CIRJE-J-85

利益水準と増減益情報の Relevance (1) 年度別クロス・セクション分析

東京大学大学院経済学研究科 大日方 隆 2002 年 12 月

このディスカッション・ペーパーは、内部での討論に資するための未定稿の段階にある論文草稿である。著者の承諾なしに引用・複写することは差し控えられたい。

Relevance of Earnings Levels and Surprises:

Evidence from Manufacturing Firms in Japan

Takashi OBINATA

University of Tokyo, Faculty of Economics

Bunkyo – ku, Hongo, 7-3-1, Tokyo, Japan

1st Draft: May 2002

Current Draft: December 2002

The purpose of this paper is to investigate the value relevance of earnings by two steps. First, we

identify the factors that introduce transitory earnings into the reported earnings. Next, we reexamine the

value relevance of earnings by controlling those factors. In the first step, we investigate the earnings

changes model, testing whether earnings changes are associated with stock price changes. Especially we

focus on whether the relation between earnings changes and stock price changes is affected by the sign

and size of earnings surprises.

This research provides major four results as follows. First, since negative earnings changes contain

more transitory earnings, the coefficient on the reported earnings for firms decreasing earnings is lower

than for firms increasing earnings. Second, even after controlling the negative earnings changes, the

coefficient on losses is very small, or not significantly different from zero. Losses are not value relevant,

excluding a few exceptional years. Third, our empirical results reject the hypothesis that large earnings

changes contain more transitory earnings (S-shaped relation). On the contrary, the large positive

earnings changes seem to be more persistent, due to the competitive advantage, than the small changes.

The coefficient on earnings levels for firms experiencing the big earnings surprises is higher than for

others (J-shaped relation). Fourth, to control three factors – losses, negative changes, large positive

changes – improves greatly the relevance of the reported net income. This shows that it is also effective,

for estimating the permanent earnings, to control the generation factor of transitory earnings as well as

classifying the components of earnings.

Keywords: value relevance, permanent earnings, earnings changes, losses, Japan

利益水準と増減益情報の Relevance (1)

年度別クロス・セクション分析

大日方隆 (東京大学)

第1稿:2002年5月 改訂稿:2002年12月

要 約

この論文の主題は、従来から着目されてきた transitory earnings の発生要因を確かめたうえで、その要因をコントロールして利益情報の relevance を確認することである。この論文で transitory earnings の発生要因を探るために利用するのは、利益変化額と株価変化との関係をめぐる value relevance study である。なかでも、1)プラスの利益変化(増益)とマイナスの利益変化(減益)とで株価変化との関係が異なるか、2)大規模な利益変化と小規模な利益変化とで株価変化との関係が異なるか、という2点に注目した。

この論文の主要な結論は以下の 4 点である。第 1 に、減益にはより多くの transitory earnings が含まれており、減益企業の報告利益にかかる係数は、増益企業よりも小さい。第 2 に、減益要因をコントロールしても、損失にかかる係数はプラスの利益にかかる係数よりも小さく、若干の例外を除いて、損失情報は relevant ではない。第 3 に、大規模な利益変化額にはより多くの transitory earnings が含まれるという S 字型反応仮説は棄却される。むしろ、大規模な増益は小規模な増益よりも persistent であり、大規模増益企業の報告利益(水準)にかかる係数は、小規模増益企業の係数よりも大きい。つまり、J 字型の関係が観察された。第 4 に、損失、減益、大規模増益をコントロールすると、純利益の relevance は飛躍的に向上し、コントロールした純利益の情報は、なにもコントロールしない営業利益と同程度の relevance を有している。これは、permanent earnings を推定するにあたり、損益要素の分類はもちろん、transitory earnings の発生要因をコントロールすることが有効であることを示している。

 $+ - \cdot \nabla - F$: value relevance, permanent earnings, earnings changes, losses, Japan

利益水準と増減益情報の Relevance (1)

年度別クロス・セクション分析

1 はじめに

株価との関連から利益の value relevance を検証する研究では、企業の株価は投資家が期待する permanent earnings に規定され、企業会計の報告利益はその permanent earnings の指標になっていることが前提とされている。しかし、周知のとおり、報告利益には、一時的な損益、将来安定的に獲得できるとは限らない損益、すなわち transitory earnings が含まれている。純利益に含まれる過去の計算ミスの修正などの特殊項目が含まれる場合はもちるん、売上が一過性のブームによる場合には、営業利益にも transitory earnings が含まれている。そうした transitory earnings が報告利益に含まれていると、利益の relevance は低下する。株価は期待 permanent earnings の改訂によってしか変動しない一方、報告利益は transitory earnings によっても変動するため、利益と株価との関連性が薄れるからである。

そのような transitory earnings によって relevance が低下したとしても、会計制度の利益計算において、それらを年度利益から排除することはできない。その損益要素が transitory か persistent かではなく、それが企業の期間業績であるか否かが利益算入を決めているからである。たとえ transitory な要素であっても、企業の業績であれば、それは年度の利益に算入される。その典型例は、trading 目的で保有する金融商品の時価評価損益である。その1期間中に生じた時価変動損益は、かりに transitory であって、株価にたいして relevant でなくても、それが企業の金融投資の年度の業績であるかぎり、年度利益に算入されなければならない。利益情報の relevance が高いことは望ましいには違いないが、relevance を高めることは、会計の利益計算にとって唯一絶対の目的規範ではない。

それにもかかわらず、利益情報の relevance の高低が、会計規制の有効性や会計基準の質の良し悪しに結び付けて議論されることも少なくない。市場参加者に有用な情報を提供することが目的にうたわれている以上、たえず relevance の達成度が問われることは、会計制度の宿命であろう。とはいえ、前述のように、報告利益には transitory earnings と目される項目も含まれていることは既知の事実である。合理的で洗練された投資家は報告利益を機械的に鵜呑みにするのではなく、情報に一定の加工を施して permanent earnings の予想に利

用しているはずである。そうであれば、transitory earnings の影響を除去する投資家の分析 技法として既知のものは、relevance の検証に反映させなければならない。

この論文の主題は、従来から着目されてきた transitory earnings の発生要因を確かめたうえで、その要因をコントロールして利益情報の relevance を確認することである。この論文で transitory earnings の発生要因を探るために利用するのは、利益変化額と株価変化との関係をめぐる value relevance study である。なかでも、1)プラスの利益変化(増益)とマイナスの利益変化(減益)とで株価変化との関係が異なるか、2)大規模な利益変化と小規模な利益変化とで株価変化との関係が異なるか、という2点に注目する。

この論文の主要な結論は以下の 4 点である。第 1 に、減益にはより多くの transitory earnings が含まれており、減益企業の報告利益にかかる係数は、増益企業よりも小さい。第 2 に、減益要因をコントロールしても、損失にかかる係数はプラスの利益にかかる係数よりも小さく、若干の例外を除いて、損失情報は relevant ではない。第 3 に、大規模な利益変化額にはより多くの transitory earnings が含まれるという仮説(S 字型反応仮説)は棄却される。むしろ、大規模な増益は小規模な増益よりも persistent であり、大規模増益企業の報告利益(水準)にかかる係数は、小規模増益企業の係数よりも大きい。つまり、J 字型の関係が観察された。第 4 に、損失、減益、大規模増益をコントロールすると、純利益の relevance は飛躍的に向上し、コントロールした純利益の情報は、なにもコントロールしない営業利益と同程度の relevance を有している。これは、permanent earnings を推定するにあたり、損益要素の分類だけではなく、transitory earnings の発生要因をコントロールすることが有効であることを示している。

この論文の以下の構成は次の通りである。2 節では、先行研究をレヴューし、この論文の検討課題を説明する。3 節では、利益変化額を説明変数として利益情報の value relevance を確認する。4 節では、利益変化額について増益と減益との情報内容の違いを確認し、5 節では、利益水準について、増益企業と減益企業の利益の情報内容の相違を確かめる。さらに、損失情報の value relevance について、減益要因をコントロールして検証する。6 節では、利益変化の規模の大小に着目する。利益変化額と株価変化との関係についての分析結果を基礎にして、利益水準と株価水準との関係に分析を拡張する。損失、減益、大規模増益の要因を統合して、7 節では、利益水準の情報の relevance を再検討する。8 節は、この研究の結論である。

2 先行研究

利益情報の value relevance をめぐる研究において、利益の対前年変化額に注目する研究の源流は、リターンと会計利益の関係をめぐる return association study である。その変遷および value relevance study の有効性と限界については、優れたサーベイがすでになされている(Barth et al. [2001]、Holthausen and Watts [2001]、Kothari [2001]、Beaver [2002])。その return association study の議論では、被説明変数をリターンにするか期待外のリターンにするかとともに、会計利益の水準(level)と変化額(change)のいずれを説明変数とすべきかも、重要な争点の1つであった(Lev [1989]、Easton and Harris [1991]、Ali and Zarowin [1992]、Easton et al. [1992]、Kothari [1992]、Kothari and Sloan [1992]、Ohlson and Shroff [1992]、Warfield and Wild [1992]、Ball et al. [1993]、Strong [1993]、Strong and Walker [1993]、Kothari and Zimmerman [1995]、Ryan and Zarowin [1995])¹。

もっとも、利益の対前年変化額を説明変数とする研究の始まりは、形式上は Ball and Brown [1968] を端緒とする event study であるが、event study での関心は、投資家の期待の 改訂に向けられていたのであった。それにたいして、return association study とその後の value relevance study は投資家の期待そのものに関心が向けられている。その違いだけでは なく、報告利益には transitory earnings が含まれ、とくにその変化額に transitory earnings がより多く含まれているという return association study の一部に見られた問題意識は、変化額のすべてを permanent earnings の変化と結び付けようとする event study の問題意識とは決定的に異なっていた (Christie [1987]、Kormendi and Lipe [1987]、Penman [1992])。

この論文で利益の変化額を用いたモデルを採用するのも、報告利益に含まれる transitory earnings を除去ないし分離把握する方法を探究することが目的である。報告利益に含まれる transitory earnings の影響を除いて利益水準の relevance を考えるためには、どのような要因が transitory earnings を生じさせ、どのように報告利益が permanent earnings から乖離するのかが知られていなければならない。この論文では、その手がかりを、利益の変化額を説明変数とする研究にもとめるわけである。

利益変化額と株価の関係についての第1の着目点は、増益と減益とで株価の反応が非対称であるか否かである。これまでの実証研究では、増益と減益とで反応は非対称であることが報告されている。多くの研究では、減益のケースのほうが報告利益(あるいは減益額)

¹ その後の value relevance study ではあまり注意が向けられないデフレーターについても、この時期の return association study では、前期末の株価をデフレーターとすることが分析上は有効であるというのが、すでに支配的な考え方であった。

により多くの transitory earnings が含まれるため、利益にかかる係数が小さくなると報告されている 2 。しかし、企業の競争環境によっては、減益のほうが反応が大きくなることも否定できない (Nwaeze [2000]、Christophe [2002])。はたして、減益企業の報告利益にはより多くの transitory earnings が含まれているため、利益の quality は低いのか、さらに、しばしば指摘されている損失情報の relevance と減益情報の relevance とはどのような関係にあるのかを確かめるのが、この論文の重要な検討課題の 1 つである。

第2の着目点は、利益変化の大きさと transitory earnings の関係である。従来の研究では、permanent earnings が改訂されるのは小さな incremental な利益変化であり、大きな利益変化は一時的なショックに過ぎないと理解されることが多い(Freeman and Tse [1992]、Ali [1994]、Cheng et al. [1996]、Charitou et al. [2001]、Donnelly [2002])。しかし、利益変化の規模の大小とそれが permanent earnings の改訂に結びつくか否かとは、直接の関係はない。利益変化の大小にかかわらず、それが将来キャッシュフローの永続的 (persistent) な変化の指標であるかぎり、利益変化は株価変化と有意な関係をもつはずである。かりに企業が業界において競争優位な支配的地位を獲得したならば、大規模な増益ほど、permanent earnings の大幅な上方改訂と結びつくかもしれない。そのような問題意識にもとづいて、利益変化の規模の大小と利益情報の relevance との関係を検証するのが、この論文のもう 1 つの検討課題である。

ただし、利益変化額を説明変数とする relevance の検証には、すでに Kothari [1992] によって指摘されている通り、一定の限界がある。たとえば、前年度の報告利益に含まれていたプラスの transitory earnings が、当年度に消滅したとしよう。当年度は、transitory earnings が少なくなったために、報告利益がより permanent earnings に近くなり、利益情報の relevance は上昇するはずである。しかし、利益変化額を説明変数とすると、当年度の減益 (プラスの transitory earnings の消滅)は株価の変化と有意な関係はない。このように、年度別のクロス・セクション分析を通じて、年度ごとの利益の relevance を検討するうえでは、利益変化額を説明変数とすることには限界があり、やはり、利益水準を対象にして年度ご

 $^{^2}$ 増益と減益の非対称性は、保守主義 (conservatism)によるタイムリーな報告の観点からも注目されている。この観点からは、増益よりも減益のほうが早く報告されるため、報告時点の利益と株価との関係では、減益のほうが株価との相関関係が高いといわれている (Basu [1997]、Pope and Walker [1999]、Ball et al. [2000] 。保守的会計処理による減益が株価と関係をもちうるのは、その減益が permanent earnings と関係がある場合にかぎられる。減益には一般に増益よりも transitory earnings が多く含まれているという理解と、保守主義をめぐる実証結果とは必ずしも矛盾しないものの、実証研究のデザインをめぐって、2 つの仮説をどのように識別するのかに難しい問題が残されている。

との relevance を考えなければならない。その意味で、利益変化額を対象にした検証は、利益の relevance の検証作業において、補助的、補完的な役割を果たすに過ぎず、最終的には、利益水準の次元に議論は統合されなければならない。その統合が、この論文の最終的な検討課題となる。

3 利益変化額モデル

3.1 Value relevance study \(\mathbe{L} \) earnings changes model

従来から、利益の value relevance を研究するさいに、利益の対前年度増減(earnings surprises, changes in earnings)を説明変数として、株価変化率ないし投資収益率のバラツキを説明する「利益変化額モデル(earnings changes model)」がしばしば利用されてきた。このモデルの起源は、会計学の資本市場研究の草分けとして知られている Ball and Brown [1968] である。それ以来、多くの event study において、利益情報の情報価値を検証するさいに利益変化額モデルが利用されてきた。そこでは、ある年度で投資家が期待する次年度の利益は、その年度の報告利益に等しいという naïve expectation model が明示的に仮定され、対前年度増減額が期待外(unexpected)の利益とみなされて、それが news であるか否かが、株価の反応を通じて検証されてきたわけである。

その後、株価ないし投資収益率と会計利益との偏相関関係 ERC (Earnings Response Coefficients) をめぐる諸研究において、説明変数として利益水準を採用するか、対前年度増減を採用するかが、1 つの重要な論争点とされた。ただ、そこでの論争は、主として、回帰の結果であるモデルの説明力あるいは現実適合度をめぐってなされたため、モデルの理論的、経験的意味については、必ずしも有益な成果は残されなかった。その遺産を引き継ぎつつ、fundamental analysisへの回帰を経てはじめて、value relevance study によって、利益変化額モデルの経験的な意味は、利益資本化モデル(earnings capitalization model)の派生形として説明できるようになった。

いま、t 時点で予想されている permanent earnings を PE_t とし、資本コストを R 、株価を P_t とする(簡略化のため、企業をあらわす添え字は省略)。ここで配当割引モデルと P_t の配当無関連性命題より、以下の評価式を前提とする。

$$P_t = \frac{PE_t}{R} \tag{3.1}$$

この(3.3)式の両辺の差分をとると、

$$\mathbf{D}P_{t} = \frac{\mathbf{D}PE_{t}}{R} \tag{3.2}$$

となる。

さらに、t期の報告利益をX,とし、次式のような線形関係を仮定する。

$$PE_{t} = a + bX_{t} \tag{3.3}$$

この差分は、

$$\mathbf{D}PE_{t} = b\mathbf{D}X_{t} \tag{3.4}$$

である。この(3.4)式を(3.2)式に代入すると、以下の式が得られる。

$$\mathbf{D}P_{t} = \frac{b}{R}\mathbf{D}X_{t} \tag{3.5}$$

この(3.5)式が利益変化額モデルである。これは、報告利益の変化が、期待される permanent earnings の変化と結びつくとき、かつ、そのかぎりにおいて、利益の対前年度増減額が株価の変化と関係があることを含意している。利益資本化モデルでは、報告された利益水準の persistence が問題とされていたのにたいして、この利益変化額モデルにおいては、利益変化の persistence が問題とされているわけである。その点で、利益水準の persistence を問題にする利益資本化モデルとは経験的な含意は異なっている。ただし、この利益変化額モデルでは、暗黙のうちに、報告利益と permanent earnings の(偏)相関関係(b)および資本コスト(R)は前年度と当年度とで同一であると仮定されている。その意味では、利益変化額モデルは、利益資本化モデルよりも強い制約条件を課していることになる。

この論文では、上記の定式化を基礎として、以下の回帰モデルを検証する。

$$\frac{\mathbf{D}P_{it}}{P_{it-1}} = \mathbf{a} + \mathbf{b} \frac{\mathbf{D}X_{it}}{P_{it-1}} + u_{it}$$
(M5)

この(M5)式による利益変化額モデルを以下便宜的にモデル M5 と呼ぶ。説明変数の X には、営業利益(\emph{OP} : Operating Profits)、経常利益(\emph{OI} : Ordinary Income)、純利益(\emph{NI} : Net Income)がそれぞれ 1 株あたりの値で代入される。前期末の株価 P_{t-1} でデフレートしているのは、規模による heteroscedasticity を軽減するためである。また、このデフレートにともなって、大日方[2002] で検証した回帰モデルとの比較が可能になる。以下では、その比較の結果も検討する。また、産業効果を吸収するため、定数の産業ダミーを回帰モデルに含めている(以下、この論文の回帰モデルすべて同じ)。

ここでも、利益資本化モデルをめぐって議論したのと同様に、どの期間の株価変化(率)を被説明変数とするのかが問題になる。この研究では、期首から期末までの株価の変化(率)を被説明変数とする。その期間を採用したことにより、以下での検証は、permanent earningsの変化にかんして、決算日までに投資家が知っていた value relevant information が報告利益の変化額に反映されているのかを問うことになる。この意味で利益情報の value relevanceが確認されれば、fundamental analysisの有効性が間接的ながらも示され、また、利益予測をめぐる経営者やアナリストの行動を理解するうえでも、有益な示唆をあたえるはずである。なお、この意味での relevance は、利益情報の relevance のすべてではないため、この論文の検証は、利益情報の現実の relevance を過小評価する危険があることに留意しておく必要がある。

この論文の利益変化額モデルによる検証は、上述の event study にたいして、興味深い検討課題を提供する。もしも、上記で定義された M5 の回帰モデルにおいて偏回帰係数 b が統計的に有意であるとき、利益変化の情報のある部分は、すでにその年度の決算日までの株価に反映されていることを意味する。つまり、決算日以降の情報公表日には、すでに利益変化額のある部分は news ではなくなっていることになる。それが普遍的な統計的事実であるなら、利益変化額のすべてを new information とみなすリサーチ・デザイン、いわゆる naïve expectation model には事実誤認があることになる3。別の角度からいうと、naïve

³ 利益の対前年度増減額を期待外利益とみなして説明変数とする event study には本文で述べたような問題点があることから、最近では、より精緻な時系列モデルやアナリストによる利益予想を市場参加者の利益予想の代理変数とみなすことが多い。アナリストの利益増減(earnings surprises)に

expectation model では、報告利益がそのまま permanent earnings であると仮定されている。 その仮定は、報告利益には transitory earnings あるいは temporary earnings が含まれているという、この研究の前提とは異なっていることを強調しておくべきであろう。

そもそも、event study は、企業の fundamental value あるいは intrinsic value の限界的な変化を投資家がいつ、どのように知るのかを問題にしている。そこでは、会計ディスクロージャーが唯一の value relevant informationの伝達媒体であるという意味での会計の社会的意義に関心が向けられてきた。しかし、利益情報の公表以前にすでにそれが株価に反映されているなら、その意味では利益情報の社会的な意義を主張することはできない。それにたいして、利益変化額モデルによる value relevance study では、企業の fundamental value の変化を利益計算が適切に捉えているのか否かが問われている。そこでは、投資家にとって利用可能な value relevant information を規準として、利益情報には systematic bias が無いという意味での社会的意義が問われているわけである。多様なメディアの高度の発達と、利益予測情報が氾濫する現状においては、value relevance study の役割も重要であり、前述のevent study の限界をあきらかにして、それを補ううえでも、この論文は大きな貢献をすると期待される。

なお、この研究のサンプルは、大日方 [2002] と同じく、1979 年 3 月期から 2000 年 3 月期までの 3 月決算企業 9,122 firm - years である。各業種について最終決算期の売上上位企業をサンプルに採用しているため、潜在的に、利益にかかる係数に上方バイアスがかかっている危険性があり、この研究の実証結果をただちに一般化できないことをあらかじめ付言しておかなければならない。

3.2 検証結果

回帰分析に用いた変数の記述統計量は、Table 1 にまとめてある。すべて 1 株あたりの数字であり、金額の単位は円である。株価変化額の平均とメディアンが 80 年代後半のバブル期に正の値をとり、90 年代の不況期には負の値になることが多い点は、常識に合致している。しかし、利益の変数の平均とメディアンは、そのような対照的な動きを示していないことは注目に値する。なお、1996 年 3 月期から、額面金額の大きな(発行株式数の少ない)企業がサンプルに含まれているが、各変数の平均を見ると、それが大きな影響をあたえて

たいする反応が利益増減の符号によって非対称である点については、たとえば、Easterwood and Nutt [1999] を参照。

はいないようである。この論文では、変数を前期末株価でデフレートするため、額面金額の大きな企業をサンプルに含めても、深刻な heteroscedasticity の問題は生じない。

回帰の結果の検討に先立って、大日方 [2002] の分析結果と比較するため、利益水準による利益資本化モデルと純資産簿価モデルの AIC と、この論文の利益変化額モデルによる AIC の大小を比較した。Table 2 はその比較の結果を示している。記号 D は利益変化額モデルであることを示し、OP、OI、NI はそれぞれ営業利益、経常利益、純利益を説明変数としたモデルを示している。記号 D が付いていないのは、利益水準による利益資本化モデルである。BVE は純資産簿価を説明変数とする回帰モデルであり、「vs.***」の欄は、2 つのモデル間の AIC の差を示している。比較の方法は、各決算期を独立とみなした検定である、Wilcoxon 検定と二項分布による符号検定である。

営業利益と経常利益はともに、利益水準のモデルと利益変化額のモデルとのあいだに有意な差はない。しかし、利益変化額モデルと純資産簿価モデルとを比較すると、前者の AIC は後者のそれよりも有意に小さい。純資産簿価の情報は利益変化額の情報に比べて株価変動にたいする説明力は小さいことがわかる。一方、純利益については、利益変化額モデル、利益資本化モデル、純資産簿価モデルの3つのあいだに有意な差異はない。これは、純利益水準の情報には相当に大きなノイズが含まれており、そのノイズは、利益変化額モデルによっても除去されないことによると解釈できる。この純利益に含まれるノイズ 営業利益や経常利益と比べたときのノイズ を、特別損益や税費用などの損益の構成要素を分離する以外の方法によって、どのように軽減できるのかが、以下での分析の焦点の1つになる。

純利益にノイズが含まれていることは、利益変化額モデルのもと、利益の種類にかんして営業利益、経常利益と AIC を比較した結果からも推定することができる。Table 2 の右端に3種の利益のそれぞれを説明変数とした場合の AIC の比較結果が掲載されている。これによると、営業利益、経常利益、純利益の順にモデル適合度は低くなっている。営業利益と経常利益との差は僅かであるが、経常利益と純利益との格差は大きい。この結果は、利益資本化モデルによる比較の結果と一致している。ここでの実証結果は、対前年度増減を説明変数としても、損益要素の分類と区分を通じて transitory earnings を除くのが有効な方法の1つであることを示している。

回帰分析の結果は、Table 3 にまとめた。説明変数として、Panel A は営業利益、B は経常利益、C は純利益を採用したときの結果である。右側の「vs. ***」欄の数字は、対応す

る利益資本化モデルと純資産簿価モデルそれぞれとの自由度修正後決定係数の差である。 Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は符号検定による有意確率を示している。

まず、営業利益の変化額は、1987年3月期を除いて、value relevantである。偏回帰係数はすべて正であり、1987年の決算期以外ではおおむね5%水準で有意である。利益資本化モデルでは説明力に疑問が残った1996年3月期についても、他の決算期に比べて決定係数は低いものの、営業利益の変化額は relevant である。偏回帰係数の有意水準や決定係数の大きさについて、年代的な変化を観察しても、際立った傾向的変化はない。このことから、営業利益の relevance には、この22期間で大きな変化はないと判断できる。なお、22期間を通じて、営業利益の水準による利益資本化モデルよりも、変化額モデルの決定係数は大きいものの、その差は有意ではない。他方、純資産簿価よりも営業利益の変化額のほうが決定係数は有意に大きい。

つぎに、経常利益の変化額は、1987年と1992年の決算期を除いて、value relevantである。偏回帰係数はすべて正であり、その2期以外では、少なくとも10%水準で有意である。この有意水準は、営業利益の場合よりも低く、その点では経常利益の変化額のほうがrelevanceは低い。決定係数の時系列推移を見ると、営業利益の場合と同様、低下傾向は観察されない。利益資本化モデル、純資産簿価モデルとの決定係数の差異についても、営業利益の場合と同じである。

最後に、純利益の変化額の relevance を確認しよう。80、87、90、92、95 年の 5 決算期において、純利益の変化額にかかる偏回帰係数は有意ではない。これは、純利益の変化額には、営業利益、経常利益の変化額よりも transitory earnings がより多く含まれていること、換言すれば、permanent earnings の変化の指標としては、純利益の変化額は営業利益や経常利益よりも劣っていることを示している。また、決定係数は、利益資本化モデルや純資産簿価モデルと大きな差異はないものの、利益変化額モデルのほうが小さいため、純利益については、利益変化額の情報の relevance は高くないといってよい。

このように、利益水準と増減とを比べると、株価説明力の点で両者に決定的な差はない。 利益変化額モデルには、企業に固有の効果(固定効果)の影響を除く効果があるといわれ ているものの、それは説明力の向上に結びついていないようである。とくに、純利益を説 明変数とするとき、大日方 [2002] では、利益水準による利益資本化モデルの場合には 3 つの決算期で偏回帰係数が有意ではなかったのにたいして、ここでの変化額モデルでは、5 決算期においてそれが有意でなくなっている。純利益の変化額には、営業利益や経常利益 に比べてより多くのノイズが含まれていること、変化額モデルでは、企業の固定効果が除 かれる代わりに別のノイズが含まれることを意味している。

最後に、産業効果について確認しよう。Table 3の Panel Dには、産業効果にかんする 2 つの検定結果を記載した。ひとつは、回帰に含めた産業ダミーにかかる係数のすべてが同時にゼロ($g_1=g_2=\cdots=g_{17}=0$)であるか否かの検定であり、Dummy Test の欄には、F値(有意確率)が示されている。これによると、1990 および 96 年の 3 月期を除いて、定数ダミーを含めることに意味がある。変化額モデルの場合にも、産業ダミーを含めることの重要性は、利益水準の利益資本化モデルと変わらない。

もうひとつは、偏回帰係数の推定における統計的効率性を通じて、固定効果モデルの必要性を検証した Hausman Test であり、当該欄にはカイ二乗値(有意確率)が示されている。産業効果が年度別の回帰推定に有意な影響(1%水準)をあたえているのは、営業利益で7期、経常利益で9期、純利益で4期となっており、純利益にたいしては産業効果の影響は弱いようである。また、3つの種類の利益すべてに産業効果が有意な影響(1%水準)をもっているのは、22期のうち、3期と少なく、逆に、すべてに産業効果が有意ではないのは9期である。利益水準によった場合、大日方[2002]では前者は5期、後者は8期であったから、やはり、利益変化額モデルは、産業の固定効果の影響を緩和するうえでは有益である。とはいえ、利益変化額モデルでも、ランダム効果モデルによる係数推定が誤っている期があるため、産業効果が存在すること、利益の種類および年代によって産業効果の影響度合いが異なることを確認しておくべきであろう。

4 増益と減益の非線形性

4.1 モデルと仮説

利益変化額モデルは、利益の対前年度増減が permanent earnings の変化 投資家の期待改訂 に結びつくとき、その増益・減益が株価変化と関係をもつということを想定している。その場合、利益水準について負の利益(損失)と正の利益とで株価との関係が異なるのと同じように、利益の変化額についても、増益と減益とでは株価変化が異なると予想することもできる4。個別企業を例に考えると、たとえば価格支配力や市場独占力がある場

-

⁴ 最近は、増益と減益との非対称性に着目して、アナリストや投資家の受動的な反応だけではなく、企業経営者の能動的な行動も研究対象とされている。たとえば、Barth et al. [1999]、Kaznik and McNichols [1999]、Chevis [2001]、Bartov et al. [2002]、Beatty et al. [2002]、Burgstahler and Eames [2002]、

合には、販売価格の値上げによる増益にたいして株価は正の反応を示す一方で、競争の激化による減益が生じても株価は変化しないという状況も考えられよう。実際、企業の決算を伝える新聞報道などでは、対前年度比で増益か減益かに注目している。そのような慣習に意味があるか否かを確かめるためにも、増益と減益とで株価変化との関係が異なっているのかを検証してみなければならない。

いま、株価変化をDP、利益増減をDXとし、以下の回帰式を考える。

$$\mathbf{D}P_{ii} = \mathbf{a} + \mathbf{b}_1 \mathbf{D}X_{ii} + \mathbf{b}_2 D_N \mathbf{D}X_{ii} + u_{ii}$$
 (M6)

ここで D_N は、減益の場合を 1、それ以外の場合を 0 とするダミー変数である。ここでも、定数項を除く説明変数と被説明変数は、前期末株価によってデフレートされる。増益と減益とで株価変化が異なっているならば、モデル M6 における偏回帰係数 \mathbf{b}_2 は有意にゼロと異なっているはずである。しかし、その係数の符号が正であるのか、負であるのかを予測するのは簡単ではない。

そこで、各決算期において、増益と減益がどのように分布しているのか、営業利益、経常利益、純利益ごとに調べた。Table 4 は、増益と減益の生起確率が等しい、すなわち、ともに 0.5 の確率で生じると仮定したときの適合度検定の結果(カイ二乗値、有意確率)である。営業利益については、増益と減益の生起確率が等しいと 5%水準で推定できるのは、81、84、90、96 年の 4 期であり、経常利益の場合は、91 年の 1 期しかない。純利益の場合には、増益と減益の生起確率が等しいと推定できる決算期は 22 期のうちで観察されない。企業の利益平準化行動や景気動向などが原因となり、増益と減益の生起確率は、利益の種類や年代に偏りがあるのであろう。

この研究は製造業全体のクロス・セクション分析であるから、その回帰の結果にはそれぞれの年度におけるマクロの景気動向が影響をあたえるであろう。好況期と不況期では異なる結果が予想されるため、ここでは、3つの仮説を想定しておく。

仮説 H3A

減益は、株価にたいして irrelevant である。減益にかかる偏回帰係数は、増益の係数よりも小さく、(M6)式の係数 \boldsymbol{b}_2 はマイナスになる。た

だし、 $-\boldsymbol{b}_1 < \boldsymbol{b}_2 < 0$ 。

仮説 H3B

減益は、株価にたいして増益よりも relevant であり、bad news である。 減益にかかる偏回帰係数は、増益の係数よりも大きく、(M2)式の係数 $m{b}_2$ はプラスになる。

仮説 H3C

減益は、増益とは異なる意味で株価にたいして relevant であり、good news である。減益にかかる偏回帰係数は、 $m{b}_2$ は大きなマイナスであり、 $m{b}_2 < -m{b}_1 < 0$ である。

大日方 [2002] では、利益水準を説明変数とするとき、損失にかかる係数がマイナスになる決算期が観察されている。大きな損失を計上している企業ほど、株価が高いという状況も起こりえる。そうであれば、減益についても、より大きな減益が、より大きな株価上昇と結びつく事態も予想される。それを表したのが上記の仮説 H3C である。そうした一見常識に反する状況は、不況期のリストラなどをめぐって生じるかもしれない。たとえば、正味現在価値がマイナスの投資プロジェクトを清算した場合など、会計上の大きな処分損が将来のキャッシュフローの改善、permanent earnings の上方改訂と結びつくならば、仮説H3C も支持されそうである。

4.2 検証結果

Table 5 は、利益の種類ごとにモデルの AIC の大小を比較したものである。営業利益によるモデル M6 は、 DOP_N と表記してある。N は、減益サンプルにダミーを付けて分離していることを表している。DOP は、前節で検証した利益変化額モデル M5 である。たんにOP と表記してあるのは、営業利益による利益資本化モデル(大日方 [2002] のモデル M1)であり、営業損失のサンプルにダミーを付けて分離したモデル(大日方 [2002] のモデル M2)は OP L と表記している。

営業利益と経常利益によるモデル M6 は、M1、M5 と比べて、AIC は有意に小さい。しかし、利益変化額モデルで増益と減益を分けた M6 と利益資本化モデルで正の利益と損失

を分けた M2 との差は、統計的に有意ではない。それにたいして、純利益の場合、モデル M6 の AIC は、他の 3 つのモデルの AIC と大きな差異はない。これは、経常利益には含まれずに純利益に含まれる項目、すなわち特別損益と税費用が大きなノイズを含んでおり、利益の水準か前年度増減か、それぞれの符号が正か負かなどの加工によってはそのノイズがもたらす影響を消去できないことを示している。利益情報の株価(変動)にたいする説明力を高めるには、それらの加工は、さほど(営業利益や経常利益のケースで検証されるほど)有効ではない。

モデル M6 による回帰分析の結果は、Table 6 に掲載した。欄「vs. ***」は、対応するモデル間の決定係数の差であり、Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。モデル間の説明力の違いは、上記で確認した AIC の相違と同じである。右側の F は、減益サンプルにかかる偏回帰係数がゼロと有意に異なるか否か、すなわち $\mathbf{b}_1 + \mathbf{b}_2 = 0$ であるか否かについての分散分析の結果(F 値)であり、p-value はその有意確率である。

営業利益の増減を説明変数とした場合の結果である Panel A を概観すると、仮説 H3A が支持されている決算期が多い(10%水準で 8 期)。やはり、減益は増益よりも persistent ではないため、減益情報は増益情報よりも relevant ではない。しかし、仮説 H3B も、1982、97、99、2000 年の決算期で支持されている。不況期では、増益よりも減益のほうがより persistent であるためか、減益情報のほうが係数は有意に大きくなっている。ただ、減益を積極的に評価する仮説 H3C を支持する決算期は観察されなかった。

Panel B は、経常利益についての回帰分析の結果をまとめたものである。決定係数によるモデルの説明力の違いは、AIC の場合の相違と同じである。ここでも、仮説 H3A を支持する結果を示している決算期が多い(10%水準で 6 期)。他方、1982、92、97、99、2000 年の決算期では、営業利益の場合と同様、仮説 H3B が支持されている。不況期で継続的に利益が縮小している状況では、減益が将来も継続すると期待されている、すなわち、減益は増益よりもより persistent であると期待されていることの現われであろう。ただ、仮説 H3Cについては、営業利益の場合と同様に、支持する決算期は観察されなかった。

純利益の回帰の結果は、Panel C が示している。モデルの説明力は、AIC の比較では、単純な利益変化額モデル(M5)と異ならなかったが、ここでの決定係数を見ると、ここで減益を分離したモデル M6 は、22 期間を通じて、モデル M5 よりも有意に大きい。仮説 H3A が支持される決算期は 4 期であり、営業利益および経常利益のケースより少ない。その代

わりに、仮説 H3C は、1989 年、90 年決算期において支持されている。なぜ減益が積極的に評価されるのかは、減益の原因が判明しないかぎり推定できないが、一見常識に反する仮説 H3C が支持される決算期が存在することは、注目しておいてよいであろう。減益により強い持続性を認める仮説 H3B は、純利益の場合にも、1980、87、97、98 年の決算期において支持されている。経済の低迷期には、増益よりも減益のほうがより relevant であり、増益の情報は相対的に投資家にとって説得的ではないと解釈してよいであろう。

ここで確かめた重要な点は、減益は必ずしも transitory ではないという点である。利益の変化額を正負の符号で分けて、それが負であるというだけで一律に transitory な要素とみなす従来の見解にたいして、ここでの結果は有力な反証を提示している。減益が persistent であると投資家が判断している決算期も存在しており、とりわけ、景気低迷期にそれが散見されていることは、この研究によるあらたな発見である。

最後に、ここでの回帰モデルについて、産業効果の影響を確認しておこう。Table 6 の Panel D に、Dummy Test と Hausman Test の結果を掲載した。Dummy Test の結果は、増益と減益とを分けた変化額モデルの場合も、産業の定数ダミーを回帰に含めることが有意味であることを示している。Hausman Test では、営業利益、経常利益、純利益のすべてについて産業効果の影響が有意(1%水準)であるのが 5 決算期、逆に、すべてに有意ではないのも 5 決算期となっている。営業利益と経常利益は 12 期、純利益は 10 期において、産業効果の影響が有意(1%水準)である。利益変化額の符号を無視した前節の結果にくらべて、符号で分けたここでのモデルのほうが産業効果の影響を強く受けている。これは、産業によって、減益サンプルの構成割合や減益にかかる係数の大きさが異なることを示している。ここでも、産業効果が回帰推定に重要な影響をあたえることと、その影響が年代(決算期)によって変わることを確認しておきたい。

5 増減益条件付の利益平準化モデル

5.1 モデルと仮説

利益水準の情報の value relevance は、単純な利益資本化モデルによって検証されることが多い。しかし、前節で検証したように、対前年度比で増益か減益かによって、利益情報がもつ情報内容は異なっている。そこで、単純な利益資本化モデルに修正を加えて、増減益の条件をつけた利益資本化モデルを検証してみる。この検証は、以下の2つの重要な研究課題に答えようとするものである。

第1は、モデルの正当性の問題である。利益水準による利益資本化モデルと、対前年度 増減による利益変化額モデルは、これまで、対立的、あるいは二者択一的に理解されるこ とが多かった。しかし、現実には、利益水準の高低と対前年度増減の符号は同時に注目され、投資家は、2つの要素を加味して利益情報を企業評価に利用しているはずである。そ うであれば、そのような会計情報の利用形態を反映した回帰モデルによって、利益情報の relevance を検証する必要がある。とはいえ、たんに利益水準と利益変化額を同時に説明変 数として多重回帰しても、多重共線性の統計的問題を引き起こすばかりでなく、その回帰 モデルには、企業価値評価あるいは株式評価モデルの明示的な裏づけがない。いたずらに 説明変数を組み合わせるのではなく、周知の利益資本化モデルの線型性を利用してモデル を修正するのが、理論に裏づけられた検証となるのである。

第2は、利益の relevance の捉え方の問題である。利益情報の relevance の年代変化、国際比較などをめぐる研究では、たんに報告利益をそのまま説明変数にしているだけで、投資家が報告利益から transitory earnings を除いて permanent earnings を予想しようとする行動が無視されている。経済環境要因によって報告利益に大きな transitory earnings が含まれているならば、かりに利益の relevance が低いとしても、その原因を法制度、会計規制、会計基準などに帰着させることはできない。真に利益の relevance を問うためには、経済環境要因をコントロールしなければならないが、それは技術的には困難である。さしあたりは、投資家が報告利益から transitory earnings を除くための分析技法をモデルに反映させるのが、利益の relevance の検証にとっては有益であろう。

この論文では、以下のように利益資本化モデルを修正する。

$$P_{it} = \mathbf{a} + \mathbf{b}_{1} X_{it} + \mathbf{b}_{2} D_{N} X_{it} + u_{it}$$
(M7)

モデル M7 の X は会計上の利益であり、営業利益(\emph{OP} : Operating Profits) 経常利益(\emph{OI} : Ordinary Income) 純利益(\emph{NI} : Net Income)がそれぞれ 1 株あたりの値で代入される。変数 D_N は、対前年度比で減益の場合を 1、それ以外を 0 とするダミー変数である。なお、定数項を除くすべての変数は、前期末株価でデフレートされる。

前節での検証結果は、増益に比べて、減益は persistence の点で劣っていることをおおむ ね支持していた。つまり、同一水準の利益について、増益のケースよりも減益のケースの ほうが、より多くの transitory earnings が利益に含まれていると予想される。その予想が正 しければ、減益企業の利益にかかる係数は、増益企業の係数よりも小さくなるはずである。 このモデル M7 について、以下の仮説を想定する。

仮説 H4

減益企業の利益にはより多くの transitory earnings が含まれ、利益にかかる偏回帰係数は、増益企業のそれよりも小さい。すなわち、 $m{b}_2$ はマイナスである。

この仮説 H4 は、常識的なシナリオを表しているが、減益企業の利益にかかる係数が大きくなる可能性も、必ずしも否定できない。前節では、不況期においては、減益情報のほうが投資家に説得的である決算期も観察されていたからである。さらに、前節の検証では明確には支持されなかったものの、減益が積極的な評価を受ける可能性もある。実際、大日方 [2002] では、損失が大きいほど株価水準が高くなる決算期も観察されている。それらは、直感に反するという意味では anomaly であるものの、経済環境しだいでは起きてもおかしくはない現象である。以下では、そうした異常な事態が観察されるのかにも注目する。

