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In this paper we consider the problem of estimating the regression parameters in a mul-
tiple linear regression model when the multicollinearity is present. Under the assumption
of normality, we present three empirical Bayes estimators. One of them shrinks the least
squares (LS) estimator towards the principal component. The second one is a hierarchical
empirical Bayes estimator shrinking the LS estimator twice. The third one is obtained by
choosing different priors for the two sets of regression parameters that arise in the case of
multicollinearity; this estimator is termed decomposed empirical Bayes estimator. These
proposed estimators are not only proved to be uniformly better than the LS estimator,
that is, minimax in terms of risk under the Strawderman’s loss function, but also shown
to be useful in the multicollinearity cases through simulation and empirical studies.
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1 Introduction

The primary purpose of regression models is prediction with the help of many indepen-
dent variables called predictors. However, when there are many independent variables, it
is very likely that some of them may be highly correlated among themselves leading to
the phenomenon of near multicollinearity. To avoid multicollinearity, fewer independent
variables are selected by various methods available in the literature. As an alternative,
Hoerl and Kennard (1970) proposed the so-called ridge regression method which is unaf-
fected by the multicollinearity among the many independent variables. A more general
method called ‘continuum regression’ has been proposed by Stone and Brooks (1990).
This procedure depends on a parameter, say, ‘γ’ which is recommended to be determined
by cross validation. However, except for two special values of γ, (0 and 1), Sundberg
(1993) and Björkström and Sundberg (1996) have shown that it is equivalent to ridge
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regression. Although the corresponding parameter of ridge regression can also be found
by the method of cross validation, it is not guaranteed to be optimum in any sense, at
least better than the least squares estimator. The problem of finding an optimum value
of the parameter in the ridge regression has been elusive.

To focus on this aspect, we consider the regression model

y = Aβ + ε, (1.1)

where ε has normal distribution NN(0, σ2IN) with unknown disturbance σ2, β is a p-
vector of unknown parameters and A is an N × p design matrix of rank p. When the
design matrix A is a matrix of observations on p independent variables, some of these
variables may be highly correlated. Thus, the matrix AtA may have some very small
eigenvalues. Consequently, the least squares (LS) estimator

β̂ = (AtA)−1Aty

whose covariance matrix is given by Cov (β̂) = σ2(AtA)−1 is not a suitable estimator

since some components of β̂ or some linear combinations of β̂ may have a very large
variance. This led Hoerl and Kennard (1970) to propose the estimator

β̂
R
(λ) = [AtA + kI]−1Aty = β̂ − [I + λAtA]−1β̂ (1.2)

for λ = 1/k, k > 0, and is called a ridge regression estimator of β. The estimator (1.2),
however, depends on λ as well as it is not always better than the LS estimator in terms
of risk under any quadratic loss. When an estimator is uniformly better than the LS
estimator, we say in this paper that it is minimax.

Strawderman (1978) and Casella (1980) gave a class of estimators of λ which result in
minimax estimators of β under a very general quadratic loss function

L(ω, δ,Q) = (δ − β)tQ(δ − β)/σ2 (1.3)

where δ is an estimator of β, Q is a known p×p positive definite matrix and ω = (β, σ2).
These minimax estimators are, however, not applicable to the multicollinearity case as
the conditions imposed for minimaxity are not satisfied here except in the case when
Q = (AtA)2, considered by Strawderman (1978). When Q = (AtA)2 in (1.3), we shall
call it Strawderman’s loss function. A minimax estimator of λ under Strawderman’s loss
function is given by

λ̂AD = (n+ 2)d1β̂
t
AtAβ̂/S + λ0

for S = (y −Aβ̂)t(y −Aβ̂), where d1 ≥ · · · ≥ dp are the ordered eigenvalues of (AtA)−1

and λ0 is the solution of

p∑
i=1

(di − dp)/(di + λ0) = (p− 2)/2.

