

i . When the di is small, on the other hand,

the componentwise shrinkage estimator θ̂
CB

i will affect the risk gain effectively.

Corollary 1. The combined estimator Θ̂
CC

(c) is minimax if m ≥ 3 under Strawder-
man’s loss.

2.3 Matricial shrinkage empirical Bayes estimator

Suppose that θi has a priori distribution Np(0,Σ
1/2ΓΣ1/2) for fully unknown positive def-

inite matrix Γ. Then the posterior distribution of θi given xi has Np(θ̂
B

i (Γ,Σ), (d−1
i Σ−1+

Σ−1/2Γ−1Σ−1/2)−1) where θ̂
B

i (Γ,Σ) is the Bayes estimator of θi given by

θ̂
B

i (Γ,Σ) =
(
d−1

i Σ−1 + Σ−1/2Γ−1Σ−1/2
)−1

d−1
i Σ−1xi

= xi − diΣ
1/2(diIp + Γ)−1Σ−1/2xi. (2.17)
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Since xi is marginally distributed as Np(0,Σ
1/2(diIp + Γ)Σ1/2), the estimate of the pa-

rameter Γ may be based on S and X by using their marginal distributions. However, it
seems difficult to provide the estimate as a solution of an equation like (2.6) and (2.11),
so that we here treat another type of estimator. Let

A = diag (d1 + 1, . . . , dm + 1)/(d1 + 1), (2.18)

and let Q be a (p× p) nonsingular matrix such that

QtSQ = Ip and QtX tA−1XQ = F , (2.19)

where F is a diagonal matrix, F = diag (f1, . . . , fp) and f1 ≥ · · · ≥ fp. Clearly fi’s are
the eigenvalues of S−1X tA−1X. Let λm0 and λm1 be the solutions of the equations

m∑
i=1

di − dm

di + λm0
=

(p− 1)(p+ 2)

2p
, (2.20)

m∑
i=1

di − dm

di + λm1

=
m− p− 1

2
. (2.21)

The adaptive ridge regression estimator of θi is given by

θ̂
MB

i = xi − di(Q
t)−1Φi(F )Qtxi, i = 1, . . . , m (2.22)

where Φi(F ) = diag (φ
(i)
1 , . . . , φ

(i)
p ) and for j = 1, . . . , p,

φ
(i)
j =

1

di + λ̂MB
0

+
1

di + λ̂MB
j

, (2.23)

λ̂MB
0 = max(c0trF , λm0), c0 =

n− p+ 3

(p− 1)(p+ 2)
, (2.24)

λ̂MB
j = max(c1fj , λm1), c1 =

n+ p+ 1

m− p− 1
. (2.25)

It is noted that θ̂
MB

i is close to the estimator proposed by Efron and Morris (1976) in

the case of d1 = · · · = dm. We can prove the minimaxity of the estimator Θ̂
MB

for

(Θ̂
MB

)t = (θ̂
MB

1 , . . . , θ̂
MB

m ).

Theorem 3. Assume that m ≥ p + 2. Then the estimator Θ̂
MB

is minimax under
the loss (2.4).

We can also propose a convex combination of θ̂SB
i and θ̂

MB

i as an estimator of θi. One
such estimator is given by

θ̂
MC

i (c) =
cdi

cdi + d1

θ̂
SB

i +
d1

cdi + d1

θ̂
MB

i , (2.26)

where c is a constant. In the simulation and empirical studies given in Section 4, we put
c = 5.

Corollary 2. The combined estimator Θ̂
MC

(c) is minimax if m ≥ p + 2 under
Strawderman’s loss.
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3 Proofs

In this sention, we prove the three theorems stated in Section 2. It may be argued that
since the first two cases are special cases of the matricial estimator, only the proof of
Theorem 3 is required. However, different inequalities have been used in the proofs which
lead to three different conditions in equations (2.7), (2.12) and (2.20) - (2.21) respectively.
Thus, we need to provide proofs for all the three theorems. In the proofs, we need the
following two well known results, one due to Stein (1973, 1981) and the other due to Stein
(1977) and Haff (1979), known as the Stein-Haff identity.

Lemma 1. (Stein Identity) Let X = (X1, . . . , Xp)
t be a p-dimensional random vari-

able having Np(θ,Σ). Consider a vector-valued absolutely continuous function h(X) =
(h1(X), . . . , hp(X))t with E[|(X − θ)h(X)t|] <∞. Then,

E
[
(X − θ){h(X)}t

]
= E

[
Σ∇{h(X)}t

]
, (3.1)

where ∇ = (∂/∂X1, . . . , ∂/∂Xp)
t.

Lemma 2. (Stein-Haff Identity) Let Y = (y1, . . . ,yn), where yi are i.i.d. Np(0,Σ)
and V = Y Y t =

∑n
j=1 Y jY

T
j . Consider a p×p matrix-valued function G(V ) = (gij(V )),

where gij(V ) is a real-valued absolutely continuous function of the p×p matrix V = (vij)
and E[|gij(V )|] <∞. Then,

E
[
trG(V )Σ−1

]
= E

[
(n− p− 1)trG(V )V −1 + 2trDV G(V )

]
, (3.2)

where (DV G(V ))ij =
∑

k dikgkj(V ), dik = 2−1(1 + δik)∂/∂vik and δik = 0 for i 6= k,
δii = 1.