5.2 検証結果

Table 7 は、各回帰モデルの AIC を比較したものである。モデルの記号の OP は営業利益、 OI は経常利益、NI は純利益を表している。記号の N は、減益企業にダミーを付けたモデル、L は損失企業にダミーを付けたモデルを示している。 D は利益変化額モデルを、その記号がないものは利益水準による利益資本化モデルを表している。これまでと同様、Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。

Panel A (営業利益)と Panel B (経常利益)は、ともに共通の発見事項を示している。 増減益条件付の利益資本化モデル M7 は、単純な利益変化額モデル M5、減益を分離した利益変化額モデル M6 と比べて、AIC の大小に有意な差異はない。一方、単純な利益資本化モデル M1 と比べると、AIC は有意に小さくなっている。単純な利益資本化モデル M1 は、Table 2の Panel A (pooled regression)において、単純な利益変化額モデル M5 に劣っていたものの、増減益の条件をつけることにより、AIC は改善されたのである。ただし、損失 企業にダミーをつけた利益資本化モデル M2 と、ここでのモデル M7 とのあいだには、AIC の大小について有意な差異はない。これは、減益と損失とが同じような情報価値をもって いるためかもしれないが、この問題はつぎの 5.3 で詳細に検討する。

他方、Panel C (純利益)は、きわめて興味深い結果を示している。増減益の条件を付けた利益資本化モデル M7 は、その条件のない単純なモデル M1 よりも AIC が小さいのはもちろん、単純な利益変化額モデル M5 よりも、AIC は有意に小さい。さらに、やや有意水準は低いものの、減益を分離した利益変化額モデル M6 よりも AIC は小さくなっている。純利益に含まれるノイズを除くには、利益変化額モデルよりも、利益水準に増減益の条件を付けた利益資本化モデルのほうが有効である。これは、増減益の符号と同時に、利益水準の大きさも評価する慣行的な分析スタイルの合理性を示すものである。

モデル M7 による回帰分析の結果は、Table 8 に掲載した。営業利益については Panel A、経常利益は Panel B、純利益は Panel C にまとめてある。最初に、モデルの説明力について、こんどは決定係数にてらして再確認しておこう。 Table 8 の欄「vs.***」が標記のモデルの決定係数との差を表している。1)単純な利益資本化モデルに比べて、増減益の条件を付けたモデルの決定係数は大きいこと、2) 利益変化額モデル M5、M6 に比べて、営業利益と経常利益の場合には、モデル M7 の説明力は高いとはいえないものの、純利益の場合には、より説明力が高いこと、3)損失を分離した利益資本化モデルと比べると、モデル M7 の説明力は有意に高いとはいえないこと、以上の3点はここで再確認されている。

つぎに、モデル M7 の利益にかかる偏回帰係数を見てみよう。Panel A では、増益企業の利益にかかる係数はすべて、少なくても 5%水準で有意なプラスの値になっている。1982、2000 年の 2 決算期を除いて、係数 \mathbf{b}_2 は有意(10%水準)であり、符号はすべてマイナスである。減益企業にかかる係数の合計がゼロと有意に異なっているか否かは、分散分析による F 値と有意確率(p-value)から判明する。この F 値が大きく、有意確率が棄却水準より小さければ、減益企業にかかる係数の合計がゼロと有意に異なっていると判定される。減益企業の利益にかかる係数がゼロではないのは、8 決算期ある。減益企業の利益には transitory earnings が多く含まれているために、報告利益にかかる係数は低下するものの、その relevance を完全に失わせるとはかぎらない。

経常利益を説明変数とした場合(Panel B)、1985、89年の2決算期において、増益企業の利益の係数は統計的に有意ではない。それ以外の決算期では、係数はすべてプラスである。その2決算期では、減益企業の利益にかかる係数(の合計)も、総じてゼロと有意に

異なるとは言えず、経常利益の relevance は確認できない。他方、係数 b_2 は、3 決算期を除いて、統計的に有意なマイナスの値になっている。減益企業の利益にかかる係数がゼロではないのが 7 決算期あることが観察された。営業利益の場合と同様に、減益は利益にかかる係数を低下させるものの、利益の relevance が失われる決算期と、それが失われない決算期が混在している。

純利益についての結果は、Panel Cである。増益企業の利益にかかる係数は、1981、85、2000年の決算期において統計的に有意ではない。それらの決算期では、減益企業の利益にも value relevance は確認できない。係数 b_2 は、13 期で統計的に有意ではない。営業利益と経常利益に比べて、純利益の場合には、減益企業の報告利益に transitory earnings が含まれている割合は少ない。減益が transitory であるか否かは、利益の種類によっても異なっている。減益企業の利益が relevant である決算期は 9 つある。この決算期の数の点では、Panel A、B と大きな違いはない。1 つだけ注目されるのは、1989年の決算期である。この期では、減益企業の利益にかかる係数が有意な負の値になっている。これは直感に反する anomaly であり、その原因は判明しないが、そうした現象が生じている統計的事実を確認しておくべきであろう。

そもそも、利益の persistence は相対的に判断されるものであり、その対立概念である transitory の程度も、相対的にしか決まらない。両者の境界は状況に依存して相対的に決まるだけであり、投資家の判断にゆだねられている。その点から言えば、すべての減益要素が transitory であると確定的にいうのは誤りである。実際、ここでの検証結果は、減益が利益の relevance にあたえる影響の程度は多様であることを示している。減益が transitory であるのは、平均的、統計的な事実であるには違いないが、それが普遍的な法則というわけではない。利益の relevance は多様な条件の影響を受けて相対的に決まる以上、条件付で利益の relevance を考えなければならないわけである。

最後に、産業効果の影響は、Panel Dにまとめた。定数ダミーの有用性を検証した結果はDummy Test に示されており、大多数の決算期において、定数ダミーを回帰モデルに含めることの有意性が確認されている。回帰推定される係数にあたえる影響を検証した結果は、Hausman Test の欄に示されている。営業利益、経常利益、純利益のすべてについて、固定効果モデルとランダム効果モデルとに有意差があるのは10決算期と多く、逆にすべての利益に有意差がないのは、わずかに2決算期である。営業利益では14の決算期でその有意差が確認され、経常利益と純利益では15期で有意差が確認されている。他のモデルに比べて、

増減益条件付の利益資本化モデルは、産業効果の影響を強く受けている。この産業効果も、 利益の relevance を条件付で判断しなければならない 1 つの重要な要因である。

5.3 減益情報と損失情報

一般に、負の利益である損失は、正の利益に比べて、transitory earnings がより多く含まれるため、損失にかかる偏回帰係数は正の利益のそれよりも小さくなることは、これまで多くの実証研究によって確かめられており、大日方 [2002] においても、多くの決算期において、そのことは確認されている。一方、前項の分析では、対前年度で増益か減益かの条件が利益の relevance に重要な影響をあたえていた。そうすると、減益と損失のいずれが支配的な影響をおよぼすのかが、重要な検討課題になろう。増益 減益の非対称性は、従来から指摘されている黒字 赤字の非対称性の別表現に過ぎないのか、それとも、減益と損失とは異なる情報内容をもっているのかを確認してみなければならない。

最初に、利益水準の正負の符号 黒字か赤字か と、利益変化額の正負の符号 増益か減益か の2つの要因が独立であるか否かをカイ2乗検定で確かめた。Table 9 は その結果である。営業利益の場合、22 期中6つの決算期で両者は独立である(Panel A)。 経常利益の場合と純利益の場合は2つの決算期で、赤字 黒字と増益 減益は独立である (Panel B、C)5。この Table 9 の結果は、損失と減益の条件を同時に付加した利益資本化 モデルの検証に意味があることを示している。そこで、以下では、つぎの回帰モデルを利用する。

$$P_{it} = \mathbf{a} + \mathbf{b}_1 X_{it} + \mathbf{b}_2 D_t X_{it} + \mathbf{b}_3 D_N X_{it} + u_{it}$$
(M8)

モデル M8 の X は会計上の利益であり、営業利益 (\emph{OP} : Operating Profits)、経常利益 (\emph{OI} : Ordinary Income)、純利益 (\emph{NI} : Net Income)がそれぞれ 1 株あたりの値で代入される。変数 D_L は、利益がマイナス (損失)の場合を 1、それ以外を 0 とするダミー変数である。変数 D_N は、対前年度比で減益の場合を 1、それ以外を 0 とするダミー変数である。なお、定数項を除くすべての変数は、前期末株価でデフレートされる。

ここでも、最初に、AICによるモデル適合度の比較をしてみる。Table 10は、その結果

⁵ 営業利益と経常利益・純利益とでこのような違いが生じるのは、前者には減益を回避する手段がないのにたいして、後者には、減益を回避して、利益を平準化するさまざまな手段、たとえば資産処分益の計上などが存在するためであろう。

である。モデルの記号の LN は上記のモデル M8 を表し、L は損失のみを分離したモデル M2、N は前項の減益のみを分離したモデル M7 を表している。Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。営業利益と経常利益については、モデル M8 は、M7、M2 の 2 つのモデルよりも AIC が小さく、優れている一方で、純利益については、その優劣は明確にはいえないことを、この Table 10 は示している。

回帰の結果は、Table 11 である。Panel A、B、C は、順に営業利益、経常利益、純利益についての結果を示している。損失ダミーにかかる係数 \mathbf{b}_2 と減益ダミーにかかる係数 \mathbf{b}_3 が等しいか否かについての F 検定の結果は、右端の欄の数値(カッコ内は有意確率)に示されている。2 つの係数が統計的に有意に異なっているのは、Panel A で 6 決算期、B で 10 決算期、C で 8 決算期である。このことから、損失についてコントロールしてもなお、減益条件付の利益資本化モデルは有効であり、前項の結果は頑強であると判断できる。つまり、減益情報は、損失情報とは異なる情報内容を有しているわけである。

つぎに、損失にかかる係数 b_2 が正である決算期を確かめてみよう。これが正であれば、損失のほうがより persistent であることを意味し、損失が noisy であるという仮説は否定される。営業利益は 2000 年、経常利益は 1996 年、純利益の場合は、1979、80、81、91 年の決算期において、係数 b_2 が正になっている。減益にかかる係数 b_3 が有意なマイナスの値になることは観察されていないのとは対照的である。この検証結果は、損失と減益とは異なる情報をもっていることをあらためて裏づけるとともに、たんに損失というだけで(マイナスの)利益にかかる係数が低下するわけではないという、大日方 [2002] の検証結果を再確認するものである。

さらに、係数の合計 $m{b}_1 + m{b}_2$ が負になる決算期が、例外的にではあれ、実際に存在することを確認しておこう。とくに 1990 年の決算期は、すべてそれが有意な負の値になっている。一方、係数 $m{b}_1 + m{b}_3$ が負になる決算期は、この 22 期のうちには観察されない。これは、より大きな損失額はより高い株価水準と関連しているという anomaly の理解にたいして、重要な発見を示している。その現象は、まさに、損失であることによる部分が大きく、減益であることによるのではないことが示されているからである。ここでも、減益とは異なる損失情報の特異な性格を観察することができる。このように、減益と損失とは異なる value relevance をもち、損失情報をめぐる anomaly は、減益要因をコントロールしても消去されない現象なのである。

最後に、産業効果の影響を確かめておこう。前項の減益条件のみを付けた利益資本化モデルと、ここでの損失条件をさらに付加したモデルとで、Dummy Test および Hausman Test の結果に大きな違いはない。ここでも、産業効果の影響を無視できないばかりか、利益の種類によって、また決算期によって影響の度合いが異なっていることを確かめられた。

6 利益変化の規模:S字型反応仮説

6.1 モデルと仮説

利益の value relevance を検証するにあたり、利益変化額およびその正負の符号(増益か減益か)に着目して transitory earnings を分離することは、従来の研究でも試みられてきた。さらに、しばしば利益変化額の規模(size)にたいしても検討の目が向けられている。従来の仮説は、利益変化額が大きいほど、より多くの transitory earnings が含まれるため、大きな利益変化額にかかる係数はより小さくなるというものである。そこでは、「他の条件が等しいかぎり」、あるいは「平均的に」定常状態が想定されたり、平均回帰的(mean reverting)な経済状況が想定されたりしている。大きな利益変化(big surprise)があっても、その変化後の水準は維持されないこと、permanent earnings についての期待改訂は、大きなショックによって引き起こされるのではなく、小さな変化の積み重ねによることが仮定されているわけである。小規模な利益変化と株価とは正の相関を有しながら、大規模な利益変化は株価と有意な関係がない仮説を、便宜的にS字型反応仮説と呼ぶことにする。

その S 字型反応仮説の実証研究にさいしては、利益変化の規模の大小を分ける尺度として、年度の変化額の絶対値についてのメディアンが採用されることが多い。その場合、年度のメディアンを超える変化は、企業に固有の一時的な変化であり、企業が報告利益の大きな変化を経験しても、その報告利益の水準は長期にわたって維持されないという競争環境が仮定されている。確かに、競争環境が激しく、どの企業も長期的には業界の平均水準の利益しか獲得できないとすれば、そのような仮定にも合理性がある(Freeman and Tse [1992]、Ali [1994]、Cheng et al. [1996]、Kinney et al. [2001]、Bartov et al. [2001]、Charitou et al. [2001]、Skinner and Sloan [2002])。

しかし、すべての業界が上述のような競争環境にあるのかは、実証に先立っては何もい

.

⁶ もちろん、なかには競争に敗れて業界平均に満たない利益水準しか獲得できない企業も、短期的には存在する。その企業の存在が本文の仮定に反することはあきらかであるが、長期的にそうした状態が継続するなら、その企業は廃業・退出などで淘汰されるため、permanent earnings の推定とは関係がないとみられているのである。

えない。そこで、この節では、業界メディアンを超える利益変化額の value relevance に焦点を当てることにする。検証する回帰モデルは、以下の通りである。

$$\mathbf{D}P_{it} = \mathbf{a} + \mathbf{b}_1 \mathbf{D}X_{it} + \mathbf{b}_2 D_{BS} \mathbf{D}X_{it} + \mathbf{b}_3 D_N \mathbf{D}X_{it} + \mathbf{b}_4 D_{BS} D_N \mathbf{D}X_{it} + u_{it}$$
 (M9)

さらに以下では、利益水準を説明変数とする利益資本化モデルにも同様の修正を加えた 回帰推定も行う。回帰式は次の通りである。

$$P_{it} = \mathbf{a'} + \mathbf{b'}_{1}X_{it} + \mathbf{b'}_{2}D_{BS}X_{it} + \mathbf{b'}_{3}D_{N}X_{it} + \mathbf{b'}_{4}D_{BS}D_{N}X_{it} + \mathbf{u'}_{it}$$
(M10)

ここで検証すべき仮説は、次のようになる。

仮説 H5A:S 字型反応仮説

大きな利益変化額には、より多くの transitory earnings が含まれ、大きな利益変化額にかかる偏回帰係数は、小さな利益変化額のそれよりも小さい。

モデル M9、M10 のように利益変化額の正負の符号をコントロールしたうえで、上記の 仮説 **H5A** が支持されれば、先行研究が報告しているとおり、大きな利益変化(big surprise) には、より多くの transitory earnings が含まれていると推定されることになる。ここで、回 帰モデルが複雑になるのをあえて許容して、利益変化の符号をコントロールするのには、 非常に重要な意味がある。

かりにそれをコントロールしないまま、大きな利益変化にかかる係数がマイナスになったとしてみよう。その場合、その係数の低下を招いている要因は利益変化の規模の大小であるとは確定できない。増益の場合の利益変化額の大きさと減益の場合の利益変化額の大きさとが等しいという保証はなく、一見規模にたいして反応しているように見える現象が、実は利益変化の符号にたいする反応であることを否定できないからである。一般に、増益と減益が生じる頻度、規模は異なっているといわれており、この論文でもすでに確かめたように、増益と減益では情報内容が異なっている。そのことを考慮し、利益変化の符号にも留意しながら仮説 H5A を修正して、以下の仮説を考える。

仮説 H5B

大きなマイナスの利益変化額には、より多くの transitory earnings が 含まれ、大きなマイナスの利益変化額にかかる偏回帰係数は、小さな マイナスの利益変化額のそれよりも小さい。しかし、プラスの利益変 化については、規模の大小によって係数は異ならない。

この仮説 H5B は、プラスの側の利益変化(増益)にかんしては、規模要因による違いはないのにたいして、マイナスの側の利益変化(減益)については、大規模な利益変化額には大きな transitory earnings が含まれるという想定である。このように想定する理由の1つは、業界メディアンを超える増益を獲得している企業には、その業界において、競争優位にあるために、いわゆる超過利潤を長期にわたって獲得できる企業が含まれていると予想できるからである。もう1つの理由は、業界メディアンを超える減益を経験している企業には、実体的に収益が悪化した以上に、リストラや Big Bath など、会計名目上だけで利益を減少させている企業が含まれると想定できるからである。

むろん、M9 と M10 の回帰からは、かりに利益変化の符号によって非対称な反応が観察 されたとしても、その原因を探ることはできない。それでも、将来のより洗練された検証 の準備として、以下では、利益変化の符号をコントロールし、その符号による非対称性を

⁷ 企業経営者が増益よりも減益、とくに損失を回避する傾向が強い点については、Burgstahler and Dichev [1997]、Barth and Elliott [1999]、Degeorge [1999]、Easton [1999]、Schrand and Walther [2000]、Brown [2001] などを参照。

想定しつつ、分析することにする。なお、業界メディアンを計算する都合上、極端にサンプルが少ない水産業の 1979 – 90 年の 25 サンプルを除いたため、以下での総サンプル数は 9,097 firm-years となっている。

6.2 検証結果

最初に、利益変化額について検討しよう。まず、利益変化額の規模を問わないモデル M7 と規模条件を付したモデル M9 の AIC を比較してみた。その結果は、Table 12 に示され ている。モデルの記号の BSN はモデル M9、N はモデル M6 を表している。Table 12 の Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。

この Table 12 を見ると、営業利益、経常利益、純利益ともに、規模要因を付加したモデル M9 の AIC は、それを無視したモデル M7 よりも小さくなっていない。営業利益と純利益の場合、メディアンの差の符号はプラスであり、むしろ、M9 の AIC のほうが大きくなっている。このように、モデル M9 の適合度が M7 よりも劣っているのは、規模要因には大きな情報内容がないか、あるいは回帰の説明変数間の多重共線性が影響しているのかもしれない。その多重共線性の問題が潜在していることは承知しつつも、前項で説明したように、利益変化の符号をコントロールすることに重要な意味があるため、モデル M9 からあえて説明変数を減らさずに、分析を進めることにする。

モデル M9 による回帰の結果は、Table 13 にまとめた。仮説の H5A と H5B との相違は、大規模な増益ほどより多くの transitory earnings が含まれていると予想するか否かである。したがって、いずれの仮説が支持されるのかを確かめるには、係数 b_2 の符号検定の結果を見ればよい。営業利益についての結果である Panel A では、7 つの決算期で b_2 は統計的に有意になっているが、そのうち、1979、82 年の決算期では有意なプラスの値になっている。経常利益の場合は、 b_2 が有意であるのは同じく 7 決算期であり、1979、85 年の 2 決算期では符号はプラスである。純利益の場合には、 b_2 が有意になっている決算期は 12 と多いものの、5 決算期でその符号がプラスになっている。このことから、大規模な増益額にはより多くの transitory earnings が含まれるという S 字型反応仮説は、必ずしも完全には否定されないものの、支配的な現象とは言いがたい。むしろ、ここでは大規模な増益額のほうが、より persistent であると推定できる検証結果が得られていることに注目しておくべきであろう。

さらに、大規模な増益に大きな transitory earnings が含まれるとはいっても、大規模増益企業の利益の係数がゼロになるのは、営業利益で 2 決算期のみであり、経常利益では観察されず、純利益では 6 決算期である。このような利益の種類による違いは、大規模増益額の quality は、営業利益や経常利益よりも、純利益のほうが低いことを物語っている。これは、純利益のほうが、より多くの裁量的手段によって利益捻出が可能であり、大規模増益の persistence が低いためであると推定される。

他方、減益の側についての結果は複雑である。まず、減益の追加的 relevance を表す係数 $m{b}_3$ が有意な負の値になっているのは、営業利益では 5 決算期、経常利益では 4 決算期、純利益では 2 決算期である。それが有意な正の値になっているのは、営業利益では 2 決算期、経常利益では 4 決算期、純利益では 4 決算期、純利益では 4 決算期、統利益では 4 決算期である。すでに確かめたように、減益というだけで利益変化額にかかる係数が低下するわけではないのである。

その符号の正負によらず、仮説 H5A と H5B は、減益の規模が大きければ、それだけ利益の persistence は低く、減益額にかかる係数はより小さくなると予想している。その仮説を検証するには、小規模減益企業の利益にかかる係数 $\mathbf{b}_1 + \mathbf{b}_3$ よりも大規模減益企業の利益にかかる係数 $\mathbf{b}_1 + \mathbf{b}_2 + \mathbf{b}_3 + \mathbf{b}_4$ が小さいか否かを確かめればよい。以下では、1) $\mathbf{b}_2 + \mathbf{b}_4 < 0$ であり、かつ、2) $\mathbf{b}_2 + \mathbf{b}_4$ がぜ口と有意に異なるか否かを検証する。Table 13 の右側の I、II、III、IV は、そこに示されている等式が成立するか否かの分散分析の結果であり、F 値(カッコ内は有意確率)を示している。ここで、上記の 2)を確かめるには、Table 13 の IV の検証結果を見ればよい。

減益の規模が大きいことにともなって利益変化額にかかる係数が低下しているといえるのは、営業利益の場合には3決算期、経常利益の場合には4決算期と少ないものの、純利益の場合には、7決算期と多い。ここでも、純利益については、営業利益、経常利益とは異なる現象が観察されている。大規模な利益変化であるがゆえに、その増減額により多くの transitory earnings が含まれているという仮説 H5A:S 字型反応仮説は、営業利益や経常利益ではなく、純利益のほうに当てはまる。それは、企業外部の経済環境による法則的な現象というよりは、むしろ、企業内部の裁量操作による可能性が高い。この発見は、この論文の重要な貢献であり、ここでの検証結果は、これまでの研究で支持されてきたS字型反応仮説を見直す必要性を示唆しているといってよい。

産業効果の影響を検証した Table 13 の Panel D は、興味深い結果を示している。産業別メディアンをベンチマークとした利益変化規模のダミーを利用したのにともなって、偏回

帰係数の推定にあたえる産業効果の影響が弱まっている。Hausman Test によると、営業利益、経常利益、純利益のすべてに産業効果が有意な影響をあたえているのは、わずかに 4 つの決算期である。営業利益の場合、産業効果が有意な影響をあたえているのは 7 期であり、前節のモデルの約半分に減少している。この結果は、営業利益に大規模変化の条件を加味した利益資本化モデルが各産業に固有の環境を捉えていることを示している。ただ、それによって産業効果に対応できている決算期は限られており、定数の産業ダミーの重要性が失われているわけではない。

こんどは、利益水準額を説明変数とするモデル M10 について検証しよう。Table 14 は、AIC を比較した結果である。モデルの記号の BSN はモデル M10、N はモデル M7 を表している。Table 14 の Z は Wilcoxon の検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。この Table 14 からは、営業利益、経常利益、純利益ともに、規模要因を付加したことは、AIC の最小化にほとんど貢献していない、すなわち、モデル適合度の上昇には役立っていないことが判明する。

モデル M10 による回帰の結果は、Table 15 である。最初に、大規模増益企業と小規模増益企業の利益にかかる係数の差である b_2 の有意性を確かめよう。Panel A は営業利益を説明変数とした場合であり、8 つの決算期で有意な正の値になっており、有意な負の値になっている決算期は、わずかに 1 期しかない。大規模増益企業の利益にはより多くの transitory earnings が含まれているという S 字型反応仮説 H5A はほとんど支持されていない。むしろ、この結果は、大きく利益が増加したときは、利益情報は、その persistence について説得的であることを示している。同様に、経常利益の場合には、その係数が有意な正であるのは9 決算期、有意な負である決算期は存在しない (Panel B)。この結果は、株価と利益の関係が S 字型ではなく、J 字型であることを示している。

他方、純利益の場合には、特徴的な結果を示している。係数 b_2 が有意な正の値になっているのは 7 期あるが、多くは 80 年代に集中している。それが有意な負の値になっているのも 7 期であり、逆に 90 年代に集中している。大規模な増益を経験している企業の利益の係数は低下するという $\mathbf{H5A:S}$ 字型反応仮説は、普遍的に成立するのではなく、この純利益にかんして、経済が低迷している時期において支持されている。このように、利益の種類によって、大規模増益の情報内容が異なっていること、経済環境ないし時代によって、その情報内容が異なることを確認したことは、先行研究では報告されていない新たな発見である。

減益企業と増益企業の利益にかかる係数の差を表わす b_3 は、営業利益の場合には 8 期、経常利益では 13 期、純利益では 12 期において有意な負の値になっており、有意な正の値になっている決算期は存在していない。このことから、減益企業の利益には、増益企業に比べて、より多くの transitory earnings が含まれており、報告利益の persistence は低いと推定できる。大規模減益企業の利益にかかる係数は小規模減益企業のそれよりも小さいという仮説が支持されているのは、営業利益では 5 期、経常利益では 4 期、純利益でも 4 期である。減益の規模にかかわらず、減益企業の利益にかかる係数がゼロと異ならない決算期が、営業利益では 10 期、経常利益では 13 期、純利益では 12 期ある。この点においても、8 字型反応はわが国では支配的な現象であるとはいえない。

減益企業については、規模を問わず、減益であることが利益にかかる係数を低下させる支配的要因と考えてもよいであろう。さらに追加的に、減益の規模を取り上げて、その係数のいっそうの低下を問題にするほどの重要性はないように思える。仮説の H5A と H5B は完全には否定されないものの、利益情報の relevance を考えるうえでは、重視する必要はないであろう。実際に、モデルM9 およびM10 の AIC と決定係数の点でも、利益変化規模の条件を付加することに積極的な意味は見出されなかった。ただし、大規模な増益が追加的にもつ情報については、それが株価変化(率)とプラスの関係にあることは、従来の研究では議論されていない点であり、いっそうの検証が必要であろう。この問題は、次節で検討する。

Panel D の産業効果の検証結果は、利益水準モデルのほうが利益変化額モデルよりも産業効果の影響を強く受けるという、一般的な推測を支持する結果を示している。営業利益、経常利益、純利益のすべてについて、推定される係数が産業効果から有意な影響を受けているのは7期であり、前述の利益変化額モデルの4期よりも増加している。前項で着目した営業利益について確かめてみると、産業効果が有意な影響をあたえているのは13の決算期であり、前項の7期よりも増加している。利益のrelevance を確かめる研究では、利益水準が説明変数に選択されることが多いが、ここでの結果は、利益水準のrelevance を検証する場合にとくに産業効果の問題を考える必要があることを示している。

7 モデルの統合と利益の relevance

7.1 統合モデル

この論文では、報告利益に含まれる transitory earnings を回帰モデルで分離把握して、投

資家が報告利益から予想するであろう permanent earnings を間接的に推測し、利益情報の relevance を検証してきた。利益変化額モデルは、transitory earnings を浮き彫りにするうえで、重要な役割を果たしている。これまでの分析結果によれば、減益企業の報告利益には transitory earnings が含まれているケースが多く、また、損失には、減益の要因とは異なる情報内容が含まれていた。さらに、前節では、大規模な増益には、小規模な増益よりも大きな permanent earnings が含まれており、利益にかかる係数を高めていた。ただし、その大規模増益の persistence の原因はわからず、いまだ fact finding の域を出ていない。

そこでこの節では、それらの損失、減益、大規模増益の条件をすべて統合した利益資本 化モデルを考え、回帰分析してみる。その回帰式は次の通りである。

$$P_{it} = \mathbf{a} + \mathbf{b}_1 X_{it} + \mathbf{b}_2 D_L X_{it} + \mathbf{b}_3 D_N X_{it} + \mathbf{b}_4 D_{SH} X_{it} + u_{it}$$
(M11)

モデル M8 の X は会計上の利益であり、営業利益(\emph{OP} : Operating Profits)経常利益(\emph{OI} : Ordinary Income)純利益(\emph{NI} : Net Income)がそれぞれ代入される。変数 D_L は、利益がマイナス(損失)の場合を 1、それ以外を 0 とするダミー変数である。変数 D_N は、対前年度比で減益の場合を 1、それ以外を 0 とするダミー変数である。変数 D_{SH} は、 $\mathbf{D}X_{it}$ が正であり、かつ、営業利益、経常利益、純利益の 3 つの利益変化額 $\mathbf{D}X_{it}$ / P_{it-1} がともに年度の業界メディアンを超える場合を 1、それ以外を 0 とするダミー変数である。なお、これまでと同様、定数項を除くすべての変数は前期末株価でデフレートされ、定数の産業ダミーが回帰に含められる。

ここでダミー変数 D_{SH} は、正の大きなショック、すなわち大規模増益を経験していることを示している。それぞれの利益の種類ごとではなく、営業利益、経常利益、純利益ともに正の大きなショックを経験しているという制限を課すのは、実体をともなわない会計上の名目的な利益捻出による増益を排除するためである。営業利益は、企業本来の事業から生じる利益であり、それは permanent earnings により近い。しかし、経常利益、純利益の順番に、利益を裁量的に捻出できる手段が多くなり、それだけ多くの transitory earnings やnoise が報告利益に含まれる可能性、すなわち permanent earnings から乖離する可能性がより高い。実際、純利益については、前節で見たように、他の 2 つの利益とは異なる検証結果を示していた。そうした事態を回避して簡明な結果を期待するために、ここでのダミー変数 D_{SH} が設定されている。

モデル間の AIC を比較した結果が、Table 16 である。モデルの記号の INT は、上記で定義したモデル M11 を示している。LN は、損失と減益にダミーを付けたモデル M8、BSN は、さらに大規模増減益のダミーを付け加えたモデル M10 を表している。Z は Wilcoxonの検定統計量、p-value はその有意確率、BNST は二項分布による符号検定の結果(有意確率)である。営業利益について、統合したモデル M11 の AIC は、順位差を比べると、他の 2 つのモデルよりも有意に小さい。経常利益の場合、モデル M11 の AIC は他の 2 つのモデルよりも有意に小さいが、モデル M7 との順位差の有意水準は高くはない。逆に純利益の場合には、モデル M11 の AIC はモデル M7 よりも有意に小さいものの、モデル M10 との差は有意ではない。それでも、順位差の符号はすべてマイナスであり、AIC 最小化の観点では、モデル M11 が最も優れているといってよいであろう。

回帰分析の結果は、Table 17 に掲載されている。営業利益と経常利益については、鮮明な規則的結果が観測されている。まず、損失のダミーにかかる係数 b_2 は、営業利益では 10 期で有意な負の値になっており、経常利益では 11 期で有意な負の値になっている。この係数が有意な正の値になっているのは、わずかに経常利益の 1996 年の決算期しかない。ただし、黒字と赤字とで利益の relevance が異なるとはいえても、損失のすべてが transitory earnings であるとはいえない。営業利益の 1990 年、経常利益の 1988、90 年の決算期では、損失にかかる係数の合計 $b_1 + b_2$ は、有意なマイナスの値になっているからである。この変則的な現象の存在は、ここでの統合したモデル M11 の回帰でも確認された。これは、損失の額が大きいほど株価水準が高いことを示している。この現象の存在は、この研究独自の発見である。

つぎに、減益のダミーにかかる係数 b_3 の符号を確認しよう。営業利益では 12 の決算期、経常利益では 13 の決算期において、その符号は有意なマイナスになっている。それが有意なプラスになる決算期は観察されていない。減益企業の報告利益にかかる係数の合計 b_1+b_3 がゼロと異ならないのは、営業利益も、経常利益も 4 決算期である。したがって、減益企業の利益には transitory earnings が含まれるため、利益にかかる係数は、増益企業のそれよりも小さいという仮説は支持されるものの、その transitory earnings のノイズの大きさは、必ずしも、報告利益の relevance を完全に失わせるほど大きくはない。さらに、損失と減益は、いずれも利益にかかる係数を低下させる原因ではあるものの、2 つは同一ではなく、利益に異なる影響をあたえている。損失と減益には、互いに異質な情報が含まれていることを発見したことも、この論文の貢献である。

前節であらたに提起された検討事項である、大規模増益ダミーにかかる係数の符号を確認しよう。営業利益と経常利益ともに、8決算期で有意な正の値になり、1決算期で有意な負の値になっている。大規模増益を経験した企業の報告利益のほうがそれ以外の企業の報告利益よりも persistent であり、利益に含まれる transitory earnings はより少ないことを示している。ここでも、J字型の株価 利益関係が観察されている。この結果は、増益額が大きいほど transitory earnings が大きいという想定を否定し、大規模増益は、企業が業界内で相対的に安定した競争優位にあることの現れであるという想定を支持している。これは、先行研究にはない、この研究独自の発見である。

こんどは、純利益についての回帰の結果を確認しよう。損失ダミーにかかる係数がプラスになっているのは5決算期、マイナスになっているのは4決算期である。それがマイナスの決算期のうち、係数の合計 b_1+b_2 がマイナスになっているのは、1990年の決算期である。これらの結果は、重要な論点を示している。営業利益および経常利益と同様に、純利益についても、損失は必ずしも noisy な情報ではない。むしろ、純利益段階での赤字は黒字よりも重視され、損失の拡大が株価水準を引き下げる程度は、黒字の減少が株価水準を引き下げる程度よりも大きい。ここでも、たんに損失であるというだけは(マイナスの)利益にかかる係数が低下するわけではないという、大日方 [2002] の検証結果が再確認されている。

減益ダミーにかかる係数 b_3 は、純利益の場合も、営業利益と経常利益の場合と同様に、10 決算期でマイナスになり、1 決算期でプラスになっている。したがって、減益企業の利益には transitory earnings が含まれるため、利益にかかる係数は、増益企業のそれよりも小さいという仮説は、おおむね支持されるといってよいであろう。

他方、大規模減益にかかる係数 b_4 は、1995 年の決算期までのうち 8 決算期において有意なプラスの値になっているのにたいして、1997、2000 年の 2 決算期では有意なマイナスの値になっている。ただ、この分布が経済環境、景気を反映したものであるのかはわからない。その有意なプラスになっている決算期の数だけからいうと、先行研究で報告されている「増益額が大きいほど transitory earnings が大きい」という想定は支持されないと考えなければならないであろう。

このように、損失、減益、大規模増益の3つの要因を同時に回帰に含めても、個々の要因でに分析したのと同様の結果が得られている。その意味で、この論文の実証結果は頑強である。ここで確認しておくべき重要な点は、それらの3つの要因は、それぞれが異な

る次元で利益の relevance に影響をあたえており、さらに、決算期によっては、その影響の 強弱がそれぞれ異なっているということである。それは、利益に含まれる transitory earnings が決算期によって異なることを意味している。報告利益そのままの情報の relevance (の年 代変化)を問うだけではなく、投資家が報告利益から予想するであろう transitory earnings を除いて利益の relevance を検討することも必要であり、この論文は後者の検討に有益な手 がかりを提供している。

ただ、Panel Dに示されているように、利益資本化モデルに条件を付加することと、定数の産業ダミーを加えて産業効果を吸収することとは別の問題である。損失等の条件を加味しても、偏回帰係数に産業効果が重要な影響をあたえ、その影響度合いが利益の種類や年度によって異なっている状況には変りがない。利益の relevance を検証するうえでは、transitory な要素をコントロールすると同時に、産業効果もコントロールしなければならない。利益の relevance が多様な要因によって規定されている以上、relevance の年代変化や国際的な差異を特定の要因に結び付けて議論するためには、他の要因をコントロールしなければならないのは当然である。利益の relevance の年代変化や国際的差異をめぐる問題が重要であればこそ、その relevance が条件付で決まってくることを確かめる検証作業が不可欠なのである。

7.2 要約:統合モデルによる利益の relevance

報告利益をそのまま利用した単純な利益資本化モデルと統合した利益資本化モデルとの優劣比較をまとめたのが、Table 18 である。横軸(縦軸)のモデル名の下の数値は 22 期のAIC(決定係数)のメディアンであり、右(左)斜め上(下)の各セルは AIC(決定係数)の大小を比較した結果である。各セルの 3 つの数値は、上から順に、Wilcoxon の検定統計量、その有意確率([]内の数値) 二項分布による符号検定による有意確率(<>内の数値)である。なお、サンプルは、大日方 [2002] のサンプルから業界メディアンを計算できない水産業の 1979 – 90 年を除いた 9,097firm-years である。

最初に、モデルごとに、利益の種類による説明力の相違を比較しよう。単純な利益資本化モデル、統合した利益資本化モデルともに、営業利益、経常利益、純利益の順に、AIC(決定係数)は小さく(大きく)なっており、いずれの差も統計的に有意である。この結果は、営業利益のほうが permanent earnings により近く、現行制度の段階的利益計算が有用であることを示している。

つぎに、利益の種類ごとにモデルの優劣を比較してみる。どの種類の利益についても、単純なモデルよりも統合したモデルのほうが、AIC (決定係数)は小さく(大きく)、その差は統計的に有意である。これは、損失、減益、大規模増益の条件を付加することによって、transitory earnings をより多く含む部分の分離把握が可能になっていること、換言すれば、permanent earnings の間接的な推定に役立っていることを物語っている。むろん、その3つの要因のみによって transitory earnings が生じているわけではなく、たとえそれらをコントロールしても、permanent earnings を誤差なく推定できるわけではない。それでも、2つのモデルの優劣の大きな格差は、それらをコントロールすることの効果の大きさを表している。

その統合モデルの有用性を確かめるため、営業利益による単純な利益資本化モデルと、経常利益による統合した利益資本化モデルとを比較しよう。経常利益による統合モデルのAIC(決定係数)は、営業利益による単純な利益資本化モデルのそれよりも有意に小さい(大きい)。なにも加工しないときの優劣の順番は、モデルの加工によって覆されている。また、営業利益による単純な利益資本化モデルと純利益による統合したモデルとを比較してみると、AICと決定係数には有意な差異は検出されない。つまり、モデルの加工によって、純利益にも、加工しない営業利益と同程度の説明力が得られているのである。より有能な permanent earnings の代理変数を求めるうえで、損益要素の分類と区分計算がすべてではないのである。区分計算とは異なる方法によっても permanent earnings の推定ができることを示したのが、この論文の独創的な貢献である。

8 おわりに

この研究で回帰式の加工を試みたのは、投資家が利益情報から permanent earnings を推定することを前提にして、利益の relevance を検証する場合、permanent earnings の推定は投資家の自己責任において会計制度の外側で行われているものの、その推定方法を明示的にモデルに組み込む必要があると考えたからである。利益の relevance は会計規制や会計基準の要因にも依存する以上、relevance の研究が規制の制度設計や基準設定に有益な示唆を提供するためには、可能な限り、会計外部の要因に規定される transitory earnings を除いて利益情報の relevance を確認しなければならない。この研究では、利益の relevance が多種多様な要因に規定されることを踏まえて、さしあたり transitory な要因についての条件付(conditional)で利益の relevance を検証したわけである。

この論文では以下の 4 点があきらかにされた。第 1 に、減益にはより多くの transitory earnings が含まれており、減益企業の報告利益にかかる係数は、増益企業よりも小さい。第 2 に、減益要因をコントロールしても、損失にかかる係数はプラスの利益にかかる係数よりも小さく、若干の例外を除いて、損失情報は relevant ではない。第 3 に、大規模な利益変化額にはより多くの transitory earnings が含まれるという仮説(S 字型反応仮説)は棄却される。むしろ、大規模な増益は小規模な増益よりも persistent であり、大規模増益企業の報告利益(水準)にかかる係数は、小規模増益企業の係数よりも大きい。つまり、J 字型の関係が観察されたのであった。第 4 に、損失、減益、大規模増益をコントロールすると、純利益の relevance は飛躍的に向上し、コントロールした純利益の情報は、なにもコントロールしない営業利益と同程度の relevance を有している。これは、permanent earningsを推定するにあたり、損益要素の分類だけではなく、transitory earnings の発生要因をコントロールすることが有効であることを示している。

この研究で取り上げた3つの要因 損失、減益、大規模増益 のすべてが、会計外の要因によると断定できるわけではないが、従来の relevance 研究では、会計外の要因の影響を慎重に検討せずに、利益の relevance の高低のすべてを会計制度の問題と捉える誤りが繰り返されてきた。この論文の実証結果は、そうした研究にたいして再検討を迫るものである。ただし、この研究のサンプルはランダム・サンプリングから得られたものではなく、全数調査でもないため、この研究の結果をただちに一般化できるわけではない。Survivorship bias により、潜在的には偏回帰係数に上方バイアスがかかっている危険性にも留意しておかなければならないであろう。