Our numerical study shows that λ̂AD or a truncated version of it considered in this paper
are not good choices. Thus, we consider a modified version of the choice made by Shinozaki
and Chang (1993) who obtained an estimator of λ by solving the equation

β̂
[
(AtA)−1 + λI

]−1
β̂ = (p− 2)S/(n+ 2), (1.4)
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and showed that such an adaptive ridge regression estimator is minimax under the loss
function

L(ω, δ, I) = (δ − β)t(δ − β) (1.5)

provided

p∑
i=1

d2
i /d

2
1 − 2 ≥ (p− 2)/2. (1.6)

However, in the case of multicollinearity d1 would be very large and the condition (1.6)
would rarely be satisfied. These results were later extended by Shinozaki and Chang
(1996) to the situation when a linear hypothesis on β is suspected. In the multicollinearity
case it makes sense to consider the case of suspected hypothesis. For if H is an orthogonal
matrix such that H(AtA)−1H t = D and HH t = I, where D = diag (d1, . . . , dp) and
d1 ≥ · · · ≥ dp, we may write with H t = (H t

1,H
t
2),

β = H tHβ = H t
1H1β + H t

2H2β

= H t
1γ + H t

2α (1.7)

where γ corresponds to the smaller eigenvalues of AtA and should not be included in the
model. Thus, it would be desirable to include the constraint that β = H t

2α. Under the
Strawderman’s loss function

L(ω, δ, (AtA)2) = (δ − β)t(AtA)2(δ − β)/σ2, (1.8)

we propose in Section 2 of this paper, the following three empirical Bayes estimators when
the linear hypothesis H0 : β = H t

2α for α ∈ Rq is suspected.

β̂
EB

= β̂ − (AtA)−1
{

(AtA)−1 + λ̂EBIp

}−1 (
β̂ − β̂

PC
)
,

β̂
HB

= β̂ − (AtA)−1
{

(AtA)−1 + λ̂EBIp + τ̂HBH t
2H2

}−1

β̂,

β̂
DB

= β̂ − (AtA)−1
{

(AtA)−1 + λ̂EBH t
1H1 + ψ̂DBH t

2H2

}−1

β̂,

where λ̂EB, τ̂HB and ψ̂DB are defined by (2.8), (2.15) and (2.17), respectively, and β̂
PC

=

H t
2H2β̂ is the principal component regression (PC) estimator. It is shown in Sections 3

and 4 that these estimators are minimax, that is, uniformly better than the LS estimator in
terms of risk under the Strawderman’s loss function. In Section 5, a comparison between
several estimators under the loss function Lj(ω, δ, (A

tA)j) = (δ − β)t(AtA)j(δ − β),
j = 0, 1, 2, are carried out by Monte Carlo simulation along with an example. These
simulations show that the proposed estimators perform well for all the three loss functions.

2 Proposed Empirical Bayes Ridge Regression Estimators

For the multiple regression model (1.1) under the assumption of normality, β̂ and S are
independently distributed, where

β̂ ∼ Np(β, σ
2(AtA)−1) and S/σ2 ∼ χ2

n, n = N − p.
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In the multicollinearity case, we can construct reasonable ridge-type regression es-
timators by using the information about which eigenvalues are smaller. Let H be an
orthogonal matrix such that

HAtAH t = D−1 = diag (d1, . . . , dp) =

(
D−1

1 0
0 D−1

2

)
(2.1)

where D−1
1 = diag (d−1

1 , . . . , d−1
p−q), (p− q) × (p − q) diagonal matrix with smaller eigen-

values. Corresponding to this decomposition, the orthogonal matrix H is decomposed
as

H t = (H t
1; H

t
2) (2.2)

for q × p matrix H2. Then, as in (1.7),

β = H t
1γ + H t

2α.

Since γ corresponds to the smaller eigenvalues of AtA, it should not be included in the
model. Thus, it may be reasonable to shrink β̂ towards the linear constraint:

H0 : β = H t
2α, α ∈ Rq. (2.3)

It may be reasonable to consider adaptive ridge regression estimators shrunken toward
the hypothesis. To derive such a shrinkage procedure, we employ three types of empirical
Bayes methods, which are here called an empirical Bayes ridge regression estimator (EB),
a hierarchical empirical Bayes ridge regression estimator (HB) and a decomposed empirical
Bayes estimator (DB).