3.1 Proof of Theorem 1

In the proof below, we may assume without any loss of generality that Σ = I. The risk
difference between the two estimators is given by

∆ =R(ω, Θ̂
SB

) −R(ω,X)

= − 2
m∑

i=1

1

di

E

[
xt

i(xi − θi)

di + λ̂SB

]
+

m∑
i=1

E

[
xt

ixi

(di + λ̂SB)2

]

= − 2
m∑

i=1

E

[
p

di + λ̂SB
− 1

(di + λ̂SB)2
xt

i

∂λ̂SB

∂xi

]
+

m∑
i=1

E

[
xt

ixi

(di + λ̂SB)2

]
, (3.3)

from the Stein identity (3.1). Using the implicit function theorem, we get from (2.6)
m∑

i=1

xt
i

(di + λ̂SB)2

∂λ̂SB

∂xi
=2

∑m
i=1 xt

iS
−1xi(di + λ̂SB)−3∑m

i=1 xt
iS

−1xi(di + λ̂SB)−2
I(λ∗ > λs0)

<2/(dm + λ̂SB). (3.4)

To evaluate the second term in (3.3), we use the Stein-Haff identity (3.2) giving

E
[
(di + λ̂SB)−2trxix

t
i

]
= (n− p− 1)E

[
(di + λ̂SB)−2trxix

t
iS

−1
]

+ 2E
[
trDS[(di + λ̂SB)−2xix

t
i]
]

= (n− p− 1)E
[
(di + λ̂SB)−2trxix

t
iS

−1
]
− 4E

[
(di + λ̂SB)−3

p∑
j=1

p∑
i=1

c
(i)
jk djk(λ̂

SB)

]
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for (c
(i)
jk ) = xix

t
i. From (2.6) and the implicit function theorem, we get

djk(λ
∗) = −

∑m
`=1(d` + λ∗)−1(xt

`f j)(x
t
`fk)∑m

a=1(da + λ∗)−2xt
aS

−1xa

,

where S−1 = (f1, . . . ,fp), see Theorem 1.11.1 of Srivastava and Khatri (1979, p.28); the
definition used in this paper requires to take half of the value given there. Thus,

p∑
j=1

p∑
k=1

c
(i)
jk djk(λ̂

∗) = −
∑m

`=1(d` + λ∗)−1(xt
`S

−1xi)
2∑m

a=1(da + λ̂∗)−2xt
aS

−1xa

.

From the Cauchy-Schwarz inequality (xt
`S

−1xi)
2 ≤ (xt

`S
−1x`)(x

t
iS

−1xi), and hence

m∑
i=1

trDS(di + λ̂SB)−1xix
t
i

=2
m∑

i=1

(di + λ̂SB)−3

∑m
`=1(d` + λ̂SB)−1(xt

`S
−1xi)

2∑m
a=1(da + λ̂SB)−2xt

aS
−1xa

I(λ∗ > λs0)

≤2(dm + λ̂SB)−1

∑m
i=1(di + λ̂SB)−2xt

iS
−1xi

∑m
`=1(d` + λ̂SB)−1xt

`S
−1x`∑m

a=1(da + λ̂SB)−2xt
aS

−1xa

=2(dm + λ̂SB)−1(mp− 2)/(n− p+ 3),

from (2.6). Thus,

m∑
i=1

E
[
(di + λ̂SB)−2xt

ixi

]
≤E

[
(n− p− 1)

m∑
i=1

(di + λ̂SB)−2xt
iS

−1xi + 4(dm + λ̂SB)−1 mp− 2

n− p+ 3

]
≤ mp− 2

n− p+ 3
E
[
(dm + λ̂SB)−1(n− p− 1) + 4(dm + λ̂SB)−1

]
=(mp− 2)E

[
(dm + λ̂SB)−1

]
. (3.5)

Hence, combining (3.3), (3.4) and (3.5), we get

∆ ≤ E

[
−2p

m∑
i=1

(di + λ̂SB)−1 + (mp+ 2)(dm + λ̂SB)−1

]
.

Thus, the risk difference is not positive if

−2p
m∑

i=1

(di + λ̂SB)−1 + (mp+ 2)(dm + λ̂SB)−1 ≤ 0. (3.6)

Noting that
∑m

i=1 (dm + λ̂SB)/(di + λ̂SB) = m−∑m
i=1(di − dm)/(di + λ̂SB), the inequality

(3.6) is satisfied if
m∑

i=1

(di − dm)/(di + λ̂SB) ≤ (pm− 2)/(2p),

which is guaranteed by the definition of λs0. Therefore Theorem 1 is proved.
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3.2 Proof of Theorem 2

Let G = (gab) = HΣ1/2, G−1 = (gab), ui = (u1i, . . . , upi)
t = d

−1/2
i Σ−1/2xi and ηi =

(η1i, . . . , ηpi)
t = d

−1/2
i Σ−1/2θi. Then (2.11) can be rewritten as

m∑
k=1

dk(
∑

b gabubk)
2

dk + λ∗a
= c0`a, a = 1, . . . , p.

From the implicit function theorem, we get

∂λ∗a
∂uji

= 2
di(
∑

b gabubi)gaj/(di + λ∗a)∑
k dk(

∑
b gabubk)2gaj/(dk + λ∗a)2

, (3.7)

and from the definition of ψ
(i)
j = (di + λ̂CB

j )−1 in (2.15),

∂ψ(i)
a /∂uji = −(di + λ∗a)

−2(∂λ∗a/∂uji)I(λ
∗
a > λc0). (3.8)

The risk difference between the two estimators Θ̂
CB

and X is

∆ = − 2

m∑
i=1

E
[
(ui − ηi)

tG−1ΨiGui

]
+

m∑
i=1

E
[
xt

iH
tΨiHΣ−1H tΨiHxi

]
= − 2

m∑
i=1

p∑
j,a,b

E
[
(uji − ηji)g

jaψ(i)
a gabubi

]
+ I3 (3.9)