参考文献

- Ali, A., "The Incremental Information Content of Earnings, Working Capital from Operations and Cash Flows," *Journal of Accounting Research*, Vol. 32, No. 1, Spring 1994, 61 74.
- —— and P. Zarowin, "The Role of Earnings Levels in Annual Earnings Returns Studies," *Journal of Accounting Research*, Vol. 30, No. 2, Autumn 1992, 286 296.
- Ball, R. and P. Brown, "An Empirical Evaluation of Accounting Income Numbers," *Journal of Accounting Research*, Vol. 6, No. 2, Autumn 1968, 159 178.
- Ball, R., S. P. Kothari and R. L. Watts, "Economic Determinants of the Relation between Earnings Changes and Stock Returns," *Accounting Review*, Vol. 68, No. 3, July 1993, 622 638.
- Ball, R., S. P. Kothari and A. Robin, "The Effect of International Institutional Factors on Properties of Accounting Earnings," *Journal of Accounting and Economics*, Vol. 29, No. 1, February 2000, 1 51.
- Barth, M. E., W. H. Beaver and W. R. Landsman, "The Relevance of the Relevance Literature for Financial Accounting Standard Setting: Another View," *Journal of Accounting and Economics*, Vol. 31, Nos. 1-3, September 2001, 77 104.
- Barth, M. E., J. A. Elliott and M. W. Finn, "Market Rewards Associated with Patterns of Increasing Earnings," *Journal of Accounting Research*, Vol. 37, No. 2, Autumn 1999, 387 413.
- Bartov, E., S. Lynn and J. Ronen, "Returns-Earnings Regressions: An Integrated Approach," *Working Paper*, New York University, 2001.
- Bartov, E., D. Givoly and C. Hayn, "The Rewards to Meeting or Beating Earnings Expectations," Journal of Accounting and Economics, Vol. 33, No. 2, June 2002, 173 – 204.
- Basu, S., "The Conservatism Principle and the Asymmetric Timeliness of Earnings," *Journal of Accounting and Economics*, Vol. 24, No. 1, December 1997, 3 37.
- Beatty, A. L., B. Ke and K. R. Petroni, "Earnings Management to Avoid Earnings Declines across Publicly and Privately Held Banks," *Accounting Review*, Vol. 77, No. 3, July 2002, 547 570.
- Beaver, W. H., "Perspectives on Recent Capital Market Research," *Accounting Review*, Vol. 77, No. 2, April 2002, 453 474.
- Brown, L. D., "A Temporal Analysis of Earnings Surprises: Profits versus Losses," *Journal of Accounting Research*, Vol. 39, No. 2, Spring 2001, 221 241.
- Burgstahler, D. and I. Dichev, "Earnings Management to Avoid Earnings Decreases and Losses," *Journal of Accounting and Economics*, Vol. 24, No. 1, December 1997, 99 126.
- Burgstahler, D. and M. Eames, "Earnings Management to Avoid Losses and Earnings Decreases: Are Analysts Fooled?" *Working Paper*, Santa Clara University, 2002.
- Charitou, A., C. Clubb and A. Andreou, "The Effect of Earnings Permanence, Growth and Firm Size on the Usefulness of Cash Flows and Earnings in Explaining Security Returns: Empirical Evidence for the UK," *Journal of Business Finance and Accounting*, Vol. 25, Nos. 5-6, June/July 2001, 563 594.
- Cheng, C. S. A., C. Liu and T. Schaefer, "Earnings Permanence and the Incremental Information Content of Cash Flows form Operations," *Journal of Accounting Research*, Vol. 34, No. 1, Spring 1996, 173 181.
- Chevis, G., S. Das and K. Sivaramakrishnan, "An Empirical Analysis of Firms that Meet or Exceed

- Analysts' Earnings Forecasts," Working Paper, Texas A&M University, 2001.
- Christie, A. A., "On Cross-Sectional Analysis in Accounting Research," *Journal of Accounting and Economics*, Vol. 9, No. 3, December 1987, 231 258.
- Christophe, S. E., "The Value of U. S. MNC Earnings Changes from Foreign and Domestic Operations," *Journal of Business*, Vol. 75, No. 1, January 2002, 67 93.
- Degeorge, F., J. Patel and R. Zeckhauser, "Earnings Management to Exceed Thresholds," *Journal of Business*, Vol. 72, No. 1, January 1999, 1 33.
- Donnelly, R., "Earnings Persistence, Losses and the Estimation of Earnings Response Coefficients," *ABACUS*, Vol. 38, No. 1, February 2002, 121 133.
- Easterwood, J. C. and S. R. Nutt, "Inefficiency in Analysts' Earnings Forecasts: Systematic Misreaction or Systematic Optimism?" *Journal of Finance*, Vol. 54, No. 5, October 1999, 1777 1797.
- Easton, P. D., "Security Returns and the Value Relevance of Accounting Data," *Accounting Horizons*, Vol. 13, No. 4, December 1999, 399 412.
- Easton, P. D. and T. S. Harris, "Earnings as an Explanatory Variables for Returns," *Journal of Accounting Research*, Vol. 29, No. 1, Spring 1991, 19 -36.
- Easton, P. D., T. S. Harris and Ohlson, "Aggregate Accounting Earnings can Explain Most of Security Returns," *Journal of Accounting and Economics*, Vol. 15, Nos. 2-3, June/September 1992, 119 142.
- Freeman, R. N. and S. Y. Tse, "A Non-Linear Model of Security Price Responses to Unexpected Earnings," *Journal of Accounting Research*, Vol. 30, No. 2, Autumn 1992, 185 209.
- Holthausen, R. W. and R. L. Watts, "The Relevance of the Value-Relevance Literature for Financial Accounting Standard Setting," *Journal of Accounting and Economics*, Vol. 31, No. 1, Nos. 1-3, September 2001, 3 75.
- Kaznik, R. and M. F. McNichols, "Does Meeting Expectations Matter?: Evidence from Analyst Forecast Revisions and Share Prices," *Working Paper*, Stanford University, 1999.
- Kinney, W. and D. Burgstahler and R. Martin, "The Materiality of Earnings Surprise," *Working Paper*, University of Texas at Austin, 2000.
- Kormendi, R. and R. Lipe, "Earnings Innovations, Earnings Persistence, and Stock Returns," *Journal of Business*, Vol. 60, No. 3, July 1987, 323 345.
- Kothari, S. P., "Price-Earnings Regressions in the Presence of Prices Leading Earnings; Earnings Level versus Change Specifications and Alternative Deflators," *Journal of Accounting and Economics*, Vol. 15, Nos. 2-3, June/September 1992, 173 202.
- ——, "Capital Market Research in Accounting," *Journal of Accounting and Economics*, Vol. 31, No. 1, Nos. 1-3, September 2001, 105 231.
- —— and R. G. Sloan, "Information in Prices about Future Earnings," *Journal of Accounting and Economics*, Vol. 15, Nos. 2-3, June/September 1992, 143 171.
- ----- and J. L. Zimmerman, "Price and Return Models," *Journal of Accounting and Economics*, Vol. 20, No. 2, September 1995, 155 192.
- Lev, B., "On the Usefulness of Earnings and Earnings Research: Lessons and Directions from Two Decades of Empirical Research," *Journal of Accounting Research*, Vol. 27, Supplement 1989, 153

- Lopez, T. J. and L. Rees, "The Effect of Beating and Missing Analysts' Forecasts on the Information Content of Unexpected Earnings," *Journal of Accounting, Auditing and Finance*, Vol. 17, No. 2, Spring 2002, 155 184.
- Matsumoto, D. A, "Management's Incentives to Avoid Negative Earnings Surprises," *Accounting Review*, Vol. 77, No. 3, July 2002, 483 514.
- Nwaeze, E. T., "Positive and Negative Earnings Surprises, Regulatory Climate, and Stock Returns," Contemporary Accounting Research, Vol. 17, No. 1, Spring 2000, 107 – 134.
- Ohlson, J. A. and P. K. Shroff, "Changes versus Levels in Earnings as Explanatory Variables for Returns: Some Theoretical Considerations," *Journal of Accounting Research*, Vol. 30, No. 2, Autumn 1992, 210 226.
- Penman, S. H., "Financial Statement Information and the Pricing of Earnings Changes," *Accounting Review*, Vol. 67, No. 3, July 1992, 563 577.
- Pope, P. and M. Walker, "International Differences in Timeliness, Conservatism and Classification of Earnings," *Journal of Accounting Research*, Vol. 37, Supplement 1999, 53 87.
- Ryan, S. G. and P. A. Zarowin, "On the Ability of the Classical Errors in Variables Approach to Explain Earnings Response Coefficients and R²s in Alternative Valuation Models," *Journal of Accounting, Auditing and Finance*, Vol. 10, No. 4, Fall 1995, 767 768.
- Schrand, C. M. and B. R. Walther, "Strategic Benchmarks in Earnings Announcements: The Selective Disclosure of Prior-Period Earnings Components," *Accounting Review*, Vol. 75, No. 2, April 2000, 151 177.
- Skinner D. J. and R. G. Sloan, "Earnings Surprises, Growth Expectations, and Stock Returns or Don't Let an Earnings Torpedo Sink," *Review of Accounting Studies*, Vol. 7, Nos. 2-3, June-September 2002, 289 312.
- Strong, N., "The Relation between Returns and Earnings: Evidence for the UK," *Accounting and Business Research*, Vol. 24, No. 4, Winter 1993, 69 77.
- —— and M. Walker, "The Explanatory Power of Earnings for Stock Returns," *Accounting Review*, Vol. 68, No. 2, April 1993, 385 399.
- Warfield, T. D. and J. J. Wild, "Accounting Recognition and the Relevance of Earnings as an Explanatory Variable for Returns," *Accounting Review*, Vol. 67, No. 4, October 1992, 821 842.
- 大日方隆「利益、損失および純資産簿価情報の Relevance (1) 年度別クロス・セクション分析」,東京大学大学院経済学研究科附属日本経済国際共同研究センターCIRJE ディスカッション・ペーパー, CIRJE- J-83, 2002 年 11 月.

 Table 1
 Descriptive statistics

	_						
Panel A:	D P						
Year	Mean	St. Dev.	Min	1Q	Median	3Q	Max
1979	99.182	238.189	- 440	16.500	58	112.500	2,620
80	- 56.266	182.122	- 1,900	- 104.000	- 35	15.000	580
81	67.847	280.061	- 549	- 23.000	10	73.000	2,990
82	- 56.848	197.953	- 1,290	- 70.000	- 26	2.000	1,349
83	43.476	187.158	- 750	- 19.000	11	61.000	1,790
84	210.892	440.440	- 255	22.000	102	213.500	5,510
85	25.114	534.212	- 5,000	- 35.000	29	112.000	5,700
86	19.727	389.185	- 3,485	- 54.000	35	142.000	1,651
87	31.231	436.289	- 2,580	- 95.000	16	130.000	3,690
88	288.421	491.359	- 3,180	126.000	227	395.250	3,516
89	120.391	473.132	- 2,790	- 32.750	165	334.750	3,180
90	139.957	635.708	- 7,010	- 145.750	70	340.000	3,270
91	- 230.755	435.954	- 3,450	- 332.000	- 181	- 60.000	3,040
92	- 423.886	559.453	- 6,800	-480.000	- 280	- 180.000	520
93	- 46.373	260.535	- 2,830	- 119.000	- 40	37.000	1,070
94	89.634	361.762	- 2,250	- 32.000	43	133.750	4,580
95	- 181.563	328.568	- 3,490	- 224.000	- 100	- 36.000	630
96	555.344	7,839.837	- 1,280	74.000	140	270.000	179,000
97	- 467.860	7,229.178	- 168,000	- 254.000	- 160	- 80.000	3,020
98	192.722	7,454.027	- 2,030	- 219.000	- 134	- 70.000	174,000
99	295.884	6,531.610	- 1,160	- 102.750	- 47	32.750	154,000
2000	- 508.896	17,640.228	-415,000	- 75.500	- 11	66.500	22,250

 Table 1
 Descriptive statistics (continued)

Panel B:	D OP						_
Year	Mean	St. Dev.	Min	1Q	Median	3Q	Max
1979	10.447	56.782	- 313.548	- 2.720	6.801	18.541	751.364
80	11.051	30.837	- 179.545	- 1.452	9.210	21.967	211.839
81	- 0.800	39.129	- 221.479	- 12.423	- 1.292	8.355	342.396
82	-4.123	40.379	- 423.182	- 13.961	- 4.458	5.522	366.643
83	- 13.734	36.750	- 356.208	- 21.270	- 6.840	2.254	124.895
84	1.544	24.007	- 135.733	- 7.084	1.422	10.213	160.494
85	6.299	38.817	- 128.293	- 3.164	4.333	14.772	515.455
86	- 14.596	51.793	- 560.747	- 19.340	- 7.222	1.149	157.513
87	- 10.717	30.845	- 192.537	- 20.343	- 8.890	2.200	104.535
88	4.994	45.244	- 686.222	- 1.601	6.004	15.511	108.586
89	9.245	21.821	- 67.691	- 1.587	5.742	16.509	129.472
90	0.207	26.050	- 252.167	- 7.939	0.157	10.371	144.391
91	0.307	19.920	- 104.267	- 7.775	1.362	9.447	72.267
92	-7.322	27.319	- 268.370	- 13.007	- 3.501	3.612	108.438
93	- 12.808	26.652	- 148.237	- 22.170	- 8.863	0.435	130.385
94	- 10.698	30.407	- 324.296	- 17.309	- 6.558	1.058	80.436
95	6.365	27.729	- 297.183	- 2.859	5.406	15.938	227.396
96	8.404	175.047	- 188.858	- 8.643	0.487	8.691	3,948.500
97	34.054	658.968	- 260.711	- 1.769	4.682	14.783	15,317.500
98	- 31.455	592.632	- 13,845.000	- 14.806	- 3.743	4.542	230.799
99	12.297	573.667	- 351.954	- 20.610	- 7.923	3.560	13,511.000
2000	- 5.497	325.346	- 7635.000	- 3.979	6.381	18.632	377.438

 Table 1
 Descriptive statistics (continued)

Panel C:	D OI						
Year	Mean	St. Dev.	Min	1Q	Median	3Q	Max
1979	12.816	57.910	- 339.452	- 0.549	7.983	19.106	787.727
80	8.867	31.621	- 190.000	- 2.682	5.955	17.965	239.774
81	- 3.195	38.432	-211.783	- 14.425	- 2.842	6.042	288.870
82	- 1.139	36.546	- 269.545	- 11.239	- 1.527	6.322	390.210
83	- 12.101	36.161	- 345.767	- 17.936	- 5.628	2.197	144.266
84	3.498	23.225	- 121.833	- 4.986	2.651	10.591	139.550
85	9.276	40.124	- 117.984	- 0.221	6.360	16.150	564.545
86	- 12.333	43.024	- 431.496	- 15.935	- 5.684	1.543	115.626
87	- 6.524	28.807	- 164.476	- 14.762	- 3.679	4.220	112.270
88	6.841	37.927	- 540.057	1.172	7.091	15.656	115.152
89	10.966	21.473	- 75.111	0.287	7.247	17.886	130.122
90	0.876	25.777	- 312.630	- 5.714	1.245	7.483	166.867
91	- 3.445	35.739	- 630.035	- 8.097	- 0.108	5.339	90.384
92	- 9.499	38.907	- 273.475	- 17.757	- 6.331	1.570	598.264
93	- 12.145	27.217	- 162.107	- 19.749	- 8.067	0.380	153.816
94	- 9.351	29.332	- 306.434	- 16.614	-4.833	1.420	68.965
95	5.278	26.505	- 254.597	- 2.435	3.915	12.572	212.402
96	5.102	36.649	- 178.604	- 4.031	2.796	11.586	531.500
97	24.734	439.466	- 259.113	- 1.030	4.385	14.153	10,205.500
98	- 31.211	594.118	- 13,883.000	- 14.671	- 2.797	3.879	192.335
99	16.975	687.341	- 328.477	- 20.927	- 8.479	3.458	16,203.000
2000	2.630	143.547	-3,280.000	- 2.869	6.086	18.251	389.918

 Table 1
 Descriptive statistics (continued)

Panel D:	DNI						
Year	Mean	St. Dev.	Min	1Q	Median	3Q	Max
1979	3.325	38.362	- 347.129	- 0.402	2.381	6.781	343.636
80	6.333	34.206	- 105.102	- 0.746	2.509	9.613	401.516
81	- 0.877	29.146	- 230.874	- 5.425	- 0.530	2.381	186.512
82	- 1.870	26.758	- 174.167	- 6.503	- 1.320	1.782	293.776
83	- 4.302	20.974	- 153.098	- 6.798	- 1.749	1.443	130.245
84	0.529	18.444	- 178.986	- 4.177	0.405	4.438	79.942
85	4.897	23.636	- 105.731	- 0.777	2.788	7.478	242.453
86	- 5.607	26.443	- 241.107	- 7.128	- 1.214	1.749	70.257
87	- 5.004	21.477	- 227.668	- 8.881	- 3.201	1.032	91.757
88	3.587	20.014	- 248.935	0.289	3.122	7.782	117.787
89	7.108	32.414	- 65.472	- 0.064	3.664	9.469	555.632
90	1.804	26.897	- 436.067	- 1.823	1.952	6.205	107.402
91	- 0.875	52.080	- 989.867	- 3.681	0.541	4.568	344.100
92	- 5.493	53.013	- 349.626	- 11.130	- 3.712	0.505	978.092
93	- 8.692	24.174	- 181.986	- 13.262	-4.851	- 0.249	159.016
94	- 5.170	28.428	- 250.571	- 9.234	- 2.700	1.223	129.247
95	3.436	28.643	- 186.260	- 2.334	1.490	7.020	299.143
96	0.529	31.343	- 268.527	- 2.371	1.690	7.649	148.980
97	15.163	290.186	- 258.344	- 2.293	1.440	5.850	6,707.000
98	- 25.837	476.290	- 11,102.500	- 8.206	- 1.451	2.357	225.919
99	- 3.512	227.960	- 560.762	- 19.170	- 6.745	- 0.212	5,203.000
2000	5.094	88.868	- 542.390	- 13.160	2.326	15.583	1,340.000

 $P = \text{Stock Price}, OP = \text{Operating Profits}, OI = \text{Ordinary Income}, NI = \text{Net Income}, DX = X_t - X_{t-1}.$

Table 2 AIC comparison among independent variables

Year	DOP	vs. <i>OP</i>	vs. BVE	DOI	vs. <i>0I</i>	vs. <i>BVE</i>	DNI	vs. <i>NI</i>	vs. <i>BVE</i>	D OP - D OI	D OP - D NI	DOI - DNI
1979	0.23261	- 0.01800	- 0.04154	0.22182	- 0.05126	- 0.05233	0.26687	- 0.00788	- 0.00728	0.01079	- 0.03426	- 0.04505
80	0.09587	0.00665	- 0.00894	0.10024	- 0.00028	- 0.00456	0.10635	0.00454	0.00155	- 0.00437	- 0.01049	- 0.00611
81	0.13357	- 0.00269	- 0.00129	0.13225	- 0.00575	- 0.00261	0.12877	- 0.01098	- 0.00609	0.00132	0.00480	0.00348
82	0.05789	0.00353	- 0.00059	0.05797	0.00067	- 0.00051	0.05834	0.00064	- 0.00014	- 0.00008	- 0.00045	- 0.00037
83	0.05490	- 0.00342	- 0.00644	0.05605	- 0.00358	- 0.00529	0.05971	- 0.00102	- 0.00163	- 0.00115	- 0.00481	- 0.00366
84	0.26157	0.00468	- 0.02319	0.25779	- 0.00120	- 0.02697	0.28471	0.01177	- 0.00005	0.00378	- 0.02314	- 0.02692
85	0.13873	- 0.00828	- 0.01148	0.13580	- 0.01459	- 0.01441	0.14641	- 0.00367	- 0.00380	0.00293	- 0.00768	- 0.01061
86	0.13483	- 0.00483	- 0.00191	0.13457	- 0.00589	- 0.00217	0.13846	- 0.00176	0.00172	0.00026	- 0.00363	- 0.00389
87	0.18647	- 0.00022	0.00230	0.18648	0.00031	0.00231	0.18604	0.00065	0.00187	- 0.00001	0.00043	0.00044
88	0.35736	- 0.00749	- 0.00772	0.34855	- 0.02365	- 0.01653	0.39003	0.00284	0.02495	0.00881	- 0.03267	- 0.04148
89	0.15734	- 0.01003	- 0.01060	0.16135	- 0.00767	- 0.00659	0.16914	- 0.00014	0.00120	- 0.00401	- 0.01180	- 0.00779
90	0.16518	0.00711	0.00763	0.16347	0.00855	0.00592	0.18031	0.02331	0.02276	0.00171	- 0.01513	- 0.01684
91	0.04120	- 0.00102	- 0.00100	0.04241	0.00031	0.00022	0.04293	0.00009	0.00073	- 0.00122	- 0.00174	- 0.00052
92	0.02107	0.00079	0.00011	0.02164	0.00200	0.00067	0.02169	0.00081	0.00072	- 0.00057	- 0.00062	- 0.00005
93	0.03247	- 0.00116	- 0.00095	0.03302	- 0.00065	- 0.00039	0.03586	0.00079	0.00245	- 0.00056	- 0.00339	- 0.00284
94	0.04745	- 0.00393	- 0.00332	0.04613	- 0.00555	- 0.00463	0.05171	- 0.00063	0.00094	0.00132	- 0.00426	- 0.00557
95	0.02210	- 0.00048	- 0.00109	0.02174	- 0.00213	- 0.00146	0.02430	0.00028	0.00111	0.00036	- 0.00220	- 0.00257
96	0.16608	- 0.01066	- 0.01197	0.16911	- 0.00843	- 0.00894	0.17289	- 0.00375	- 0.00516	- 0.00303	- 0.00681	- 0.00378
97	0.04028	0.00478	0.00034	0.04057	0.00764	0.00063	0.04190	0.00477	0.00197	- 0.00030	- 0.00163	- 0.00133
98	0.05095	0.00246	- 0.00416	0.05034	0.00168	- 0.00477	0.05389	0.00389	- 0.00122	0.00061	- 0.00294	- 0.00355
99	0.08430	0.00288	- 0.00211	0.08456	0.00211	- 0.00185	0.08418	0.00053	- 0.00222	- 0.00026	0.00012	0.00038
2000	0.34567	- 0.00079	- 0.00358	0.34661	0.00233	- 0.00264	0.34837	0.00176	- 0.00088	- 0.00094	- 0.00270	- 0.00176
79 - 00	0.13217	- 0.00120	- 0.00692	0.13247	- 0.00333	- 0.00662	0.13780	0.00019	- 0.00129	- 0.00030	- 0.00563	- 0.00533
Mean	0.12854	- 0.00182	- 0.00598	0.12784	- 0.00477	- 0.00668	0.13604	0.00122	0.00152	0.00070	- 0.00750	- 0.00820
Median	0.11472	- 0.00091	- 0.00271	0.11625	- 0.00092	- 0.00263	0.11756	0.00058	0.00073	- 0.00004	- 0.00351	- 0.00361
Z		- 1.185	- 3.198		- 1.510	- 2.971		0.958	0.308	- 0.341	- 2.711	- 3.555
<i>p</i> -value		0.236	0.001		0.131	0.003		0.338	0.758	0.733	0.007	0.000
BNST		0.286	0.004		0.523	0.017		0.286	0.832	0.832	0.134	0.001

Earnings changes model (M5): $\frac{\mathbf{D}P_{it}}{P_{it-1}} = \mathbf{a} + \mathbf{b} \frac{\mathbf{D}X_{it}}{P_{it-1}} + \sum_{i} \mathbf{g}_{j}D_{j} + u_{it}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}), $\mathbf{D}X = X_{t} - X_{t-1}$, $\mathbf{D} = \text{industry dummy}$ (j = 1, 2, ..., 17).

For example, OP represents the regression model M1 (simple earnings capitalization model). BVE represents regression model M3 (book value of equity model). The column "vs. OP" represents the difference in AIC between simple earnings capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test.

Table 3 Value relevance of earnings changes

Panel A: 1	D OP							
Year	Coeff.	White-t	<i>p</i> -value	F	<i>p</i> -value	Adj. R^2	vs. <i>OP</i>	vs. <i>BVE</i>
1979	1.1048	5.359	0.000	6.893	0.000	0.2599	0.0572	0.1321
80	0.7465	2.434	0.016	8.235	0.000	0.3006	- 0.0485	0.0652
81	0.8745	2.109	0.036	5.901	0.000	0.2238	0.0156	0.0076
82	0.1606	1.907	0.058	3.300	0.000	0.1182	- 0.0537	0.0089
83	0.8968	4.585	0.000	8.428	0.000	0.3000	0.0437	0.0821
84	1.8091	4.108	0.000	5.183	0.000	0.1929	- 0.0145	0.0715
85	1.6766	4.130	0.000	5.188	0.000	0.1926	0.0482	0.0668
86	1.2929	3.051	0.002	4.153	0.000	0.1503	0.0305	0.0120
87	0.4875	1.219	0.224	2.467	0.001	0.0762	0.0011	- 0.0114
88	4.2453	3.018	0.003	6.533	0.000	0.2324	0.0161	0.0166
89	4.5206	4.454	0.000	7.918	0.000	0.2641	0.0469	0.0496
90	6.2500	5.555	0.000	4.634	0.000	0.1356	- 0.0372	- 0.0399
91	3.3403	4.104	0.000	4.081	0.000	0.1059	0.0221	0.0217
92	1.2993	2.721	0.007	6.317	0.000	0.1634	- 0.0313	- 0.0042
93	2.2881	7.172	0.000	7.738	0.000	0.1949	0.0286	0.0235
94	2.4277	5.646	0.000	9.028	0.000	0.2218	0.0645	0.0544
95	1.6215	4.903	0.000	8.063	0.000	0.1977	0.0173	0.0397
96	3.0659	8.209	0.000	2.868	0.000	0.0607	0.0603	0.0677
97	1.6093	4.457	0.000	8.546	0.000	0.2010	- 0.0948	- 0.0067
98	1.2744	5.367	0.000	8.382	0.000	0.1957	- 0.0389	0.0657
99	0.5097	2.540	0.011	7.779	0.000	0.1797	- 0.0280	0.0205
2000	0.6265	1.917	0.056	3.121	0.000	0.0640	0.0021	0.0096
79 - 00	1.0254	6.964	0.000	97.915	0.000	0.2930	0.0065	0.0370
Mean	1.9149	4.044				0.1832	0.0049	0.0342
Median	1.4543	4.119				0.1939	0.0159	0.0226
Z							0.730	3.393
<i>p</i> -value							0.465	0.001
BNST							0.286	0.004

 Table 3
 Value relevance of earnings changes (continued)

Panel B:	D OI							
Year	Coeff.	White-t	<i>p</i> -value	F	<i>p</i> -value	Adj. R^2	vs. <i>0I</i>	vs. <i>BVE</i>
1979	1.2039	5.425	0.000	7.995	0.000	0.2942	0.1595	0.1664
80	0.6123	1.937	0.054	7.184	0.000	0.2687	0.0021	0.0333
81	0.8072	1.836	0.067	6.119	0.000	0.2314	0.0334	0.0152
82	0.1422	1.813	0.071	3.274	0.000	0.1170	- 0.0102	0.0077
83	0.7799	4.145	0.000	7.918	0.000	0.2853	0.0456	0.0674
84	1.9189	4.252	0.000	5.501	0.000	0.2046	0.0037	0.0832
85	1.9848	4.544	0.000	5.657	0.000	0.2096	0.0848	0.0838
86	1.5740	2.841	0.005	4.195	0.000	0.1519	0.0371	0.0136
87	0.4350	1.141	0.255	2.465	0.001	0.0761	- 0.0016	- 0.0115
88	5.2926	2.936	0.004	7.135	0.000	0.2513	0.0508	0.0355
89	3.8481	3.443	0.001	7.267	0.000	0.2453	0.0359	0.0308
90	7.3687	6.574	0.000	4.914	0.000	0.1445	- 0.0448	- 0.0310
91	0.8322	2.138	0.033	3.247	0.000	0.0795	- 0.0067	- 0.0047
92	0.1266	0.751	0.453	5.465	0.000	0.1409	- 0.0795	- 0.0267
93	2.0640	7.070	0.000	7.156	0.000	0.1811	0.0160	0.0097
94	2.6305	6.471	0.000	10.060	0.000	0.2434	0.0910	0.0760
95	1.5415	4.188	0.000	8.662	0.000	0.2109	0.0773	0.0529
96	2.4128	3.956	0.000	2.316	0.002	0.0436	0.0477	0.0506
97	1.4882	3.710	0.000	8.271	0.000	0.1951	- 0.1515	- 0.0126
98	1.5371	5.784	0.000	8.839	0.000	0.2054	- 0.0268	0.0750
99	0.4575	2.491	0.013	7.664	0.000	0.1772	- 0.0205	0.0180
2000	0.4998	2.096	0.037	3.031	0.000	0.0615	- 0.0063	0.0071
79 - 00	0.9696	6.557	0.000	97.142	0.000	0.2913	0.0177	0.0353
Mean	1.7981	3.616				0.1827	0.0153	0.0336
Median	1.5127	3.577				0.1999	0.0099	0.0244
Z							1.347	3.003
<i>p</i> -value							0.178	0.003
BNST							0.523	0.017

 Table 3
 Value relevance of earnings changes (continued)

Panel C:	DNI							
Year	Coeff.	White-t	<i>p</i> -value	F	<i>p</i> -value	Adj. R^2	vs. <i>NI</i>	vs. <i>BVE</i>
1979	0.3701	1.931	0.054	3.982	0.000	0.1509	0.0250	0.0231
80	0.1139	1.308	0.192	5.862	0.000	0.2241	- 0.0331	- 0.0113
81	0.7051	2.142	0.033	6.718	0.000	0.2517	0.0638	0.0355
82	0.0882	1.770	0.078	3.151	0.000	0.1114	- 0.0097	0.0021
83	0.5343	2.661	0.008	6.432	0.000	0.2386	0.0130	0.0207
84	0.6965	2.200	0.029	3.420	0.000	0.1215	- 0.0363	0.0001
85	0.7340	2.129	0.034	4.048	0.000	0.1479	0.0214	0.0221
86	0.6968	2.540	0.012	3.603	0.000	0.1274	0.0111	- 0.0109
87	0.7181	1.446	0.149	2.511	0.001	0.0783	- 0.0032	- 0.0093
88	1.5900	2.440	0.015	4.539	0.000	0.1622	- 0.0061	- 0.0536
89	0.1861	1.846	0.066	6.091	0.000	0.2089	0.0006	- 0.0056
90	- 0.5093	- 0.570	0.569	2.385	0.001	0.0564	- 0.1220	- 0.1191
91	0.3330	2.384	0.018	2.906	0.000	0.0683	- 0.0021	- 0.0159
92	- 0.0061	- 0.184	0.854	5.390	0.000	0.1389	- 0.0322	- 0.0287
93	0.5522	3.862	0.000	4.468	0.000	0.1108	- 0.0195	- 0.0606
94	0.9211	2.556	0.011	6.049	0.000	0.1520	0.0103	- 0.0154
95	0.3457	1.377	0.169	4.829	0.000	0.1178	- 0.0103	- 0.0402
96	1.2934	4.800	0.000	1.655	0.044	0.0222	0.0212	0.0292
97	0.4220	2.254	0.025	7.087	0.000	0.1687	- 0.0946	- 0.0390
98	0.4811	1.935	0.053	6.322	0.000	0.1493	- 0.0613	0.0193
99	0.2709	4.255	0.000	7.832	0.000	0.1809	- 0.0051	0.0217
2000	0.0981	2.090	0.037	2.864	0.000	0.0567	- 0.0048	0.0023
79 - 00	0.2876	3.703	0.000	84.390	0.000	0.2628	- 0.0011	0.0068
Mean	0.4834	2.144				0.1384	- 0.0125	- 0.0106
Median	0.4515	2.136				0.1434	- 0.0050	- 0.0075
Z							- 1.104	- 0.893
<i>p</i> -value							0.270	0.372
BNST							0.286	0.832

Table 3 Value relevance of earnings changes (continued)

Panel D		(1)	D OP			(2) D OI				(3) D NI			
	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	
1979	2.61	(0.001)	0.81	(0.369)	2.71	(0.000)	1.53	(0.216)	3.14	(0.000)	2.73	(0.098)	
80	5.96	(0.000)	3.71	(0.054)	5.85	(0.000)	4.37	(0.037)	5.91	(0.000)	9.57	(0.002)	
81	4.09	(0.000)	10.22	(0.001)	4.11	(0.000)	9.02	(0.003)	4.81	(0.000)	0.01	(0.926)	
82	3.24	(0.000)	0.01	(0.909)	3.26	(0.000)	0.01	(0.908)	3.27	(0.000)	0.01	(0.922)	
83	5.99	(0.000)	2.49	(0.115)	5.96	(0.000)	2.62	(0.105)	5.78	(0.000)	4.25	(0.039)	
84	2.67	(0.000)	6.63	(0.010)	2.64	(0.001)	3.06	(0.080)	2.97	(0.000)	13.33	(0.000)	
85	3.41	(0.000)	0.07	(0.785)	3.47	(0.000)	0.07	(0.792)	3.47	(0.000)	414.50	(0.000)	
86	3.14	(0.000)	0.20	(0.655)	3.01	(0.000)	1.02	(0.312)	3.21	(0.000)	0.98	(0.322)	
87	2.45	(0.001)	0.24	(0.628)	2.40	(0.002)	1.24	(0.266)	2.50	(0.001)	0.03	(0.869)	
88	3.26	(0.000)	6.21	(0.013)	3.20	(0.000)	4.60	(0.032)	4.23	(0.000)	4.82	(0.028)	
89	4.30	(0.000)	85.28	(0.000)	3.88	(0.000)	56.82	(0.000)	6.28	(0.000)	5.27	(0.022)	
90	1.64	(0.052)	4.81	(0.028)	1.70	(0.040)	6.48	(0.011)	2.48	(0.001)	1.21	(0.271)	
91	2.96	(0.000)	5.17	(0.023)	2.67	(0.000)	20.69	(0.000)	2.71	(0.000)	13.39	(0.000)	
92	5.38	(0.000)	35.42	(0.000)	5.72	(0.000)	0.01	(0.910)	5.69	(0.000)	1.26	(0.261)	
93	3.96	(0.000)	2.12	(0.146)	4.63	(0.000)	12.76	(0.000)	4.17	(0.000)	5.97	(0.015)	
94	4.63	(0.000)	38.64	(0.000)	4.89	(0.000)	11.38	(0.001)	4.78	(0.000)	6.11	(0.013)	
95	4.16	(0.000)	23.01	(0.000)	4.49	(0.000)	8.57	(0.003)	4.65	(0.000)	0.68	(0.410)	
96	0.90	(0.577)	1.13	(0.287)	0.77	(0.727)	0.06	(0.802)	0.88	(0.594)	0.28	(0.595)	
97	7.03	(0.000)	2.14	(0.144)	6.90	(0.000)	3.74	(0.053)	6.85	(0.000)	5.60	(0.018)	
98	5.59	(0.000)	5.01	(0.025)	5.45	(0.000)	9.15	(0.003)	5.64	(0.000)	2.78	(0.096)	
99	6.40	(0.000)	46.24	(0.000)	6.51	(0.000)	32.32	(0.000)	7.09	(0.000)	3.09	(0.079)	
2000	3.00	(0.000)	6.59	(0.010)	3.01	(0.000)	25.56	(0.000)	2.87	(0.000)	0.87	(0.351)	

Earnings changes model (M5): $\frac{\mathbf{D}P_{it}}{P_{it-1}} = \mathbf{a} + \mathbf{b} \frac{\mathbf{D}X_{it}}{P_{it-1}} + \sum_{i} \mathbf{g}_{j} D_{j} + u_{it}, \mathbf{P} = \text{stock price}, \mathbf{X} = \text{accounting earnings} (\mathbf{OP}, \mathbf{OI}, \mathbf{NI}), \quad \mathbf{D}X = X_{t} - X_{t-1}, \mathbf{D} = \text{industry dummy} (j = 1, 2, ..., 17).$

For example, OP represents the regression model M1 (simple earnings capitalization model). BVE represents regression model M3 (book value of equity model). The column "vs. OP" represents the difference in adjusted R-square between simple earnings capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

 Table 4
 Distribution of negative earnings changes

			D OP			DOI			DNI	
		No. of			No. of			No. of		
Year	N	Negatives	Chi-square	<i>p</i> -value	Negatives	Chi-square	<i>p</i> -value	Negatives	Chi-square	<i>p</i> -value
1979	303	110	22.7360	0.0000	77	73.2706	0.0000	89	51.5677	0.0000
80	304	85	59.0658	0.0000	89	52.2237	0.0000	91	48.9605	0.0000
81	307	159	0.3941	0.5301	179	8.4723	0.0036	174	5.4756	0.0193
82	310	189	14.9161	0.0001	173	4.1806	0.0409	189	14.9161	0.0001
83	313	221	53.1661	0.0000	210	36.5783	0.0000	195	18.9425	0.0000
84	316	144	2.4810	0.1152	120	18.2785	0.0000	138	5.0633	0.0244
85	317	107	33.4669	0.0000	81	75.7886	0.0000	91	57.4921	0.0000
86	322	231	60.8696	0.0000	218	40.3602	0.0000	193	12.7205	0.0004
87	321	226	53.4611	0.0000	199	18.4704	0.0000	219	42.6449	0.0000
88	330	95	59.3939	0.0000	67	116.4121	0.0000	74	100.3758	0.0000
89	348	102	59.5862	0.0000	83	95.1839	0.0000	90	81.1034	0.0000
90	418	204	0.2392	0.6248	175	11.0622	0.0009	145	39.1962	0.0000
91	469	208	5.9893	0.0144	237	0.0533	0.8174	207	6.4499	0.0111
92	491	305	28.8411	0.0000	334	63.8065	0.0000	350	88.9633	0.0000
93	502	368	109.0757	0.0000	370	112.8367	0.0000	383	138.8367	0.0000
94	508	361	90.1496	0.0000	353	77.1732	0.0000	338	55.5591	0.0000
95	517	165	67.6383	0.0000	158	78.1451	0.0000	199	27.3907	0.0000
96	521	246	1.6142	0.2039	190	38.1593	0.0000	189	39.2495	0.0000
97	541	161	88.6525	0.0000	144	118.3161	0.0000	195	42.1460	0.0000
98	547	338	30.4223	0.0000	331	24.1773	0.0000	333	25.8885	0.0000
99	558	384	79.0323	0.0000	385	80.5448	0.0000	422	146.5878	0.0000
2000	559	181	69.4258	0.0000	174	79.6440	0.0000	240	11.1646	0.0008
79 - 00	9,122	4,590	0.3688	0.5437	4,347	20.0816	0.0000	4,544	0.1267	0.7219

Table 5 AIC comparison between models

Table 5	AIC comparis												
		Operatir	ng Profits			Ordinar	y Income			Net I	псоте		
Year	\overline{DOP}_N	vs. D OP	vs. <i>OP</i>	vs. <i>OP_L</i>	DOI_N	vs. D 01	vs. <i>0I</i>	vs. <i>OI_L</i>	D NI_N	vs. D NI	vs. <i>NI</i>	vs. <i>NI_L</i>	
1979	0.21814	- 0.01447	- 0.03247	- 0.01308	0.20358	- 0.01824	- 0.06838	- 0.05203	0.23931	- 0.02756	- 0.03544	- 0.00640	
80	0.09650	0.00063	0.00728	0.00783	0.10015	- 0.00009	- 0.00037	0.00143	0.10492	- 0.00143	0.00311	0.00360	
81	0.11892	- 0.01465	- 0.01734	- 0.00949	0.11798	- 0.01427	- 0.02002	- 0.00180	0.12603	- 0.00274	- 0.01372	- 0.01277	
82	0.05779	- 0.00011	0.00342	0.00311	0.05775	- 0.00022	0.00045	0.00008	0.05872	0.00038	0.00101	0.00071	
83	0.05513	0.00023	- 0.00319	- 0.00133	0.05637	0.00032	- 0.00325	- 0.00186	0.06005	0.00035	- 0.00067	- 0.00018	
84	0.25724	- 0.00433	0.00035	0.00522	0.25640	- 0.00139	- 0.00259	0.00631	0.28552	0.00081	0.01258	0.01825	
85	0.13817	- 0.00056	- 0.00884	- 0.00868	0.13555	- 0.00025	- 0.01484	- 0.01457	0.14732	0.00091	- 0.00276	- 0.00366	
86	0.13190	- 0.00293	- 0.00776	- 0.00683	0.13195	- 0.00262	- 0.00851	- 0.00341	0.13571	- 0.00275	- 0.00451	- 0.00301	
87	0.18729	0.00082	0.00060	0.00075	0.18748	0.00100	0.00131	0.00219	0.18620	0.00016	0.00081	- 0.00035	
88	0.33836	- 0.01900	- 0.02649	- 0.00776	0.31547	- 0.03308	- 0.05673	- 0.02976	0.39047	0.00044	0.00328	0.03376	
89	0.15699	- 0.00035	- 0.01038	- 0.01004	0.16119	- 0.00016	- 0.00783	- 0.00863	0.16854	- 0.00060	- 0.00074	- 0.00170	
90	0.15858	- 0.00660	0.00051	0.00808	0.15583	- 0.00764	0.00091	0.00515	0.16538	- 0.01493	0.00838	0.01394	
91	0.04095	- 0.00024	- 0.00126	- 0.00120	0.03944	- 0.00297	- 0.00266	- 0.00174	0.04309	0.00015	0.00025	0.00047	
92	0.02110	0.00003	0.00082	0.00102	0.02066	- 0.00098	0.00103	0.00185	0.02167	- 0.00002	0.00079	0.00085	
93	0.03247	0.00001	- 0.00115	- 0.00119	0.03313	0.00011	- 0.00054	- 0.00009	0.03596	0.00011	0.00089	0.00209	
94	0.04708	- 0.00037	- 0.00430	- 0.00182	0.04611	- 0.00002	- 0.00557	- 0.00362	0.05159	- 0.00011	- 0.00074	- 0.00046	
95	0.02206	- 0.00004	- 0.00052	0.00040	0.02180	0.00006	- 0.00207	- 0.00169	0.02438	0.00008	0.00036	0.00032	
96	0.16666	0.00058	- 0.01008	- 0.01068	0.16969	0.00058	- 0.00785	- 0.00782	0.17273	- 0.00016	- 0.00391	- 0.00425	
97	0.03953	- 0.00075	0.00403	0.00481	0.03994	- 0.00063	0.00701	0.00940	0.04061	- 0.00129	0.00348	0.00523	
98	0.05109	0.00015	0.00261	0.00512	0.05039	0.00005	0.00173	0.00748	0.05252	- 0.00137	0.00251	0.00835	
99	0.08403	- 0.00027	0.00261	0.00540	0.08405	-0.00050	0.00161	0.00566	0.08415	- 0.00003	0.00050	0.00055	
2000	0.34374	- 0.00193	- 0.00272	- 0.00393	0.34376	- 0.00285	- 0.00052	- 0.00155	0.34828	- 0.00009	0.00167	0.00044	
79 -00	0.13200	- 0.00017	- 0.00137	0.00080	0.13238	- 0.00009	- 0.00342	0.00001	0.13781	0.00001	0.00020	0.00098	
Mean	0.12562	- 0.00292	- 0.00474	- 0.00156	0.12403	- 0.00381	- 0.00853	- 0.00405	0.13378	- 0.00104	- 0.00104	0.00254	
Median	0.10771	- 0.00031	- 0.00121	- 0.00120	0.10907	- 0.00038	- 0.00233	- 0.00162	0.11548	- 0.00006	0.00065	0.00046	
Z		- 2.310	- 1.867	- 1.088		- 2.678	- 2.419	- 0.893		- 1.299	0.666	0.990	
<i>p</i> -value		0.017	0.062	0.277		0.007	0.016	0.372		0.194	0.987	0.733	
BNST		0.078	0.523	0.832		0.052	0.134	0.523		0.523	0.286	0.523	

Earnings changes with sign model (M6): $\frac{\mathbf{D}P_{it}}{P_{it-1}} = \mathbf{a} + \mathbf{b}_1 \frac{\mathbf{D}X_{it}}{P_{it-1}} + \mathbf{b}_2 D_N \frac{\mathbf{D}X_{it}}{P_{t-1}} + \sum_{i} \mathbf{g}_j D_j + u_{it}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}), $\mathbf{D}X = \mathbf{X}_t - \mathbf{X}_{t-1}$, $\mathbf{D}_N = \text{dummy}$

variable, 1 for firms decreasing earnings and 0 for others, D_j = industry dummy (j = 1, 2, ..., 17). For example, OP represents the regression model M1 (simple earnings capitalization model). DOP represents the regression model M5 (earnings changes model). The column "vs. OP" represents the difference in AIC between simple earnings capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test.