2.1 Empirical Bayes ridge regression estimator (EB)

Suppose that β has prior distribution Np(H
t
2α, σ

2λIp) for unknown λ > 0. Then the

posterior distribution of β given β̂ and the marginal distribution of β̂ are, respectively,
given by

β | β̂ ∼ Np

(
β̂

B
(λ,α), σ2(AtA + λ−1I)−1

)
,

β̂ ∼ Np

(
H t

2α, σ
2{(AtA)−1 + λI}) ,

where β̂
B
(λ,α) is the Bayes estimator of β given by

β̂
B
(λ,α) = (AtA + λ−1I)−1AtA(β̂ − H t

2α) + H t
2α

= β̂ − (I + λAtA
)−1

(β̂ − H t
2α). (2.4)

Since α and λ are unknown, they need to be estimated. First, α may be estimated
by the weighted least squares estimator

α̂ = (H2A
tAH t

2)
−1H2A

tAβ̂,

which can be obtained by minimizing the weighted squared loss (β̂ − H t
2α)tAtA(β̂ −

H t
2α). Using the decomposition given by (2.1) and (2.2), we see that α̂ = H2β̂. Since

the principal component (PC) regression estimator β̂
PC

of β is given by

β̂
PC

= H t
2H2β̂,
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we observe that H t
2α̂ = β̂

PC
. Substituting H t

2α̂ = β̂
PC

into β̂
B
(λ,α), we get the

estimator

β̂
B
(λ, α̂) = β̂ − (I + λAtA)−1(β̂ − β̂

PC
). (2.5)

A reasonable method to estimate λ is from the marginal distribution of β̂. Using the
sample moments, we propose an estimator which we call an empirical Bayes estimator.
Let λ∗ be a root of the equation

(β̂ − β̂
PC

)t
{
(AtA)−1 + λ∗I

}−1
(β̂ − β̂

PC
) =

p− q − 2

n+ 2
S, (2.6)

and λ0 is the root of the equation

p−q∑
i=1

di − dp−q

di + λ0
= (p− q − 2)/2. (2.7)

Then we propose the estimator λ̂EB of λ, given by the maximum of λ∗ and λ0, that is,

λ̂EB = max(λ∗, λ0). (2.8)

Substituting α̂ and λ̂EB into (2.4), we get the empirical Bayes ridge regression esti-
mator (EB)

β̂
EB

= β̂
B
(λ̂EB, α̂) = β̂ −

(
I + λ̂EBAtA

)−1 (
β̂ − β̂

PC
)
, (2.9)

which shrinks the LS estimator β̂ towards the PC estimator β̂
PC

. It is known that the
principal component estimator and the ridge regression estimator are useful in predicting
a response variable in the presence of multicollinearity. It is interesting to note that both
methods of ridge regression and principal components are incorporated in the proposed

estimator β̂
B
(λ̂EB, α̂).

The single empirical Bayes ridge regression estimator given by (2.9) can be shown in

Section 3 to be minimax under the loss function (1.8), namely, β̂
B
(λ̂EB, α̂) has uniformly

smaller risk than β̂.

2.2 Hierarchical empirical Bayes ridge regression estimator (HB)

When the dimension q of the vector α is large, it may be reasonable to shrink the estimator
of α. Thus we consider the hierarchical type of the prior distributions:

β |α ∼ Np(H
t
2α, σ

2λIp),

α ∼ Nq(α0, σ
2τIq),

where λ and τ are unknown and α0 is a known value. Such hierarchical prior distributions
have been proposed in the literature (for example, see Lindley and Smith (1972)).

Integrating out the joint prior distribution with respect to α, we can see that the
marginal prior distribution of β is

β ∼ Np

(
H t

2α0, σ
2
(
λIp + τH t

2H2

))
.
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Since β̂|β ∼ Np(β, σ
2(AtA)−1), given β̂ the posterior distribution of β is

β | β̂ ∼ Np(β̂
HB

(λ, τ),
{
AtA + (λIp + τH t

2H2)
−1
}−1

),

and the marginal distribution of β̂ is

β̂ ∼ Np(H
t
2α0, λIp + τH t

2H2 + (AtA)−1),

where β̂
HB

(λ, τ) is the Bayes estimator of β, given by

β̂
HB

(λ, τ) =
{
AtA + (λIp + τH t

2H2)
−1
}−1

{
AtAβ̂ + (λIp + τH t

2H2)
−1H t

2α0

}
= β̂ − (AtA)−1

{
(AtA)−1 + λIp + τH t

2H2

}−1
(β̂ − H t

2α0).