= − 2

m∑
i=1

p∑
j,a,b

E

[
∂

∂uji

{
gjaψ(i)

a gabubi

}]
+ I3

= − 2

m∑
i=1

p∑
j,a,b

E
[
gjaψ(i)

a gabδbj
]− 2

m∑
i=1

p∑
j,a,b

E

[
gjagabubi

∂ψ
(i)
a

∂uji

]
+ I3

= − 2

m∑
i=1

p∑
a=1

E
[
ψ(i)

a

]
+ I2 + I3, (say)

using the Stein identity (3.1) and the fact that
∑

j gajg
ja = 1, where from (3.7) and (3.8)

I2 = 4

p∑
j,a,b

E

[∑m
i=1 g

jagabubidi(di + λ∗a)
−3gaj(

∑
b gabubi)∑

k dk(
∑

b gabubk)2/(dk + λ∗a)2
I(λ∗a > λc0)

]

= 4

p∑
a=1

E

[∑m
i=1 di(di + λ∗a)

−3(
∑

b gabubi)
2∑

k dk(
∑

b gabubk)2/(dk + λ∗a)2
I(λ∗a > λc0)

]

≤ 4

p∑
a=1

E(dm + λ̂CB
a )−1. (3.10)

Hence,

∆ ≤ −2

p∑
j=1

E

[
m∑

i=1

(di + λ̂CB
j )−1 − 2(dm + λ̂CB

j )−1

]
+ I3. (3.11)
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From (2.11),

φ ≡
m∑

i=1

p∑
j=1

(ht
jxi)

2/[`j(di + λ̂CB
j )2]

=
m∑

i=1

tr [ΨiHxix
t
iH

tΨiL
−1] ≤ c0

p∑
j=1

(dm + λ̂CB
j )−1. (3.12)

Let ajj = (H tΣ−1H)jj. Then, using the same arguments as in Sheena (1995), and the
inequality tr (AB) ≤ (tr A)(tr B) for A and B p.s.d. matrices, we get

I3 ≤
m∑

i=1

E
[{

tr H tΨiHxix
t
iH

tΨiHS−1
}{

trSΣ−1
}]

=

p∑
j=1

E [ajj`jφ]

=

p∑
j=1

E

[
(n− p− 1)

`jφ

`j
+ 2

∂

∂`j
(`jφ) +

∑
c 6=j

(`jφ) − (`cφ)

`j − `c

]
.

(3.13)

From (2.11) and (3.12), we get

2

p∑
j=1

`j
∂φ

∂`j
=2

p∑
j=1

m∑
i=1

[
− (ht

jxi)
2/`j

(di + λ̂CB
j )2

− 2
(ht

jxi)
2

(di + λ̂CB
j )3

∂λ̂CB
j

∂`j

]

= − 2φ+ 4c0

p∑
j=1

∑m
i=1(h

t
jxi)

2/(di + λ∗j )
3∑m

i=1(h
t
jxi)2/(di + λ∗j )2

I(λ∗j > λc0)

≤− 2φ+ 4c0

p∑
j=1

(dm + λ̂CB
j )−1. (3.14)

Hence,

I3 ≤ (np+ 2)c0

p∑
j=1

E
[
(dm + λ̂CB

j )−1
]
,

and from (3.11),

∆ ≤
p∑

j=1

E

[
−2

m∑
i=1

(di + λ̂CB
j )−1 + {4 + (np+ 2)c0} (dm + λ̂CB

j )−1

]
. (3.15)

Since
m∑

i=1

dm + λ̂CB
j

di + λ̂CB
j

≥
m∑

i=1

dm + λc0

di + λc0
= m−

m∑
i=1

di − dm

di + λc0
,

and c0 = (m− 2)/(np+ 2), the right hand side of (3.15) is less than zero if

2
m∑

i=1

di − dm

di + λc0

− 2(m− 2) + (m− 2) ≤ 0,

which is guaranteed by (2.12). Therefore the proof of Theorem 2 is complete.
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3.3 Proof of Theorem 3

Let G = Σ1/2Q, ai = (di + 1)/(d1 + 1), ηi = Σ−1/2θi/
√
ai. Consider the trans-

formations ui = Σ−1/2xi/
√
ai and V = Σ−1/2SΣ−1/2. Then ui ∼ Np(ηi, (di/ai)I)

and V ∼ Wp(I, n). From (2.19), V = (Gt)−1G−1 and U tU = (Gt)−1FG−1, where

U t = (u1, . . . ,um). Let Φ∗ = diag (φ∗
1, . . . , φ

∗
p) for φ∗

j = (dm + λ̂0)
−1 + (dm + λ̂j)

−1 where

λ̂MB
0 and λ̂MB

j are here abbreviated λ̂0 and λ̂j, and Ψ∗ = diag (ψ∗
1, . . . , ψ

∗
p) for ψ∗

j = fjφ
∗
j .