Table 6 Value relevance of positive and negative earnings changes

Panel A	value relevan	D OP	u neguti		$D_N D OP$							
					11		2	D			_	_
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	vs. D OP	vs. <i>OP</i>	vs. <i>OP_L</i>	F	<i>p</i> -value
1979	1.5935	5.334	0.000	- 1.5122	- 4.307	0.000	0.3081	0.0482	0.1054	0.0415	0.0915	0.7625
80	0.7459	1.988	0.048	0.0034	0.005	0.996	0.2981	- 0.0025	- 0.0510	- 0.0570	2.3686	0.1249
81	3.2387	2.736	0.007	- 3.3638	- 2.507	0.013	0.3110	0.0872	0.1028	0.0550	0.2852	0.5937
82	0.1024	1.880	0.061	0.4718	1.989	0.048	0.1224	0.0042	- 0.0495	- 0.0473	4.1716	0.0420
83	1.0565	2.377	0.018	- 0.3027	- 0.572	0.568	0.2991	- 0.0009	0.0428	0.0168	10.549	0.0013
84	2.8518	3.240	0.001	- 2.0046	- 2.015	0.045	0.2086	0.0157	0.0012	- 0.0161	3.0061	0.0840
85	2.2184	3.639	0.000	- 1.4004	- 1.630	0.104	0.1982	0.0056	0.0538	0.0503	1.9227	0.1666
86	2.8177	2.952	0.003	- 2.3736	- 2.294	0.022	0.1711	0.0208	0.0513	0.0429	1.0899	0.2973
87	- 0.0933	- 0.125	0.901	0.8323	0.872	0.384	0.0748	- 0.0014	- 0.0003	- 0.0037	1.7603	0.1856
88	6.9257	3.639	0.000	- 8.930	- 2.294	0.022	0.2753	0.0429	0.0590	0.0167	1.6015	0.2066
89	5.4946	3.992	0.000	- 4.6807	- 1.880	0.061	0.2677	0.0036	0.0505	0.0468	0.1101	0.7403
90	9.9516	7.112	0.000	- 12.001	- 4.007	0.000	0.1720	0.0364	- 0.0008	- 0.0422	0.8922	0.3455
91	5.5748	3.748	0.000	- 4.3380	- 2.141	0.033	0.1130	0.0071	0.0292	0.0260	1.0546	0.3050
92	0.7980	1.024	0.306	1.0085	0.983	0.326	0.1639	0.0005	- 0.0308	- 0.0402	10.107	0.0016
93	3.4306	2.103	0.036	- 1.3741	- 0.773	0.440	0.1963	0.0014	0.0300	0.0295	38.411	0.0000
94	3.7791	2.738	0.006	- 1.9417	- 1.280	0.201	0.2293	0.0075	0.0720	0.0298	22.673	0.0000
95	1.9569	4.933	0.000	- 0.9666	- 1.180	0.238	0.2007	0.0030	0.0203	- 0.0144	5.3436	0.0212
96	2.8240	4.484	0.000	0.5159	0.455	0.650	0.0592	- 0.0015	0.0588	0.0604	15.455	0.0001
97	0.5786	1.229	0.220	2.7661	3.198	0.001	0.2172	0.0162	- 0.0786	- 0.0954	32.104	0.0000
98	1.4861	2.681	0.008	- 0.3147	- 0.469	0.639	0.1948	- 0.0009	- 0.0398	- 0.0808	22.057	0.0000
99	0.2540	1.302	0.194	0.6250	1.814	0.070	0.1837	0.0040	- 0.0240	- 0.0525	13.710	0.0002
2000	0.3358	0.976	0.329	2.1856	2.761	0.006	0.0709	0.0069	0.0090	0.0107	8.1216	0.0045
79 -00	1.1777	4.575	0.000	- 0.4148	- 1.245	0.213	0.2940	0.0010	0.0075	- 0.0042	80.830	0.0000
Mean	2.6328	2.908		- 1.6861	- 0.694		0.1971	0.0138	0.0187	- 0.0011		
Median	2.0877	2.737		- 1.1704	- 0.977		0.1973	0.0049	0.0248	0.0137		
Z								3.360	1.704	0.081		
<i>p</i> -value								0.001	0.088	0.935		
BNST								0.017	0.286	0.832		

Table 6 Value relevance of positive and negative earnings changes (continued)

Table 6	value relevan	inueu)										
Panel B		DOI			$D_N D OI$							
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	vs. D 0I	vs. <i>0I</i>	vs. <i>OI_L</i>	F	<i>p</i> -value
1979	1.7307	5.833	0.000	- 1.6092	- 4.797	0.000	0.3543	0.0601	0.2196	0.1651	0.2380	0.6260
80	0.4887	1.403	0.162	0.9056	1.262	0.208	0.2716	0.0029	0.0050	- 0.0103	6.3650	0.0122
81	2.7866	2.178	0.030	- 2.7744	- 1.955	0.052	0.3164	0.0850	0.1184	0.0104	0.0038	0.9508
82	0.0890	1.932	0.054	0.5861	2.166	0.031	0.1230	0.0060	- 0.0042	- 0.0012	4.4532	0.0357
83	0.7028	2.365	0.019	0.1590	0.387	0.699	0.2833	- 0.0020	0.0436	0.0237	13.360	0.0003
84	2.4451	2.945	0.003	- 1.3558	- 1.449	0.148	0.2112	0.0066	0.0103	- 0.0194	3.9652	0.0474
85	2.4060	4.059	0.000	- 1.3924	- 1.555	0.121	0.2134	0.0038	0.0886	0.0845	2.0230	0.1560
86	3.0450	3.063	0.002	- 2.5395	- 2.367	0.019	0.1709	0.0190	0.0561	0.0215	0.9003	0.3435
87	0.1045	0.174	0.862	0.4871	0.560	0.576	0.0739	- 0.0022	- 0.0038	- 0.0108	1.3960	0.2383
88	8.9358	3.854	0.000	- 11.423	- 2.868	0.004	0.3243	0.0730	0.1238	0.0638	2.6481	0.1047
89	4.6435	3.259	0.001	- 4.8633	- 1.562	0.119	0.2481	0.0028	0.0387	0.0402	0.0058	0.9394
90	11.377	6.601	0.000	- 13.965	- 3.983	0.000	0.1864	0.0419	- 0.0029	- 0.0269	1.1479	0.2846
91	9.5442	5.971	0.000	- 9.8123	- 5.731	0.000	0.1458	0.0663	0.0596	0.0376	1.7221	0.1901
92	- 0.0677	- 1.652	0.099	2.6488	6.486	0.000	0.1814	0.0405	- 0.0390	- 0.0733	25.498	0.0000
93	2.4004	3.454	0.001	- 0.4494	- 0.548	0.584	0.1800	- 0.0011	0.0149	0.0023	33.344	0.0000
94	3.2876	3.623	0.000	- 1.0738	- 1.036	0.301	0.2452	0.0018	0.0928	0.0592	29.817	0.0000
95	1.4402	2.908	0.004	0.3542	0.489	0.625	0.2101	- 0.0008	0.0765	0.0611	19.658	0.0000
96	2.6389	4.657	0.000	- 0.5098	- 0.327	0.744	0.0421	- 0.0015	0.0462	0.0442	7.5471	0.0062
97	0.5760	1.170	0.242	2.4316	2.752	0.006	0.2090	0.0139	- 0.1376	- 0.1861	28.049	0.0000
98	1.9746	3.181	0.002	- 0.6445	- 0.878	0.380	0.2059	0.0005	- 0.0259	- 0.1179	22.906	0.0000
99	0.1684	1.038	0.300	0.7040	2.405	0.017	0.1835	0.0063	- 0.0142	- 0.0550	14.932	0.0001
2000	0.2174	0.897	0.370	2.2840	3.268	0.001	0.0708	0.0093	0.0030	0.0042	9.2797	0.0024
79 -00	1.0769	4.527	0.000	- 0.3103	- 0.981	0.327	0.2919	0.0006	0.0183	- 0.0001	84.764	0.0000
Mean	2.7698	2.860		- 1.8737	- 0.422		0.2023	0.0196	0.0350	0.0053		
Median	2.1875	3.004		- 0.5771	- 0.713		0.2075	0.0062	0.0268	0.0073		
Z								3.393	2.289	0.795		
<i>p</i> -value								0.001	0.022	0.426		
BNST								0.017	0.134	0.523		

Table 6 Value relevance of positive and negative earnings changes (continued)

Panel C		D N I			$D_N DNI$							
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	vs. D NI	vs. <i>NI</i>	vs. <i>NI_L</i>	F	<i>p</i> -value
1979	1.2727	3.261	0.001	- 1.4296	- 3.457	0.001	0.2410	0.0901	0.1151	0.0204	1.1555	0.2833
80	0.0590	0.916	0.360	0.9872	4.268	0.000	0.2369	0.0128	- 0.0203	- 0.0262	6.9459	0.0089
81	1.0086	2.006	0.046	- 0.7276	- 1.279	0.202	0.2698	0.0181	0.0819	0.0740	2.2121	0.1380
82	0.0959	1.966	0.050	- 0.2242	- 0.188	0.851	0.1083	- 0.0031	- 0.0128	- 0.0109	0.2046	0.6513
83	0.4687	1.879	0.061	0.1851	0.337	0.736	0.2365	- 0.0021	0.0109	0.0023	3.9406	0.0481
84	1.1620	2.046	0.042	- 0.7826	- 1.374	0.170	0.1216	0.0001	- 0.0362	- 0.0562	0.6625	0.4163
85	0.7069	1.583	0.114	0.1221	0.183	0.855	0.1451	- 0.0028	0.0186	0.0212	2.0062	0.1577
86	1.9281	5.892	0.000	- 1.7135	- 4.477	0.000	0.1472	0.0198	0.0309	0.0189	0.5369	0.4643
87	- 0.1518	- 3.452	0.730	1.4379	1.940	0.053	0.0802	0.0019	- 0.0013	0.0017	3.5415	0.0608
88	2.0662	2.460	0.014	- 3.0955	- 1.655	0.099	0.1636	0.0014	- 0.0047	- 0.0724	0.2145	0.6436
89	0.2691	1.995	0.047	- 4.7072	- 2.433	0.016	0.2139	0.0050	0.0056	0.0080	2.7955	0.0955
90	9.2996	3.826	0.000	- 10.889	- 4.412	0.000	0.1366	0.0802	- 0.0419	- 0.0728	9.2451	0.0025
91	0.5659	0.703	0.482	- 0.2764	- 0.342	0.733	0.0669	- 0.0014	- 0.0035	- 0.0103	2.3025	0.1299
92	- 0.0468	- 2.623	0.009	0.3658	1.398	0.163	0.1414	0.0025	- 0.0297	- 0.0336	2.0763	0.1503
93	0.3979	2.186	0.029	0.2523	0.830	0.407	0.1099	- 0.0009	- 0.0204	- 0.0517	9.9911	0.0017
94	0.5950	1.154	0.249	0.8013	1.323	0.187	0.1554	0.0034	0.0137	0.0075	16.631	0.0001
95	0.3020	1.042	0.298	0.2026	0.322	0.748	0.1166	- 0.0012	- 0.0115	- 0.0117	2.5401	0.1116
96	2.1799	4.033	0.000	- 1.2653	- 1.949	0.052	0.0249	0.0027	0.0239	0.0240	4.8991	0.0273
97	- 0.2467	- 1.355	0.176	1.6571	4.954	0.000	0.1957	0.0270	- 0.0676	- 0.1035	23.848	0.0000
98	0.0015	0.007	0.995	1.1355	4.023	0.000	0.1724	0.0231	- 0.0382	- 0.1315	28.961	0.0000
99	0.1345	1.361	0.174	0.2284	1.462	0.144	0.1825	0.0016	- 0.0035	- 0.0054	14.426	0.0002
2000	0.0566	2.064	0.039	0.3007	1.148	0.251	0.0586	0.0019	- 0.0029	- 0.0012	3.4901	0.0623
79 -00	0.2677	2.653	0.008	0.0653	0.454	0.650	0.2628	0.0000	- 0.0011	- 0.0053	41.094	0.0000
Mean	1.0057	1.498		- 0.7925	0.028		0.1511	0.0127	0.0003	- 0.0186		
Median	0.4333	1.923		0.1536	0.252		0.1462	0.0022	- 0.0035	- 0.0079		
Z								2.679	0.633	- 1.445		
<i>p</i> -value								0.007	0.527	0.149		
BNST								0.052	0.286	0.523		

Table 6 Value relevance of positive and negative earnings changes (continued)

Panel D	(1) DOP_ N				(2) D OI_N				(3) D NI_N			
	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.48	(0.100)	1.31	(0.519)	1.41	(0.129)	0.86	(0.649)	2.43	(0.002)	46.90	(0.000)
80	5.93	(0.000)	1.93	(0.381)	5.92	(0.000)	7.54	(0.023)	6.11	(0.000)	13.58	(0.001)
81	5.50	(0.000)	15.14	(0.001)	5.39	(0.000)	13.29	(0.001)	5.04	(0.000)	9.66	(0.008)
82	3.29	(0.000)	1.16	(0.560)	3.40	(0.000)	11.14	(0.004)	3.23	(0.000)	8.25	(0.016)
83	5.99	(0.000)	32.67	(0.000)	5.73	(0.000)	31.33	(0.000)	5.55	(0.000)	27.33	(0.000)
84	2.81	(0.000)	12.08	(0.002)	2.71	(0.000)	4.45	(0.108)	2.99	(0.000)	12.07	(0.002)
85	3.02	(0.000)	5.08	(0.079)	3.14	(0.000)	11.27	(0.004)	3.41	(0.000)	28.71	(0.000)
86	3.05	(0.000)	1.69	(0.429)	2.92	(0.000)	5.36	(0.069)	3.06	(0.000)	1.84	(0.398)
87	2.47	(0.001)	6.01	(0.050)	2.40	(0.001)	5.86	(0.053)	2.59	(0.001)	11.89	(0.003)
88	2.49	(0.001)	2.26	(0.322)	2.35	(0.002)	5.53	(0.063)	4.21	(0.000)	3.40	(0.182)
89	3.97	(0.000)	67.55	(0.000)	3.54	(0.000)	47.21	(0.000)	6.34	(0.000)	5.09	(0.078)
90	1.77	(0.029)	6.96	(0.031)	1.83	(0.023)	8.50	(0.014)	1.90	(0.017)	4.66	(0.097)
91	2.86	(0.000)	10.76	(0.005)	2.63	(0.000)	7.90	(0.019)	2.72	(0.000)	13.02	(0.002)
92	5.21	(0.000)	116.89	(0.000)	5.22	(0.000)	34.79	(0.000)	5.68	(0.000)	1.40	(0.496)
93	3.50	(0.000)	181.61	(0.000)	4.59	(0.000)	12.05	(0.002)	4.15	(0.000)	5.64	(0.060)
94	4.32	(0.000)	14.69	(0.001)	4.73	(0.000)	48.85	(0.000)	4.88	(0.000)	9.28	(0.010)
95	3.92	(0.000)	28.41	(0.000)	4.51	(0.000)	9.56	(0.008)	4.66	(0.000)	4.39	(0.111)
96	0.90	(0.568)	3.68	(0.159)	0.75	(0.755)	2.35	(0.309)	0.82	(0.670)	2.18	(0.336)
97	7.06	(0.000)	2.52	(0.284)	7.02	(0.000)	3.42	(0.181)	6.75	(0.000)	7.82	(0.020)
98	5.60	(0.000)	9.63	(0.008)	5.49	(0.000)	11.87	(0.003)	5.50	(0.000)	5.50	(0.064)
99	5.80	(0.000)	249.12	(0.000)	5.90	(0.000)	585.46	(0.000)	6.88	(0.000)	10.00	(0.007)
2000	2.59	(0.001)	27.94	(0.000)	2.55	(0.001)	25.76	(0.000)	2.76	(0.000)	24.61	(0.000)

Earnings changes with sign model (M6): $\frac{\mathbf{D}P_{ii}}{P_{ii-1}} = \mathbf{a} + \mathbf{b}_1 \frac{\mathbf{D}X_{ii}}{P_{ii-1}} + \mathbf{b}_2 D_N \frac{\mathbf{D}X_{ii}}{P_{t-1}} + \sum_{j} \mathbf{g}_j D_j + u_{ii}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}), $\mathbf{DX} = \mathbf{X}_t - \mathbf{X}_{t-1}$, $\mathbf{D}_N = \mathbf{D}_t - \mathbf{$

variable, 1 for firms decreasing earnings and 0 for others, D_j = industry dummy (j = 1, 2, ..., 17). For example, OP represents the regression model M1 (simple earnings capitalization model). DOP represents the regression model M5 (earnings changes model). The column "vs. OP" represents the difference in adjusted R-square between simple earnings

capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

Table 7 AIC comparison between models

anel A					
Year	OP_N	vs. D OP	vs. D OP_N	vs. <i>OP</i>	vs. <i>OP_L</i>
1979	0.23389	0.00128	0.01575	- 0.01672	0.00267
80	0.08639	- 0.00948	- 0.01011	- 0.00283	- 0.00228
81	0.12504	- 0.00853	0.00612	- 0.01122	- 0.00337
82	0.05471	- 0.00318	- 0.00308	0.00034	0.00004
83	0.05458	- 0.00032	- 0.00055	- 0.00374	- 0.00187
84	0.24651	- 0.01506	- 0.01073	- 0.01038	- 0.00551
85	0.14671	0.00798	0.00854	- 0.00030	- 0.00014
86	0.13761	0.00278	0.00571	- 0.00205	- 0.00112
87	0.18607	- 0.00040	- 0.00122	- 0.00062	- 0.00047
88	0.36225	0.00489	0.02389	- 0.00260	0.01613
89	0.16695	0.00961	0.00996	- 0.00042	- 0.00008
90	0.15789	- 0.00729	- 0.00069	- 0.00018	0.00739
91	0.04093	- 0.00026	- 0.00002	- 0.00128	- 0.00123
92	0.02005	- 0.00102	- 0.00105	- 0.00024	- 0.00004
93	0.03138	- 0.00108	- 0.00109	- 0.00224	- 0.00228
94	0.04921	0.00176	0.00213	- 0.00218	0.00030
95	0.02196	- 0.00015	- 0.00011	- 0.00062	0.00029
96	0.17548	0.00940	0.00882	- 0.00126	- 0.00186
97	0.03444	- 0.00584	- 0.00509	- 0.00106	- 0.00028
98	0.04737	- 0.00358	- 0.00372	- 0.00111	0.00140
99	0.07960	- 0.00470	- 0.00443	- 0.00183	0.00097
2000	0.34770	0.00203	0.00396	0.00124	0.00003
79 -00	0.12996	- 0.00221	- 0.00204	- 0.00341	- 0.00124
Mean	0.12758	- 0.00096	0.00195	- 0.00279	0.00040
Median	0.10571	- 0.00036	- 0.00033	- 0.00127	- 0.00011
Z		- 0.698	- 0.503	- 3.652	- 0.795
<i>p</i> -value		0.485	0.615	0.000	0.426
BNST		0.286	0.523	0.000	0.523

Table 7 AIC comparison between models (continued)

Panel B					
Year	OI_N	vs. D 0I	vs. D 01_N	vs. <i>0I</i>	vs. <i>OI_L</i>
1979	0.25833	0.03651	0.05475	- 0.01363	0.00272
80	0.09602	- 0.00422	- 0.00413	- 0.00450	- 0.00270
81	0.11520	- 0.01705	- 0.00278	- 0.02280	- 0.00458
82	0.05680	- 0.00118	- 0.00096	- 0.00050	- 0.00087
83	0.05697	0.00092	0.00060	- 0.00265	- 0.00126
84	0.24417	- 0.01362	- 0.01223	- 0.01482	- 0.00592
85	0.14890	0.01310	0.01335	- 0.00149	- 0.00122
86	0.13828	0.00371	0.00633	- 0.00218	0.00292
87	0.18292	- 0.00356	- 0.00456	- 0.00325	- 0.00237
88	0.36743	0.01888	0.05196	- 0.00477	0.02220
89	0.16783	0.00648	0.00664	- 0.00119	- 0.00199
90	0.15512	- 0.00835	- 0.00071	0.00020	0.00444
91	0.03942	- 0.00299	- 0.00002	- 0.00268	- 0.00176
92	0.01904	- 0.00260	- 0.00162	- 0.00060	0.00023
93	0.03195	- 0.00107	- 0.00118	- 0.00171	- 0.00127
94	0.05112	0.00499	0.00501	- 0.00056	0.00139
95	0.02356	0.00182	0.00176	- 0.00031	0.00007
96	0.17665	0.00754	0.00696	- 0.00089	- 0.00086
97	0.03140	- 0.00917	- 0.00854	- 0.00154	0.00085
98	0.04597	- 0.00437	- 0.00442	- 0.00269	0.00306
99	0.08219	- 0.00237	- 0.00187	- 0.00026	0.00380
2000	0.34506	- 0.00155	0.00130	0.00078	- 0.00025
79 -00	0.13160	- 0.00087	- 0.00078	- 0.00420	- 0.00077
Mean	0.12883	0.00099	0.00480	- 0.00373	0.00076
Median	0.10561	- 0.00136	- 0.00036	- 0.00163	- 0.00056
Z		- 0.243	- 0.471	- 3.847	- 0.081
<i>p</i> -value		0.808	0.638	0.000	0.935
BNST		0.523	0.832	0.000	0.832

Table 7 AIC comparison between models (continued)

Panel C					
Year	NI_N	vs. D NI	vs. D NI_N	vs. <i>NI</i>	vs. <i>NI_L</i>
1979	0.23945	- 0.02742	0.00014	- 0.03530	- 0.00626
80	0.09834	- 0.00801	- 0.00658	- 0.00347	- 0.00298
81	0.13632	0.00755	0.01029	- 0.00343	- 0.00248
82	0.05743	- 0.00092	- 0.00129	- 0.00028	- 0.00058
83	0.05951	- 0.00020	- 0.00054	- 0.00122	- 0.00072
84	0.27362	- 0.01109	- 0.01190	0.00068	0.00635
85	0.15098	0.00457	0.00366	0.00090	0.00000
86	0.13863	0.00017	0.00292	- 0.00159	- 0.00009
87	0.18607	0.00003	- 0.00013	0.00068	- 0.00048
88	0.38658	- 0.00345	- 0.00389	- 0.00061	0.02987
89	0.16840	- 0.00074	- 0.00014	- 0.00088	- 0.00184
90	0.15766	- 0.02265	- 0.00772	0.00066	0.00622
91	0.04190	- 0.00104	- 0.00119	- 0.00094	- 0.00071
92	0.02091	- 0.00078	- 0.00076	0.00003	0.00009
93	0.03310	- 0.00276	- 0.00286	- 0.00197	- 0.00078
94	0.05229	0.00058	0.00070	- 0.00005	0.00023
95	0.02399	- 0.00032	- 0.00040	- 0.00003	- 0.00007
96	0.17723	0.00434	0.00450	0.00059	0.00025
97	0.03583	- 0.00608	- 0.00479	- 0.00131	0.00044
98	0.04621	- 0.00768	- 0.00631	- 0.00379	0.00204
99	0.08387	- 0.00031	- 0.00028	0.00022	0.00026
2000	0.34745	- 0.00092	- 0.00083	0.00084	- 0.00039
79 -00	0.13661	- 0.00119	- 0.00120	- 0.00100	- 0.00022
Mean	0.13253	- 0.00351	- 0.00125	- 0.00229	0.00129
Median	0.11733	- 0.00085	- 0.00065	- 0.00044	- 0.00008
Z		- 2.321	- 1.721	- 2.078	- 0.574
<i>p</i> -value		0.020	0.085	0.038	0.566
BNST		0.052	0.052	0.286	0.664

Earnings capitalization conditional on the sign of earnings changes model (M7):

$$P_{it} = \boldsymbol{a} + \boldsymbol{b}_1 X_{it} + \boldsymbol{b}_2 D_N X_{it} + \sum_{i} \boldsymbol{g}_j D_j + u_{it}, \boldsymbol{P} = \text{stock price}, \boldsymbol{X} = \text{accounting earnings } (\boldsymbol{OP}, \boldsymbol{OI}, \boldsymbol{NI}), \quad \boldsymbol{DX} = \boldsymbol{X}_t - \boldsymbol{X}_{t-1}, \boldsymbol{Y}_{t-1} + \boldsymbol{Y}_{t-1}, \boldsymbol{Y}_{t$$

 D_N = dummy variable, 1 for firms decreasing earnings and 0 for others, D_j = industry dummy (j = 1, 2,..., 17). For example, OP represents the regression model M1 (simple earnings capitalization model). OP_L represents the regression model M2, which separates losses form earnings. DOP represents the regression model M5 (earnings changes model). DOP_N represents the regression model M6 (earnings changes with sign model). The column "vs. OP" represents the difference in AIC between simple earnings capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test.

Table 8 Value relevance of earnings conditional on negative changes

Panel A		OP			$\boldsymbol{D}_N \boldsymbol{OP}$						vs.		
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	F	<i>p</i> -value	vs. D 0P	D OP_N	vs. <i>OP</i>	vs. <i>OP_L</i>
1979	1.3043	5.618	0.000	- 1.1582	- 3.835	0.000	0.2581	0.4377	0.5088	- 0.0018	- 0.0500	0.0554	- 0.0085
80	1.0807	5.864	0.000	- 0.8705	- 3.780	0.000	0.3717	0.5132	0.4743	0.0711	0.0736	0.0226	0.0166
81	1.3368	4.564	0.000	- 1.0308	- 3.956	0.000	0.2755	4.1657	0.0422	0.0517	- 0.0355	0.0673	0.0195
82	0.6101	5.940	0.000	- 0.0362	- 0.185	0.854	0.1692	9.6008	0.0021	0.0510	0.0468	- 0.0027	- 0.0005
83	0.6664	3.120	0.002	- 0.6886	- 3.527	0.000	0.3061	0.0240	0.8770	0.0061	0.0070	0.0498	0.0238
84	1.9978	4.223	0.000	- 1.4787	- 3.792	0.000	0.2416	1.7790	0.1833	0.0487	0.0330	0.0342	0.0169
85	0.9445	2.323	0.021	- 0.6066	- 1.874	0.062	0.1487	0.8002	0.3718	- 0.0439	- 0.0495	0.0043	0.0008
86	1.3099	2.364	0.019	- 1.0291	- 2.093	0.037	0.1353	0.7398	0.3904	- 0.0150	- 0.0358	0.0155	0.0071
87	0.9995	2.171	0.031	- 1.0225	- 2.195	0.029	0.0809	0.0026	0.9596	0.0047	0.0061	0.0058	0.0024
88	3.2561	4.702	0.000	- 1.9190	- 2.085	0.038	0.2241	2.1541	0.1432	- 0.0083	- 0.0512	0.0078	- 0.0345
89	1.3525	2.306	0.022	- 1.6933	- 2.278	0.023	0.2212	0.0891	0.7655	- 0.0429	- 0.0465	0.0040	0.0003
90	5.4332	6.069	0.000	- 1.2230	- 1.673	0.095	0.1756	23.562	0.0000	0.0400	0.0036	0.0028	- 0.0386
91	1.8535	4.486	0.000	- 1.6870	- 5.171	0.000	0.1135	0.1205	0.7287	0.0076	0.0005	0.0297	0.0265
92	1.6169	4.990	0.000	- 0.7219	- 2.695	0.007	0.2056	9.4218	0.0023	0.0422	0.0417	0.0109	0.0015
93	2.6009	5.349	0.000	- 1.7405	- 3.910	0.000	0.2233	17.864	0.0000	0.0284	0.0270	0.0570	0.0565
94	1.9381	3.272	0.001	- 1.6682	- 3.020	0.003	0.1945	1.0987	0.2951	- 0.0273	- 0.0348	0.0372	- 0.0050
95	1.4237	4.961	0.000	- 1.1028	- 2.035	0.042	0.2045	1.7191	0.1904	0.0068	0.0038	0.0241	- 0.0106
96	1.2119	4.072	0.000	- 1.4419	- 2.928	0.004	0.0094	0.1586	0.6906	- 0.0513	- 0.0498	0.0090	0.0106
97	2.6885	9.336	0.000	- 1.4554	- 4.156	0.000	0.3180	12.389	0.0005	0.1170	0.1008	0.0222	0.0054
98	1.8594	4.300	0.000	- 1.0018	- 2.520	0.012	0.2535	15.693	0.0001	0.0578	0.0587	0.0189	- 0.0221
99	1.4793	7.027	0.000	- 1.0241	- 3.328	0.001	0.2268	7.5388	0.0062	0.0471	0.0431	0.0191	- 0.0094
2000	0.5855	2.082	0.038	- 0.0265	- 0.069	0.945	0.0601	1.3255	0.2501	- 0.0039	- 0.0108	- 0.0018	- 0.0001
79 -00	1.3211	12.37	0.000	- 1.0653	- 10.46	0.000	0.3048	17.152	0.0000	0.0118	0.0108	0.0183	0.0066
Mean	1.7068	4.506		- 1.1194	- 2.778		0.2008			0.0175	0.0037	0.0224	0.0027
Median	1.3881	4.525		- 1.0668	- 2.812		0.2134			0.0072	0.0037	0.0190	0.0012
Z										1.769	0.211	4.010	0.779
<i>p</i> -value										0.077	0.833	0.000	0.436
BNST										0.286	0.523	0.000	0.523

 Table 8
 Value relevance of earnings conditional on negative changes (continued)

Panel B		OI			$D_N OI$						vs.		
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	F	<i>p</i> -value	vs. D 0I	D 01_N	vs. <i>01</i>	vs. <i>OI_L</i>
1979	1.1459	3.337	0.001	- 1.3434	- 3.443	0.001	0.1806	0.8796	0.3491	- 0.1136	- 0.1737	0.0459	- 0.0086
80	1.1665	4.033	0.000	- 1.0512	- 3.649	0.000	0.3016	0.1958	0.6585	0.0329	0.0300	0.0350	0.0197
81	2.0623	5.314	0.000	- 1.9233	- 4.963	0.000	0.3325	1.3089	0.2536	0.1011	0.0161	0.1345	0.0265
82	0.5617	3.896	0.000	0.4685	- 2.357	0.019	0.1375	0.2181	0.6408	0.0205	0.0145	0.0103	0.0133
83	0.7132	3.130	0.002	- 0.7293	- 2.919	0.004	0.2756	0.0114	0.9152	- 0.0097	- 0.0077	0.0359	0.0160
84	2.6085	6.154	0.000	- 2.2214	- 4.951	0.000	0.2488	0.8608	0.3543	0.0442	0.0376	0.0479	0.0182
85	0.6470	1.278	0.202	- 1.3076	- 2.421	0.016	0.1360	1.5525	0.2138	- 0.0736	- 0.0774	0.0112	0.0071
86	1.3131	2.200	0.029	- 1.2106	- 2.137	0.033	0.1311	0.0839	0.7723	- 0.0208	- 0.0398	0.0163	- 0.0183
87	1.8064	3.015	0.003	- 1.9457	- 2.923	0.004	0.0964	0.0737	0.7862	0.0203	0.0225	0.0187	0.0117
88	3.3955	3.777	0.000	- 2.5535	- 2.225	0.027	0.2130	0.7456	0.3885	- 0.0383	- 0.1113	0.0125	- 0.0475
89	0.6717	0.967	0.334	- 2.5026	- 3.226	0.001	0.2172	1.8360	0.1764	- 0.0281	- 0.0309	0.0078	0.0093
90	5.8580	7.934	0.000	- 0.9805	- 1.451	0.147	0.1901	28.432	0.0000	0.0456	0.0037	0.0008	- 0.0232
91	2.4403	7.584	0.000	- 2.1569	- 7.191	0.000	0.1462	1.3488	0.2461	0.0667	0.0004	0.0600	0.0380
92	2.0703	4.232	0.000	- 1.1862	- 3.390	0.001	0.2456	10.051	0.0016	0.1047	0.0642	0.0252	- 0.0091
93	2.3939	7.173	0.000	- 1.6235	- 4.718	0.000	0.2091	14.027	0.0002	0.0280	0.0291	0.0440	0.0314
94	1.4132	2.186	0.029	- 0.9564	- 1.562	0.119	0.1632	3.2469	0.0722	- 0.0802	- 0.0820	0.0108	- 0.0228
95	0.8600	2.992	0.003	- 0.8867	- 2.353	0.019	0.1464	0.0101	0.9201	- 0.0645	- 0.0637	0.0128	- 0.0026
96	1.0336	3.624	0.000	- 1.3182	- 3.252	0.001	0.0027	0.2898	0.5906	- 0.0409	- 0.0394	0.0068	0.0048
97	3.1345	7.880	0.000	- 1.8720	- 4.745	0.000	0.3782	13.154	0.0003	0.1831	0.1692	0.0316	- 0.0169
98	2.1298	3.834	0.000	- 1.4652	- 2.854	0.004	0.2756	14.487	0.0002	0.0702	0.0697	0.0438	- 0.0482
99	0.9397	2.995	0.003	- 0.4770	- 1.347	0.178	0.2016	9.1032	0.0027	0.0244	0.0181	0.0039	- 0.0369
2000	0.9426	3.297	0.001	- 0.4742	- 1.264	0.207	0.0673	0.9572	0.3283	0.0058	- 0.0035	- 0.0005	0.0007
79 -00	1.4804	11.71	0.000	- 1.3797	- 10.93	0.000	0.2961	2.9856	0.0840	0.0048	0.0042	0.0225	0.0041
Mean	1.7867	4.129		- 1.3508	- 3.152		0.1953			0.0126	- 0.0070	0.0280	- 0.0017
Median	1.3632	3.701		- 1.3129	- 2.921		0.1959			0.0204	0.0020	0.0175	0.0028
Z										0.666	0.373	4.074	0.114
<i>p</i> -value										0.506	0.709	0.000	0.910
BNST										0.523	0.832	0.000	0.832

 Table 8
 Value relevance of earnings conditional on negative changes (continued)

Panel C		NI			$D_N NI$						vs.		
Year	Coeff.	White-t	<i>p</i> -value	Coeff.	White-t	<i>p</i> -value	Adj. R^2	F	<i>p</i> -value	vs. D NI	D NI_N	vs. <i>NI</i>	vs. <i>NI_L</i>
1979	2.0927	5.929	0.000	- 2.2712	- 6.113	0.000	0.2405	2.3117	0.1295	0.0896	- 0.0005	0.1146	0.0199
80	1.8248	4.399	0.000	- 1.5410	- 3.551	0.000	0.2848	0.7715	0.3805	0.0607	0.0479	0.0276	0.0217
81	0.8353	1.502	0.134	- 0.8004	- 1.446	0.149	0.2102	0.0324	0.8573	- 0.0415	- 0.0596	0.0223	0.0144
82	0.6768	4.465	0.000	- 0.6448	- 2.094	0.037	0.1280	0.0124	0.9114	0.0166	0.0197	0.0069	0.0088
83	0.6046	2.582	0.010	- 0.7820	- 2.573	0.011	0.2434	0.5329	0.4660	0.0048	0.0069	0.0178	0.0092
84	2.2675	3.590	0.000	- 0.8874	- 0.791	0.430	0.1582	5.3658	0.0212	0.0367	0.0366	0.0004	- 0.0196
85	0.3917	0.772	0.441	- 0.2175	- 0.349	0.727	0.1239	0.1054	0.7457	- 0.0240	- 0.0212	- 0.0026	0.0000
86	2.2900	3.310	0.001	- 1.8965	- 2.580	0.010	0.1289	0.6824	0.4094	0.0015	- 0.0183	0.0126	0.0006
87	1.7698	1.749	0.081	- 1.0344	- 0.884	0.378	0.0809	1.1710	0.2801	0.0026	0.0007	- 0.0006	0.0024
88	3.5492	1.673	0.095	- 2.5716	- 1.206	0.229	0.1720	0.5147	0.4736	0.0098	0.0084	0.0037	- 0.0640
89	0.1767	1.777	0.077	- 3.7223	- 2.753	0.006	0.2145	3.2591	0.0719	0.0056	0.0006	0.0062	0.0086
90	10.226	5.272	0.000	- 0.8237	- 0.418	0.676	0.1768	26.8560	0.0000	0.1204	0.0403	- 0.0016	- 0.0325
91	1.7046	1.751	0.081	- 1.5664	- 1.624	0.105	0.0926	0.5336	0.4655	0.0243	0.0257	0.0222	0.0154
92	1.3514	2.320	0.021	- 0.4622	- 0.809	0.419	0.1714	6.5713	0.0107	0.0325	0.0300	0.0003	- 0.0036
93	3.1643	4.924	0.000	- 2.6407	- 3.992	0.000	0.1807	7.0277	0.0083	0.0699	0.0708	0.0504	0.0191
94	1.3716	2.681	0.008	- 0.7543	- 1.340	0.181	0.1441	4.5734	0.0330	- 0.0079	- 0.0113	0.0024	- 0.0038
95	0.9458	2.178	0.030	- 0.6488	- 1.281	0.201	0.1309	0.8882	0.3464	0.0131	0.0143	0.0028	0.0026
96	1.0489	2.186	0.029	- 0.4366	- 0.800	0.424	- 0.0005	2.0422	0.1536	- 0.0227	- 0.0254	- 0.0015	- 0.0014
97	2.9698	4.005	0.000	- 1.9120	- 2.594	0.010	0.2905	14.337	0.0002	0.1218	0.0948	0.0272	- 0.0087
98	3.3657	6.617	0.000	- 2.6785	- 4.989	0.000	0.2718	20.456	0.0000	0.1225	0.0994	0.0612	- 0.0321
99	0.4436	2.222	0.027	- 0.1526	- 0.705	0.481	0.1853	12.509	0.0004	0.0044	0.0028	- 0.0007	- 0.0026
2000	0.1624	1.461	0.145	0.1788	0.813	0.416	0.0608	4.4907	0.0345	0.0041	0.0022	- 0.0007	0.0010
79 -00	0.8384	3.075	0.002	- 0.6499	- 2.302	0.021	0.2693	16.397	0.0001	0.0065	0.0065	0.0054	0.0012
Mean	1.9651	3.062		- 1.2848	- 1.913		0.1677			0.0293	0.0166	0.0169	- 0.0020
Median	1.5381	2.451		- 0.8556	- 1.393		0.1717			0.0115	0.0077	0.0049	0.0008
Z										2.613	2.062	3.003	0.191
<i>p</i> -value										0.009	0.039	0.003	0.848
BNST										0.004	0.052	0.052	0.664

Table 8 Value relevance of earnings conditional on negative changes (continued)