As shown in the Appendix, β̂
HB

(λ, τ) can be rewritten as

β̂
HB

(λ, τ) = β̂ − (AtA)−1
{
(AtA)−1 + λIp

}−1
{

β̂ − H t
2α̂

S(λ, τ)
}
, (2.10)

where

α̂S(λ, τ) = α̂(λ) −
[
Iq + τH2

{
(AtA)−1 + λIp

}−1
H t

2

]−1

(α̂(λ) − α0), (2.11)

for α̂(λ) = [H2{(AtA)−1+λIp}−1H t
2]
−1H2{(AtA)−1+λIp}−1β̂. It is interesting to note

that α̂S(λ, τ) shrinks the weighted LS estimator α̂(λ) towards the prior mean α0. Hence

β̂
HB

(λ, τ) is interpreted as a double shrinkage procedure that shrinks the LS estimator β̂
towards the shrunken value H t

2α̂
S(λ, τ).

The hyper-parameters λ and τ are estimated from the marginal distribution of β̂. We
here employ the estimator λ̂EB given by (2.8) for λ. To estimate τ , let ψ∗ be the solution
of the equation:

(H2β̂ − α0)
t
{
H2(A

tA)−1H t
2 + ψ∗Iq

}−1
(H2β̂ − α0) = (q − 2)S/(n+ 2). (2.12)

Also let ψ0 and ψ1 be the solution of the following two equations:
p∑

i=p−q+1

di − dp

di + ψ0
=
q − 2

2
, (2.13)

p∑
i=p−q+1

di − dp

di + ψ1
+ 2

q − 2

n + 2

d1 − dp

dp + ψ1
=
q + 2

2
. (2.14)

Define ψ̂HB and τ̂HB by

ψ̂HB = max(ψ∗, ψ0, ψ1), τ̂HB = max(ψ̂HB − λ̂EB, 0). (2.15)

Then, we get the estimator

β̂
HB

= β̂
HB

(λ̂EB, τ̂HB)

= β̂ − (AtA)−1
{

(AtA)−1 + λ̂EBIp + τ̂HBH t
2H2

}−1

(β̂ − H t
2α0), (2.16)

which we shall call the hierarchical empirical Bayes ridge regression estimator (HB). The
prior mean α0 is given from a prior information. If there are no prior information available,
α0 may be chosen to be a zero vector.

The hierarchical empirical Bayes ridge regression estimator given by (2.16) is shown
in Section 4 to be minimax under the loss function (1.8).
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2.3 Decomposed empirical Bayes ridge regression estimator

The regression coefficients vector β is expressed as β = H t
1γ+H t

2α by the decomposition
(2.1) and (2.2). Since γ and α correspond to the smaller and larger eigenvalues of AtA,
respectively, it may be reasonable to suppose that the decomposed parameters γ and
α have different prior distributions. We thus suppose that γ and α are independently
distributed as

γ ∼ N (0, λσ2Ip−q),

α ∼ N (α0, ψσ
2Iq),

where λ, ψ are unknown parameters and α0 is a known prior mean. Then β has a
prior distribution N (H t

2α0, σ
2(λH t

1H1 + ψH t
2H2)). It can be seen that the posterior

distribution of β given β̂ and the marginal distribution of β̂ are given by

β|β̂ ∼ N
(

β̂
DB

(λ, ψ), σ2

{
AtA +

1

λ
H t

1H1 +
1

ψ
H t

2H2

}−1
)
,

β̂ ∼ N (
H t

2α0, σ
2
{
(AtA)−1 + λH t

1H1 + ψH t
2H2

})
,

where β̂
DB

(λ, ψ) is the Bayes estimator of β, given by

β̂
DB

(λ, ψ) = β̂ − (AtA)−1
{
(AtA)−1 + λH t

1H1 + ψH t
2H2

}−1
(
β̂ − H t

2α0

)
.

The unknown hyper-parameters λ and ψ are estimated from the marginal distribution
of β̂. We here employ the estimator λ̂EB given by (2.8) for λ and define the estimator

ψ̂DB by

ψ̂DB = max(ψ∗, ψ0), (2.17)

for ψ∗ and ψ0 given in (2.12) and (2.13), respectively. Then, we get the estimator

β̂
DB

= β̂
DB

(λ̂EB, ψ̂DB)

= β̂ − (AtA)−1
{

(AtA)−1 + λ̂EBH t
1H1 + ψ̂DBH t

2H2

}−1 (
β̂ − H t

2α0

)
, (2.18)

which is here called the decomposed empirical Bayes ridge regression estimator (DB).

The decomposed empirical Bayes ridge regression estimator given by (2.18) will be
shown in Section 4 to be minimax under the loss function (1.8).