Then it is seen that Φi ≤ Φ∗ for i = 1, . . . , m, since dm = mini{di}.
To prove the theorem, we calculate the difference in the risks of the estimators Θ̂

MB

and X relative to the loss (2.4) is given by

∆ = R(ω, Θ̂
MB

) − R(ω,X) = −2I1 + I2, (3.16)

where, since Gt = G−1(GGt) = G−1V −1,

I1 =

m∑
i=1

E
[
aid

−1
i (ui − ηi)

t(Gt)−1ΦiG
−1V −1ui

]
, (3.17)

and, since ai ≤ 1 and Φi ≤ Φ∗,

I2 =
m∑

i=1

E
[
aiu

t
iGΦiG

−1(Gt)−1ΦiG
tui

]
≤ E

[
tr GΦ∗G−1(Gt)−1Φ∗GtU tU

]
= E

[
tr (Gt)−1Φ∗FΦ∗G−1

]
= E

[
tr (Gt)−1Ψ2

∗F
−1G−1

]
= E

[
(n− p− 1)trΨ2

∗F
−1G−1V −1(Gt)−1 + 2trDV [(Gt)−1Ψ2

∗F
−1G−1]

]
=

p∑
j=1

E

[
1

fj

{
(n+ p+ 1)(ψ∗

j )
2 − 4fjψ

∗
j

∂ψ∗
j

∂fj
− 2fj

∑
a>j

(ψ∗
j )

2 − (ψ∗
a)

2

fj − fa

}]
, (3.18)

by using the Stein-Haff identity (3.2) and the following result due to Konno (1992):

trDV [(Gt)−1Φ(F )G−1] =

p∑
j=1

{
pφj − fj

∂φj

∂fj
−
∑
c>j

fjφj − fcφc

fj − fc

}
.

To evaluate I1, we use some equations on the differential operator. Let DW = (dW
ij ),

where dW
ij = 2−1(1 + δij)∂/∂wij for W = (wij) = U tU . Then Lo (1988) and Konno

(1992) derived the following equations: For a p× p matricial function T = T (W ,V ),

∇t
iT =2ut

iDWT (3.19)

dW
abfj =gajgbj (3.20)

dW
abg

cd =
1

2

∑
s 6=c

gsd(gacgbs + gbcgas)

fc − fs

, (3.21)

where G = (gab), G−1 = (gab) and ∇t
i = ∂/∂ui. Now, we evaluate I1 with the help of the
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Stein identity (3.1). Using (3.19), we get

I1 =

m∑
i=1

E
[∇t

i[(G
t)−1ΦiG

−1V −1ui]
]

=
∑

i

E
[{∇t

i[(G
t)−1ΦiG

−1]V −1
}

ui

]
+
∑

i

E[trΦi]

=2
∑

i

E
[
ut

iDW [(Gt)−1ΦiG
−1]V −1ui

]
+
∑

i

E[trΦi]

=I11 + I12, (say). (3.22)

We evaluate I11 using (3.20) and (3.21) coordinatewise. Note that
∑

b g
cbgbj = δcj, and(DW [(Gt)−1ΦiG

−1]
)

a,d

=
∑
b,c

(dW
abg

cb)φ(i)
c g

cd +
∑
b,c

gcb(dW
abφ

(i)
c )gcd +

∑
b,c

gcbφ(i)
c (dW

abg
cd). (3.23)

Since dW
abφ

(i)
c =

∑
j(d

W
abfj)∂φ

(i)
c /∂fj =

∑
j gajgbj∂φ

(i)
c /∂fj , we observe that∑

b,c

gcb(dW
abφ

(i)
c )gcd =

∑
b,c,j

gcbgajgbjg
cd∂φ(i)

c /∂fj

=
∑

c

gac(∂φ
(i)
c /∂fc)g

cd, (3.24)

Similarly, we obtain that∑
b,c

(dW
abg

cb)φ(i)
c g

cd =
1

2

∑
b,c

φ(i)
c g

cd
∑
s 6=c

gsb(gacgbs + gbcgas)

fc − fs

=
1

2

∑
c

gac

(∑
s 6=c

φ
(i)
c

fc − fs

)
gcd (3.25)

∑
b,c

gcbφ(i)
c (dW

abg
cd) =

1

2

∑
s

gas

(∑
c 6=s

φ
(i)
c

fc − fs

)
gsd. (3.26)

Combining (3.23), (3.24), (3.25) and (3.26) gives that

(DW [(Gt)−1ΦiG
−1]
)

a,b
=
∑

c

gac

{
∂φ

(i)
c

∂fc
+

1

2

∑
s 6=c

φ
(i)
c − φ

(i)
s

fc − fs

}
gcb,

which is written in the matricial form as

DW [(Gt)−1ΦiG
−1] = GΦ

(1)
i G−1 (3.27)

where Φ
(1)
i = diag (φ

(1)
1,i , . . . , φ

(1)
p,i ) for

φ
(1)
j,i =

∂φ
(i)
j

∂fj

+
1

2

∑
a 6=j

φ
(i)
j − φ

(i)
a

fj − fa

.
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Note that the partial derivative of φ
(i)
j , given by (2.23), is evaluated by

∂φ
(i)
j

∂fj
= − c0

(di + λ̂0)2
I(c0trF > λm0) − c1

(di + λ̂j)2
I(c1fj > λm1)

≥ − c0

(dm + λ̂0)2
I(c0trF > λm0) − c1

(dm + λ̂j)2
I(c1fj > λm1) =

∂φ∗
j

∂fj
. (3.28)

Since (λ̂j − λ̂a)/(fj − fa) ≥ 0, we get the inequality

φ
(i)
j − φ

(i)
a

fj − fa
= −(λ̂j − λ̂a)/(fj − fa)

(di + λ̂j)(di + λ̂a)

≥ − (λ̂j − λ̂a)/(fj − fa)

(dm + λ̂j)(dm + λ̂a)
=
φ∗

j − φ∗
a

fj − fa
. (3.29)

Let Φ(1)
∗ = diag (φ

(1)
1∗ , . . . , φ

(1)
p∗ ) for φ

(1)
j∗ = ∂φ∗

j/∂fj + 2−1
∑

a 6=j(φ
∗
j − φ∗

a)/(fj − fa). Then
from the inequalities (3.28) and (3.29), we observe that

I11 =2
∑

i

E[ut
iGΦ

(1)
i G−1V −1ui] = 2

∑
i

E[ut
iGΦ

(1)
i Gtui]