Panel D	(1) OP_N					(2) 0	<u>I_N</u>		(3) <i>NI_N</i>			
	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.30	(0.194)	13.20	(0.001)	2.66	(0.000)	86.48	(0.000)	2.34	(0.002)	36.86	(0.000)
80	8.86	(0.000)	103.08	(0.000)	7.50	(0.000)	71.12	(0.000)	6.78	(0.000)	17.01	(0.000)
81	4.41	(0.000)	13.77	(0.001)	3.67	(0.000)	408.83	(0.000)	4.63	(0.000)	0.14	(0.931)
82	3.38	(0.000)	1.40	(0.498)	3.34	(0.000)	22.00	(0.000)	3.31	(0.000)	31.34	(0.000)
83	6.49	(0.000)	18.59	(0.000)	6.09	(0.000)	0.39	(0.824)	6.15	(0.000)	3.79	(0.151)
84	3.28	(0.000)	382.16	(0.000)	3.18	(0.000)	14.33	(0.001)	3.07	(0.000)	71.58	(0.000)
85	3.25	(0.000)	5.90	(0.052)	3.74	(0.000)	0.20	(0.907)	3.56	(0.000)	12.40	(0.002)
86	3.27	(0.000)	0.34	(0.842)	3.08	(0.000)	10.28	(0.006)	3.12	(0.000)	9.32	(0.010)
87	2.23	(0.004)	17.04	(0.000)	2.01	(0.011)	9.39	(0.009)	2.42	(0.002)	18.46	(0.000)
88	3.19	(0.000)	21.39	(0.000)	3.76	(0.000)	21.35	(0.000)	3.94	(0.000)	24.00	(0.000)
89	6.06	(0.000)	2.03	(0.363)	6.00	(0.000)	19.99	(0.000)	6.18	(0.000)	5.78	(0.056)
90	3.18	(0.000)	83.24	(0.000)	3.20	(0.000)	98.40	(0.000)	2.81	(0.000)	113.41	(0.000)
91	2.59	(0.001)	6.57	(0.038)	2.80	(0.000)	3.06	(0.217)	2.81	(0.000)	18.21	(0.000)
92	6.03	(0.000)	56.45	(0.000)	5.69	(0.000)	6.27	(0.044)	5.73	(0.000)	0.63	(0.728)
93	3.42	(0.000)	15.00	(0.001)	3.62	(0.000)	5.07	(0.079)	4.53	(0.000)	12.37	(0.002)
94	5.89	(0.000)	44.47	(0.000)	5.51	(0.000)	10.41	(0.006)	5.59	(0.000)	20.26	(0.000)
95	4.81	(0.000)	13.32	(0.001)	4.75	(0.000)	349.66	(0.000)	4.73	(0.000)	24.44	(0.000)
96	0.83	(0.655)	1.92	(0.382)	0.81	(0.679)	5.09	(0.079)	0.91	(0.561)	3.15	(0.207)
97	6.51	(0.000)	19.45	(0.000)	5.86	(0.000)	66.68	(0.000)	6.16	(0.000)	21.81	(0.000)
98	5.91	(0.000)	3.35	(0.188)	5.27	(0.000)	13.39	(0.001)	5.51	(0.000)	8.31	(0.016)
99	5.31	(0.000)	109.84	(0.000)	5.45	(0.000)	567.61	(0.000)	6.69	(0.000)	12.92	(0.002)
2000	2.94	(0.000)	0.70	(0.705)	2.96	(0.000)	0.95	(0.622)	2.82	(0.000)	2.93	(0.231)

Earnings capitalization conditional on the sign of earnings changes model (M7): $P_{it} = \mathbf{a} + \mathbf{b}_1 X_{it} + \mathbf{b}_2 D_N X_{it} + \sum_{i} \mathbf{g}_j D_j + u_{it}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}),

 $DX = X_t - X_{t-1}$, $D_N = \text{dummy variable}$, 1 for firms decreasing earnings and 0 for others, $D_j = \text{industry dummy}$ (j = 1, 2, ..., 17). For example, OP represents the regression model M1 (simple earnings capitalization model). OP_L represents the regression model M2, which separates losses form earnings. DOP represents the regression model M5 (earnings changes model). DOP_N represents the regression model M6 (earnings changes with sign model). The column "vs. OP" presents the difference in adjusted R-square between simple earnings

capitalization model (M1) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

Table 9 Independence between negative changes and losses

Panel A: OP				Losses &		
Year	N	Losses	Negatives	Negatives	Chi-square	<i>p</i> -value
1979	303	20	110	19	29.2441	0.0000
80	304	10	85	6	3.7532	0.0527
81	307	10	159	7	0.7223	0.3954
82	310	9	189	6	0.0001	0.9929
83	313	24	221	22	4.5101	0.0337
84	316	18	144	13	5.4665	0.0194
85	317	13	107	9	6.0654	0.0138
86	322	21	231	18	1.4895	0.2223
87	321	37	226	34	8.1376	0.0043
88	330	21	95	13	11.9980	0.0005
89	348	11	102	4	0.0345	0.8527
90	418	14	204	10	2.1046	0.1469
91	469	15	208	12	6.5571	0.0104
92	491	15	305	10	0.1360	0.7123
93	502	50	368	49	15.9308	0.0001
94	508	90	361	75	8.0084	0.0047
95	517	61	165	32	13.4334	0.0002
96	521	58	246	37	7.1955	0.0073
97	541	36	161	16	3.9786	0.0461
98	547	52	338	38	3.0997	0.0783
99	558	126	384	109	23.7356	0.0000
2000	559	84	181	41	12.1882	0.0005
79 - 00	9,122	795	4,590	580	7,641.8781	0.0000

 Table 9
 Independence between negative changes and losses (continued)

Panel B: OI				Losses &		
Year	N	Losses	Negatives	Negatives	Chi-square	<i>p</i> -value
1979	303	35	77	23	33.9086	0.0000
80	304	18	89	10	6.3815	0.0115
81	307	21	179	17	3.8081	0.0510
82	310	29	173	24	9.4232	0.0021
83	313	47	210	39	6.3216	0.0119
84	316	39	120	24	10.4881	0.0012
85	317	19	81	13	19.5256	0.0000
86	322	31	218	27	4.9603	0.0259
87	321	48	199	40	10.9082	0.0010
88	330	21	67	10	10.3421	0.0013
89	348	10	83	5	3.8763	0.0490
90	418	9	175	6	1.3997	0.2368
91	469	20	237	19	14.7191	0.0001
92	491	21	334	13	0.3777	0.5388
93	502	63	370	55	6.8716	0.0088
94	508	98	353	79	7.0869	0.0078
95	517	71	158	33	9.8269	0.0017
96	521	47	190	26	7.9234	0.0049
97	541	37	144	21	18.4705	0.0000
98	547	58	331	44	6.3977	0.0114
99	558	122	385	105	21.2664	0.0000
2000	559	74	174	45	35.0554	0.0000
79 - 00	9,122	938	4,347	678	9395.6053	0.0000

 Table 9
 Independence between negative changes and losses (continued)

Panel C: NI				Losses &		
Year	N	Losses	Negatives	Negatives	Chi-square	<i>p</i> -value
1979	303	27	89	22	38.7969	0.0000
80	304	13	91	9	8.1375	0.0043
81	307	17	174	15	6.0021	0.0143
82	310	21	189	19	6.9659	0.0083
83	313	36	195	30	7.6620	0.0056
84	316	30	138	23	14.6701	0.0001
85	317	16	91	12	15.3431	0.0001
86	322	25	193	22	7.6670	0.0056
87	321	41	219	34	4.6868	0.0304
88	330	17	74	11	18.4195	0.0000
89	348	9	90	7	10.3564	0.0013
90	418	5	145	3	0.5236	0.4693
91	469	15	207	15	17.3421	0.0000
92	491	19	350	15	0.2446	0.6209
93	502	62	383	59	12.7568	0.0004
94	508	97	338	83	19.5032	0.0000
95	517	83	199	51	22.0047	0.0000
96	521	59	189	42	35.0771	0.0000
97	541	46	195	27	11.1897	0.0008
98	547	79	333	63	13.8038	0.0002
99	558	170	422	154	29.6886	0.0000
2000	559	160	240	128	125.7003	0.0000
79 - 00	9,122	1,047	4,544	844	12,634.9265	0.0000

Table 10 AIC comparison between models

Year	OP_LN	vs. <i>OP_L</i>	vs. OP_ N	OI_LN	vs. <i>OI_L</i>	vs. <i>OI_N</i>	NI_LN	vs. <i>NI_L</i>	vs. <i>NI_N</i>
1979	0.23050	- 0.00072	- 0.00339	0.25690	0.00129	- 0.00143	0.23925	- 0.00646	- 0.00020
80	0.08688	- 0.00178	0.00050	0.09646	- 0.00226	0.00044	0.09804	- 0.00328	- 0.00030
81	0.12279	- 0.00562	- 0.00225	0.11254	- 0.00724	- 0.00266	0.13540	- 0.00340	- 0.00092
82	0.05503	0.00035	0.00032	0.05694	- 0.00073	0.00014	0.05762	- 0.00038	0.00019
83	0.05434	- 0.00211	- 0.00024	0.05711	- 0.00112	0.00014	0.05980	- 0.00043	0.00029
84	0.24595	- 0.00607	- 0.00056	0.24238	- 0.00771	- 0.00179	0.26784	0.00057	- 0.00578
85	0.14708	0.00023	0.00037	0.14950	- 0.00062	0.00060	0.15121	0.00023	0.00023
86	0.13777	- 0.00096	0.00016	0.13586	0.00050	- 0.00242	0.13909	0.00037	0.00046
87	0.18690	0.00036	0.00083	0.18398	- 0.00131	0.00106	0.18665	0.00010	0.00058
88	0.34821	0.00209	- 0.01404	0.34722	0.00199	- 0.02021	0.35885	0.00214	- 0.02773
89	0.16666	- 0.00037	- 0.00029	0.16866	- 0.00116	0.00083	0.16921	- 0.00103	0.00081
90	0.15093	0.00043	- 0.00696	0.15115	0.00047	- 0.00397	0.15189	0.00045	- 0.00577
91	0.04110	- 0.00106	0.00017	0.03959	- 0.00159	0.00016	0.04167	- 0.00094	- 0.00023
92	0.01989	- 0.00020	- 0.00016	0.01834	- 0.00047	- 0.00070	0.02091	0.00008	- 0.00001
93	0.03150	- 0.00216	0.00012	0.03184	- 0.00139	- 0.00012	0.03317	- 0.00071	0.00007
94	0.04736	- 0.00155	- 0.00185	0.04945	- 0.00028	- 0.00167	0.05222	0.00016	- 0.00007
95	0.02145	- 0.00021	- 0.00050	0.02333	- 0.00015	- 0.00023	0.02408	0.00002	0.00009
96	0.17576	- 0.00158	0.00028	0.17558	- 0.00193	- 0.00107	0.17729	0.00031	0.00006
97	0.03392	- 0.00079	- 0.00051	0.02978	- 0.00076	- 0.00162	0.03528	- 0.00011	- 0.00054
98	0.04552	- 0.00045	- 0.00185	0.04214	- 0.00077	- 0.00383	0.04394	- 0.00023	- 0.00227
99	0.07825	- 0.00037	- 0.00134	0.07866	0.00027	- 0.00353	0.08390	0.00029	0.00003
2000	0.34889	0.00122	0.00119	0.34626	0.00095	0.00120	0.34796	0.00012	0.00051
79 -00	0.12951	- 0.00169	- 0.00045	0.13086	- 0.00151	- 0.00074	0.13663	- 0.00020	0.00002
Mean	0.12621	- 0.00097	- 0.00136	0.12698	- 0.00109	- 0.00185	0.13069	- 0.00055	- 0.00184
Median	0.10484	- 0.00058	- 0.00026	0.10450	- 0.00075	- 0.00088	0.11672	0.00005	0.00001
Z		- 2.419	- 1.867		- 2.289	- 2.386		0.779	- 0.834
<i>p</i> -value		0.016	0.062		0.022	0.017		0.436	0.404
BNST		0.052	0.523		0.052	0.286		0.832	1.000

Earnings capitalization with losses and sign of changes model (M8): $P_{it} = \boldsymbol{a} + \boldsymbol{b}_1 X_{it} + \boldsymbol{b}_2 D_L X_{it} + \boldsymbol{b}_3 D_N X_{it} + \sum_{i} \boldsymbol{g}_j D_j + u_{it}$, $\boldsymbol{P} = \text{stock price}$, $\boldsymbol{X} = \text{accounting earnings}$ (\boldsymbol{OP} , \boldsymbol{OI} , \boldsymbol{NI}),

 $DX = X_t - X_{t-1}$, $D_L = dummy variable$, 1 for losses and 0 for others. $D_N = dummy variable$, 1 for firms decreasing earnings and 0 for others, $D_j = industry dummy (j = 1, 2, ..., 17)$. For example, OP_L represents the regression model M2, which separates losses form earnings. OP_N represents the regression model M7 (earnings capitalization with sign model). The column "vs. OP_L " represents the difference in AIC between simple earnings capitalization with loss model (M2) with using operating profit as independent variable. Z = V0 wilcoxon test score, BNST = P0-value of binominal sign test.

Table 11 Value relevance of losses and earnings conditional on negative changes

Table 11	Value relevance of losses and earnings conditional on negative changes									
Panel A				Adj. <i>R</i> ² (vs. <i>OP_L</i>)	F test [p-value]					
Year	OP	$D_L OP$	$D_N OP$	(vs. OP_N)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$			
1979	1.5244	- 1.2444	- 0.5677	0.2711	0.3795	5.8423	0.7427			
	(5.617)	(-2.153)	(- 1.667)	(0.0045)	[0.538]	[0.016]	[0.390]			
	[0.000]	[0.032]	[0.097]	(0.0130)						
80	1.1118	- 0.2657	- 0.8068	0.3700	2.8797	0.7522	0.5645			
	(5.207)	(- 0.4696)	(- 2.775)	(0.0149)	[0.091]	[0.387]	[0.453]			
	[0.000]	[0.639]	[0.006]	(- 0.0017)						
81	1.6992	- 0.9087	- 0.8138	0.2907	7.9102	11.371	0.0420			
	(4.832)	(- 3.285)	(- 3.499)	(0.0347)	[0.005]	[0.001]	[0.838]			
	[0.000]	[0.001]	[0.001]	(0.0152)						
82	0.6276	- 0.4596	- 0.0184	0.1669	0.0282	9.1253	0.1656			
	(5.736)	(- 0.975)	(-0.088)	(-0.0028)	[0.867]	[0.003]	[0.684]			
	[0.000]	[0.330]	[0.930]	(-0.0023)						
83	0.7314	- 0.9185	- 0.5783	0.3112	0.1440	0.7790	0.3251			
	(3.020)	(- 1.938)	(-3.053)	(0.0289)	[0.705]	[0.378]	[0.569]			
	[0.003]	[0.054]	[0.002]	(0.0051)						
84	2.2398	- 1.6282	- 1.2536	0.2456	0.4504	4.1188	0.0938			
	(3.875)	(-1.882)	(- 3.459)	(0.0209)	[0.503]	[0.043]	[0.760]			
	[0.000]	[0.061]	[0.001]	(0.0040)						
85	1.1069	- 1.1940	- 0.4776	0.1491	0.0074	1.8202	0.3033			
	(2.741)	(-0.691)	(-1.226)	(0.0012)	[0.932]	[0.178]	[0.582]			
	[0.006]	[0.490]	[0.221]	(0.0004)						
86	1.5152	- 1.1183	- 0.8569	0.1368	0.2279	2.1628	0.0541			
	(2.506)	(- 1.478)	(- 1.755)	(0.0086)	[0.633]	[0.142]	[0.816]			
	[0.013]	[0.141]	[0.080]	(0.0015)						
87	1.1772	- 0.7891	- 0.7798	0.0794	0.1502	0.2917	0.0000			
	(2.144)	(-0.915)	(- 1.413)	(0.0009)	[0.699]	[0.590]	[0.995]			
	[0.033]	[0.361]	[0.159]	(-0.0015)						
88	4.4032	- 5.7653	- 0.1329	0.2563	1.0310	13.097	6.5925			
	(6.313)	(- 4.493)	(-0.131)	(-0.0023)	[0.311]	[0.000]	[0.011]			
	[0.000]	[0.000]	[0.896]	(0.0322)						
89	1.9433	- 2.9314	- 1.6589	0.2247	0.3723	0.0555	0.3498			
	(2.639)	(-1.572)	(-2.250)	(0.0038)	[0.542]	[0.814]	[0.555]			
	[0.009]	[0.117]	[0.025]	(0.0035)						
90	6.4873	- 19.681	- 0.6916	0.2138	9.9102	39.928	17.402			
	(8.908)	(- 1.771)	(-1.053)	(- 0.0004)	[0.002]	[0.000]	[0.000]			
	[0.000]	[0.077]	[0.293]	(0.0382)						
91	1.9090	- 0.3467	- 1.6454	0.1117	1.8762	0.1948	0.7677			
	(4.174)	(-0.276)	(-4.860)	(0.0247)	[0.171]	[0.659]	[0.381]			
	[0.000]	[0.783]	[0.000]	(-0.0018)						
92	1.8637	- 2.5074	- 0.6738	0.2134	0.4306	14.234	2.7632			
	(5.448)	(- 2.444)	(- 2.481)	(0.0093)	[0.512]	[0.000]	[0.097]			
	[0.000]	[0.015]	[0.013]	(0.0078)						

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

Table 11	Value relevance of losses and earnings conditional on negative changes (continued)										
Panel A				Adj. <i>R</i> ² (vs. <i>OP_L</i>)		F test [p-value]					
Year	OP	$D_L OP$	$D_N OP$	(vs. OP_N)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$				
1993	2.5623	0.1875	- 1.7663	0.2218	28.217	8.2635	8.1478				
	(4.808)	(0.351)	(- 4.046)	(0.0550)	[0.000]	[0.004]	[0.005]				
	[0.000]	[0.726]	[0.000]	(-0.0015)							
94	3.0271	- 2.5180	- 1.4400	0.2263	1.5060	17.238	2.4630				
	(6.076)	(- 3.006)	(-3.109)	(0.0268)	[0.220]	[0.000]	[0.117]				
	[0.000]	[0.003]	[0.002]	(0.0318)							
95	1.9802	- 1.6528	- 0.7539	0.2243	0.8951	12.697	2.2016				
	(6.238)	(-2.275)	(-1.302)	(0.0092)	[0.345]	[0.000]	[0.139]				
	[0.000]	[0.023]	[0.194]	(0.0198)							
96	0.8351	1.1721	- 1.6052	0.0096	5.3622	1.0013	3.9380				
	(1.911)	(0.988)	(-2.900)	(0.0108)	[0.021]	[0.317]	[0.048]				
	[0.057]	[0.324]	[0.004]	(0.0002)							
97	3.2713	- 1.9660	- 1.2916	0.3294	6.7351	22.099	0.7884				
	(10.05)	(-2.774)	(- 3.419)	(0.0168)	[0.010]	[0.000]	[0.375]				
	[0.000]	[0.006]	[0.001]	(0.0114)							
98	2.7892	- 2.0776	- 0.7084	0.2839	5.3036	39.693	6.0867				
	(8.052)	(- 3.690)	(-2.122)	(0.0083)	[0.022]	[0.000]	[0.014]				
	[0.000]	[0.000]	[0.034]	(0.0304)							
99	2.0445	- 1.3817	- 0.6233	0.2412	4.0049	18.295	1.6158				
	(6.086)	(- 2.096)	(- 1.470)	(0.0050)	[0.046]	[0.000]	[0.204]				
	[0.000]	[0.037]	[0.142]	(0.0144)							
2000	0.5262	0.2387	- 0.1168	0.0586	1.3748	0.3518	0.0870				
	(1.489)	(0.402)	(- 0.271)	(- 0.0016)	[0.241]	[0.553]	[0.768]				
	[0.137]	[0.688]	[0.786]	(-0.0015)							
79 - 00	1.4859	- 0.7779	- 0.8528	0.3073	36.377	49.976	0.1659				
	(11.13)	(- 4.287)	(- 8.943)	(0.0091)	[0.000]	[0.000]	[0.684]				
	[0.000]	[0.000]	[0.000]	(0.0025)							
Mean				0.2107							
(vs. OP_L)				(0.0126)							
(vs. OP_N))			(0.0099)							
Median				0.2245							
(vs. OP_L)				(0.0089)	Z = 3.587	p = 0.000					
(vs. OP_N))			(0.0046)	Z = 2.938	p = 0.003					
BNST											
(vs. OP_L)				p = 0.004							
(vs. OP_N))			p = 0.052							

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

Table 11	Value relevance of losses and earnings conditional on negative changes (continued)										
Panel B				Adj. <i>R</i> ² (vs. <i>OI_L</i>)		F test [p-value]					
Year	OI	$D_L OI$	$D_N OI$	(vs. 0I_N)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$				
1979	1.4420	- 1.3664	- 0.4014	0.1876	0.0143	2.2135	0.5632				
	(3.862)	(-2.028)	(-0.760)	(-0.0016)	[0.905]	[0.138]	[0.454]				
	[0.000]	[0.044]	[0.448]	(0.0070)		. ,					
80	1.3032	- 0.3683	- 0.9252	0.3005	6.4130	0.7593	0.6230				
	(3.330)	(- 0.640)	(- 2.943)	(0.0186)	[0.012]	[0.384]	[0.431]				
	[0.001]	[0.523]	[0.004]	(- 0.0011)							
81	2.5553	- 1.1960	- 1.3864	0.3499	16.555	9.9922	0.0890				
	(5.286)	(- 2.544)	(- 3.727)	(0.0439)	[0.000]	[0.002]	[0.766]				
	[0.000]	[0.011]	[0.000]	(0.0174)							
82	0.4621	0.5691	- 0.5945	0.1379	4.7498	0.2074	2.8580				
	(2.788)	(1.333)	(- 2.747)	(0.0137)	[0.030]	[0.649]	[0.092]				
	[0.006]	[0.184]	[0.006]	(0.0004)							
83	0.7849	- 0.3933	- 0.6032	0.2761	1.4187	0.5901	0.1674				
	(2.898)	(-1.162)	(-2.519)	(0.0165)	[0.235]	[0.443]	[0.683]				
	[0.004]	[0.246]	[0.012]	(0.0005)							
84	3.1378	- 1.7034	- 1.8035	0.2565	4.4692	4.5231	0.0074				
	(5.443)	(-2.164)	(- 3.809)	(0.0259)	[0.035]	[0.034]	[0.932]				
	[0.000]	[0.031]	[0.000]	(0.0077)							
85	0.9085	- 0.9189	- 1.1204	0.1351	0.0001	0.0776	0.0188				
	(1.665)	(- 0.645)	(- 1.879)	(0.0062)	[0.991]	[0.781]	[0.891]				
	[0.097]	[0.519]	[0.061]	(- 0.0009)							
86	2.0002	- 2.4891	- 0.4656	0.1487	0.3917	5.8107	2.4737				
	(2.858)	(-2.584)	(- 0.774)	(-0.0007)	[0.532]	[0.017]	[0.117]				
	[0.005]	[0.010]	[0.439]	(0.0176)							
87	1.9243	- 0.4667	- 1.7652	0.0938	1.5778	0.0265	0.4465				
	(2.798)	(-0.413)	(-2.001)	(0.0091)	[0.210]	[0.871]	[0.505]				
	[0.005]	[0.680]	[0.046]	(- 0.0026)							
88	5.3838	- 7.1677	0.3753	0.2584	1.8204	15.743	9.2661				
	(7.061)	(- 4.959)	(0.270)	(-0.0021)	[0.178]	[0.000]	[0.003]				
	[0.000]	[0.000]	[0.788]	(0.0454)							
89	0.9045	- 1.0490	- 2.4792	0.2154	0.0068	1.1894	0.3443				
	(1.096)	(- 0.544)	(-3.178)	(0.0075)	[0.934]	[0.276]	[0.558]				
	[0.274]	[0.587]	[0.002]	(-0.0018)							
90	6.6968	- 12.478	- 0.6715	0.2126	2.9196	39.466	10.050				
	(9.119)	(- 4.719)	(- 1.047)	(-0.0007)	[0.088]	[0.000]	[0.002]				
	[0.000]	[0.000]	[0.296]	(0.0225)							
91	2.5072	- 0.1672	- 2.0926	0.1444	17.342	0.4575	3.2888				
	(5.065)	(-0.253)	(- 5.894)	(0.0362)	[0.000]	[0.499]	[0.070]				
	[0.000]	[0.801]	[0.000]	(- 0.0018)							
92	2.8264	- 2.5360	- 1.0670	0.2746	0.3829	27.323	4.9556				
	(8.825)	(- 3.223)	(-3.372)	(0.0199)	[0.536]	[0.000]	[0.026]				
	[0.000]	[0.001]	[0.001]	(0.0290)							

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

Table 11	Value relevance of losses and earnings conditional on negative changes (continued)										
Panel B				Adj. R ²							
				(vs. 0I_L)		F test [p-value]					
Year	OI	$oldsymbol{D}_L oldsymbol{OI}$	$\mathbf{\textit{D}}_{N}\mathbf{\textit{OI}}$	(vs. <i>OI_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$				
1993	2.7745	- 0.9928	- 1.5006	0.2136	17.659	14.690	0.5999				
	(7.650)	(- 1.999)	(-4.275)	(0.0359)	[0.000]	[0.000]	[0.439]				
	[0.000]	[0.046]	[0.000]	(0.0045)							
94	2.7714	- 2.4183	- 0.7584	0.1920	0.9304	20.962	5.5997				
	(4.662)	(-3.100)	(- 1.734)	(0.0060)	[0.335]	[0.000]	[0.018]				
	[0.000]	[0.002]	[0.084]	(0.0288)							
95	1.3645	- 1.1006	- 0.7091	0.1561	0.8351	3.0783	0.4575				
	(3.761)	(- 1.898)	(-1.953)	(0.0071)	[0.361]	[0.080]	[0.499]				
	[0.000]	[0.058]	[0.051]	(0.0097)							
96	- 0.0071	2.4624	- 1.7989	0.0106	9.6738	4.4007	8.5499				
	(-0.012)	(1.927)	(-3.606)	(0.0127)	[0.002]	[0.036]	[0.004]				
	[0.991]	[0.055]	[0.000]	(0.0079)							
97	4.1991	- 3.1404	- 1.3983	0.4112	5.8088	40.651	5.4934				
	(12.67)	(- 4.474)	(- 3.437)	(0.0161)	[0.016]	[0.000]	[0.019]				
	[0.000]	[0.000]	[0.001]	(0.0330)			. ,				
98	3.6833	- 2.8712	- 0.8786	0.3371	8.7469	65.752	13.272				
	(9.369)	(- 5.203)	(-2.467)	(0.0133)	[0.003]	[0.000]	[0.000]				
	[0.000]	[0.000]	[0.014]	(0.0615)							
99	2.1352	- 2.0162	- 0.0862	0.2372	0.2171	35.339	13.214				
	(4.703)	(-3.065)	(-0.276)	(-0.0013)	[0.641]	[0.000]	[0.000]				
	[0.000]	[0.002]	[0.783]	(0.0356)							
2000	1.0170	- 0.1857	- 0.4143	0.0657	2.0632	0.6384	0.0361				
	(2.537)	(-0.282)	(- 0.974)	(-0.0009)	[0.151]	[0.425]	[0.849]				
	[0.011]	[0.778]	[0.330]	(- 0.0016)							
79 - 00	1.8317	- 1.0091	- 0.9949	0.3001	55.977	51.802	0.0047				
	(10.42)	(-4.510)	(- 7.886)	(0.0081)	[0.000]	[0.000]	[0.946]				
	[0.000]	[0.000]	[0.000]	(0.0040)							
Mean				0.2098							
(vs. 0 I_L)				(0.0128)							
(vs. <i>OI_N</i>)				(0.0145)							
Median				0.2131							
(vs. <i>OI_L</i>)				(0.0109)	Z = 3.425	p = 0.001					
(vs. <i>OI_N</i>)				(0.0078)	Z = 3.036	p = 0.002					
BNST											
(vs. 0I_L)				p = 0.052							
(vs. <i>OI_N</i>)				p = 0.052							

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

Table 11	Value relevance of losses and earnings conditional on negative changes (continued)										
Panel C				Adj. <i>R</i> ² (vs. <i>NI_L</i>)		F test [p-value]					
Year	NI	$D_L NI$	$D_N NI$	(vs. <i>NI_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$				
1979	1.9515	2.0478	- 4.1563	0.2434	8.7094	2.4637	5.1331				
	(5.844)	(2.421)	(- 5.324)	(0.0228)	[0.003]	[0.118]	[0.024]				
	[0.000]	[0.016]	[0.000]	(0.0029)							
80	1.4534	1.6358	- 2.5536	0.2891	13.492	1.5044	6.3515				
	(3.091)	(2.030)	(-4.207)	(0.0260)	[0.000]	[0.221]	[0.012]				
	[0.002]	[0.043]	[0.000]	(0.0043)							
81	0.7253	1.4183	- 1.9673	0.2179	9.5229	3.3288	6.3108				
	(1.377)	(1.906)	(- 3.219)	(0.0221)	[0.002]	[0.069]	[0.013]				
	[0.170]	[0.058]	[0.001]	(0.0077)							
82	0.6001	0.6680	- 0.9796	0.1276	3.5444	0.5295	2.1676				
	(4.231)	(1.240)	(-2.157)	(0.0084)	[0.061]	[0.467]	[0.142]				
	[0.000]	[0.216]	[0.032]	(- 0.0004)							
83	0.6470	- 0.3432	- 0.6624	0.2419	0.3847	0.0020	0.1791				
	(2.504)	(-0.714)	(- 2.265)	(0.0077)	[0.536]	[0.965]	[0.672]				
	[0.013]	[0.476]	[0.024]	(- 0.0015)							
84	3.2377	- 4.2323	1.2245	0.1784	0.5994	13.327	5.3826				
	(4.604)	(-2.118)	(0.634)	(0.0006)	[0.439]	[0.000]	[0.021]				
	[0.000]	[0.035]	[0.526]	(0.0202)							
85	0.2354	1.8588	- 1.5700	0.1251	1.9947	0.9359	1.5168				
	(0.462)	(1.523)	(- 1.677)	(0.0012)	[0.159]	[0.334]	[0.219]				
	[0.644]	[0.129]	[0.095]	(0.0012)							
86	2.6962	- 1.4340	- 1.1670	0.1285	0.9066	1.3652	0.0118				
	(3.005)	(-1.060)	(-1.218)	(0.0002)	[0.342]	[0.244]	[0.914]				
	[0.003]	[0.290]	[0.224]	(- 0.0004)							
87	1.2142	2.0064	- 2.1711	0.0807	3.1185	0.2591	1.4570				
	(1.103)	(0.951)	(- 1.374)	(0.0022)	[0.078]	[0.611]	[0.228]				
	[0.271]	[0.342]	[0.170]	(- 0.0002)							
88	9.7376	- 10.775	- 0.2629	0.2335	0.5468	19.922	12.036				
	(6.365)	(- 5.329)	(-0.173)	(-0.0025)	[0.460]	[0.000]	[0.001]				
	[0.000]	[0.000]	[0.863]	(0.0615)							
89	0.1343	1.1406	- 4.1353	0.2128	0.4027	3.5270	2.3840				
	(1.378)	(1.196)	(-2.812)	(0.0069)	[0.526]	[0.061]	[0.124]				
	[0.169]	[0.233]	[0.005]	(- 0.0017)							
90	11.958	- 21.779	1.4701	0.2087	3.8072	43.823	14.725				
	(6.343)	(-4.812)	(1.068)	(- 0.0006)	[0.052]	[0.000]	[0.000]				
	[0.000]	[0.000]	[0.286]	(0.0319)							
91	1.2381	2.3495	- 3.3488	0.0994	13.089	3.7448	7.9241				
	(1.243)	(2.015)	(- 4.549)	(0.0222)	[0.000]	[0.054]	[0.005]				
	[0.215]	[0.044]	[0.000]	(0.0068)							
92	1.6309	- 1.0467	- 0.0259	0.1732	0.8590	6.9852	0.8319				
	(2.201)	(- 1.139)	(- 0.042)	(-0.0018)	[0.355]	[0.008]	[0.362]				
	[0.028]	[0.255]	[0.966]	(0.0018)							

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

	value relevance of losses and earnings conditional on negative changes (continuea)											
Panel C				Adj. <i>R</i> ² (vs. <i>NI_L</i>)		F test [p-value]						
Year	NI	$oldsymbol{D}_L oldsymbol{N} oldsymbol{I}$	$D_N NI$	(vs. NI_N)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_2 = \boldsymbol{b}_3$					
193	3.3633	- 0.7209	- 2.2291	0.1806	14.410	2.9657	1.4352					
	(4.455)	(- 0.860)	(- 3.076)	(0.0190)	[0.000]	[0.086]	[0.232]					
	[0.000]	[0.390]	[0.002]	(- 0.0001)								
94	2.0819	- 1.3075	- 0.3512	0.1468	2.0384	5.3201	0.6670					
	(2.183)	(-1.212)	(-0.593)	(-0.0011)	[0.154]	[0.022]	[0.414]					
	[0.030]	[0.226]	[0.553]	(0.0027)								
95	0.9576	- 0.0391	- 0.6295	0.1292	3.0940	0.2891	0.3109					
	(1.615)	(- 0.039)	(-1.013)	(0.0009)	[0.079]	[0.591]	[0.577]					
	[0.107]	[0.969]	[0.312]	(- 0.0017)								
96	0.3963	1.5086	- 0.9594	0.0010	3.8645	0.3259	1.9747					
	(0.558)	(1.345)	(- 1.424)	(0.0001)	[0.050]	[0.568]	[0.161]					
	[0.577]	[0.179]	[0.155]	(0.0015)								
97	3.9139	- 2.1885	- 0.9559	0.3025	11.612	19.963	1.3085					
	(2.578)	(-1.281)	(- 1.758)	(0.0033)	[0.001]	[0.000]	[0.253]					
	[0.010]	[0.201]	[0.079]	(0.0120)								
98	5.0136	- 3.5997	- 1.0567	0.3087	7.7380	40.311	5.9617					
	(7.985)	(-4.337)	(- 1.961)	(0.0048)	[0.006]	[0.000]	[0.015]					
	[0.000]	[0.000]	[0.050]	(0.0369)								
99	0.7243	- 0.5146	0.0599	0.1864	0.6479	4.2033	0.9502					
	(1.440)	(-1.031)	(0.495)	(-0.0015)	[0.421]	[0.041]	[0.330]					
	[0.150]	[0.303]	[0.621]	(0.0011)								
2000	0.2331	- 0.5087	0.5942	0.0611	0.3925	2.9172	1.5115					
	(1.998)	(-0.758)	(0.918)	(0.0013)	[0.531]	[0.088]	[0.219]					
	[0.046]	[0.449]	[0.359]	(0.0003)								
79 - 00	0.8591	- 0.1145	- 0.5641	0.2692	25.552	3.4852	2.3278					
	(2.604)	(- 0.269)	(-2.012)	(0.0011)	[0.000]	[0.062]	[0.127]					
	[0.009]	[0.788]	[0.044]	(- 0.0001)								
Mean				0.1762								
(vs. NI_L)				(0.0065)								
(vs. <i>NI_N</i>)				(0.0085)								
Median				0.1795								
(vs. <i>NI_L</i>)				(0.0018)	Z = 2.792	p = 0.005						
(vs. <i>NI_N</i>)				(0.0017)	Z = 2.776	p = 0.006						
BNST												
(vs. NI_L)				p = 0.017								
(vs. <i>NI_N</i>)				p = 0.134								

Table 11 Value relevance of losses and earnings conditional on negative changes (continued)

Panel D		(1) 0	$P_{\perp}LN$			(2) 01	$\underline{L}N$		(3) NI_LN			
	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.23	(0.243)	12.29	(0.006)	2.79	(0.000)	221.71	(0.000)	2.09	(0.008)	31.12	(0.000)
80	8.43	(0.000)	57.61	(0.000)	7.50	(0.000)	21.28	(0.000)	6.51	(0.000)	49.70	(0.000)
81	4.80	(0.000)	6.32	(0.097)	3.55	(0.000)	12.79	(0.005)	4.62	(0.000)	0.33	(0.954)
82	3.38	(0.000)	1.19	(0.755)	3.41	(0.000)	4.54	(0.209)	3.34	(0.000)	29.08	(0.000)
83	6.72	(0.000)	91.46	(0.000)	6.14	(0.000)	13.85	(0.003)	6.06	(0.000)	15.08	(0.002)
84	3.45	(0.000)	292.89	(0.000)	3.38	(0.000)	111.18	(0.000)	3.36	(0.000)	86.97	(0.000)
85	3.20	(0.000)	5.26	(0.154)	3.69	(0.000)	0.44	(0.932)	3.61	(0.000)	10.35	(0.016)
86	3.26	(0.000)	0.35	(0.951)	3.31	(0.000)	4.72	(0.193)	3.14	(0.000)	8.40	(0.038)
87	2.19	(0.005)	21.15	(0.000)	2.00	(0.011)	11.47	(0.010)	2.41	(0.002)	20.11	(0.000)
88	2.72	(0.000)	17.92	(0.001)	3.35	(0.000)	111.82	(0.000)	3.39	(0.000)	115.38	(0.000)
89	4.70	(0.000)	136.17	(0.000)	5.48	(0.000)	294.39	(0.000)	6.11	(0.000)	32.57	(0.000)
90	3.39	(0.000)	106.36	(0.000)	3.26	(0.000)	118.74	(0.000)	3.28	(0.000)	173.10	(0.000)
91	2.59	(0.001)	9.07	(0.028)	2.79	(0.000)	5.74	(0.125)	2.89	(0.000)	2.00	(0.573)
92	6.26	(0.000)	94.38	(0.000)	6.03	(0.000)	5.45	(0.142)	5.82	(0.000)	4.10	(0.251)
93	3.42	(0.000)	5.22	(0.156)	3.54	(0.000)	14.42	(0.002)	4.54	(0.000)	14.37	(0.002)
94	6.34	(0.000)	2,724.50	(0.000)	5.94	(0.000)	247.79	(0.000)	5.51	(0.000)	22.80	(0.000)
95	4.81	(0.000)	46.89	(0.000)	4.84	(0.000)	14.31	(0.003)	4.63	(0.000)	234.67	(0.000)
96	0.84	(0.645)	2.35	(0.504)	0.81	(0.685)	5.30	(0.151)	0.93	(0.637)	3.60	(0.308)
97	6.60	(0.000)	29.32	(0.000)	5.97	(0.000)	5.35	(0.148)	5.93	(0.000)	32.42	(0.000)
98	6.68	(0.000)	16.69	(0.001)	6.12	(0.000)	11.74	(0.008)	5.84	(0.000)	6.12	(0.106)
99	5.62	(0.000)	78.33	(0.000)	5.34	(0.000)	106.19	(0.000)	6.73	(0.000)	12.93	(0.005)
2000	2.82	(0.000)	56.63	(0.000)	2.92	(0.000)	21.47	(0.000)	2.87	(0.000)	9.30	(0.026)

Earnings capitalization with losses and sign of changes model (M8): $P_{it} = \mathbf{a} + \mathbf{b}_1 X_{it} + \mathbf{b}_2 D_L X_{it} + \mathbf{b}_3 D_N X_{it} + \sum_{i} \mathbf{g}_j D_j + u_{it}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}),

 $DX = X_t - X_{t-1}$, $D_L = \text{dummy variable}$, 1 for losses and 0 for others. $D_N = \text{dummy variable}$, 1 for firms decreasing earnings and 0 for others, $D_j = \text{industry dummy } (j = 1, 2, ..., 17)$. For example, OP_L represents the regression model M2, which separates losses form earnings. OP_N represents the regression model M7 (earnings capitalization with sign model). Each cell on the left-hand side in Panels through A to C shows as follows: Top = Estimated Coefficients, (Middle) = t-value using heteroscedasticity-consistent covariance matrix

(White's t), [Bottom] = p-value (two-tailed). The column "vs. $\mathbf{OP}_{-}\mathbf{L}$ " represents the difference in adjusted R-square between simple earnings capitalization with loss model (M2) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

AIC comparison between models

	Operatir	ng Profits	Ordinar	y Income	Net I	псоте
Year	D OP_BSN	vs. D OP_N	D OI_BSN	vs. D 01_N	DNI_BSN	vs. D NI_N
1979	0.21765	- 0.00062	0.20073	- 0.00297	0.23705	- 0.00240
80	0.09575	- 0.00080	0.09719	- 0.00297	0.10141	- 0.00356
81	0.12023	0.00126	0.11879	0.00075	0.12717	0.00107
82	0.05799	0.00022	0.05844	0.00072	0.05946	0.00076
83	0.05574	0.00059	0.05605	- 0.00034	0.06004	0.00001
84	0.25703	- 0.00038	0.25594	- 0.00065	0.28938	- 0.00365
85	0.13826	- 0.00002	0.13472	- 0.00094	0.14649	- 0.00088
86	0.13225	0.00043	0.13124	- 0.00049	0.13668	0.00088
87	0.18943	0.00202	0.18832	0.00073	0.18672	0.00043
88	0.32786	0.00345	0.30532	0.00331	0.37828	0.00248
89	0.15793	0.00169	0.16191	0.00143	0.16406	- 0.00378
90	0.15890	0.00139	0.15586	0.00103	0.16510	0.00060
91	0.04118	0.00023	0.03927	- 0.00017	0.04327	0.00019
92	0.02123	0.00013	0.02074	0.00008	0.02119	- 0.00048
93	0.03226	- 0.00022	0.03218	- 0.00095	0.03400	- 0.00196
94	0.04697	- 0.00011	0.04601	- 0.00010	0.05083	- 0.00076
95	0.02208	0.00002	0.02176	- 0.00005	0.02449	0.00011
96	0.16790	0.00124	0.16940	- 0.00029	0.17354	0.00081
97	0.03974	0.00022	0.03981	- 0.00013	0.04079	0.00018
98	0.05016	- 0.00093	0.04944	- 0.00095	0.05231	- 0.00021
99	0.08277	- 0.00126	0.08435	0.00029	0.08442	0.00027
2000	0.34439	0.00065	0.34464	0.00088	0.34524	- 0.00304
79 - 00	0.13123	- 0.00010	0.13141	- 0.00029	0.13656	- 0.00060
Mean	0.12535	0.00042	0.12328	- 0.00008	0.13281	- 0.00026
Median	0.10799	0.00022	0.10799	- 0.00012	0.11429	0.00014
Z		1.591		- 0.276		0.146
<i>p</i> -value		0.112		0.783		0.884
BNST		0.286		0.523		0.523

$$\frac{\mathbf{D}P_{ii}}{P_{ii-1}} = \mathbf{a} + \mathbf{b}_1 \frac{\mathbf{D}X_{ii}}{P_{ii-1}} + \mathbf{b}_2 D_{BS} \frac{\mathbf{D}X_{ii}}{P_{ii-1}} + \mathbf{b}_3 D_N \frac{\mathbf{D}X_{ii}}{P_{ii-1}} + \mathbf{b}_4 D_{BS} D_N \frac{\mathbf{D}X_{ii}}{P_{ii-1}} + \sum_{j} \mathbf{g}_j D_j + u_{ii}, \mathbf{P} = \text{stock price}, \mathbf{X} = \text{accounting}$$

earnings ($\textbf{\textit{OP}}, \textbf{\textit{OI}}, \textbf{\textit{NI}}$), $\textbf{\textit{D}}\textbf{\textit{X}} = \textbf{\textit{X}}_{t-1}, \textbf{\textit{D}}_{BS} = \text{dummy variable}, 1 \text{ when } \left| \textbf{\textit{D}}\textbf{\textit{X}}_{it} / P_{it-1} \right| \text{ is greater than median in each an early of the second of the se$

industry and 0 for others. D_N = dummy variable, 1 for firms decreasing earnings and 0 for others, D_i = industry dummy (j = 1, 2, ..., 17). For, example, **DOP_N** represents the regression model M7 (earnings changes with sign model). The column "vs. **DOP_N**" represents the difference in AIC between earnings changes with sign model (M6) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test.