3 Minimaxity of the Empirical Bayes Estimators

In this section, we not only show the minimaxity of the single empirical Bayes ridge

regression estimator β̂
B
(λ̂EB, α̂) given by (2.9), but also derive other minimax adaptive

ridge regression estimators. For the purpose, in the next subsection, we shall obtain
the general conditions on an estimator λ̂ of λ under which the resulting adaptive ridge
regression estimator is minimax under the Strawderman’s loss function (1.8).
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3.1 General conditions for the minimaxity

Let λ̂ be a nonnegative function of β̂ − β̂
PC

and S and consider the empirical Bayes or
adaptive ridge regression estimator

β̂
B
(λ̂, α̂) = β̂ − (I + λ̂AtA)−1(β̂ − β̂

PC
). (3.1)

To handle the estimators more conveniently, we treat them in a canonical form. For
the orthogonal matrix H given by (2.1), define x = Hβ̂ and θ = Hβ. Then

x ∼ Np(θ, σ
2D), (3.2)

D = diag (d1, . . . , dp), d1 ≥ . . . ≥ dp > 0.

That is xi’s are independently normally distributed as xi ∼ N (θi, diσ
2) where xi and θi

are the respective ith component of the vectors x and θ. Letting θ̂
B
(λ̂, α̂) = Hβ̂

B
(λ̂, α̂)

and noting that Hβ̂
PC

= HH t
2H2β̂ = (0, . . . , 0, xp−q+1, . . . , xp)

t, we see that

θ̂
B
(λ̂, α̂) = x − (D + λ̂I)−1D(x − Hβ̂

PC
)

=

(
x(1) − (D1 + λ̂Ip−q)

−1D1x(1)

x(2)

)
, (3.3)

where x(1) = (x1, . . . , xp−q)
t and x(2) = (xp−q+1, . . . , xp)

t and the estimator λ̂ of λ can be
represented as a function of x(1) and S.

Theorem 1. The empirical Bayes or adaptive ridge regression estimator β̂
B
(λ̂, α̂) is

minimax, that is, improves on the least squares estimator β̂ relative to the loss L(ω, δ, (AtA)2)
given by (1.8) if the following conditions on the λ̂ are satisfied for p ≥ q + 3:

(a) λ̂ ≥ λm for a nonnegative constant λm, and λ̂ is an absolutely continuous function
of x1, . . . , xp−q and S.

(b) xi∂λ̂/∂xi ≥ 0 for i = 1, . . . , p− q, and

p−q∑
i=1

xi

di + λ̂

∂λ̂

∂xi
≤ 2. (3.4)

(c) ∂λ̂/∂S ≤ 0 and for positive constants α and β,

p−q∑
i=1

x2
i /S

di + λ̂
≤ α and −

p−q∑
i=1

x2
i

(di + λ̂)2

∂λ̂

∂S
≤ β. (3.5)

(d) The constants λm, α and β satisfy the inequality:

p−q∑
i=1

di − dp−q

di + λm
+

(n− 2)α

2
+ 2β ≤ p− q − 2. (3.6)

Proof. The risk function of β̂
B
(λ̂, α̂) is written by

R(ω, β̂
B
(λ̂, α̂)) = R(ω,X)

−2

p−q∑
i=1

E

[
(xi − θi)

xi/di

di + λ̂

]
/σ2 +

p−q∑
i=1

E

[
x2

i

(di + λ̂)2

]
/σ2. (3.7)
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Using the Stein identity given by Stein (1973, 81), we observe that

E

[
(xi − θi)

xi/(diσ
2)

di + λ̂

]
= E

[
1

di + λ̂
− xi

(di + λ̂)2

∂λ̂

∂xi

]
. (3.8)

Using the chi-square identity given by Efron and Morris (1976) gives that

E

[
p−q∑
i=1

x2
i /S

(di + λ̂)2

S

σ2

]
= E

[
(n− 2)

p−q∑
i=1

x2
i /S

(di + λ̂)2
− 4

p−q∑
i=1

x2
i

(di + λ̂)3

∂λ̂

∂S

]
. (3.9)

Combining (3.7), (3.8) and (3.9) gives the expression as R(ω, β̂
B
(λ̂, α̂)) = R(ω, β̂) +

E[∆̃(λ̂)], where

∆̃(λ̂) = − 2

p−q∑
i=1

1

di + λ̂
+ 2

p−q∑
i=1

xi

(di + λ̂)2

∂λ̂

∂xi

+ (n− 2)

p−q∑
i=1

x2
i /S

(di + λ̂)2
− 4

p−q∑
i=1

x2
i

(di + λ̂)3

∂λ̂

∂S
. (3.10)