≥2
∑

i

E[ut
iGΦ(1)

∗ Gtui] = 2E[trGΦ(1)
∗ GtU tU ] = 2E[trΦ(1)

∗ F ],

which, from (3.22), implies that

I1 ≥
p∑

j=1

E

[
1

fj

{∑
i

ψ
(i)
j + 2fj

∂ψ∗
j

∂fj

− 2ψ∗
j + f 2

j

∑
a 6=j

ψ∗
j/fj − ψ∗

a/fa

fj − fa

}]
. (3.30)

It is here noted that∑
j

fj

∑
a 6=j

ψ∗
j /fj − ψ∗

a/fa

fj − fa
= − (p− 1)

∑
j

ψ∗
j

fj
+
∑

j

∑
a 6=j

ψ∗
j − ψ∗

a

fj − fa
.

Then, combining (3.16), (3.17) and (3.30) gives that

∆ ≤
p∑

j=1

E
[ 1

fj

{
(n+ p+ 1)(ψ∗

j )
2 − 4fjψ

∗
j

∂ψ∗
j

∂fj

− 2fj

∑
a>j

(ψ∗
j )

2 − (ψ∗
a)

2

fj − fa

− 2

m∑
i=1

ψ
(i)
j + 2(p+ 1)ψ∗

j − 4fj

∂ψ∗
j

∂fj
− 4fj

∑
a>j

ψ∗
j − ψ∗

a

fj − fa

}]
≤

p∑
j=1

E
[ 1

fj

{
(n+ p+ 1)(ψ∗

j )
2 − 2

m∑
i=1

ψ
(i)
j + 2(p+ 1)ψ∗

j

− 4fj

∂ψ∗
j

∂fj

− 2fj

∑
a>j

ψ∗
j − ψ∗

a

fj − fa

(ψ∗
j + ψ∗

a + 2)
}]
, (3.31)

since ∂ψ∗
j /∂fj ≥ 0. Noting that ψ∗

j −ψ∗
a ≥ (fj − fa)/(dm + λ̂0) for a > j, we observe that

p∑
j=1

∑
a>j

ψ∗
j − ψ∗

a

fj − fa
(ψ∗

j + ψ∗
a + 2) ≥ 1

dm + λ̂0

p∑
j=1

∑
a>j

(ψ∗
j + ψ∗

a + 2)

=
1

dm + λ̂0

{
(p− 1)

p∑
j=1

ψ∗
j + (p− 1)p

}
≥ (p− 1)trF

(dm + λ̂0)2
+

(p− 1)p

dm + λ̂0

, (3.32)
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where we used the equations
∑

j

∑
a>j ψ

∗
j =

∑
j(p − j)ψ∗

j ,
∑

j

∑
a>j ψ

∗
a =

∑
j(j − 1)ψ∗

j

and
∑

j

∑
a>j 1 = (p−1)p/2. Also note that the partial derivative of ψ∗

j can be evaluated
as

p∑
j=1

∂ψ∗
j

∂fj
=

p∑
j=1

{
1

dm + λ̂0

− c0fj

(dm + λ̂0)2
I(c0trF > λm0)

}

≥ p

dm + λ̂0

− c0trF

(dm + λ̂0)2
≥ p− 1

dm + λ̂0

, (3.33)

since c0trF ≤ λ̂0 ≤ dm + λ̂0. Using the inequalities (3.32) and (3.33), the r.h.s. in (3.31)
can be further evaluated as

∆ ≤E
[∑

j

1

fj

{
(n+ p+ 1)(ψ∗

j )
2 − 2

m∑
i=1

ψ
(i)
j + 2(p+ 1)ψ∗

j

}

− 2
(p− 1)trF

(dm + λ̂0)2
− 2

(p− 1)(p+ 2)

dm + λ̂0

]
=E[∆∗], (say). (3.34)

Finally, we shall show that ∆∗ is not positive. Noting that∑
j

(ψ∗
j )

2

fj

=
tr F

(dm + λ̂0)2
+

2

dm + λ̂0

∑
j

fj

dm + λ̂j

+
∑

j

fj

(dm + λ̂j)2
,

we see that ∆∗ can be rewritten as ∆∗ = ∆∗
1 + ∆∗

2 where

∆∗
1 =

∑
j

1

dm + λ̂j

{
(n + p+ 1)fj

dm + λ̂j

− 2

m∑
i=1

dm + λ̂j

di + λ̂j

+ 2(p+ 1)

}
,

∆∗
2 =(n− p+ 3)

tr F

(dm + λ̂0)2
+ 2

n + p+ 1

dm + λ̂0

∑
j

fj

dm + λ̂j

− 2
m∑

i=1

p

di + λ̂0

+ 2
p(p+ 1)

dm + λ̂0

− 2
(p− 1)(p+ 2)

dm + λ̂0

.

For ∆∗
1, it is noted that (n + p + 1)fj/(dm + λ̂j) ≤ (n + p + 1)/c1 = m − p − 1, and

that
∑m

i=1(dm + λ̂j)/(di + λ̂j) ≥
∑m

i=1(dm + λm1)/(di + λm1) since λ̂j ≥ λm1. Hence, the
inequality that ∆∗

2 ≤ 0 is established if λm1 satisfies the inequality

m− p− 1 − 2
m∑

i=1

(dm + λm1)/(di + λm1) + 2(p+ 1) ≤ 0

or
m∑

i=1

(di − dm)/(di + λm1) ≤ (m− p− 1)/2,

which is quaranteed by (2.21). For ∆∗
2, the same arguments are used to show that

(dm + λ̂0)∆
∗
2

≤n− p+ 3

c0
+ 2

(n+ p+ 1)p

c1
− 2p

m∑
i=1

dm + λ̂0

di + λ̂0

+ 2p(p+ 1) − 2(p− 1)(p+ 2)

≤− (p− 1)(p+ 2) + 2mp− 2p
m∑

i=1

dm + λ̂0

di + λ̂0

.
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Hence, ∆∗
2 ≤ 0 if λm0 satisfies the inequality

m∑
i=1

(di − dm)/(di + λm0) ≤ (p− 1)(p+ 2)/(2p),

which is guaranteed by (2.20). Therefore the proof of Theorem 3 is complete.