Table 13 Value relevance of large and negative earnings changes

Panel A							F test [p -value]				
Year	D OP	D _{BS} D OP	D _N D OP	$oldsymbol{D}_{BS}oldsymbol{D}_N$ $oldsymbol{D}$ $oldsymbol{OP}$	Adj. <i>R</i> ² (vs. <i>D OP_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$		
1979	- 0.2710 (- 0.272) [0.786]	1.7557 (1.895) [0.059]	2.1917 (1.118) [0.265]	- 3.3407 (- 1.922) [0.056]	0.3119 (0.0062)	61.744 [0.000]	1.4929 [0.223]	0.9953 [0.319]	1.3860 [0.240]		
80	0.7893 (0.592) [0.555]	- 0.1352 (- 0.120) [0.905]	3.4793 (1.306) [0.193]	- 3.5523 (- 1.509) [0.132]	0.3100 (0.0100)	15.484 [0.000]	7.0816 [0.008]	1.3250 [0.251]	5.6399 [0.018]		
81	4.2248 (2.987) [0.003]	- 0.9136 (- 0.657) [0.512]	- 4.9464 (- 2.046) [0.042]	1.4312 (0.801) [0.424]	0.3095 (- 0.0030)	56.923 [0.000]	0.1394 [0.709]	0.6544 [0.419]	0.0763 [0.783]		
82	- 1.6750 (- 1.998) [0.047]	1.7084 (2.128) [0.034]	4.0741 (2.506) [0.013]	- 3.3818 (- 2.236) [0.026]	0.1270 (0.0020)	0.0925 [0.761]	2.7820 [0.096]	6.006 [0.015]	1.5608 [0.213]		
83	0.1873 (0.133) [0.894]	0.8332 (0.599) [0.550]	1.2351 (0.678) [0.498]	- 1.4205 (- 0.857) [0.392]	0.2926 (-0.0033)	15.994 [0.000]	2.1332 [0.145]	10.641 [0.001]	0.4629 [0.497]		
84	11.193 (2.472) [0.014]	- 8.0518 (- 1.820) [0.070]	- 14.442 (- 2.300) [0.022]	11.853 (2.019) [0.044]	0.2125 (0.0059)	34.102 [0.000]	0.6066 [0.437]	1.1612 [0.282]	0.8953 [0.345]		
85	0.4559 (0.187) [0.852]	1.7845 (0.809) [0.419]	- 4.6369 (- 0.749) [0.455]	3.2621 (0.566) [0.572]	0.2050 (0.0048)	19.135 [0.000]	1.1966 [0.275]	1.9029 [0.169]	1.9227 [0.167]		
86	5.7257 (1.835) [0.067]	- 2.5244 (- 0.798) [0.425]	- 8.4041 (- 1.905) [0.058]	5.4330 (1.294) [0.197]	0.1768 (0.0022)	24.662 [0.000]	1.9316 [0.166]	0.2563 [0.613]	2.7104 [0.101]		
87	3.0357 (0.727) [0.468]	- 3.0560 (- 0.765) [0.445]	- 3.4394 (- 0.601) [0.548]	4.0152 (0.754) [0.451]	0.0709 (-0.0045)	0.0005 [0.982]	0.0226 [0.881]	0.7745 [0.380]	0.1661 [0.684]		

 Table 13
 Value relevance of large and negative earnings changes (continued)

anel A							F test	p-value]	
Year	D OP	D _{BS} D OP	D_N D OP	$oldsymbol{D}_{BS}oldsymbol{D}_N$ $oldsymbol{D}$ $oldsymbol{OP}$	Adj. <i>R</i> ² (vs. D <i>OP_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1988	9.6875 (2.348) [0.020]	- 2.6186 (- 0.662) [0.509]	- 11.186 (- 1.586) [0.114]	2.3542 (0.424) [0.672]	0.2712 (-0.0036)	47.759 [0.000]	0.0704 [0.791]	1.1740 [0.279]	0.0024 [0.961]
89	3.2164 (0.726) [0.469]	2.1467 (0.558) [0.577]	- 2.5936 (- 0.262) [0.793]	- 1.5078 (- 0.169) [0.866]	0.2649 (-0.0039)	21.641 [0.000]	0.0040 [0.949]	0.2518 [0.616]	0.0044 [0.947]
90	7.2866 (0.940) [0.348]	2.8000 (0.391) [0.696]	- 13.640 (- 0.977) [0.329]	1.0202 (0.080) [0.936]	0.1727 (- 0.0035)	52.284 [0.000]	0.3947 [0.530]	1.2140 [0.271]	0.1615 [0.688]
91	4.4125 (1.072) [0.284]	0.7592 (0.191) [0.849]	2.7301 (0.324) [0.746]	- 6.5151 (- 0.834) [0.405]	0.1117 (- 0.0013)	15.479 [0.000]	1.8045 [0.180]	1.1608 [0.282]	1.3249 [0.250]
92	- 0.6378 (- 0.245) [0.806]	1.2859 (0.525) [0.600]	4.8426 (1.212) [0.226]	- 3.5031 (- 0.984) [0.325]	0.1619 (-0.0020)	1.2216 [0.270]	2.4541 [0.118]	10.769 [0.001]	0.8081 [0.369]
93	8.6617 (2.738) [0.006]	- 5.7361 (- 1.801) [0.072]	- 5.2172 (- 1.405) [0.161]	4.3012 (1.244) [0.214]	0.2046 (0.0083)	10.295 [0.001]	6.2262 [0.013]	31.600 [0.000]	1.3747 [0.242]
94	9.3490 (4.037) [0.000]	- 5.7157 (- 2.376) [0.018]	- 6.6430 (- 1.967) [0.050]	4.7031 (1.505) [0.133]	0.2340 (0.0047)	31.859 [0.000]	1.9639 [0.162]	17.025 [0.000]	0.3226 [0.570]
95	1.6169 (0.961) [0.337]	0.1950 (0.126) [0.900]	3.5060 (1.160) [0.247]	-4.2967 (-1.552) [0.121]	0.2030 (0.0023)	33.758 [0.000]	4.8147 [0.029]	5.3554 [0.021]	3.3053 [0.070]
96	1.2740 (0.450) [0.653]	1.5152 (0.582) [0.561]	2.1139 (0.467) [0.641]	- 1.4953 (- 0.378) [0.705]	0.0556 (-0.0036)	11.267 [0.001]	0.6286 [0.428]	15.158 [0.000]	0.0000 [0.996]

 Table 13
 Value relevance of large and negative earnings changes (continued)

anel A							F test [p-value]	
Year	D OP	D_{BS} DOP	D_N D OP	$\mathbf{\textit{D}}_{BS}\mathbf{\textit{D}}_{N}$ $\mathbf{\textit{D}}$ $\mathbf{\textit{OP}}$	Adj. <i>R</i> ² (vs. D <i>OP_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_2 + \boldsymbol{b}_3 + \boldsymbol{b}_4 = 0$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1997	2.6873	- 2.065	0.6353	1.9322	0.2157	2.0356	2.6956	26.692	0.0043
	(0.832) [0.406]	(- 0.673) [0.501]	(0.145) [0.885]	(0.475) [0.635]	(-0.0015)	[0.154]	[0.101]	[0.000]	[0.948]
98	10.976	- 9.5202	- 9.1440	8.6919	0.2123	14.193	0.6262	15.086	0.1362
	(3.838) [0.000]	(-3.389) [0.001]	(- 2.409) [0.016]	(2.429) [0.015]	(0.0175)	[0.000]	[0.429]	[0.000]	[0.712]
99	6.5800	- 6.3407	- 4.8248	5.3308	0.1987	1.5394	2.1663	8.8581	0.8373
	(2.406) [0.016]	(- 2.332) [0.020]	(- 1.578) [0.115]	(1.804) [0.072]	(0.0150)	[0.215]	[0.142]	[0.003]	[0.361]
2000	- 0.5794	0.8103	8.7253	- 6.3869	0.0723	0.6334	5.5317	7.9692	2.8335
	(-0.302) [0.763]	(0.452) [0.651]	(2.402) [0.017]	(-2.021) [0.044]	(0.0014)	[0.426]	[0.019]	[0.005]	[0.093]
79 - 00	1.4519	- 0.3021	0.4943	- 0.8853	0.2957	341.22	23.412	77.978	9.1978
	(2.973) [0.003]	(- 0.696) [0.487]	(0.603) [0.546]	(- 1.290) [0.197]	(0.0007)	[0.000]	[0.000]	[0.000]	[0.002]
Mean					0.1998 (0.0023)				
Median					0.2048 (0.0017)	Z = 1.331	p = 0.183		
BNST					p = 0.832				

 Table 13
 Value relevance of large and negative earnings changes (continued)

el B					2		F test [<i>p</i> -value]	
Year	DOI	D_{BS} D OI	D_N D OI	$oldsymbol{D}_{BS}oldsymbol{D}_N$ $oldsymbol{D}$ $oldsymbol{OI}$	Adj. <i>R</i> ² (vs. <i>D 01_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1979	- 0.6033 (- 0.669) [0.504]	2.1847 (2.669) [0.008]	3.8091 (1.700) [0.090]	-4.9210 (-2.471) [0.014]	0.3654 (0.0134)	78.100 [0.000]	3.7381 [0.054]	2.3740 [0.125]	3.5051 [0.062]
80	0.4781 (0.313) [0.754]	- 0.1050 (- 0.074) [0.941]	5.5417 (2.375) [0.018]	-4.9165 (-2.325) [0.021]	0.2996 (0.0258)	4.9056 [0.028]	16.941 [0.000]	3.0649 [0.081]	12.083 [0.001]
81	4.1606 (2.735) [0.007]	- 1.3471 (- 0.926) [0.355]	- 3.2589 (- 1.146) [0.253]	0.3912 (0.173) [0.863]	0.3177 (-0.0002)	58.612 [0.000]	0.1483 [0.700]	0.0667 [0.796]	0.1741 [0.677]
82	-0.3743 (-0.345) [0.730]	0.4508 (0.426) [0.670]	1.5214 (0.696) [0.487]	- 0.8780 (- 0.406) [0.685]	0.1201 (-0.0056)	0.6159 [0.433]	0.4414 [0.507]	4.5622 [0.034]	0.0686 [0.794]
83	3.4157 (1.582) [0.115]	- 2.7589 (- 1.302) [0.194]	- 1.5813 (- 0.627) [0.531]	1.7156 (0.727) [0.468]	0.2887 (0.0086)	8.0349 [0.005]	2.9395 [0.088]	9.6066 [0.002]	1.1577 [0.283]
84	6.3449 (1.629) [0.104]	- 3.9202 (- 1.027) [0.305]	3.8136 (0.603) [0.547]	- 5.0932 (- 0.846) [0.398]	0.2158 (0.0067)	30.209 [0.000]	3.3475 [0.068]	4.2227 [0.040]	2.7495 [0.098]
85	- 2.8206 (- 1.327) [0.185]	4.8678 (2.533) [0.012]	3.6205 (0.614) [0.539]	- 4.2874 (- 0.762) [0.447]	0.2253 (0.0100)	17.950 [0.000]	0.0443 [0.833]	3.6020 [0.059]	0.0248 [0.875]
86	11.221 (2.680) [0.008]	- 8.1886 (- 1.873) [0.062]	- 9.5936 (- 1.660) [0.098]	6.8777 (1.191) [0.235]	0.1831 (0.0078)	20.827 [0.000]	0.3100 [0.578]	0.3081 [0.579]	0.2352 [0.628]
87	5.1612 (0.806) [0.421]	- 4.8831 (- 0.775) [0.439]	- 8.8045 (- 1.113) [0.267]	8.8763 (1.173) [0.242]	0.0763 (0.0018)	0.1329 [0.716]	1.8346 [0.177]	0.4296 [0.513]	2.5251 [0.113]

 Table 13
 Value relevance of large and negative earnings changes (continued)

el B								p-value]	
Year	D OI	D_{BS} D OI	$D_N DOI$	$oldsymbol{D}_{BS}oldsymbol{D}_N$ $oldsymbol{D}$ $oldsymbol{OI}$	Adj. <i>R</i> ² (vs. <i>D OI_N</i>)	$\mathbf{b}_1 + \mathbf{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1988	9.0230 (2.533) [0.012]	- 0.2473 (- 0.088) [0.930]	- 1.4187 (- 0.097) [0.922]	- 9.1445 (- 0.688) [0.492]	0.3213 (-0.0035)	67.993 [0.000]	0.2385 [0.626]	1.3314 [0.249]	0.3705 [0.543]
89	8.8840 (1.626) [0.105]	- 3.8779 (- 0.838) [0.403]	- 10.075 (- 0.726) [0.468]	4.3694 (0.343) [0.732]	0.2463 (- 0.0026)	17.983 [0.000]	0.0074 [0.932]	0.0566 [0.812]	0.0013 [0.971]
90	- 2.5922 (- 0.218) [0.828]	13.593 (1.188) [0.235]	6.2437 (0.328) [0.743]	- 19.393 (- 1.129) [0.260]	0.1886 (-0.0016)	56.068 [0.000]	0.0723 [0.788]	0.6966 [0.404]	0.1955 [0.659]
91	22.348 (2.069) [0.039]	- 12.778 (- 1.234) [0.218]	- 24.245 (- 1.671) [0.096]	14.962 (1.068) [0.286]	0.1529 (0.0071)	41.033 [0.000]	0.1191 [0.730]	1.0790 [0.299]	0.1595 [0.690]
92	4.0963 (1.488) [0.137]	-4.1606 (-1.513) [0.131]	- 1.4292 (- 0.369) [0.712]	3.9017 (1.055) [0.292]	0.1815 (0.0001)	0.2709 [0.603]	1.4413 [0.231]	19.892 [0.000]	0.0161 [0.899]
93	13.649 (3.276) [0.001]	- 11.595 (- 2.790) [0.005]	- 10.796 (- 2.287) [0.023]	10.455 (2.297) [0.022]	0.2065 (0.0265)	10.397 [0.001]	3.5549 [0.060]	22.578 [0.000]	0.7032 [0.402]
94	9.1310 (2.882) [0.004]	- 5.9002 (- 1.909) [0.057]	- 5.0865 (- 1.197) [0.232]	3.9689 (1.011) [0.312]	0.2497 (0.0045)	35.263 [0.000]	2.5478 [0.111]	23.570 [0.000]	0.6631 [0.416]
95	- 1.4123 (- 0.699) [0.485]	2.7146 (1.521) [0.129]	9.0220 (1.860) [0.063]	- 8.3687 (- 1.843) [0.066]	0.2147 (0.0046)	27.894 [0.000]	7.0296 [0.008]	22.198 [0.000]	4.0763 [0.044]
96	11.958 (2.140) [0.033]	- 9.1911 (- 1.708) [0.088]	- 6.7357 (- 0.829) [0.407]	5.8136 (0.777) [0.437]	0.0472 (0.0051)	14.569 [0.000]	0.8008 [0.371]	5.4903 [0.020]	0.3452 [0.557]

 Table 13
 Value relevance of large and negative earnings changes (continued)

anel B							F test	[p-value]	
Year	D OI	D _{BS} D OI	D_N D OI	$oldsymbol{D}_{BS}oldsymbol{D}_N$ $oldsymbol{D}$ $oldsymbol{OI}$	Adj. <i>R</i> ² (vs. <i>D OI_N</i>)	$\mathbf{b}_1 + \mathbf{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1997	5.6203 (1.525) [0.128]	- 4.9727 (- 1.410) [0.159]	- 1.5725 (- 0.313) [0.754]	3.6106 (0.762) [0.446]	0.2144 (0.0054)	2.2916 [0.131]	2.3443 [0.126]	21.241 [0.000]	0.2670 [0.606]
98	13.256 (3.998) [0.000]	- 11.302 (- 3.480) [0.001]	- 10.417 (- 2.312) [0.021]	9.6145 (2.237) [0.026]	0.2236 (0.0177)	20.006 [0.000]	1.0724 [0.301]	15.924 [0.000]	0.4018 [0.526]
99	1.8817 (1.085) [0.278]	- 1.7326 (- 1.009) [0.314]	0.0604 (0.027) [0.979]	0.6603 (0.307) [0.759]	0.1835 (0.0000)	0.6426 [0.423]	2.0215 [0.156]	12.676 [0.000]	0.7105 [0.400]
2000	- 0.0989 (- 0.056) [0.956]	0.2536 (0.148) [0.882]	7.6917 (2.306) [0.021]	- 5.3885 (- 1.817) [0.070]	0.0716 (0.0008)	0.3596 [0.549]	5.0033 [0.026]	8.4502 [0.004]	2.4402 [0.119]
79 - 00	1.5160 (2.970) [0.003]	- 0.4735 (- 1.017) [0.309]	1.3295 (1.357) [0.175]	- 1.6127 (- 1.849) [0.064]	0.2947 (0.0017)	321.02 [0.000]	37.775 [0.000]	81.722 [0.000]	21.099 [0.000]
Mean					0.2088 (0.0060)				
Median					0.2146 (0.0049)	Z = 2.973	p = 0.003		
BNST					p = 0.027				

 Table 13
 Value relevance of large and negative earnings changes (continued)

Panel C							F test [[p-value]	
					$Adj. R^2$	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$b_1 + b_2$	$\mathbf{b}_2 + \mathbf{b}_4 = 0$
Year	D NI	D_{BS} DNI	$\mathbf{\textit{D}}_{N}$ $\mathbf{\textit{D}}$ $N\mathbf{\textit{I}}$	$\mathbf{\textit{D}}_{BS}\mathbf{\textit{D}}_{N}$ $\mathbf{\textit{D}}$ $N\mathbf{\textit{I}}$	(vs. D NI_N)			$+ \mathbf{b}_3 + \mathbf{b}_4 = 0$	
1979	- 8.9007 (- 2.197) [0.029]	10.054 (2.533) [0.012]	9.8533 (2.343) [0.020]	- 11.123 (- 2.692) [0.008]	0.2506 (0.0123)	34.537 [0.000]	0.3132 [0.576]	0.5810 [0.447]	0.4195 [0.518]
80	1.1486 (0.706) [0.481]	- 1.1164 (- 0.691) [0.490]	10.965 (2.884) [0.004]	- 10.035 (- 2.670) [0.008]	0.2692 (0.0303)	0.1302 [0.719]	16.006 [0.000]	6.0392 [0.015]	13.614 [0.000]
81	5.6960 (1.837) [0.067]	- 4.6759 (- 1.584) [0.114]	- 4.8498 (- 1.231) [0.219]	4.0757 (1.108) [0.269]	0.2696 (-0.0017)	40.660 [0.000]	0.0730 [0.787]	1.5882 [0.209]	0.0376 [0.846]
82	0.7013 (0.254) [0.800]	- 0.5991 (- 0.218) [0.827]	- 0.2955 (- 0.082) [0.934]	0.2655 (0.075) [0.940]	0.1048 (-0.0061)	0.6843 [0.409]	0.0147 [0.904]	0.1930 [0.661]	0.0101 [0.920]
83	- 1.5463 (- 0.657) [0.512]	1.9379 (0.838) [0.403]	5.1344 (1.739) [0.083]	- 4.7539 (- 1.775) [0.077]	0.2381 (0.0045)	2.8336 [0.093]	5.1944 [0.023]	5.1739 [0.023]	3.5781 [0.060]
84	0.9228 (0.111) [0.912]	0.2283 (0.028) [0.977]	0.2097 (0.016) [0.987]	- 0.974 (- 0.076) [0.939]	0.1134 (-0.0059)	3.8866 [0.050]	0.0333 [0.855]	0.6649 [0.415]	0.0147 [0.904]
85	- 7.3858 (- 1.839) [0.067]	7.9231 (2.021) [0.044]	16.800 (2.763) [0.006]	- 16.288 (- 2.765) [0.006]	0.1577 (0.0101)	3.1990 [0.075]	2.6835 [0.102]	3.1464 [0.077]	2.1629 [0.142]
86	4.7507 (1.793) [0.074]	- 2.9751 (- 1.062) [0.289]	- 0.3553 (- 0.463) [0.644]	- 1.1822 (- 1.501) [0.134]	0.1492 (-0.0005)	12.045 [0.001]	1.6708 [0.197]	0.6390 [0.425]	1.5374 [0.216]
87	7.5973 (1.637) [0.103]	- 7.8798 (- 1.682) [0.094]	1.0135 (0.344) [0.731]	0.7830 (0.279) [0.781]	0.0842 (0.0033)	0.1076 [0.743]	3.7525 [0.054]	4.7305 [0.030]	2.7695 [0.097]

 Table 13
 Value relevance of large and negative earnings changes (continued)

nel C							F test [p-value]	
Year	D NI	D _{BS} DNI	$D_N DNI$	$D_{BS}D_N$ DNI	Adj. <i>R</i> ² (vs. <i>DNI_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_2$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
				$\boldsymbol{D}_{BS}\boldsymbol{D}_N$ \boldsymbol{D}^{TM}	(vs. D 1v 1_ 1v)			$+ \boldsymbol{b}_3 + \boldsymbol{b}_4 = 0$	
1988	-7.1323	8.8397	16.586	- 18.064	0.1592	4.4436	0.8046	0.0096	0.8205
	(-0.760)	(0.947)	(1.224)	(-1.446)	(-0.0007)	[0.036]	[0.370]	[0.922]	[0.366]
	[0.448]	[0.344]	[0.222]	[0.149]					
89	- 24.708	24.876	67.068	- 71.249	0.2363	0.3299	4.5536	2.3172	5.4776
	(-2.812)	(2.838)	(3.144)	(-3.358)	(0.0218)	[0.566]	[0.034]	[0.129]	[0.020]
	[0.005]	[0.005]	[0.002]	[0.001]					
90	- 16.903	25.598	30.483	- 40.707	0.1405	25.586	0.2744	8.5500	0.3403
	(-1.143)	(1.817)	(1.144)	(-1.575)	(0.0009)	[0.000]	[0.601]	[0.004]	[0.560]
	[0.254]	[0.070]	[0.253]	[0.116]					
91	8.3058	- 7.7461	0.7285	- 1.0037	0.0666	1.5386	1.9224	2.2201	1.8024
	(1.495)	(- 1.410)	(0.484)	(-0.806)	(-0.0003)	[0.215]	[0.166]	[0.137]	[0.180]
	[0.136]	[0.159]	[0.629]	[0.421]					
92	18.577	- 18.619	- 19.628	19.912	0.1637	0.3055	0.1051	1.2169	0.1617
	(2.691)	(-2.697)	(-2.342)	(2.390)	(0.0223)	[0.581]	[0.746]	[0.271]	[0.688]
	[0.007]	[0.007]	[0.020]	[0.017]					
93	26.310	- 25.921	- 24.945	25.112	0.1619	2.2576	0.3072	7.4660	0.1118
	(3.710)	(-3.656)	(-3.264)	(3.306)	(0.0520)	[0.134]	[0.580]	[0.007]	[0.738]
	[0.000]	[0.000]	[0.001]	[0.001]					
94	7.4549	- 6.9524	4.0684	- 3.0899	0.1711	3.2674	11.845	18.435	9.3494
	(1.879)	(-1.760)	(0.802)	(-0.625)	(0.0157)	[0.071]	[0.001]	[0.000]	[0.002]
	[0.061]	[0.079]	[0.423]	[0.533]					
95	- 1.5613	1.8275	8.1437	- 7.8524	0.1161	2.7439	1.8903	3.0062	1.6113
	(-0.427)	(0.509)	(1.118)	(-1.116)	(-0.0005)	[0.098]	[0.170]	[0.084]	[0.205]
	[0.669]	[0.611]	[0.264]	[0.265]					
96	- 6.7960	8.7575	15.040	- 16.007	0.0239	8.1176	0.7777	5.6438	0.6077
	(-1.263)	(1.712)	(1.183)	(-1.295)	(-0.0010)	[0.005]	[0.378]	[0.018]	[0.436]
	[0.207]	[0.088]	[0.238]	[0.196]					

 Table 13
 Value relevance of large and negative earnings changes (continued)

nel C							F test [p-value]	
Year	DNI	D_{BS} DNI	$D_N DNI$	$\mathbf{D}_{BS}\mathbf{D}_{N}$ \mathbf{D} $\mathbf{N}\mathbf{I}$	Adj. <i>R</i> ² (vs. <i>DNI_N</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\begin{aligned} \boldsymbol{b}_1 + \boldsymbol{b}_2 \\ + \boldsymbol{b}_3 + \boldsymbol{b}_4 &= 0 \end{aligned}$	$\boldsymbol{b}_2 + \boldsymbol{b}_4 = 0$
1997	1.1353 (0.360) [0.719]	- 1.3937 (- 0.443) [0.658]	- 0.1998 (- 0.063) [0.950]	2.0731 (0.657) [0.511]	0.1950 (- 0.0007)	1.2134 [0.271]	3.4292 [0.065]	21.066 [0.000]	1.2322 [0.267]
98	7.3061 (2.442) [0.015]	-7.3311 (-2.441) [0.015]	1.1926 (4.381) [0.000]	- 0.0282 (- 0.136) [0.892]	0.1786 (0.0062)	0.0196 [0.889]	7.9315 [0.005]	25.663 [0.000]	5.9679 [0.015]
99	2.5484 (1.767) [0.078]	- 2.4204 (- 1.662) [0.097]	- 1.0081 (- 1.028) [0.304]	1.2521 (1.295) [0.196]	0.1828 (0.0003)	1.1649 [0.281]	1.0273 [0.311]	15.010 [0.000]	0.6011 [0.439]
2000	5.5893 (2.603) [0.009]	- 5.5330 (- 2.578) [0.010]	0.5385 (0.278) [0.781]	- 0.2800 (- 0.153) [0.878]	0.0700 (0.0114)	0.6277 [0.429]	5.4892 [0.020]	2.6917 [0.101]	4.9782 [0.026]
79 - 00	2.7518 (4.047) [0.000]	- 2.4903 (- 3.691) [0.000]	0.5804 (1.089) [0.276]	- 0.5290 (- 1.033) [0.301]	0.2671 (0.0034)	61.740 [0.000]	51.026 [0.000]	36.510 [0.000]	41.855 [0.000]
Mean					0.1592 (0.0079)				
Median					0.1606 (0.0021)	Z = 2.094	p = 0.036		
BNST					p = 0.523				

Table 13 Value relevance of large and negative earnings changes (continued)

Panel D		(1)	D OP_BSN			(2)	D OI_BSN			(3)	D NI_BSN	
	Dumn	ny Test	Hausm	an Test	Dumm	ny Test	Hausm	an Test	Dumm	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.67	(0.051)	4.32	(0.365)	1.76	(0.036)	6.05	(0.195)	2.83	(0.000)	31.87	(0.000)
80	6.48	(0.000)	0.35	(0.986)	6.78	(0.000)	11.36	(0.023)	6.71	(0.000)	13.13	(0.011)
81	5.62	(0.000)	7.46	(0.113)	5.55	(0.000)	4.57	(0.334)	5.30	(0.000)	2.91	(0.573)
82	3.57	(0.000)	1.62	(0.805)	3.55	(0.000)	4.92	(0.296)	3.39	(0.000)	6.33	(0.176)
83	5.92	(0.000)	0.47	(0.977)	5.52	(0.000)	287.31	(0.000)	5.02	(0.000)	5.17	(0.271)
84	2.99	(0.000)	8.00	(0.091)	2.71	(0.001)	2.53	(0.640)	2.98	(0.000)	2.37	(0.669)
85	3.05	(0.000)	1.93	(0.748)	3.56	(0.000)	13.02	(0.011)	3.92	(0.000)	16.51	(0.002)
86	3.36	(0.000)	6.44	(0.169)	2.98	(0.000)	4.75	(0.314)	3.12	(0.000)	13.19	(0.010)
87	2.46	(0.002)	4.09	(0.395)	2.45	(0.002	0.94	(0.919)	2.83	(0.000)	13.18	(0.010)
88	2.15	(0.007)	0.43	(0.980)	2.05	(0.010)	733.11	(0.000)	4.27	(0.000)	15.18	(0.004)
89	3.67	(0.000)	34.64	(0.000)	2.56	(0.001)	88,494.30	(0.000)	7.24	(0.000)	1,626.23	(0.000)
90	1.90	(0.020)	10.73	(0.030)	1.96	(0.015)	26.47	(0.000)	2.13	(0.007)	5.23	(0.264)
91	2.91	(0.000)	341.54	(0.000)	2.66	(0.000)	13.64	(0.009)	2.63	(0.000)	5.98	(0.201)
92	5.08	(0.000)	7.22	(0.125)	5.25	(0.000)	33.85	(0.000)	5.62	(0.000)	44.60	(0.000)
93	3.22	(0.000)	51.58	(0.000)	4.45	(0.000)	1.57	(0.815)	4.31	(0.000)	2.48	(0.649)
94	4.41	(0.000)	65.19	(0.000)	4.81	(0.000)	4.67	(0.323)	4.88	(0.000)	11.27	(0.024)
95	3.86	(0.000)	72.69	(0.000)	4.66	(0.000)	245.08	(0.000)	4.57	(0.000)	590.66	(0.000)
96	0.90	(0.571)	5.46	(0.243)	0.67	(0.837)	3.08	(0.544)	0.89	(0.591)	5.97	(0.201)
97	6.99	(0.000)	5.62	(0.230)	6.92	(0.000)	1.85	(0.764)	6.79	(0.000)	43.57	(0.000)
98	6.10	(0.000)	103.73	(0.000)	5.61	(0.000)	129.16	(0.000)	5.21	(0.000)	20.30	(0.000)
99	5.53	(0.000)	44.74	(0.000)	5.24	(0.000)	34.98	(0.000)	6.46	(0.000)	111.63	(0.000)
2000	2.30	(0.000)	4.16	(0.385)	2.30	(0.000)	6.03	(0.197)	2.72	(0.000)	14.19	(0.007)

Big surprise with sign model (M9): $\frac{\boldsymbol{D}P_{ii}}{P_{ii-1}} = \boldsymbol{a} + \boldsymbol{b}_1 \frac{\boldsymbol{D}X_{ii}}{P_{ii-1}} + \boldsymbol{b}_2 D_{BS} \frac{\boldsymbol{D}X_{ii}}{P_{ii-1}} + \boldsymbol{b}_3 D_N \frac{\boldsymbol{D}X_{ii}}{P_{ii-1}} + \boldsymbol{b}_4 D_{BS} D_N \frac{\boldsymbol{D}X_{ii}}{P_{ii-1}} + \sum_{i} \boldsymbol{g}_j D_j + \boldsymbol{u}_{ii}, \boldsymbol{P} = \text{stock price}, \boldsymbol{X} = \text{accounting earnings} (\boldsymbol{OP}, \boldsymbol{OI}, \boldsymbol{NI}), \quad \boldsymbol{D}X = \boldsymbol{X}_i - \boldsymbol{X}_{i-1}, \boldsymbol{A}_i - \boldsymbol{$

 $\boldsymbol{D}_{BS} = \text{dummy variable, 1 when } \left| \boldsymbol{D} \boldsymbol{X}_{it} / P_{it-1} \right| \text{ is greater than median in each industry and 0 for others. } \boldsymbol{D}_{N} = \text{dummy variable, 1 for firms decreasing earnings and 0 for others, } \boldsymbol{D}_{j} = \text{industry dummy } (j = 1, 2, \cdots, n)$

17). For example, **D** OP_N represents the regression model M6 (earnings changes with sign model). Each cell on the left-hand side in Panels thorough A to C shows as follows: Top = Estimated Coefficients,

(Middle) = t-value using heteroscedasticity-consistent covariance matrix (White's t), [Bottom] = p-value (two-tailed). The column "vs. $\textbf{\textit{DOP}}_N$ " represents the difference in adjusted *R*-square between earnings changes with sign model (M6) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of *F*-test whether all industry dummy is zero.

Table 14 AIC comparison between models

	Operatin	ng Profits	Ordinar _.	y Income	Net I	псоте
Year	OP_BSN	vs. <i>OP_N</i>	OI_BSN	vs. <i>OI_N</i>	NI_BSN	vs. <i>NI_N</i>
1979	0.22028	- 0.01376	0.23331	- 0.02516	0.23110	- 0.00849
80	0.08698	0.00054	0.09407	- 0.00179	0.09733	- 0.00092
81	0.11736	- 0.00777	0.10645	- 0.00881	0.13795	0.00156
82	0.05520	0.00046	0.05741	0.00070	0.05792	0.00052
83	0.05456	- 0.00007	0.05754	0.00053	0.05987	0.00036
84	0.24561	- 0.00109	0.24534	0.00102	0.27584	0.00202
85	0.14571	- 0.00104	0.14422	- 0.00475	0.14840	- 0.00263
86	0.13912	0.00151	0.13928	0.00109	0.14039	0.00170
87	0.18581	- 0.00034	0.18529	0.00229	0.18778	0.00164
88	0.34750	0.00073	0.35249	- 0.00010	0.37021	- 0.00105
89	0.16144	- 0.00482	0.16323	- 0.00382	0.16578	- 0.00181
90	0.15591	- 0.00154	0.15292	- 0.00148	0.15628	- 0.00067
91	0.04126	0.00033	0.03934	- 0.00008	0.04222	0.00032
92	0.02016	0.00011	0.01901	- 0.00003	0.01973	- 0.00119
93	0.03136	- 0.00002	0.03193	- 0.00002	0.03194	- 0.00116
94	0.04831	- 0.00090	0.05130	0.00018	0.05176	- 0.00052
95	0.02125	- 0.00070	0.02263	- 0.00093	0.02364	- 0.00034
96	0.17675	0.00127	0.17725	0.00060	0.17679	- 0.00044
97	0.03423	- 0.00021	0.03146	0.00006	0.03490	- 0.00092
98	0.04664	- 0.00073	0.04555	- 0.00042	0.04411	- 0.00210
99	0.08006	0.00046	0.08259	0.00040	0.07999	- 0.00388
2000	0.34817	0.00047	0.34549	0.00043	0.34774	0.00029
79 - 00	0.12878	- 0.00053	0.13027	- 0.00064	0.13586	- 0.00010
Mean	0.12562	- 0.00123	0.12628	- 0.00182	0.13099	- 0.00081
Median	0.10217	- 0.00014	0.10026	- 0.00002	0.11764	- 0.00060
Z		- 1.185		- 0.698		- 1.640
<i>p</i> -value		0.236		0.485		0.101
BNST		0.523		0.832		0.286

Earnings conditional on large and negative changes model (M10):

$$P_{it} = \boldsymbol{a} + \boldsymbol{b}_{1} X_{it} + \boldsymbol{b}_{2} D_{BS} X_{it} + \boldsymbol{b}_{3} D_{N} X_{it} + \boldsymbol{b}_{4} D_{BS} D_{N} X_{it} + \sum \boldsymbol{g}_{j} D_{j} + u_{it}$$

P = stock price, X = accounting earnings (OP, OI, NI), $DX = X_t - X_{t-1}$, $D_{BS} = \text{dummy variable}$, 1 when $|DX_{it}/P_{it-1}|$ is greater than median in each industry and 0 for others. $D_N = \text{dummy variable}$, 1 for firms decreasing earnings and 0 for others, $D_j = \text{industry dummy } (j = 1, 2, ..., 17)$. For example, OP_N represents the regression model M7 (earnings capitalization with sign model). The column "vs. OP_N " represents the difference in AIC between earnings capitalization with sign model (M7) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test.