From the condition (b) of Theorem 1, it is seen that

p−q∑
i=1

xi

(di + λ̂)2

∂λ̂

∂xi

≤ 2

dp−q + λ̂
. (3.11)

From the condition (c) of Theorem 1, it follows that

(n− 2)

p−q∑
i=1

x2
i /S

(di + λ̂)2
− 4

p−q∑
i=1

x2
i

(di + λ̂)3

∂λ̂

∂S
≤ n− 2

dp−q + λ̂
α +

4β

dp−q + λ̂
. (3.12)

Combining (3.10), (3.11) and (3.12) gives that

∆̃(λ) ≤ −
p−q∑
i=1

2

di + λ̂
+

(n− 2)α+ 4(β + 1)

dp−q + λ̂
(3.13)

which is not positive if

−2

p−q∑
i=1

dp−q + λ̂

di + λ̂
+ (n− 2)α + 4(β + 1) ≤ 0. (3.14)

From the condition (a), it is noted that

p−q∑
i=1

dp−q + λ̂

di + λ̂
≥

p−q∑
i=1

dp−q + λm

di + λm
= p− q −

p−q∑
i=1

di − dp−q

di + λm
,

which is used to get the following condition from (3.14):

2

p−q∑
i=1

di − dp−q

di + λm
+ (n− 2)α+ 4β ≤ 2(p− q − 2).

This inequality is just given by the condition (d) of Theorem 1, which has therefore been
proved.
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3.2 Minimaxity of the empirical Bayes ridge regression estimator

Theorem 1 can be applied to get the sufficient conditions for several adaptive or empirical
Bayes ridge regression estimators to be minimax. We first show the minimaxity of the

empirical Bayes ridge regression estimator βEB = β̂
B
(λ̂EB, α̂) proposed by (2.9). The λ∗

defined as a root of the equation (2.6) is expressed in the notation of the model (3.2) as

p−q∑
i=1

x2
i /S

di + λ∗
=
p− q − 2

n + 2
. (3.15)

To check the conditions of Theorem 1, we need to calculate the derivatives ∂λ∗/∂xi and
∂λ∗/∂S. The theorem of the implicit function can be applied to get these quantities.
Letting

F (x1, . . . , xp−q, S, λ) =

p−q∑
i=1

x2
i

di + λ
− p− q − 2

n+ 2
S,

we see that F (x1, . . . , xp−q, S, λ
∗) = 0. Then we observe that

∂λ∗

∂xi
= −∂F

∂xi

(
∂F

∂λ∗

)−1

= 2
xi

di + λ∗

(
p−q∑
j=1

x2
j

(dj + λ∗)2

)−1

(3.16)

∂λ∗

∂S
= −∂F

∂S

(
∂F

∂λ∗

)−1

= −p− q − 2

n+ 2

(
p−q∑
j=1

x2
j

(dj + λ∗)2

)−1

. (3.17)

By using these quantities and the equation (3.15), it can be seen that

p−q∑
i=1

xi

di + λ̂EB

∂λ̂EB

∂xi
= 2I(λ∗ > λ0) ≤ 2,

−
p−q∑
i=1

x2
i

(di + λ̂EB)2

∂λ̂EB

∂S
=
p− q − 2

n+ 2
I(λ∗ > λ0) ≤ p− q − 2

n+ 2
,

p−q∑
i=1

x2
i /S

di + λ̂EB

≤
p−q∑
i=1

x2
i /S

di + λ∗
=
p− q − 2

n+ 2
.

Hence, the conditions (b) and (c) are satisfied by putting α = β = (p − q − 2)/(n + 2).
The constant λm in the condition (d) is required to satisfy the inequality

p−q∑
i=1

di − dp−q

di + λm
≤ p− q − 2

2
, (3.18)

which is guaranteed by the equation (2.7) by putting λm = λ0. Hence all the conditions
in Theorem 1 are satisfied, and we get the following proposition:

Proposition 1. Assume that λ0 satisfies the equation (2.7). Let λ̂EB = max(λ∗, λ0)

for the root λ∗ of the equation (2.6) or (3.15). Then the EB estimator (2.9) β̂
EB

=

β̂
B
(λ̂EB, α̂) is minimax under the loss (1.8) for p ≥ q + 3.
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3.3 Another minimax adaptive ridge regression estimator