4 Simulation and Empirical Studies

Now we investigate the risk-performances of estimators of Θ numerically. The estimators
we want to investigate are the least squares estimator X and the proposed estimators

Θ̂
SB

, Θ̂
CB

, Θ̂
CC

, Θ̂
MB

and Θ̂
MC

, which are denoted by LS, SB, CB, CC,MB and MC,

respectively, where we put c = 5 for the constant c in the estimators Θ̂
CC

and Θ̂
MC

. The
principal component regression estimators PC1 and PC3 are also treated where PC1 is
obtained by deleting the eigenvectors corresponding to the largest eigenvalue of (ZtZ)−1

and PC3 corresponds to the one obtained by deleting the three largest eigenvalues.

Srivastava and Solanky (2003) showed numerically that the estimator proposed by
Konno (1991) is better than the LS estimator in the multicollinearity case. We thus
treat the Konno’s estimator, denoted by KS, for numerical comparison of estimators.

Let Q̃ be a p × p nonsingular matrix such that Q̃
t
SQ̃ = Ip and Q̃

t
X tD−1XQ̃ = F̃ =

diag (f̃1, . . . , f̃p). Then the Konno’s estimator is given by Θ̂
KS

= (θ̂
KS

1 , . . . , θ̂
KS

m )t with

θ̂
KS

i = xi − (Q̃
t
)−1ΦKS(F̃ )Q̃

t
xi, i = 1, . . . , m,

where ΦKS(F̃ ) = diag (φKS
1 , . . . , φKS

p ) for

φKS
j = min

{
m+ p− 2j − 1

n− p+ 2j + 1

1

f̃j

, 1

}
.

Every estimator δ is evaluated by three types of risk functions Rj(ω, Θ̃) under the

loss functions Lj(ω, Θ̃,D
−j) = tr (Θ̃ − Θ)Σ−1(Θ̃ − Θ)tD−j, called the Lj-loss, for

j = 0, 1, 2. The risk functions of the above estimators and the LS estimator X are
obtained from 1,000 replications through simulation experiments, and the relative efficien-
cies Rj(ω, Θ̃)/Rj(ω,X), j = 0, 1, 2, of estimator Θ̃ over X are reported. The simulation
experiments are done in the following two cases:

Case 1: p = 6, m = 22, n = 34, θij = 5(i + j/2) × η, i = 1, . . . , m, j = 1, . . . , p,
and D = diag (125.5, 94.03, 64.65, 39.79, 11.65, 6.238, 3.909, 2.325, 1.209, 0.9182, 0.4770,
0.4371, 0.2619, 0.2081, 0.1284, 0.06062, 0.05171, 0.02218, 0.02085, 0.005219, 0.003795,
0.001601).

Case 2: p = 3, m = 10, n = 30, θij = (m − i + 1 + (p − j + 1)/3) × η, i = 1, . . . , m,
j = 1, . . . , p, and D = diag (700, 500, 300, 10, 5, 2, 1, 0.1, 0.01, 0.001).

The values of the parameters in Case 1 correspond to those in Example 1 given below.
The relative efficiencies of the above estimators for the two cases are given in Tables 1
and 2, respectively. Form these tables, the following conclusions can be drawn.

(1) The empirical Bayes ridge regression estimators SB, CC and MC have very nice
risk behaviors for L0- and L1- losses; they are highly recommended in the case of multi-
collinearity. Although CB has a slightly larger risk than SB, the risk performance of CB
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Table 1: Relative Efficiencies of the Estimators under L0, L1, L2 Losses for D =
diag (125.5, 94.03, 64.65, 39.79, 11.65, 6.238, 3.909, 2.325, 1.209, 0.9182, 0.4770, 0.4371, 0.2619,
0.2081, 0.1284, 0.06062, 0.05171, 0.02218, 0.02085, 0.005219, 0.003795, 0.001601), p = 6,
m = 22, n = 34 and θij = 5(i+ j/2) × η, i = 1, . . . , m, j = 1, . . . , p.

η SB CB CC MB MC KS PC1 PC3

L0 0 0.003 0.295 0.054 0.214 0.059 0.138 0.644 0.192
1 0.030 0.346 0.079 0.421 0.091 0.306 0.644 0.192
2 0.083 0.429 0.130 0.503 0.139 0.319 0.652 0.218
3 0.148 0.504 0.195 0.528 0.197 0.338 0.662 0.251
4 0.222 0.566 0.266 0.540 0.260 0.359 0.676 0.296

L1 0 0.409 0.785 0.697 0.824 0.740 0.140 0.955 0.864
1 0.626 0.828 0.745 0.875 0.771 0.346 0.955 0.865
2 0.728 0.861 0.785 0.892 0.799 0.377 0.955 0.865
3 0.782 0.884 0.814 0.896 0.821 0.413 0.955 0.865
4 0.817 0.901 0.838 0.900 0.840 0.441 0.959 0.883

L2 0 0.969 0.997 0.996 0.999 0.999 0.138 0.999 0.999
1 0.995 0.998 0.998 0.999 0.999 0.557 0.999 0.999
2 0.998 0.999 0.999 0.999 0.999 0.613 0.999 0.999
3 0.999 0.999 0.999 0.999 0.999 0.668 0.999 0.999
4 0.999 0.999 0.999 0.999 0.999 0.703 0.999 0.999

Table 2: Relative Efficiencies of the Estimators under L0, L1, L2 Losses for D =
diag (700, 500, 300, 10, 5, 2, 1, 0.1, 0.01, 0.001), p = 3, m = 10, n = 30 and θij =
(m− i+ 1 + (p− j + 1)/3) × η, i = 1, . . . , m, j = 1, . . . , p.