Table 15 Value relevance of earnings conditional on large and negative changes

el A							F test	p-value]	
Year	OP	$D_{BS}OP$	$D_N OP$	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{OP}$	Adj. <i>R</i> ² (vs. <i>OP_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b}_2' + \boldsymbol{b}_4' = 0$
1979	0.0350 (0.092) [0.927]	1.3920 (3.871) [0.000]	0.2995 (0.608) [0.544]	- 1.7871 (- 3.021) [0.003]	0.3036 (0.0481)	56.795 [0.000]	0.6553 [0.419]	0.0641 [0.800]	0.7499 [0.387]
80	0.8274 (3.458) [0.001]	0.2158 (1.235) [0.218]	- 0.9978 (- 2.597) [0.010]	0.3024 (0.728) [0.467]	0.3732 (-0.0001)	53.136 [0.000]	0.1683 [0.682]	0.9296 [0.336]	1.1861 [0.277]
81	0.7081 (3.546) [0.000]	1.2154 (3.330) [0.001]	- 0.1645 (- 0.805) [0.421]	- 1.5281 (- 3.533) [0.000]	0.3259 (0.0490)	72.059 [0.000]	3.5609 [0.060]	2.4073 [0.122]	1.2478 [0.265]
82	0.7908 (4.169) [0.000]	- 0.2225 (- 1.187) [0.236]	- 0.1110 (- 0.564) [0.573]	0.1291 (0.374) [0.709]	0.1690 (- 0.0019)	16.951 [0.000]	8.8215 [0.003]	7.2354 [0.008]	0.1737 [0.677]
83	0.5764 (2.991) [0.003]	0.1257 (0.465) [0.643]	- 0.4002 (- 2.049) [0.041]	- 0.5449 (- 1.660) [0.098]	0.3077 (0.0050)	33.768 [0.000]	0.9374 [0.338]	1.8283 [0.177]	3.8253 [0.051]
84	2.0425 (2.578) [0.010]	0.0728 (0.097) [0.923]	- 0.5081 (- 0.810) [0.419]	- 1.5662 (- 1.938) [0.054]	0.2475 (0.0079)	51.746 [0.000]	6.4641 [0.012]	0.0086 [0.926]	5.0262 [0.026]
85	0.2595 (0.472) [0.638]	0.9018 (1.989) [0.048]	- 0.1881 (- 0.377) [0.707]	- 0.6668 (- 0.998) [0.319]	0.1622 (0.0110)	12.860 [0.000]	0.0140 [0.906]	0.5026 [0.479]	0.1199 [0.729]
86	1.5639 (2.287) [0.023]	- 0.2961 (- 0.337) [0.736]	- 1.0770 (- 1.565) [0.119]	0.0111 (0.011) [0.991]	0.1340 (- 0.0044)	8.2432 [0.004]	0.9944 [0.319]	0.2968 [0.586]	0.2909 [0.590]
87	1.3320 (2.378) [0.018]	- 0.1832 (- 0.273) [0.785]	- 0.0361 (- 0.051) [0.959]	- 1.6063 (- 1.755) [0.080]	0.0886 (0.0070)	3.3388 [0.069]	2.7563 [0.098]	0.9475 [0.331]	4.3000 [0.039]

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

anel A						F test [p-value]				
Year	OP	$D_{BS}OP$	$D_N OP$	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{OP}$	Adj. <i>R</i> ² (vs. <i>OP_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\mathbf{b}_2' + \mathbf{b}_4' = 0$	
1988	2.1918 (2.121) [0.035]	1.3551 (1.343) [0.180]	0.3142 (0.258) [0.797]	- 2.8831 (- 1.788) [0.075]	0.2276 (0.0028)	36.696 [0.000]	2.6544 [0.104]	0.9693 [0.326]	0.8319 [0.362]	
89	- 1.3358 (- 1.466) [0.144]	3.0491 (4.017) [0.000]	0.8533 (0.883) [0.378]	-4.6231 (-2.733) [0.007]	0.2485 (0.0266)	7.5015 [0.007]	0.1359 [0.713]	1.4300 [0.233]	0.6561 [0.419]	
90	2.5682 (1.759) [0.079]	3.1200 (2.863) [0.004]	0.5782 (0.591) [0.555]	- 2.516 (- 1.652) [0.099]	0.1883 (0.0118)	62.056 [0.000]	7.0473 [0.008]	14.556 [0.000]	0.2540 [0.615]	
91	1.6817 (3.000) [0.003]	0.2064 (0.435) [0.664]	- 1.6936 (- 3.380) [0.001]	0.0072 (0.011) [0.991]	0.1100 (-0.0035)	19.137 [0.000]	0.0003 [0.986]	0.1440 [0.705]	0.0923 [0.761]	
92	1.5604 (4.242) [0.000]	0.0715 (0.179) [0.858]	- 0.4933 (- 1.495) [0.135]	- 0.4781 (- 0.930) [0.353]	0.2045 (- 0.0011)	35.135 [0.000]	10.011 [0.002]	3.4446 [0.064]	1.3234 [0.251]	
93	2.9448 (6.023) [0.000]	- 0.5811 (- 0.835) [0.404]	- 1.6983 (- 3.439) [0.001]	0.0468 (0.061) [0.951]	0.2268 (0.0035)	44.730 [0.000]	16.283 [0.000]	9.6435 [0.002]	2.5002 [0.114]	
94	1.3725 (2.249) [0.025]	1.524 (1.547) [0.123]	- 0.5337 (- 0.932) [0.352]	- 2.5038 (- 2.405) [0.017]	0.2122 (0.0177)	46.919 [0.000]	5.1644 [0.023]	0.1942 [0.660]	4.5701 [0.033]	
95	0.4168 (1.246) [0.214]	1.1786 (3.733) [0.000]	- 0.9004 (- 2.298) [0.022]	0.0081 (0.009) [0.993]	0.2328 (0.0283)	70.616 [0.000]	1.5542 [0.213]	5.6623 [0.018]	6.2255 [0.013]	
96	0.9314 (1.861) [0.063]	0.3474 (0.595) [0.552]	- 1.3150 (- 1.496) [0.135]	- 0.1599 (- 0.161) [0.872]	0.0058 (- 0.0036)	7.3533 [0.007]	0.1956 [0.659]	0.0801 [0.777]	0.0342 [0.853]	

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

nel A							F test	[p-value]	
Year	OP	$D_{BS}OP$	$D_N OP$	$D_{BS}D_{N}OP$	Adj. <i>R</i> ² (vs. <i>OP_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b}_2' + \boldsymbol{b}_4' = 0$
1997	2.2610 (5.972) [0.000]	0.6635 (1.771) [0.077]	- 0.0616 (- 1.352) [0.177]	- 1.7170 (- 2.358) [0.019]	0.3245 (0.0065)	124.09 [0.000]	12.966 [0.000]	1.5229 [0.218]	2.9077 [0.089]
98	2.8562 (5.423) [0.000]	- 1.3122 (- 2.061) [0.040]	- 1.5024 (- 2.675) [0.008]	0.7555 (0.949) [0.343]	0.2676 (0.0141)	45.522 [0.000]	12.150 [0.001]	11.035 [0.001]	1.6899 [0.194]
99	1.3294 (4.730) [0.000]	0.3394 (0.875) [0.382]	- 0.8196 (- 2.239) [0.026]	- 0.4093 (- 0.709) [0.479]	0.2250 (- 0.0018)	27.850 [0.000]	1.7939 [0.181]	5.6021 [0.018]	0.0270 [0.870]
2000	- 0.2182 (- 0.574) [0.566]	0.8637 (1.935) [0.054]	0.0207 (0.044) [0.965]	0.3762 (0.568) [0.570]	0.0621 (0.0020)	4.8827 [0.028]	0.0690 [0.793]	2.7017 [0.101]	1.5959 [0.207]
79 - 00	0.9385 (8.043) [0.000]	0.5143 (3.785) [0.000]	- 0.4892 (- 3.955) [0.000]	- 0.8396 (- 4.691) [0.000]	0.3088 (0.0030)	694.03 [0.000]	19.158 [0.000]	3.1004 [0.078]	7.9762 [0.005]
Mean					0.2112 (0.0102)				
Median					0.2259 (0.0057)	Z = 2.922	p = 0.003		
BNST					p = 0.134				

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

anel B							F test	[p-value]	
Year	OI	D _{BS} OI	D_NOI	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{O}oldsymbol{I}$	Adj. <i>R</i> ² (vs. <i>OI_N</i>)	$\boldsymbol{b}_1' + \boldsymbol{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b_2'} + \boldsymbol{b_4'} = 0$
1979	- 1.3315 (- 2.854) [0.005]	2.6593 (5.783) [0.000]	0.2838 (0.504) [0.615]	- 1.8091 (- 2.833) [0.005]	0.2624 (0.0846)	27.809 [0.000]	2.7089 [0.101]	0.9483 [0.331]	1.7773 [0.184]
80	0.4573 (1.554) [0.121]	0.7475 (2.760) [0.006]	- 1.1653 (- 3.337) [0.001]	0.2198 (0.500) [0.618]	0.3221 (0.0171)	31.033 [0.000]	2.1281 [0.146]	0.8465 [0.358]	3.4471 [0.064]
81	1.2309 (5.155) [0.000]	1.7250 (3.347) [0.001]	- 0.4740 (- 1.571) [0.117]	- 2.4072 (- 3.799) [0.000]	0.3886 (0.0546)	108.38 [0.000]	4.4860 [0.035]	0.3858 [0.535]	3.4584 [0.064]
82	0.5091 (2.476) [0.014]	0.0809 (0.424) [0.672]	- 0.5019 (- 1.757) [0.080]	0.0312 (0.074) [0.941]	0.1356 (-0.0055)	9.1344 [0.003]	0.0006 [0.981]	0.2477 [0.619]	0.1050 [0.746]
83	0.7225 (2.521) [0.012]	0.0126 (0.035) [0.972]	- 0.5402 (- 1.810) [0.071]	- 0.3049 (- 0.747) [0.456]	0.2698 (- 0.0025)	21.864 [0.000]	0.5447 [0.461]	0.3804 [0.538]	1.0229 [0.313]
84	2.0502 (2.901) [0.004]	0.8506 (1.054) [0.293]	- 1.7585 (- 2.312) [0.021]	- 0.7657 (- 0.799) [0.425]	0.2483 (0.0013)	53.849 [0.000]	0.1356 [0.713]	0.6413 [0.424]	0.0091 [0.924]
85	- 0.9223 (- 1.417) [0.158]	1.6994 (3.364) [0.001]	- 1.2415 (- 1.837) [0.067]	0.3715 (0.396) [0.692]	0.1708 (0.0324)	3.6661 [0.057]	5.9972 [0.015]	0.0233 [0.879]	4.0537 [0.045]
86	0.8154 (0.949) [0.343]	0.8681 (0.897) [0.371]	- 0.7029 (- 0.842) [0.400]	- 0.9366 (- 0.831) [0.407]	0.1330 (-0.0018)	11.494 [0.001]	0.0310 [0.860]	0.0118 [0.913]	0.0090 [0.925]
87	1.9741 (1.955) [0.051]	- 0.2188 (- 0.214) [0.831]	- 2.0820 (- 1.671) [0.096]	0.1994 (0.146) [0.884]	0.0912 (- 0.0059)	6.2533 [0.013]	0.0131 [0.909]	0.0499 [0.823]	0.0004 [0.985]

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

anel B						F test [p-value]				
Year	OI	D _{BS} OI	D_NOI	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{O}oldsymbol{I}$	Adj. <i>R</i> ² (vs. <i>OI_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b}_2' + \boldsymbol{b}_4' = 0$	
1988	1.6100 (1.525) [0.128]	2.0103 (2.298) [0.022]	- 1.8131 (- 1.099) [0.273]	- 0.9521 (- 0.426) [0.670]	0.2165 (0.0047)	28.954 [0.000]	0.0096 [0.922]	0.6657 [0.415]	0.2196 [0.640]	
89	- 1.8968 (- 1.875) [0.062]	2.9786 (4.156) [0.000]	- 0.4137 (- 0.449) [0.654]	- 3.6399 (- 2.008) [0.045]	0.2402 (0.0220)	2.3985 [0.122]	2.3194 [0.129]	2.0507 [0.153]	0.0837 [0.772]	
90	3.7519 (3.193) [0.002]	2.3711 (2.426) [0.016]	- 0.8807 (- 0.883) [0.378]	- 0.2597 (- 0.201) [0.841]	0.2039 (0.0114)	68.098 [0.000]	4.6190 [0.032]	24.123 [0.000]	2.4767 [0.116]	
91	1.9180 (5.687) [0.000]	1.0009 (2.449) [0.015]	- 1.0255 (- 2.241) [0.026]	- 1.6983 (- 2.732) [0.007]	0.1514 (0.0052)	47.808 [0.000]	1.8466 [0.175]	0.6079 [0.436]	1.0958 [0.296]	
92	2.3550 (6.651) [0.000]	- 0.5297 (- 0.794) [0.428]	- 1.0257 (- 2.847) [0.005]	- 0.1295 (- 0.171) [0.864]	0.2496 (0.0040)	31.361 [0.000]	13.511 [0.000]	4.3903 [0.037]	3.0083 [0.084]	
93	2.6616 (7.190) [0.000]	- 0.4834 (- 0.875) [0.382]	- 1.3665 (- 2.945) [0.003]	-0.2377 (-0.352) [0.725]	0.2126 (0.0035)	29.513 [0.000]	13.724 [0.000]	5.9563 [0.015]	3.2997 [0.070]	
94	1.1771 (1.552) [0.121]	0.7364 (0.735) [0.463]	- 0.4814 (- 0.668) [0.505]	- 1.0360 (- 0.969) [0.333]	0.1633 (0.0001)	18.023 [0.000]	1.9111 [0.167]	1.9062 [0.168]	0.2773 [0.599]	
95	- 0.1337 (- 0.484) [0.629]	1.1944 (3.582) [0.000]	- 1.2504 (- 3.155) [0.002]	0.7488 (1.172) [0.242]	0.1833 (0.0369)	31.486 [0.000]	9.2736 [0.002]	3.0849 [0.080]	12.312 [0.000]	
96	0.4487 (1.110) [0.267]	0.7063 (1.422) [0.156]	- 1.7383 (- 2.644) [0.008]	0.6133 (0.655) [0.513]	0.0030 (0.0003)	4.5793 [0.033]	1.7313 [0.189]	0.0025 [0.960]	1.4100 [0.236]	

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

nel B							F test [p-value]	
					$Adj. R^2$	$\boldsymbol{b_1'} + \boldsymbol{b_2'} = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	${m b}_1' + {m b}_2'$	$\boldsymbol{b_2'} + \boldsymbol{b_4'} =$
Year	OI	$D_{BS}OI$	D_NOI	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{O}oldsymbol{I}$	(vs. <i>OI_N</i>)			$+ b_3' + b_4' = 0$	
1997	3.1033	0.1154	- 1.2836	- 1.1774	0.3792	163.75	13.579	2.7247	2.7018
	(7.067)	(0.283)	(-2.582)	(-1.540)	(0.0010)	[0.000]	[0.000]	[0.099]	[0.101]
	[0.000]	[0.777]	[0.010]	[0.124]					
98	2.9227	- 0.9765	- 1.4469	0.0637	0.2847	66.180	12.926	9.1801	4.3813
	(7.609)	(-1.523)	(-3.336)	(0.079)	(0.0091)	[0.000]	[0.000]	[0.003]	[0.037]
	[0.000]	[0.128]	[0.001]	[0.937]					
99	1.2088	- 0.3818	- 0.4864	0.0781	0.2005	11.587	2.8422	6.0506	0.4114
	(3.779)	(-0.832)	(-1.038)	(0.120)	(-0.0011)	[0.001]	[0.092]	[0.014]	[0.522]
	[0.000]	[0.406]	[0.300]	[0.904]					
2000	0.2761	0.7562	- 0.7638	0.6529	0.0693	9.0971	0.3323	2.4670	1.8446
	(0.721)	(1.515)	(-1.324)	(0.923)	(0.0020)	[0.003]	[0.565]	[0.117]	[0.175]
	[0.471]	[0.130]	[0.186]	[0.357]					
79 - 00	0.8969	0.7828	- 0.9875	- 0.5746	0.3008	562.46	0.4669	3.3998	2.0581
	(7.371)	(4.755)	(-7.545)	(-2.683)	(0.0035)	[0.000]	[0.495]	[0.065]	[0.151]
	[0.000]	[0.000]	[0.000]	[0.007]					
Mean					0.2082				
					(0.0124)				
Median					0.2083				
					(0.0037)	Z = 2.646	p = 0.008		
BNST					p = 0.017				

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

nel C						F test [p-value]					
Year	NI	$D_{BS}NI$	$D_N NI$	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{N}oldsymbol{I}$	Adj. <i>R</i> ² (vs. <i>NI_N</i>)	$\boldsymbol{b}_1' + \boldsymbol{b}_2' = 0$	$\boldsymbol{b}_1' + \boldsymbol{b}_3' = 0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b}_2' + \boldsymbol{b}_4' = 0$		
1979	- 1.1128 (- 1.228) [0.221]	3.1746 (3.511) [0.001]	- 1.5264 (- 1.266) [0.207]	- 0.7290 (- 0.583) [0.561]	0.2694 (0.0316)	42.931 [0.000]	5.6031 [0.019]	2.8132 [0.095]	4.9256 [0.027]		
80	0.3596 (0.612) [0.541]	1.3707 (2.484) [0.014]	- 1.4574 (- 2.024) [0.044]	0.2506 (0.301) [0.764]	0.2986 (0.0110)	22.816 [0.000]	1.9841 [0.160]	2.2394 [0.136]	3.6520 [0.057]		
81	1.0311 (1.732) [0.084]	- 0.2258 (- 0.309) [0.758]	- 1.4268 (- 2.405) [0.017]	0.6861 (0.804) [0.422]	0.2077 (- 0.0041)	17.189 [0.000]	0.2305 [0.632]	0.1050 [0.746]	0.2995 [0.585]		
82	1.1373 (2.338) [0.020]	- 0.4863 (- 1.085) [0.279]	- 0.7132 (- 1.358) [0.175]	0.0381 (0.064) [0.949]	0.1280 (- 0.0025)	6.4483 [0.012]	0.5346 [0.465]	0.0057 [0.940]	0.4989 [0.481]		
83	1.0166 (1.865) [0.063]	- 0.4190 (- 0.738) [0.461]	- 0.8591 (- 1.640) [0.102]	- 0.1592 (- 0.246) [0.806]	0.2402 (0.0000)	10.420 [0.001]	0.1980 [0.657]	1.6388 [0.202]	1.4848 [0.224]		
84	1.1965 (0.920) [0.359]	1.0458 (0.923) [0.357]	- 1.3768 (- 1.019) [0.309]	0.7904 (0.486) [0.627]	0.1548 (- 0.0012)	12.395 [0.001]	0.0134 [0.908]	6.4324 [0.012]	1.1667 [0.281]		
85	- 3.0826 (- 2.582) [0.010]	3.3534 (3.056) [0.002]	0.9963 (0.723) [0.470]	- 0.7927 (- 0.496) [0.620]	0.1467 (0.0203)	0.4944 [0.483]	1.7262 [0.190]	0.668 [0.414]	2.1935 [0.140]		
86	2.3544 (1.649) [0.100]	0.0209 (0.014) [0.989]	- 1.6043 (- 1.085) [0.279]	- 0.4362 (- 0.253) [0.801]	0.1261 (- 0.0056)	8.4640 [0.004]	0.3127 [0.576]	0.4206 [0.517]	0.0828 [0.774]		
87	4.2230 (2.085) [0.038]	- 2.6912 (- 1.275) [0.203]	- 2.7739 (- 1.206) [0.229]	1.9697 (0.786) [0.433]	0.0790 (- 0.0027)	1.9688 [0.162]	0.7456 [0.389]	1.0862 [0.298]	0.1856 [0.667]		

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

anel C							F test	[p-value]	
Year	NI	$D_{BS}NI$	D_NNI	$oldsymbol{D}_{BS}oldsymbol{D}_{N}oldsymbol{N}oldsymbol{I}$	Adj. <i>R</i> ² (vs. <i>NI_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$\mathbf{b}_1' + \mathbf{b}_2' + \mathbf{b}_3' + \mathbf{b}_4' = 0$	$\boldsymbol{b_2'} + \boldsymbol{b_4'} = 0$
1988	- 1.3710 (- 0.480) [0.631]	5.2021 (2.186) [0.030]	0.3077 (0.097) [0.923]	- 2.8908 (- 0.915) [0.361]	0.1771 (0.0071)	12.087 [0.001]	0.2302 [0.632]	0.7163 [0.398]	0.9358 [0.334]
89	- 2.9940 (- 1.586) [0.114]	3.2056 (1.740) [0.083]	- 5.5052 (- 2.431) [0.016]	3.7500 (1.311) [0.191]	0.2283 (0.0126)	0.3712 [0.543]	7.7686 [0.006]	0.4046 [0.525]	3.4296 [0.065]
90	6.3962 (2.767) [0.006]	4.4378 (2.475) [0.014]	1.8382 (0.911) [0.363]	-4.0215 (-1.236) [0.217]	0.1863 (0.0072)	60.098 [0.000]	8.1426 [0.005]	18.518 [0.000]	0.0187 [0.891]
91	1.9929 (1.968) [0.050]	- 0.3677 (- 0.358) [0.720]	- 2.3496 (- 2.229) [0.026]	0.8755 (0.592) [0.554]	0.0893 (-0.0033)	13.558 [0.000]	0.0765 [0.782]	0.6221 [0.431]	0.1521 [0.697]
92	4.6006 (6.417) [0.000]	- 3.8250 (- 4.668) [0.000]	- 2.0239 (- 2.573) [0.010]	2.0918 (2.149) [0.032]	0.2214 (0.0500)	4.8336 [0.028]	15.211 [0.000]	5.4454 [0.020]	6.3349 [0.012]
93	5.8570 (6.362) [0.000]	- 3.6767 (- 3.525) [0.000]	- 3.9837 (- 3.649) [0.000]	2.2023 (1.723) [0.086]	0.2125 (0.0318)	18.260 [0.000]	9.1864 [0.003]	3.7492 [0.053]	5.0406 [0.025]
94	3.9894 (4.671) [0.000]	- 3.0397 (- 2.958) [0.003]	- 2.4180 (- 2.179) [0.030]	1.9911 (1.585) [0.114]	0.1558 (0.0117)	5.0224 [0.025]	2.2542 [0.134]	2.9265 [0.088]	0.8889 [0.346]
95	- 0.0612 (- 0.098) [0.922]	1.0084 (1.382) [0.168]	- 2.1939 (- 2.714) [0.007]	1.9797 (1.995) [0.047]	0.1466 (0.0157)	13.181 [0.000]	6.6840 [0.010]	4.5890 [0.033]	9.8061 [0.002]
96	- 0.9127 (- 1.064) [0.288]	1.9276 (2.311) [0.021]	- 2.4945 (- 1.968) [0.050]	2.3489 (1.537) [0.125]	0.0056 (0.0061)	1.7270 [0.189]	2.7881 [0.096]	3.8270 [0.051]	4.0783 [0.044]

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

nel C		·	·				F test [p-value]	
Year	NI	$D_{BS}NI$	$D_N NI$	$oldsymbol{D}_{RS}oldsymbol{D}_{N}oldsymbol{N}oldsymbol{I}$	Adj. <i>R</i> ² (vs. <i>NI_N</i>)	$\mathbf{b}_1' + \mathbf{b}_2' = 0$	$\boldsymbol{b}_1'+\boldsymbol{b}_3'=0$	$b_1' + b_2'$	$\boldsymbol{b}_2' + \boldsymbol{b}_4' = 0$
								$+ \mathbf{b}_3' + \mathbf{b}_4' = 0$	
1997	5.5417	- 3.0044	- 4.5012	3.1060	0.3113	58.149	6.4961	9.3819	0.0338
	(7.698)	(-3.428)	(-6.070)	(3.253)	(0.0208)	[0.000]	[0.011]	[0.002]	[0.854]
	[0.000]	[0.001]	[0.000]	[0.001]					
98	6.3533	- 3.2591	- 2.2282	- 0.3604	0.3073	62.695	25.864	10.835	18.659
	(8.154)	(-3.608)	(-1.717)	(-0.250)	(0.0355)	[0.000]	[0.000]	[0.001]	[0.000]
	[0.000]	[0.000]	[0.087]	[0.803]					
99	4.2420	- 4.0195	- 2.6794	2.6921	0.2256	1.3478	6.6507	8.2295	4.6296
	(2.324)	(-2.202)	(-1.476)	(1.489)	(0.0403)	[0.246]	[0.010]	[0.004]	[0.032]
	[0.020]	[0.028]	[0.140]	[0.137]					
2000	1.9832	- 1.8514	- 2.7896	2.9860	0.0633	0.7139	0.3298	3.9813	0.6363
	(1.901)	(-1.752)	(-2.518)	(2.722)	(0.0025)	[0.399]	[0.566]	[0.047]	[0.425]
	[0.058]	[0.080]	[0.012]	[0.007]					
79 - 00	1.2671	- 0.4658	- 1.5686	0.9796	0.2708	156.16	1.8016	19.872	4.9728
	(4.855)	(-1.540)	(-5.890)	(2.689)	(0.0007)	[0.000]	[0.180]	[0.000]	[0.026]
	[0.000]	[0.124]	[0.000]	[0.007]	, ,			2 2	
Mean					0.1810				
					(0.0129)				
Median					0.1817				
					(0.0091)	Z = 3.128	p = 0.002		
BNST					p = 0.078		F		
DIADI					p = 0.078				

Table 15 Value relevance of earnings conditional on large and negative changes (continued)

Panel D		(1) OF	P_BSN			(2) 01	_BSN		(3) NI_BS N			
	Dumr	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.60	(0.069)	5.43	(0.246)	3.53	(0.000)	270.75	(0.000)	2.78	(0.000)	51.81	(0.000)
80	8.93	(0.000)	58.78	(0.000)	7.64	(0.000)	57.86	(0.000)	6.83	(0.000)	37.79	(0.000)
81	4.77	(0.000)	14.59	(0.006)	4.00	(0.000)	129.48	(0.000)	4.85	(0.000)	2.10	(0.718)
82	3.56	(0.000)	0.35	(0.986)	3.52	(0.000)	8.29	(0.082)	3.45	(0.000)	35.78	(0.000)
83	6.92	(0.000)	30.21	(0.000)	6.24	(0.000)	24.52	(0.000)	6.04	(0.000)	48.99	(0.000)
84	3.54	(0.000)	228.51	(0.000)	3.18	(0.000)	10.61	(0.031)	3.13	(0.000)	6.22	(0.183)
85	3.49	(0.000)	12.03	(0.017)	4.09	(0.000)	8.24	(0.083)	4.01	(0.000)	7.12	(0.130)
86	3.43	(0.000)	0.65	(0.957)	3.24	(0.000)	9.07	(0.059)	3.27	(0.000)	8.66	(0.070)
87	2.39	(0.002)	25.44	(0.000)	2.03	(0.012)	7.41	(0.116)	2.51	(0.001)	18.02	(0.001)
88	2.87	(0.000)	4.74	(0.315)	3.55	(0.000)	100.53	(0.000)	4.03	(0.000)	33.72	(0.000)
89	6.66	(0.000)	0.39	(0.983)	6.88	(0.000)	26.66	(0.000)	6.29	(0.000)	11.43	(0.022)
90	3.13	(0.000)	111.65	(0.000)	3.15	(0.000)	30.85	(0.000)	2.84	(0.000)	268.11	(0.000)
91	2.57	(0.001)	88.69	(0.000)	2.67	(0.000)	28.53	(0.000)	2.80	(0.000)	65.69	(0.000)
92	5.93	(0.000)	123.25	(0.000)	5.79	(0.000)	13.68	(0.008)	6.02	(0.000)	5.04	(0.284)
93	3.39	(0.000)	13.70	(0.008)	3.51	(0.000)	32.29	(0.000)	4.19	(0.000)	5.45	(0.244)
94	5.70	(0.000)	69.08	(0.000)	5.56	(0.000)	19.62	(0.001)	5.68	(0.000)	27.22	(0.000)
95	4.90	(0.000)	16.37	(0.003)	4.87	(0.000)	29.76	(0.000)	4.78	(0.000)	24.21	(0.000)
96	0.81	(0.678)	3.83	(0.430)	0.80	(0.692)	5.06	(0.282)	0.91	(0.558)	3.15	(0.533)
97	6.56	(0.000)	19.73	(0.001)	5.89	(0.000)	187.49	(0.000)	6.21	(0.000)	23.02	(0.000)
98	6.12	(0.000)	4.84	(0.304)	5.33	(0.000)	15.89	(0.003)	5.82	(0.000)	11.88	(0.018)
99	5.27	(0.000)	99.39	(0.000)	5.40	(0.000)	293.16	(0.000)	6.41	(0.000)	20.05	(0.001)
2000	2.91	(0.000)	0.12	(0.998)	2.98	(0.000)	3.94	(0.414)	2.78	(0.000)	6.16	(0.187)

Earnings conditional on large and negative changes model (M10): $P_{it} = \boldsymbol{a} + \boldsymbol{b}_1 X_{it} + \boldsymbol{b}_2 D_{BS} X_{it} + \boldsymbol{b}_3 D_N X_{it} + \boldsymbol{b}_4 D_{BS} D_N X_{it} + \sum_{i} \boldsymbol{g}_j D_j + u_{it}$, $\boldsymbol{P} = \text{stock price}$, $\boldsymbol{X} = \text{accounting earnings}$ (\boldsymbol{OP} , \boldsymbol{OI} ,

NI), $DX = X_i - X_{i-1}$, D_{BS} = dummy variable, 1 when $|DX_{it}/P_{it-1}|$ is greater than median in each industry and 0 for others. D_N = dummy variable, 1 for firms decreasing earnings and 0 for others, D_j = industry dummy (j = 1, 2, ..., 17). For example, OP_N represents the regression model M7 (earnings capitalization with sign model). Each cell on the left-hand side in Panels through A to C shows as follows:

Top = Estimated Coefficients, (Middle) = t-value using heteroscedasticity-consistent covariance matrix (White's t), [Bottom] = p-value (two-tailed). The column "vs. $\mathbf{OP}_{-}\mathbf{N}$ " represents the difference in adjusted R-square between earnings capitalization with sign model (M7) with using operating profit as independent variable (fixed regression). Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

Table 16 AIC comparison between models

		Operating Profits	-		Ordinary Income	?		Net Income	
Year	OP_INT	vs. <i>OP_LN</i>	vs. <i>OP_BSN</i>	OI_INT	vs. <i>OI_LN</i>	vs. <i>OI_BSN</i>	NI_INT	vs. <i>NI_LN</i>	vs. <i>NI_BSN</i>
1979	0.21783	- 0.01287	- 0.00245	0.23189	- 0.02522	- 0.00142	0.22902	- 0.01039	- 0.00208
80	0.08679	- 0.00015	- 0.00019	0.09588	- 0.00045	0.00181	0.09655	- 0.00134	- 0.00078
81	0.10260	- 0.02030	- 0.01476	0.09570	- 0.01691	- 0.01075	0.10047	- 0.03503	- 0.03748
82	0.05480	- 0.00025	- 0.00039	0.05717	0.00032	- 0.00024	0.05796	0.00036	0.00004
83	0.05443	0.00004	- 0.00013	0.05748	0.00034	- 0.00006	0.06007	0.00027	0.00020
84	0.24733	0.00118	0.00172	0.24397	0.00142	- 0.00137	0.26943	0.00143	- 0.00641
85	0.14601	- 0.00111	0.00030	0.14913	- 0.00045	0.00491	0.14837	- 0.00290	- 0.00003
86	0.13575	- 0.00203	- 0.00337	0.13487	- 0.00083	- 0.00441	0.13952	0.00036	- 0.00087
87	0.18800	0.00100	0.00219	0.18502	0.00096	- 0.00027	0.18793	0.00117	0.00015
88	0.33170	- 0.00091	- 0.01580	0.32789	- 0.00400	- 0.02460	0.34010	- 0.00336	- 0.03011
89	0.16378	- 0.00217	0.00234	0.16444	- 0.00345	0.00121	0.16502	- 0.00338	- 0.00076
90	0.14708	- 0.00143	- 0.00883	0.14767	- 0.00234	- 0.00525	0.14534	- 0.00586	- 0.01094
91	0.04066	- 0.00044	- 0.00060	0.03963	0.00005	0.00029	0.04134	- 0.00033	- 0.00088
92	0.01993	0.00004	- 0.00022	0.01827	- 0.00008	- 0.00075	0.02096	0.00005	0.00123
93	0.03154	0.00004	0.00018	0.03187	0.00003	- 0.00007	0.03305	- 0.00011	0.00112
94	0.04726	- 0.00010	- 0.00105	0.04964	0.00019	- 0.00167	0.05231	0.00009	0.00054
95	0.02055	- 0.00090	- 0.00071	0.02175	- 0.00159	- 0.00088	0.02352	- 0.00056	- 0.00013
96	0.17529	- 0.00047	- 0.00146	0.17513	- 0.00045	- 0.00212	0.17766	0.00037	0.00087
97	0.03399	0.00007	- 0.00024	0.02988	0.00009	- 0.00158	0.03476	- 0.00053	- 0.00015
98	0.04567	0.00015	- 0.00097	0.04224	0.00010	- 0.00331	0.04380	- 0.39562	- 0.00031
99	0.07849	0.00028	- 0.00157	0.07893	0.00028	- 0.00366	0.08417	0.00029	0.00417
2000	0.34887	- 0.00011	0.00070	0.34582	- 0.00053	0.00033	0.34727	- 0.00087	- 0.00047
79 - 00	0.12844	- 0.00042	- 0.00034	0.12953	- 0.00062	- 0.00074	0.13595	- 0.00003	0.00009
Mean	0.12356	- 0.00184	- 0.00206	0.12383	- 0.00239	- 0.00245	0.12721	- 0.02072	- 0.00378
Median	0.09470	- 0.00020	- 0.00050	0.09579	- 0.00026	- 0.00113	0.09851	- 0.00043	- 0.00023
Z		- 2.159	- 1.997		- 1.737	- 2.386		- 2.029	- 1.380
<i>p</i> -value		0.031	0.046		0.082	0.017		0.042	0.168
BNST		0.286	0.052		0.832	0.017		0.523	0.286

Integrated earnings capitalization model (M11): $P_{ii} = \mathbf{a} + \mathbf{b}_1 X_{ii} + \mathbf{b}_2 D_L X_{ii} + \mathbf{b}_3 D_N X_{ii} + \mathbf{b}_4 D_{SH} X_{ii} + \sum_{i} \mathbf{g}_j D_j + u_{ii}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}), $\mathbf{DX} = \mathbf{X}_t - \mathbf{X}_{t-1}$. $\mathbf{D}_L = \text{dummy variable}$, 1 for losses and 0 for others. $\mathbf{D}_N = \text{dummy variable}$, 1 for firms decreasing earnings and 0 for others. $\mathbf{D}_{SH} = \text{dummy variable}$, 1 when $\mathbf{D}_{X_{ii}} = \mathbf{D}_{X_{ii}} + \mathbf{D}_{X_{ii}} + \mathbf{D}_{X_{ii}} \mathbf{D}_{$

Table 17 Value relevance of large positive shock on earnings

Panel A	value reiev	ance of larg	e positive si	ock on car	Adj. R ²	F	 el	
					(vs. OP_LN)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\frac{\mathbf{b}_1 + \mathbf{b}_3 = 0}{\mathbf{b}_1 + \mathbf{b}_3 = 0}$	$\mathbf{b}_1 + \mathbf{b}_4 = 0$
Year	OP	$\mathbf{\textit{D}}_{L}\mathbf{\textit{OP}}$	$\mathbf{\textit{D}}_{N}\mathbf{\textit{OP}}$	$D_{SH}OP$	(vs. <i>OP_BSN</i>)	1 2	1 3	1 4
1979	0.4385	- 0.7062	0.0435	0.0435	0.3113	0.3375	1.4384	66.185
	(1.230)	(- 1.094)	(0.111)	(3.284)	(0.0429)	[0.562]	[0.231]	[0.000]
	[0.220]	[0.275]	[0.912]	[0.001]	(0.0077)			
80	0.8582	- 0.1691	- 0.6704	0.2824	0.3746	1.8252	0.2708	53.775
	(3.494)	(- 0.286)	(-2.152)	(1.501)	(0.0031)	[0.178]	[0.603]	[0.000]
	[0.001]	[0.775]	[0.032]	[0.134]	(0.0014)			
81	0.8870	- 0.5678	- 0.2974	2.1169	0.4107	1.4575	5.8359	119.08
	(4.289)	(- 2.487)	(-1.805)	(3.706)	(0.1187)	[0.228]	[0.016]	[0.000]
	[0.000]	[0.013]	[0.072]	[0.000]	(0.0848)			
82	0.8970	- 0.7776	- 0.1458	- 0.3688	0.1749	0.0143	12.005	12.698
	(4.633)	(- 1.482)	(-0.692)	(- 1.937)	(0.0063)	[0.905]	[0.001]	[0.000]
	[0.000]	[0.139]	[0.490]	[0.054]	(0.0059)			
83	0.9349	- 1.0458	- 0.7209	- 0.2762	0.3093	0.0499	1.4134	24.900
	(4.284)	(- 2.319)	(-3.782)	(- 0.909)	(0.0015)	[0.823]	[0.235]	[0.000]
	[0.000]	[0.021]	[0.000]	[0.364]	(0.0016)			
84	2.4481	- 1.8065	- 1.3770	- 0.2849	0.2422	0.4912	4.5139	40.910
	(2.685)	(-1.705)	(-2.566)	(-0.371)	(-0.0014)	[0.484]	[0.034]	[0.000]
	[0.008]	[0.089]	[0.011]	[0.711]	(- 0.0053)			
85	0.5922	- 0.8644	- 0.1332	0.7517	0.1604	0.0719	0.9442	14.195
	(1.145)	(- 0.474)	(-0.300)	(1.645)	(0.0088)	[0.789]	[0.332]	[0.000]
	[0.253]	[0.636]	[0.764]	[0.101]	(- 0.0018)			
86	0.9601	- 0.9392	- 0.3904	1.7310	0.1550	0.0006	1.6341	19.175
	(1.520)	(-1.272)	(-0.754)	(1.783)	(0.0151)	[0.980]	[0.202]	[0.000]
	[0.130]	[0.204]	[0.452]	[0.076]	(0.0210)			
87	1.4253	- 0.8399	- 0.9890	- 0.4514	0.0779	0.2986	0.3457	1.8767
	(2.365)	(- 0.972)	(- 1.691)	(-0.651)	(-0.0022)	[0.585]	[0.557]	[0.172]
	[0.019]	[0.332]	[0.092]	[0.516]	(- 0.0107)			
88	3.2420	- 5.4956	0.8474	1.4184	0.2627	2.5118	12.159	52.849
	(3.203)	(- 4.193)	(0.712)	(1.283)	(0.0041)	[0.114]	[0.001]	[0.000]
	[0.002]	[0.000]	[0.477]	[0.200]	(0.0351)			
89	0.2894	- 1.0457	- 0.7904	2.0210	0.2376	0.2211	0.1647	9.7304
	(0.295)	(-0.516)	(- 1.046)	(2.651)	(0.0122)	[0.639]	[0.685]	[0.002]
	[0.769]	[0.606]	[0.297]	[0.008]	(- 0.0109)			
90	5.2078	- 21.855	0.2549	2.2833	0.2343	14.595	35.053	84.461
	(5.170)	(- 1.734)	(0.322)	(2.435)	(0.0093)	[0.000]	[0.000]	[0.000]
	[0.000]	[0.084]	[0.748]	0.015	(0.0460)			
91	1.1561	0.1497	- 1.2572	1.4335	0.1230	1.3174	0.0275	24.562
	(2.289)	(0.117)	(- 3.415)	(2.795)	(0.0113)	[0.252]	[0.868]	[0.000]
	[0.023]	[0.907]	[0.001]	[0.005]	(0.0130)			
92	1.9756	- 2.3892	- 0.7611	- 0.4259	0.2133	0.1678	14.731	13.293
	(4.951)	(- 2.516)	(- 2.527)	(- 0.903)	(- 0.0001)	[0.682]	[0.000]	[0.000]
	[0.000]	[0.012]	[0.012]	[0.367]	(0.0088)			

 Table 17
 Value relevance of large positive shock on earnings (continued)

Table 17	value relev	ance of larg	e positive sh	lock on ear	nings (continu			
Panel A					Adj. R^2		test [p-value	
					(vs. <i>OP_LN</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_4 = 0$
Year	OP	$D_L OP$	$\boldsymbol{D}_{N}\boldsymbol{OP}$	$D_{SH}OP$	(vs. <i>OP_BSN</i>)			
1993	2.4651	0.2088	- 1.6815	0.7994	0.2224	26.288	8.0033	23.499
	(4.403)	(0.391)	(- 3.657)	(1.002)	(0.0006)	[0.000]	[0.005]	[0.000]
	[0.000]	[0.696]	[0.000]	[0.317]	(- 0.0044)			
94	2.7022	- 2.4300	- 1.1684	0.9661	0.2293	0.3887	16.055	49.590
	(6.302)	(-3.084)	(-2.817)	(0.925)	(0.0030)	[0.533]	[0.000]	[0.000]
	[0.000]	[0.002]	[0.005]	[0.355]	(0.0171)			
95	1.1130	- 1.0037	- 0.2734	1.3598	0.2583	0.1025	5.8970	98.274
	(2.807)	(-1.305)	(-0.492)	(4.135)	(0.0340)	[0.749]	[0.016]	[0.000]
	[0.005]	[0.193]	[0.623]	[0.000]	(0.0255)			
96	0.0054	1.8331	- 1.1569	1.3246	0.0141	4.4670	2.0899	4.5370
	(0.011)	(1.602)	(-2.038)	(2.846)	(0.0045)	[0.035]	[0.149]	[0.034]
	[0.992]	[0.110]	[0.042]	[0.005]	(0.0083)			
97	3.1072	- 1.9196	- 1.1773	0.3180	0.3292	5.2450	20.664	97.588
	(8.253)	(- 2.667)	(-2.988)	(0.782)	(-0.0002)	[0.022]	[0.000]	[0.000]
	[0.000]	[800.0]	[0.003]	[0.435]	(0.0047)			
98	2.8701	- 2.1287	- 0.7572	- 0.1922	0.2828	5.5190	39.213	54.463
	(6.598)	(-3.635)	(-2.013)	(-0.384)	(-0.0011)	[0.019]	[0.000]	[0.000]
	[0.000]	[0.000]	[0.045]	[0.701]	(0.0152)			
99	2.0333	- 1.3792	- 0.6144	0.0569	0.2402	3.6324	18.223	17.815
	(5.730)	(-2.094)	(-1.414)	(0.125)	(-0.0013)	[0.057]	[0.000]	[0.000]
	[0.000]	[0.037]	[0.158]	[0.901]	(0.0152)			
2000	- 0.0275	0.4059	0.3000	0.7520	0.0602	0.2882	0.1530	3.8720
	(-0.065)	(0.619)	(0.637)	(1.432)	(0.0019)	[0.592]	[0.696]	[0.050]
	[0.948]	[0.536]	[0.524]	[0.153]	(- 0.0019)			
79 - 00	1.1640	- 0.6273	- 0.6385	0.4700	0.3106	19.689	32.617	649.81
	(9.354)	(-3.495)	(- 6.604)	(2.982)	(0.0023)	[0.000]	[0.000]	[0.000]
	[0.000]	[0.000]	[0.000]	[0.003]	(0.0018)			
Mean					0.2238			
					(0.0123)			
					(0.0126)			
Median					0.2360			
					(0.0036)	Z = 3.230	p = 0.001	
					(0.0080)	Z = 2.679	p = 0.007	
BNST					p = 0.052			
					p = 0.052			
					•			

 Table 17
 Value relevance of large positive shock on earnings (continued)