Next, we shall apply Theorem 1 to derive another minimax adaptive ridge regression esti-

mator. Consider the adaptive estimator β̂
B
(λ̂AD(a, λa), α̂) discussed in the introduction

where
λ̂AD(a, λa) = (β̂ − β̂

PC
)tAtA(β̂ − β̂

PC
)/(aS) + λa;

this can be expressed in the notation of the model (3.2) as

λ̂AD(a, λa) =

p−q∑
i=1

x2
i /(adiS) + λa. (3.19)

We shall now show that the conditions (a)-(d) are satisfied by the estimator given in
(3.19) for a suitable choice of a and λa. The condition (a) is satisfied by putting λm = λa.
The condition (b) is verified as

p−q∑
i=1

xi

di + λ̂AD(a, λa)

∂λ̂AD(a, λa)

∂xi
≤ 2

p−q∑
i=1

x2
i /(adiS)

di + λ̂AD(a, λa)

≤ 2λ̂AD(a, λa)

dp−q + λ̂AD(a, λa)
≤ 2.

For the condition (c), we observe that

p−q∑
i=1

x2
i /S

di + λ̂AD(a, λa)
≤ ad1

∑p−q
i=1 x

2
i /(adiS)

dp−q + λ̂AD(a, λa)
≤ ad1,

−
p−q∑
i=1

x2
i

(di + λ̂AD(a, λa))2

∂λ̂AD(a, λa)

∂S
≤ ad1{λ̂AD(a, λa)}2

(dp−q + λ̂AD(a, λa))2
≤ ad1,

which imply that the condition is satisfied by putting α = β = ad1. Hence the condition
(d) is given by

p−q∑
i=1

di − dp−q

di + λa

+
(n+ 2)d1

2
a ≤ p− q − 2. (3.20)

A reasonable choice of a is a = (p − q − 2)/[(n + 2)d1], and then λa should be chosen
as a root such that the equality holds in the inequality (3.20). This root is equal to the
solution λ0 of the equation (2.7).

Proposition 2. Let λ0 be a solution of the equation (2.7). Then the adaptive ridge

regression estimator β̂
AD

= β̂
B
(λ̂AD, α̂) with

λ̂AD =
n+ 2

p− q − 2

(β̂ − β̂
PC

)tAtA(β̂ − β̂
PC

)

chmin(AtA)S
+ λ0 (3.21)

=
(n + 2)d1

p− q − 2

p−q∑
i=1

x2
i /(diS) + λ0

is minimax under the loss (1.8) for p ≥ q+3, where chmin(M) denotes the minimum eigen
value of the matrix M . When there is no restriction on β belonging to the subspace, a
similar estimator has been considered by Strawderman (1978) under the same loss function
as we do.
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3.4 A modified adaptive ridge regression estimator

It is noted that the estimator (3.21) has a shortcoming for smaller dp−q. In fact, when

q = 0 and dp tends to zero, λ̂AD goes to infinity, so that the adaptive ridge regression

estimator β̂
AD

approaches the unstable estimator β̂ in the case of large d1. To eliminate
this shortcoming, we modify λ̂AD as

λ̂TR = max

{
(n+ 2)(d1 + 1)

(p− q − 2)S
(β̂ − β̂

PC
)t[(AtA)−1 + Ip]

−1(β̂ − β̂
PC

), λ0

}
(3.22)

= max

{
(n + 2)(d1 + 1)

(p− q − 2)S

p−q∑
i=1

x2
i

di + 1
, λ0

}
.

It is easy to see that λ̂TR is bounded for dp going to zero as well as λ̂TR ≤ λ̂AD. This

means that the modified estimator β̂
TR

= β̂
B
(λ̂TR, α̂) is shrunken more than β̂

AD
. The

minimaxity of β̂
TR

can be verified by the same argument as in the above proposition.

Proposition 3. The modified adaptive ridge regression estimator β̂
TR

= β̂
B
(λ̂TR, α̂)

is minimax under the loss (1.8) for λ0 defined by the equation (2.7) if p ≥ q + 3.

4 Minimaxity of the Hierarchical and Decomposed Empirical

Bayes Estimators

We here show that the hierarchical and decomposed empirical Bayes ridge regression

estimators β̂
HB

given by (2.16) and β̂
DB

given by (2.18) have uniformly smaller risks

than the LS estimator β̂ relative to the Strawderman’s loss.