η SB CB CC MB MC KS PC1 PC3

L0 0 0.003 0.242 0.023 0.225 0.027 0.183 0.552 0.011
1 0.181 0.379 0.177 0.573 0.173 0.554 0.627 0.200
2 0.514 0.555 0.463 0.623 0.432 0.658 0.855 0.765
3 0.780 0.669 0.694 0.640 0.651 0.701 1.235 1.707
4 0.928 0.739 0.831 0.654 0.784 0.720 1.766 3.025

L1 0 0.452 0.696 0.619 0.766 0.685 0.181 0.902 0.697
1 0.746 0.794 0.729 0.873 0.744 0.687 0.919 0.758
2 0.854 0.857 0.827 0.888 0.826 0.768 0.968 0.941
3 0.932 0.895 0.899 0.893 0.891 0.785 1.051 1.244
4 0.974 0.917 0.941 0.898 0.930 0.791 1.166 1.670

L2 0 0.998 0.999 0.999 0.999 0.999 0.176 1.000 0.999
1 0.999 0.999 0.999 0.999 0.999 1.095 1.000 1.000
2 0.999 0.999 0.999 0.999 0.999 1.095 1.000 1.000
3 0.999 0.999 0.999 0.999 0.999 1.051 1.000 1.000
4 0.999 0.999 0.999 0.999 0.999 1.028 1.000 1.000
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is not bad. The matricial shrinkage estimator MB is not good in comparison with the
other procedures.

(2) Konno (1991) showed the minimaxity of the estimator KS under the L1-loss.
Both tables reveal that KS is not only the best under the L1-loss, but also behaves well
relative to the L0- and L2- losses. This implies that the risk behaviors of KS are nice in
the multicollinearity, although it is not ridge-type.

(3) Although the minimaxity of the proposed estimators are guaranteed under the
L2-loss, their risk performances are much better than the LS estimator under L0- and
L1-loss functions.

(4) Through the tables, we see that the principal component regression estimators
PC1 and PC3 have smaller risks for smaller values of trΘΘt and gets larger as trΘΘt

increases.

We shall provide an empirical study for a set of data.
Example 1. (Chemometrics Data) We consider the chemometrics data analyzed by

Skagerberg, MacGregor and Kiparissides (1992), Breiman and Friedman (1977) and Rein-
sel (1999), and Srivastava and Solanky (2003). The data were obtained from simulation of
a low density tubular polyethylene reactor, and consisted of N = 56 observations on the
p = 6 response variables and m = 22 predictor variables (temperatures); the data can be
also be found in Srivastava (2002, pp 13-17). The responses are output characteristics of
the polymers produced: y1 (the number-average molecular weight), y2 (the weight-average
molecular weight), y3 (the frequency of long chain branching), y4 (the frequency of short
chain branching), y5 (the content of vinyl groups), y6 (the content of vinylidene groups).
Before analyzing the data, all the response variables are transformed by the logarithms
and then standardized to unit variance. All the predictor variables are also standardized.
As indicated by Breiman and Friedman (1997), the covariance matrix of y is

Σ =


1.0000 0.9566 0.0650 0.2543 0.2551 0.2592
0.9566 1.0000 −0.1284 0.2825 0.2655 0.2755
0.0650 −0.1284 1.0000 −0.4997 −0.4839 −0.4787
0.2543 0.2825 −0.4997 1.0000 0.9744 0.9782
0.2551 0.2655 −0.4839 0.9744 1.0000 0.9760
0.2592 0.2755 −0.4787 0.9782 0.9760 1.0000

 ,

which indicates strong correlation between y1 and y2, and also between y4, y5 and y6.

The eigenvalues of the matrix (ZtZ)−1 are given by

D =(125.5, 94.03, 64.65, 39.79, 11.65, 6.238, 3.909, 2.325,

1.209, 0.9182, 0.4770, 0.4371, 0.2619, 0.2081, 0.1284,

0.06062, 0.05171, 0.02218, 0.02085, 0.005219, 0.003795, 0.001601),

which means that the problem is highly ill-conditioned. We shall investigate how the pro-
posed ridge-type regression estimators of the coefficients β behave for the ill-conditioned
data. The estimators we treat are the least squares LS, the empirical Bayes ridge regres-
sion SB, CB, CC,MB andMC, the principal component regression estimator PC3 which
deletes the eigenvectors corresponding to the three largest eigenvalues. The solutions of
the equations defined in Section 2 are given by λs0 = 0.536, λc0 = 0.791, λm0 = 35.693,
λm1 = 2.731, λ∗ = 18.009 and (λ∗1, λ