Panel B					Adj. R^2		test [p-value	<u>.</u>
X 7	0.1	D 01	D 01	D 01	(vs. <i>OI_LN</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_4 = 0$
Year	OI 020 T	D_LOI	$D_N OI$	D _{SH} OI	(vs. <i>OI_BSN</i>)	0.5042	0.7646	22.225
1979	- 0.8205	0.3118	0.2783	2.5013	0.2669	0.6942 [0.405]	0.5646	33.235
	(- 1.701) [0.090]	(0.429) [0.668]	(0.536) [0.593]	(5.192) [0.000]	(0.0823) (0.0045)	[0.403]	[0.453]	[0.000]
80	0.9041	- 0.3098	- 0.6188	0.5098	0.3091	1.9681	0.4273	25.340
	(2.349)	(- 0.478)	(- 1.645)	(1.749)	(0.0054)	[0.162]	[0.514]	[0.000]
	[0.019]	[0.633]	[0.101]	[0.081]	(- 0.0130)			
81	1.4302	- 0.9100	- 0.5291	2.5615	0.4504	2.4971	6.9043	145.31
	(4.713)	(- 2.200)	(- 1.947)	(4.014)	(0.0991)	[0.115]	[0.009]	[0.000]
	[0.000]	[0.029]	[0.052]	[0.000]	(0.0618)			
82	0.3887	0.6514	- 0.5765	0.1363	0.1393	4.7975	0.3762	5.2443
	(1.534)	(1.379)	(- 2.584)	(0.633)	(-0.0023)	[0.029]	[0.540]	[0.023]
	[0.126]	[0.169]	[0.010]	[0.527]	(0.0037)			
83	0.8597	- 0.4373	- 0.6501	- 0.1043	0.2706	1.4907	0.7220	18.549
	(3.589)	(- 1.349)	(- 2.744)	(-0.274)	(-0.0022)	[0.223]	[0.396]	[0.000]
	[0.000]	[0.179]	[0.006]	[0.784]	(0.0008)			
84	2.9936	- 1.6035	- 1.7264	0.2207	0.2525	4.0428	3.8079	46.008
	(3.808)	(-1.903)	(-3.039)	(0.272)	(-0.0021)	[0.045]	[0.052]	[0.000]
	[0.000]	[0.058]	[0.003]	[0.786]	(0.0042)			
85	0.4445	- 0.7867	- 0.7748	0.8466	0.1425	0.1416	0.1874	5.4458
	(0.718)	(-0.527)	(-1.232)	(1.590)	(0.0051)	[0.707]	[0.665]	[0.020]
	[0.474]	[0.599]	[0.219]	[0.113]	(- 0.0283)			
86	1.5879	- 2.2996	- 0.1716	1.4847	0.1605	0.8074	4.9237	18.736
	(1.989)	(-2.398)	(-0.264)	(1.418)	(0.0076)	[0.370]	[0.027]	[0.000]
	[0.048]	[0.017]	[0.792]	[0.157]	(0.0275)			
87	2.2221	- 0.5922	- 1.9541	- 0.5680	0.0925	1.7861	0.0726	3.5613
	(2.721)	(-0.517)	(- 2.066)	(- 0.590)	(-0.0021)	[0.182]	[0.788]	[0.060]
	[0.007]	[0.605]	[0.040]	[0.556]	(0.0013)			
88	3.8379	- 7.0223	1.5606	2.1893	0.2712	5.1270	14.408	56.986
	(4.201)	(-4.738)	(0.998)	(2.079)	(0.0110)	[0.024]	[0.000]	[0.000]
	[0.000]	[0.000]	[0.319]	[0.038]	(0.0547)			
89	- 1.1468	1.4020	- 1.5296	2.5761	0.2346	0.0216	3.3220	2.8625
	(- 0.996)	(0.647)	(- 1.941)	(3.233)	(0.0182)	[0.883]	[0.069]	[0.092]
	[0.320]	[0.518]	[0.053]	[0.001]	(- 0.0056)			
90	5.2367	- 12.295	0.3014	2.7141	0.2312	4.0205	33.056	86.434
	(5.653)	(-4.143)	(0.428)	(3.065)	(0.0140)	[0.046]	[0.000]	[0.000]
	[0.000]	[0.000]	[0.669]	[0.002]	(0.0273)			
91	2.1213	0.0154	- 1.8736	0.6843	0.1451	13.231	0.1552	28.448
	(3.917)	(0.023)	(-4.865)	(1.333)	(0.0007)	[0.000]	[0.694]	[0.000]
	[0.000]	[0.982]	[0.000]	[0.183]	(- 0.0063)			
92	3.0619	- 2.2971	- 1.3050	- 0.9242	0.2791	2.1179	27.414	21.764
- -	(8.674)	(- 3.855)	(- 3.989)	(- 1.817)	(0.0045)	[0.146]	[0.000]	[0.000]
	[0.000]	[0.000]	[0.000]	[0.070]	(0.0295)	-	-	-

 Table 17
 Value relevance of large positive shock on earnings (continued)

Year OI D_{c} (OI)	Table 17	value relev	ance of larg	e positive sh	ock on ear	nings (continu	иеа)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel B					Adj. R^2	F	test [p-value	·]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						(vs. <i>OI_LN</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_4 = 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	OI	$oldsymbol{D}_L oldsymbol{OI}$	$\boldsymbol{D}_{N}\boldsymbol{O}\boldsymbol{I}$	$D_{SH}OI$	(vs. <i>OI_BSN</i>)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1993	2.6678	- 0.9425	- 1.4173	0.9393	0.2143	16.374	14.121	21.768
94		(7.311)	(- 1.926)	(-4.017)	(0.863)	(0.0007)	[0.000]	[0.000]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.055]	[0.000]	[0.388]	(0.0017)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	94	2.7194	- 2.3945	- 0.7213	0.1691	0.1905	0.7280	20.299	23.260
$ \begin{bmatrix} [0.000] & [0.001] & [0.097] & [0.873] & (0.0272) \\ 0.4432 & -0.4590 & -0.1820 & 1.9239 & 0.2151 & 0.0031 & 0.5094 & 62.312 \\ (1.460) & (-0.926) & (-0.540) & (5.338) & (0.0590) & [0.955] & [0.476] & [0.000] \\ [0.145] & [0.355] & [0.590] & [0.000] & (0.0318) \\ \end{bmatrix} = 0.0001 & [0.0318] & [0.052] & [0.476] & [0.000] \\ 0.0145] & [0.355] & [0.590] & [0.000] & (0.0318) \\ \end{bmatrix} = 0.0001 & [0.001] & [0.001] & [0.001] & [0.007] & [0.020] & [0.288] \\ 0.0357] & [0.027] & [0.003] & [0.005] & (0.0119) & [0.007] & [0.020] & [0.288] \\ 0.0357] & [0.027] & [0.003] & [0.005] & (0.0119) & [0.000] & [0.000] \\ 0.037] & [0.007] & [0.003] & [0.005] & (0.0119) & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.002] & [0.667] & (0.0312) & [0.054] & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.002] & [0.667] & (0.0312) & [0.054] & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.032] & [0.514] & (0.0520) & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.032] & [0.514] & (0.0520) & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.032] & [0.514] & (0.0520) & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.032] & [0.514] & (0.0520) & [0.000] & [0.000] \\ 0.0001 & [0.0007] & [0.891] & [0.924] & (0.0354) & [0.0748 & 32.568 & 24.824 \\ (5.039) & (-2.691) & (-0.137) & (0.096) & (-0.0014) & [0.785] & [0.000] & [0.000] \\ 0.0001 & [0.007] & [0.891] & [0.924] & (0.0354) & [0.505] & [0.517] & [0.006] \\ 0.0001 & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ 0.0002 & [0.309] & [0.946] & [0.959] & [0.126] & (-0.0009) & [0.505] & [0.517] & [0.006] \\ 0.0003 & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ 0.0001 & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ 0.0002 & [0.0003] & [0.2242 & (0.0137) & (0.0082) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.484 & p = 0.013 & (0.0082) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.646 & p = 0.008 \\ 0.0037) & Z = 2.6$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95	0.4432	- 0.4590	- 0 1820	1 9239	0.2151	0.0031	0.5094	62 312
$ \begin{bmatrix} [0.145] & [0.355] & [0.590] & [0.000] & (0.0318) \\ -0.5816 & 2.7554 & -1.4440 & 1.4571 & 0.0149 & 7.3228 & 5.4491 & 1.1319 \\ (-0.922) & (2.213) & (-2.954) & (2.850) & (0.0043) & [0.007] & [0.020] & [0.288] \\ [0.357] & [0.027] & [0.003] & [0.005] & (0.0119) \\ \hline $)3								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							[0.755]	[0.470]	[0.000]
	0.5						5.000 0	7 4404	1.1210
$ \begin{bmatrix} [0.357] & [0.027] & [0.003] & [0.005] & (0.0119) \\ \\ 4.1146 & -3.1735 & -1.3197 & 0.1853 & 0.4104 & 3.7305 & 40.403 & 153.32 \\ (11.26) & (-4.352) & (-3.162) & (0.431) & (-0.0008) & [0.054] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.002] & [0.667] & (0.0312) \\ \\ 98 & 3.8244 & -2.9350 & -0.9686 & -0.3423 & 0.3367 & 9.4017 & 66.033 & 81.949 \\ (7.382) & (-5.099) & (-2.149) & (-0.654) & (-0.0004) & [0.002] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.032] & [0.514] & (0.0520) \\ \\ 99 & 2.1231 & -2.0275 & -0.0662 & 0.0426 & 0.2359 & 0.0748 & 32.568 & 24.824 \\ (5.039) & (-2.691) & (-0.137) & (0.096) & (-0.0014) & [0.785] & [0.000] & [0.000] \\ [0.000] & [0.007] & [0.891] & [0.924] & (0.0354) \\ \\ 2000 & 0.4659 & -0.0465 & 0.0243 & 0.9076 & 0.0684 & 0.4447 & 0.4198 & 7.5130 \\ (1.019) & (-0.068) & (0.052) & (1.532) & (0.0030) & [0.505] & [0.517] & [0.006] \\ [0.309] & [0.946] & [0.959] & [0.126] & (-0.0009) \\ \\ 79 - 00 & 1.3977 & -0.8670 & -0.6833 & 0.7252 & 0.3048 & 20.307 & 36.620 & 562.77 \\ (9.327) & (-3.610) & (-5.425) & (3.408) & (0.0034) & [0.000] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.000] & [0.001] & (0.0040) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	96								
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. ,		, ,			[0.007]	[0.020]	[0.288]
$ \begin{bmatrix} (11.26) & (-4.352) & (-3.162) & (0.431) & (-0.0008) & [0.054] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.002] & [0.667] & (0.0312) \\ \end{bmatrix} \begin{bmatrix} [0.001] & [0.000] & [0.000] & [0.000] & [0.00312) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.003] & [0.544] & (0.0312) \\ \end{bmatrix} \begin{bmatrix} [0.001] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.032] & [0.514] & (0.0520) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.0032] & [0.514] & (0.0520) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.0032] & [0.514] & (0.0520) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.0046] & (-0.0014) & [0.785] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.007] & [0.891] & [0.924] & (0.0354) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.001] & [0.981] & [0.924] & (0.0354) \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} \begin{bmatrix} [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.000] & [0.00$		[0.357]	[0.027]	[0.003]	[0.005]	(0.0119)			
$ \begin{bmatrix} [0.000] & [0.000] & [0.002] & [0.667] & (0.0312) \\ 3.8244 & -2.9350 & -0.9686 & -0.3423 & 0.3367 & 9.4017 & 66.033 & 81.949 \\ (7.382) & (-5.099) & (-2.149) & (-0.654) & (-0.0004) & [0.002] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.032] & [0.514] & (0.0520) \\ \end{bmatrix} = \begin{bmatrix} 0.002 & 0.002 & 0.002 & 0.002 & 0.002 & 0.0002 \\ 0.0001 & [0.000] & [0.031] & (0.096) & (-0.0014) & [0.785] & [0.000] & [0.000] \\ [0.000] & [0.007] & [0.891] & [0.924] & (0.0354) \\ \end{bmatrix} = \begin{bmatrix} 0.000 & 0.4659 & -0.0465 & 0.0243 & 0.9076 & 0.0684 & 0.4447 & 0.4198 & 7.5130 \\ (1.019) & (-0.068) & (0.052) & (1.532) & (0.0030) & [0.505] & [0.517] & [0.006] \\ [0.309] & [0.946] & [0.959] & [0.126] & (-0.0009) \\ \end{bmatrix} = \begin{bmatrix} 0.309 & [0.946] & [0.959] & [0.126] & (-0.0009) \\ \end{bmatrix} = \begin{bmatrix} 0.309 & -0.6870 & -0.6833 & 0.7252 & 0.3048 & 20.307 & 36.620 & 562.77 \\ (9.327) & (-3.610) & (-5.425) & (3.408) & (0.0034) & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.000] & [0.001] & (0.0040) \\ \end{bmatrix} = \begin{bmatrix} 0.2242 & (0.0137) & (0.0160) \\ \end{bmatrix} = \begin{bmatrix} 0.000 & 0.002329 & (0.0037) & Z = 2.484 & p = 0.013 \\ (0.0082) & Z = 2.646 & p = 0.008 \\ \end{bmatrix}$	97	4.1146	- 3.1735	- 1.3197	0.1853	0.4104	3.7305	40.403	153.32
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(11.26)	(-4.352)	(-3.162)	(0.431)	(-0.0008)	[0.054]	[0.000]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.000]	[0.002]	[0.667]	(0.0312)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	98	3.8244	- 2.9350	- 0.9686	- 0.3423	0.3367	9.4017	66.033	81.949
$ \begin{bmatrix} [0.000] & [0.000] & [0.032] & [0.514] & (0.0520) \\ 2.1231 & -2.0275 & -0.0662 & 0.0426 & 0.2359 & 0.0748 & 32.568 & 24.824 \\ (5.039) & (-2.691) & (-0.137) & (0.096) & (-0.0014) & [0.785] & [0.000] & [0.000] \\ [0.000] & [0.007] & [0.891] & [0.924] & (0.0354) \\ 2000 & 0.4659 & -0.0465 & 0.0243 & 0.9076 & 0.0684 & 0.4447 & 0.4198 & 7.5130 \\ (1.019) & (-0.068) & (0.052) & (1.532) & (0.0030) & [0.505] & [0.517] & [0.006] \\ [0.309] & [0.946] & [0.959] & [0.126] & (-0.0009) \\ 79 - 00 & 1.3977 & -0.8670 & -0.6833 & 0.7252 & 0.3048 & 20.307 & 36.620 & 562.77 \\ (9.327) & (-3.610) & (-5.425) & (3.408) & (0.0034) & [0.000] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.000] & [0.001] & (0.0040) \\ Mean & & & & & & & & & & & & & \\ Median & & & & & & & & & & & \\ Median & & & & & & & & & & & \\ Median & & & & & & & & & & & \\ Median & & & & & & & & & & & \\ Median & & & & & & & & & & \\ Median & & & & & & & & & & \\ Median & & & & & & & & & & \\ Median & & & & & & & & & \\ Median & & & & & & & & & \\ Median & & & & & & & & & \\ Median & & & & & & & & & \\ Median & & & & & & & & \\ Median & & & & & & & & \\ Median & & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & & & \\ Median & & & & & \\ Median & & & & & \\ Median & & & & & & \\ Median & & & & \\ $									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.000]	[0.032]	[0.514]	(0.0520)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	99	2.1231	- 2.0275	- 0.0662	0.0426	0.2359	0.0748	32.568	24.824
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	2000	0.4659	- 0.0465	0.0243	0 9076	0.0684	0 4447	0.4198	7 5130
	2000								
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$							[0.000]	[0.017]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	79 - 00	1 3077	- 0.8670	- 0 6833	0.7252	0.3048	20 307	36 620	562 77
[0.000] [0.000] [0.000] [0.001] (0.0040) Mean	77-00								
Mean $ \begin{array}{c} 0.2242 \\ (0.0137) \\ (0.0160) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$, ,			[0.000]	[0.000]	[0.000]
	3.6	[]	.		[·····]				
Median	Mean								
Median $ \begin{array}{cccc} 0.2329 & & & \\ (0.0037) & Z = 2.484 & p = 0.013 \\ (0.0082) & Z = 2.646 & p = 0.008 \\ \\ BNST & & p = 0.286 \end{array} $									
(0.0037) Z = 2.484 p = 0.013 $(0.0082) Z = 2.646 p = 0.008$ BNST $p = 0.286$,			
(0.0082) $Z = 2.646$ $p = 0.008$ BNST $p = 0.286$	Median								
BNST $p = 0.286$								•	
1						(0.0082)	Z = 2.646	p = 0.008	
p = 0.017	BNST					p = 0.286			
						p = 0.017			

Table 17 Value relevance of large positive shock on earnings (continued)

Panel C			•	ock on ear	Adj. R^2	F test [p-value]				
					(vs. <i>NI_LN</i>)	$\boldsymbol{b}_1 + \boldsymbol{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\mathbf{b}_1 + \mathbf{b}_4 = 0$		
Year	NI	$D_L NI$	$\boldsymbol{D}_{N}N\boldsymbol{I}$	$D_{SH}NI$	(vs. <i>NI_BSN</i>)					
1979	- 0.0594	3.2497	- 3.3345	2.3693	0.2760	5.6497	5.8035	46.346		
	(- 0.064)	(2.943)	(-4.002)	(2.514)	(0.0353)	[0.018]	[0.017]	[0.000]		
	[0.949]	[0.004]	[0.000]	[0.012]	(0.0066)					
80	0.0375	2.4207	- 1.8499	1.4806	0.3043	7.6829	3.7734	13.488		
	(0.060)	(2.746)	(- 2.801)	(2.643)	(0.0119)	[0.006]	[0.053]	[0.000]		
	[0.952]	[0.006]	[0.005]	[0.009]	(0.0057)					
81	0.3590	0.3687	- 0.6507	5.1827	0.4230	1.4011	0.2410	119.57		
	(1.825)	(0.630)	(-1.231)	(4.797)	(0.2036)	[0.238]	[0.624]	[0.000]		
	[0.069]	[0.529]	[0.219]	[0.000]	(0.2153)					
82	0.7529	0.5584	- 1.0452	- 0.1690	0.1274	3.5439	0.2558	4.7130		
	(1.545)	(0.883)	(-2.170)	(-0.383)	(-0.0027)	[0.061]	[0.613]	[0.031]		
	[0.124]	[0.378]	[0.031]	[0.702]	(- 0.0006)					
83	0.9655	- 0.5193	- 0.8747	- 0.3587	0.2377	0.7012	0.0605	9.3005		
	(2.061)	(-1.079)	(-1.987)	(-0.693)	(-0.0011)	[0.403]	[0.806]	[0.003]		
	[0.040]	[0.282]	[0.048]	[0.489]	(-0.0025)					
84	2.7729	- 4.0577	1.5691	0.5995	0.1745	0.8653	11.961	20.996		
	(3.116)	(- 1.938)	(0.842)	(0.565)	(-0.0019)	[0.353]	[0.001]	[0.000]		
	[0.002]	[0.054]	[0.400]	[0.572]	(0.0197)					
85	- 0.5776	2.0572	- 0.9084	1.7343	0.1469	0.9924	1.1811	5.0014		
	(-1.252)	(1.841)	(-0.907)	(2.858)	(0.0193)	[0.320]	[0.278]	[0.026]		
	[0.212]	[0.067]	[0.365]	[0.005]	(0.0002)					
86	2.2996	- 1.2986	- 0.8831	1.5739	0.1315	0.5414	1.1610	7.6646		
	(2.318)	(- 0.946)	(-0.908)	(0.877)	(0.0002)	[0.462]	[0.282]	[0.006]		
	[0.021]	[0.345]	[0.365]	[0.381]	(0.0054)					
87	1.2344	1.9787	- 2.1631	- 0.0431	0.0782	2.4077	0.2285	0.3292		
	(1.129)	(0.863)	(-1.151)	(-0.020)	(-0.0031)	[0.122]	[0.633]	[0.567]		
	[0.260]	[0.389]	[0.251]	[0.984]	(-0.0008)					
88	6.9860	- 8.7104	0.7502	4.2604	0.2440	1.4952	12.430	43.479		
	(4.009)	(- 3.960)	(0.558)	(2.009)	(0.0096)	[0.222]	[0.000]	[0.000]		
	[0.000]	[0.000]	[0.577]	[0.045]	(0.0669)					
89	- 4.9586	6.3179	- 2.7324	5.0907	0.2319	0.4695	9.9884	0.1410		
	(- 2.963)	(3.102)	(-1.804)	(3.114)	(0.0179)	[0.494]	[0.002]	[0.708]		
	[0.003]	[0.002]	[0.072]	[0.002]	(0.0036)					
90	8.1589	- 19.495	3.8427	7.3351	0.2433	5.2734	35.633	93.583		
	(3.939)	(-4.458)	(2.542)	(3.866)	(0.0323)	[0.022]	[0.000]	[0.000]		
	[0.000]	[0.000]	[0.011]	[0.000]	(0.0570)					
91	0.7955	2.3328	- 2.8913	1.9864	0.1083	9.6687	3.7280	11.771		
	(0.856)	(2.227)	(-3.540)	(1.476)	(0.0089)	[0.002]	[0.054]	[0.001]		
	[0.392]	[0.026]	[0.000]	[0.141]	(0.0190)					
92	1.5080	- 1.2088	0.1941	0.5979	0.1727	0.1732	7.5672	9.2291		
	(1.863)	(- 1.465)	(0.272)	(0.623)	(-0.0005)	[0.677]	[0.006]	[0.003]		
	[0.063]	[0.144]	[0.785]	[0.533]	(-0.0487)					

 Table 17
 Value relevance of large positive shock on earnings (continued)

Year NI D_LNI D_NNI $D_{SIN}I$ $D_{SIN}II$ $D_{SIN}III$ $D_{SIN}III$ $D_{SIN}IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII$	Table 17	Value relev	ance of larg	e positive sh	lock on ear	nings (contini	ued)		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Panel C					Adj. R^2	F	test [p-value	e]
1993 3.2100						(vs. <i>NI_LN</i>)	$\mathbf{b}_1 + \mathbf{b}_2 = 0$	$\boldsymbol{b}_1 + \boldsymbol{b}_3 = 0$	$\mathbf{b}_1 + \mathbf{b}_4 = 0$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Year	NI	$oldsymbol{D}_L oldsymbol{N} oldsymbol{I}$	$D_N NI$	$D_{SH}NI$	(vs. <i>NI_BSN</i>)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1993	3.2100	- 0.7679	- 2.0279	3.3869	0.1850	12.092	3.2334	13.751
94		(4.294)	(- 0.925)	(- 2.769)	(1.379)	(0.0044)	[0.001]	[0.073]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.356]	[0.006]	[0.169]	(- 0.0275)			
$ \begin{bmatrix} [0.028] & [0.200] & [0.273] & [0.514] & (-0.0089) \\ 0.4449 & -0.5640 & 0.3090 & 1.8100 & 0.1511 & 0.0412 & 1.5106 & 22.933 \\ (0.938) & (-0.590) & (0.449) & (2.432) & (0.0219) & [0.839] & [0.220] & [0.000] \\ [0.349] & [0.555] & [0.654] & [0.015] & (0.0045) \\ \end{bmatrix} = 0.2783 & 1.5147 & -0.2858 & 1.2096 & 0.0007 & 1.0549 & 0.3269 & 0.7955 \\ (-0.333) & (1.352) & (-0.382) & (1.531) & (-0.0003) & [0.305] & [0.568] & [0.373] \\ [0.739] & [0.177] & [0.703] & [0.126] & (-0.0049) \\ \end{bmatrix} = 0.179] & [0.703] & [0.126] & (-0.0049) \\ \end{bmatrix} = 0.179] & [0.703] & [0.126] & (-0.0049) \\ \end{bmatrix} = 0.2000 & [0.148] & [0.010] & [0.095] & (0.0029) \\ \end{bmatrix} = 0.6998 & -0.5145 & 0.0839 & 0.1353 & 0.1852 & 0.4381 & 4.1804 & 2.9980 \\ (1.344) & (-1.054) & (0.504) & (0.284) & (-0.0014) & [0.508] & [0.041] & [0.084] \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \end{bmatrix} = 0.200 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \end{bmatrix} = 0.000] & [0.000] & [0.000] & [0.000] & [0.000] \\ \end{bmatrix} = 0.0015] & [0.003] & [0.041] & [0.270] & [0.001] & [0.000] \\ \end{bmatrix} = 0.0019 & [0.301] & [0.205] & [0.038] & (0.0002) \\ \end{bmatrix} = 0.1798 & (0.0041) & Z = 2.743 & p = 0.006 \\ & (0.0170) & (0.0127) \\ \end{bmatrix} = 0.8881 & 0.1798 & (0.0041) & Z = 2.743 & p = 0.006 \\ & (0.0032) & Z = 1.282 & p = 0.200 \\ \end{bmatrix} = 0.8981 & 0.1798 & (0.0041) & Z = 2.743 & p = 0.006 \\ & (0.0032) & Z = 1.282 & p = 0.200 \\ \end{bmatrix}$	94	2.3845	- 1.3607	- 0.6160	- 0.8552	0.1469	2.9709	5.5424	3.6579
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(2.207)	(-1.283)	(- 1.097)	(-0.653)	(0.0001)	[0.085]	[0.019]	[0.056]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.028]	[0.200]	[0.273]	[0.514]	(- 0.0089)			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	95	0.4449	- 0.5640	0.3090	1.8100	0.1511	0.0412	1.5106	22.933
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(0.938)	(-0.590)	(0.449)	(2.432)		[0.839]	[0.220]	[0.000]
		[0.349]	[0.555]	[0.654]	[0.015]	(0.0045)			
$ \begin{bmatrix} [0.739] & [0.177] & [0.703] & [0.126] & (-0.0049) \\ \hline 97 & 5.2335 & -2.1037 & -2.3263 & -1.9026 & 0.3142 & 21.611 & 19.598 & 49.967 \\ (5.180) & (-1.449) & (-2.595) & (-1.673) & (0.0117) & [0.000] & [0.000] & [0.000] \\ [0.000] & [0.148] & [0.010] & [0.095] & (0.0029) \\ \hline 98 & 5.7565 & -3.7488 & -1.6667 & -1.2966 & 0.3122 & 11.393 & 42.745 & 65.466 \\ (5.929) & (-4.308) & (-2.280) & (-1.462) & (0.0035) & [0.001] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \hline 99 & 0.6998 & -0.5145 & 0.0839 & 0.1353 & 0.1852 & 0.4381 & 4.1804 & 2.9980 \\ (1.344) & (-1.054) & (0.504) & (0.284) & (-0.0014) & [0.508] & [0.041] & [0.084] \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \hline 2000 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \hline 79 - 00 & 0.6487 & -0.0558 & -0.4083 & 0.2802 & 0.2704 & 13.155 & 2.2576 & 145.94 \\ (2.427) & (-0.131) & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.133] & [0.000] \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ \hline Mean & & & & & & & & & & & & & & & & & & &$	96	- 0.2783	1.5147	- 0.2858	1.2096	0.0007	1.0549	0.3269	0.7955
$ \begin{bmatrix} [0.739] & [0.177] & [0.703] & [0.126] & (-0.0049) \\ \hline 97 & 5.2335 & -2.1037 & -2.3263 & -1.9026 & 0.3142 & 21.611 & 19.598 & 49.967 \\ (5.180) & (-1.449) & (-2.595) & (-1.673) & (0.0117) & [0.000] & [0.000] & [0.000] \\ [0.000] & [0.148] & [0.010] & [0.095] & (0.0029) \\ \hline 98 & 5.7565 & -3.7488 & -1.6667 & -1.2966 & 0.3122 & 11.393 & 42.745 & 65.466 \\ (5.929) & (-4.308) & (-2.280) & (-1.462) & (0.0035) & [0.001] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \hline 99 & 0.6998 & -0.5145 & 0.0839 & 0.1353 & 0.1852 & 0.4381 & 4.1804 & 2.9980 \\ (1.344) & (-1.054) & (0.504) & (0.284) & (-0.0014) & [0.508] & [0.041] & [0.084] \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \hline 2000 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \hline 79 - 00 & 0.6487 & -0.0558 & -0.4083 & 0.2802 & 0.2704 & 13.155 & 2.2576 & 145.94 \\ (2.427) & (-0.131) & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.133] & [0.000] \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ \hline Mean & & & & & & & & & & & & & & & & & & &$		(-0.333)	(1.352)	(-0.382)	(1.531)	(-0.0003)	[0.305]	[0.568]	[0.373]
$ \begin{bmatrix} (5.180) & (-1.449) & (-2.595) & (-1.673) & (0.0117) & [0.000] & [0.000] & [0.000] \\ [0.000] & [0.148] & [0.010] & [0.095] & (0.0029) \\ \end{bmatrix} \\ [0.000] & [0.148] & [0.010] & [0.095] & (0.0029) \\ \end{bmatrix} \\ [0.002] & [0.002] & [0.002] & [0.0035] & [0.001] & [0.000] & [0.000] \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \end{bmatrix} \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \end{bmatrix} \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \end{bmatrix} \\ [0.001] & [0.000] & [0.000] & [0.0023] & [0.144] & (0.0049) \\ \end{bmatrix} \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \end{bmatrix} \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \end{bmatrix} \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \end{bmatrix} \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \end{bmatrix} \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \end{bmatrix} \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \end{bmatrix} \\ [0.019] & [0.301] & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.172] & [0.051] & [0.000] \\ \end{bmatrix} \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ \end{bmatrix} \\ \\ Mean \\ \\ Median \\ \\ D.1798 \\ \\ (0.0041) & Z = 2.743 & p = 0.006 \\ \\ (0.0032) & Z = 1.282 & p = 0.200 \\ \end{bmatrix} \\ \\ BNST \\ \\$		[0.739]			[0.126]	(- 0.0049)			
$ \begin{bmatrix} [0.000] & [0.148] & [0.010] & [0.095] & (0.0029) \\ \\ 88 & 5.7565 & -3.7488 & -1.6667 & -1.2966 & 0.3122 & 11.393 & 42.745 & 65.466 \\ \\ (5.929) & (-4.308) & (-2.280) & (-1.462) & (0.0035) & [0.001] & [0.000] & [0.000] \\ \\ [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ \\ 99 & 0.6998 & -0.5145 & 0.0839 & 0.1353 & 0.1852 & 0.4381 & 4.1804 & 2.9980 \\ \\ (1.344) & (-1.054) & (0.504) & (0.284) & (-0.0014) & [0.508] & [0.041] & [0.084] \\ \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ \\ 2000 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \\ 79 - 00 & 0.6487 & -0.0558 & -0.4083 & 0.2802 & 0.2704 & 13.155 & 2.2576 & 145.94 \\ \\ (2.427) & (-0.131) & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.133] & [0.000] \\ \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ \\ Mean & & & & & & & & & & & & & & & & & & &$	97	5.2335	- 2.1037	- 2.3263	- 1.9026	0.3142	21.611	19.598	49.967
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(5.180)	(- 1.449)	(-2.595)	(-1.673)	(0.0117)	[0.000]	[0.000]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.148]	[0.010]	[0.095]	(0.0029)			
$ \begin{bmatrix} [0.000] & [0.000] & [0.023] & [0.144] & (0.0049) \\ 0.6998 & -0.5145 & 0.0839 & 0.1353 & 0.1852 & 0.4381 & 4.1804 & 2.9980 \\ (1.344) & (-1.054) & (0.504) & (0.284) & (-0.0014) & [0.508] & [0.041] & [0.084] \\ [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ 2000 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ 79-00 & 0.6487 & -0.0558 & -0.4083 & 0.2802 & 0.2704 & 13.155 & 2.2576 & 145.94 \\ (2.427) & (-0.131) & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.133] & [0.000] \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ Mean & & & & & & & & & & & & \\ & & & & & & $	98	5.7565	- 3.7488	- 1.6667	- 1.2966	0.3122	11.393	42.745	65.466
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		(5.929)	(-4.308)	(-2.280)	(-1.462)	(0.0035)	[0.001]	[0.000]	[0.000]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.000]	[0.000]	[0.023]	[0.144]	(0.0049)			
$ \begin{bmatrix} [0.179] & [0.292] & [0.615] & [0.777] & (-0.0404) \\ 2000 & 2.0919 & -0.6841 & -1.1381 & -1.8753 & 0.0645 & 1.8671 & 3.8084 & 1.6464 \\ (2.350) & (-1.034) & (-1.268) & (-2.085) & (0.0039) & [0.172] & [0.051] & [0.200] \\ [0.019] & [0.301] & [0.205] & [0.038] & (0.0012) \\ \hline 79-00 & 0.6487 & -0.0558 & -0.4083 & 0.2802 & 0.2704 & 13.155 & 2.2576 & 145.94 \\ (2.427) & (-0.131) & (-1.344) & (0.688) & (0.0003) & [0.000] & [0.133] & [0.000] \\ [0.015] & [0.896] & [0.179] & [0.492] & (-0.0004) \\ \hline Mean & & & & & & & & & & & \\ & & & & & & & $	99	0.6998	- 0.5145	0.0839	0.1353	0.1852	0.4381	4.1804	2.9980
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		(1.344)	(-1.054)	(0.504)	(0.284)	(-0.0014)	[0.508]	[0.041]	[0.084]
		[0.179]	[0.292]	[0.615]	[0.777]	(- 0.0404)			
	2000	2.0919	- 0.6841	- 1.1381	- 1.8753	0.0645	1.8671	3.8084	1.6464
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(2.350)	(-1.034)	(-1.268)	(-2.085)	(0.0039)	[0.172]	[0.051]	[0.200]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		[0.019]	[0.301]	[0.205]	[0.038]	(0.0012)			
[0.015] [0.896] [0.179] [0.492] (-0.0004) Mean	79 - 00	0.6487	- 0.0558	- 0.4083	0.2802	0.2704	13.155	2.2576	145.94
Mean $ \begin{array}{c} 0.1936 \\ (0.0170) \\ (0.0127) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$		(2.427)	(-0.131)	(- 1.344)	(0.688)	(0.0003)	[0.000]	[0.133]	[0.000]
		[0.015]	[0.896]	[0.179]	[0.492]	(- 0.0004)			
Median	Mean					0.1936			
Median $ \begin{array}{cccc} 0.1798 & & & & \\ (0.0041) & Z = 2.743 & p = 0.006 \\ (0.0032) & Z = 1.282 & p = 0.200 \\ \\ & & & & \\ \end{array} $ BNST $ p = 0.134 $						(0.0170)			
$(0.0041) Z = 2.743 p = 0.006 \\ (0.0032) Z = 1.282 p = 0.200 \\ p = 0.134$						(0.0127)			
(0.0032) $Z = 1.282$ $p = 0.200$ BNST $p = 0.134$	Median					0.1798			
BNST $p = 0.134$						(0.0041)	Z = 2.743	p = 0.006	
*						(0.0032)	Z = 1.282	p = 0.200	
<u>*</u>	BNST					p = 0.134			
						•			

Table 17 Value relevance of large positive shock on earnings (continued)

Panel D		(1) OF	P_BSN			(2) 0	_BSN		(3) NI_BSN			
	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test	Dumn	ny Test	Hausm	an Test
Year	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)	\overline{F}	(p-value)	c^2	(p-value)
1979	1.64	(0.058)	44.05	(0.000)	3.04	(0.000)	78.18	(0.000)	2.35	(0.003)	38.68	(0.000)
80	8.52	(0.000)	49.52	(0.000)	7.66	(0.000)	19.66	(0.001)	6.53	(0.000)	75.88	(0.000)
81	5.08	(0.000)	3.76	(0.439)	3.88	(0.000)	23.39	(0.000)	4.82	(0.000)	8.91	(0.063)
82	3.63	(0.000)	0.95	(0.918)	3.62	(0.000)	40.92	(0.000)	3.52	(0.000)	4.33	(0.363)
83	6.84	(0.000)	124.26	(0.000)	6.10	(0.000)	45.60	(0.000)	5.95	(0.000)	20.90	(0.000)
84	3.60	(0.000)	359.88	(0.000)	3.41	(0.000)	539.62	(0.000)	3.34	(0.000)	27.17	(0.000)
85	3.40	(0.000)	4.24	(0.375)	3.89	(0.000)	0.43	(0.980)	3.91	(0.000)	13.41	(0.009)
86	3.49	(0.000)	0.22	(0.995)	3.44	(0.000)	5.26	(0.262)	3.24	(0.000)	11.89	(0.018)
87	2.27	(0.004)	138.91	(0.000)	2.04	(0.011)	13.63	(0.009)	2.47	(0.002)	21.15	(0.000)
88	2.45	(0.002)	20.17	(0.001)	3.02	(0.000)	78.83	(0.000)	3.25	(0.000)	28.40	(0.000)
89	5.24	(0.000)	165.07	(0.000)	6.16	(0.000)	234.88	(0.000)	6.79	(0.000)	26.79	(0.000)
90	3.62	(0.000)	68.49	(0.000)	3.39	(0.000)	72.95	(0.000)	3.26	(0.000)	65.91	(0.000)
91	2.54	(0.001)	64.70	(0.000)	2.72	(0.000)	8.07	(0.089)	2.73	(0.000)	91.00	(0.000)
92	6.30	(0.000)	98.42	(0.000)	6.18	(0.000)	7.15	(0.128)	5.75	(0.000)	5.37	(0.251)
93	3.41	(0.000)	3.97	(0.410)	3.51	(0.000)	17.54	(0.002)	4.32	(0.000)	5.86	(0.210)
94	6.24	(0.000)	846.61	(0.000)	5.93	(0.000)	239.48	(0.000)	5.46	(0.000)	25.12	(0.000)
95	4.90	(0.000)	58.87	(0.000)	5.12	(0.000)	24.21	(0.000)	4.61	(0.000)	297.09	(0.000)
96	0.78	(0.722)	2.50	(0.644)	0.74	(0.757)	5.36	(0.253)	0.86	(0.617)	6.01	(0.198)
97	6.58	(0.000)	6.21	(0.184)	5.95	(0.000)	7.82	(0.099)	5.85	(0.000)	35.71	(0.000)
98	6.68	(0.000)	17.05	(0.002)	6.09	(0.000)	12.39	(0.015)	5.84	(0.000)	6.23	(0.182)
99	5.63	(0.000)	81.54	(0.000)	5.30	(0.000)	88.79	(0.000)	6.69	(0.000)	15.14	(0.004)
2000	2.80	(0.000)	24.93	(0.000)	2.93	(0.000)	4.43	(0.352)	2.87	(0.000)	9.03	(0.060)

Integrated earnings capitalization model (M11): $P_{it} = \mathbf{a} + \mathbf{b}_1 X_{it} + \mathbf{b}_2 D_L X_{it} + \mathbf{b}_3 D_N X_{it} + \mathbf{b}_4 D_{SH} X_{it} + \sum_{i} \mathbf{g}_j D_j + u_{it}$, $\mathbf{P} = \text{stock price}$, $\mathbf{X} = \text{accounting earnings}$ (\mathbf{OP} , \mathbf{OI} , \mathbf{NI}), \mathbf{DX}

 $⁼ X_t - X_{t-1}$. $D_L =$ dummy variable, 1 for losses and 0 for others. $D_N =$ dummy variable, 1 for firms decreasing earnings and 0 for others. $D_{SH} =$ dummy variable, 1 when DX_{it} is

positive and $all \mid DX_{it} / P_{it-1} \mid$ is greater than median in each industry and 0 for others, $D_j =$ industry dummy (j = 1, 2, ..., 17). For example, OP_LN represents the regression model M8 (earnings capitalization with losses and sign of changes model). OP_BSN represents the earnings capitalization conditional on large and negative surprises model (M10). Each cell on the left-hand side in Panels through A to C shows as follows: Top = Estimated Coefficients, (Middle) = t-value using heteroscedasticity-consistent covariance matrix (White's t), [Bottom] = p-value (two-tailed). The column "vs. OP_LN " represents the difference in adjusted R-square between earnings capitalization with losses and sign of changes model (M8) with using operating profit as independent variable. Z = Wilcoxon test score, BNST = p-value of binominal sign test. Dummy Test represents the results of F-test whether all industry dummy is zero.

Table 18 Summary of comparison among models

AIC	OP	OI	NI	OP_INT	OI_INT	NI_INT
$Adj.R^2$	0.11282	0.11932	0.12082	0.09470	0.09579	0.09851
OP		- 2.062	- 3.587	3.587	2.841	- 0.146
0.1876		[0.039]	[0.000]	[0.000]	[0.005]	[0.884]
		<0.052>	<0.001>	<0.001>	<0.001>	<0.832>
OI	2.062		- 3.360	3.458	3.945	1.185
0.1784	[0.039]		[0.001]	[0.001]	[0.000]	[0.236]
	<0.052>		<0.004>	<0.004>	<0.000>	<0.832>
NI	3.847	3.652		3.847	4.107	2.841
0.1487	[0.000]	[0.000]		[0.000]	[0.000]	[0.005]
	<0.001>	<0.004>		<0.000>	<0.000>	<0.052>
OP_INT	- 4.042	- 3.782	- 4.010		- 0.390	- 2.971
0.2360	[0.000]	[0.000]	[0.000]		[0.697]	[0.003]
	<0.000>	<0.004>	<0.000>		<1.000>	<0.017>
OI_INT	- 3.360	- 4.107	- 4.107	0.114		- 3.198
0.2329	[0.001]	[0.000]	[0.000]	[0.910]		[0.001]
	<0.001>	<0.000>	<0.000>	<1.000>		<0.001>
NI_INT	- 0.568	- 1.899	- 3.815	3.328	3.620	
0.1798	[0.570]	[0.058]	[0.000]	[0.001]	[0.000]	
	<0.832>	<0.286>	<0.001>	<0.017>	<0.001>	

Head line represents models' name and median. For example, OP represents simple earnings capitalization model (M1) with using operating profits as dependent variable and OP_INT represents the integrated earnings capitalization model (M11). All regression contains the industry dummies. The cells above (below) the diagonal show the results of comparison in AIC (adjusted R-square). Each cell shows as follows: Top = Z score of Wilcoxon test, [Middle] = p-value by Wilcoxon test (two-tailed), <Bottom> = p-value by binominal sign test (two-tailed).