∗
2, λ

∗
3, λ

∗
4, λ

∗
5, λ

∗
6) = (386.09, 287.72, 344.32, 87.02, 55.59, 229.22),
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Table 3: Estimates of θ1,2, . . . , θ7,2 for the Eight Estimators LS, SB, CB, CC, MB, MC,
SK and PC3

di LS SB CB CC MB MC KS PC3

θ1,2 125 -1.503 -0.188 -1.135 -0.346 -1.314 -0.376 -0.913 0.000
θ2,2 94.0 -4.231 -0.680 -3.504 -1.275 -3.872 -1.353 -3.094 0.000
θ3,2 64.6 -0.386 -0.084 -0.267 -0.135 -0.334 -0.154 0.212 0.000
θ4,2 39.7 4.246 1.323 3.706 2.245 4.074 2.388 3.282 4.246
θ5,2 11.6 -1.847 -1.121 -1.790 -1.578 -1.822 -1.599 -1.164 -1.847
θ6,2 6.23 -2.585 -1.920 -2.515 -2.397 -2.577 -2.447 -2.127 -2.585
θ7,2 3.90 -2.071 -1.702 -2.027 -1.983 -2.069 -2.020 -1.959 -2.071

Table 4: Estimates of prediction errors for the Eight Estimators LS, SB, CB, CC, MB,
MC, KS and PC3

Responses LS SB CB CC MB MC KS PC3

y1 0.304 0.122 0.228 0.132 0.242 0.134 0.298 0.111
y2 0.575 0.249 0.477 0.290 0.491 0.295 0.502 0.264
y3 0.212 0.203 0.202 0.198 0.205 0.199 0.203 0.205
y4 0.098 0.157 0.094 0.114 0.095 0.111 0.092 0.095
y5 0.210 0.223 0.204 0.199 0.204 0.200 0.177 0.188
y6 0.150 0.184 0.145 0.150 0.148 0.150 0.133 0.162

Average 0.258 0.190 0.225 0.180 0.231 0.181 0.234 0.171

which provide λ̂SB = 18.009 and λ̂CB
j = λ∗j for j = 1, . . . , 6. Also (f1, f2, f3, f4, f5, f6) is

given by (890, 291, 106, 50, 25, 19), which yields λ̂MB
0 = 1624 and (λ̂MB

1 , λ̂MB
2 , λ̂MB

3 , λ̂MB
4 ,

λ̂MB
5 , λ̂MB

6 ) = (3385, 1107, 403, 189, 94, 73). Table 3 gives estimates of the components
θ1,2, . . . , θ7,2 of θ(2) in the canonical model with Θ = (θ(1), θ(2), . . . , θ(6)) = Hβ and it
explains how the proposed procedures work in the presence of the large eigenvalues of
(ZtZ)−1. The tabel reveals that the estimates by SB, CC and MC gets more shrunken
for larger di, but CB, MB and KS are less shrunken.

The primary purpose of regression models may be prediction with the help of many
independent variables, and the predictors constructed by the ridge-type estimators pro-
posed in this paper are anticipated to have good performances. The prediction error of
the methods considered may be estimated via the leave-one-out cross-validation as de-
scribed in Srivastava (2002, p322). That is, 56 predictive errors are obtained by leaving
out one observation each time. Table 4 shows the squared prediction errors estimates
(PEE) for the above considered estimators, where the last row indicates the estimates
of the average prediction errors. It reveals that the use of the proposed empirical Bayes
estimators and the principal component estimator PC3 provides smaller PEE than the
least squares estimator (LS). Of these, SB, CC, MC and PC3 give much smaller PEE.
One weak point of SB is that it shrinks LS with the same shrinkage functions based on
λ̂SB. This is why the scalar shrinkage estimator SB has larger PEE for y4 and y6 than
LS although it has much smaller average (or total) PEE. From the prediction view point,
the principal component regression estimator PC3 seems the most appropriate in this
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Table 5: Estimates of prediction errors for the Eight Estimators LS, SB, CB, CC, MB,
MC, KS and PC4 when the data are given without standardizing the predictor variables
except for z21 and z22

Responses LS SB CB CC MB MC KS PC4

y1 0.562 0.121 0.401 0.161 0.468 0.168 0.557 0.120
y2 1.120 0.281 0.882 0.389 0.954 0.397 0.929 0.312
y3 0.251 0.212 0.223 0.207 0.235 0.208 0.237 0.213
y4 0.121 0.150 0.101 0.106 0.112 0.105 0.109 0.106
y5 0.275 0.235 0.254 0.229 0.264 0.231 0.218 0.260
y6 0.185 0.187 0.173 0.174 0.182 0.175 0.158 0.210

Average 0.419 0.198 0.339 0.211 0.369 0.214 0.368 0.204

example, although it has a larger PEE for y6.

This story slightly changes when we treat the data without standardizing the predictor
variables z1, . . . , z20 except for z21 and z22. The prediction-error estimates in this case
are given in Table 5, which reveals that SB, CC, MC and PC4 provide much smaller
average PEE, and that the average PEE of SB is the smallest. The combined estimators
CC and MC provide smaller PEE than LS in the sense of minimizing the PEE for all
the responses as well as minimizing the average PEE. In this case, CC and MC seem
appropriate.

5 Concluding Remarks

From the simulation results, it appears that the scalar Bayes estimator SB and the Konno
estimator KS are performing much better than any other estimator, although the com-
bination componentwise estimator CC and the combination matricial estimator MC are
also very close to them. However in the combination estimators a choice of ‘c’ has to be
made. It is very likely that a proper choice of the value of c may make them superior to
SB and KS.

The numerical example confirms this fact although in this case the pricipal component
estimator is also doing well, but a proper choice of the number of components may be
required. For a straight forward application without resorting to heavy computation, it
seems that the SB estimator may be the preferred estimator.

We conclude the paper with the note that the results on minimaxity given in Sec-
tion 2 can be extended to elliptically contoured distributions using the arguments as in
Kubokawa and Srivastava (2001).
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