To handle the estimator β̂
HB

more easily, we use the canonical model (3.2) to get the
expression

θ̂
HB

= Hβ̂
HB

=

(
x(1) − D1(D1 + λ̂EBIp−q)

−1x(1)

x(2) − D2(D2 + (λ̂EB + τ̂HB)Iq)
−1(x(2) − α0)

)
. (4.1)

Also the equation (2.13) is rewritten by

(x(2) − α0)
t(D2 + ψ∗Iq)

−1(x(2) − α0) = (q − 2)S/(n+ 2). (4.2)

Under the same notations, the estimator β̂
DB

is expressed by

θ̂
DB

= Hβ̂
DB

=

(
x(1) − D1(D1 + λ̂EBIp−q)

−1x(1)

x(2) − D2(D2 + ψ̂DBIq)
−1(x(2) − α0)

)
. (4.3)

The minimaxities of the estimators β̂
HB

and β̂
DB

are established by the following theo-
rems.
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Theorem 2. Assume that p−q ≥ 3 and q ≥ 3. Then the hierarchical empirical Bayes

estimator β̂
HB

dominates the LS estimator β̂ under the Strawderman’s loss (1.8).

Theorem 3. Assume that p−q ≥ 3 and q ≥ 3. Then the decomposed empirical Bayes

estimator β̂
DB

dominates the LS estimator β̂ under the Strawderman’s loss (1.8).

Proof of Theorem 2. For simplicity, in this proof, we use the notations λ̂, τ̂ and ψ̂
instead of λ̂EB, τ̂HB and ψ̂HB respectively. From the expression (4.1), the risk function of

β̂
HB

is written by

R(ω, β̂
HB

) =

p−q∑
i=1

E

[(
xi − θi − di

di + λ̂
xi

)2

/(d2
iσ

2)

]

+

p∑
i=p−q+1

E

[(
xi − θi − di

di + λ̂+ τ̂
(xi − αi)

)2

/(d2
iσ

2)

]

for α0 = (α01, . . . , α0q)
t. By the same arguments as in (3.10), the risk R(ω, β̂

HB
) can be

rewritten as R(ω, β̂
HB

) = R(ω, β̂) + E[∆̃1 + ∆̃2], where

∆̃1 = − 2
∑

i≤p−q

1

di + λ̂
+ 2

∑
i≤p−q

xi

(di + λ̂)2

∂λ̂

∂xi

+ (n− 2)
∑

i≤p−q

x2
i /S

(di + λ̂)2
− 4

∑
i≤p−q

x2
i

(di + λ̂)3

∂λ̂

∂S
(4.4)

and

∆̃2 = − 2
∑

i>p−q

1

di + λ̂+ τ̂
+ 2

∑
i>p−q

xi − α0i

(di + λ̂+ τ̂)2

∂(λ̂ + τ̂ )

∂xi

+ (n− 2)
∑

i>p−q

(xi − α0i)
2/S

(di + λ̂+ τ̂ )2
− 4

∑
i>p−q

(xi − α0i)
2

(di + λ̂+ τ̂)3

∂(λ̂+ τ̂ )

∂S
. (4.5)

Since ∆̃1 is equal to ∆̃(λ̂) given by (3.10) and λ̂EB ≥ λ0, combining the proof of Theorem
1 and the arguments in Subsection 3.2 gives that

∆̃1 ≤ 1

dp−q + λ̂

(
2

p−q∑
i=1

di − dp−q

di + λ0

− (p− q − 2)

)
, (4.6)

which is equal to zero from the definition of λ0.

To prove that ∆̃2 ≤ 0, note that λ̂ is a function of x1, . . . , xp−q and that λ̂ + τ̂ =

ψ̂IA + λ̂IAc for A = {x|ψ̂ > λ̂} and Ac = {x|ψ̂ ≤ λ̂}. Then, the same arguments as in
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(3.16) and (3.17) give that for p− q < i ≤ p,

∂(λ̂ + τ̂ )

∂xi

=
∂ψ∗

∂xi

I(ψ∗ > ψm)IA

=2
xi − α0i

di + ψ∗

( ∑
j>p−q

(xj − α0j)
2

(dj + ψ∗)2

)−1

I(ψ∗ > ψm)IA (4.7)

∂(λ̂ + τ̂ )

∂S
=
∂ψ∗

∂S
I(ψ∗ > ψm)IA +

∂λ∗

∂S
I(λ∗ > λ0)IAc

= − q − 2

n+ 2

(∑
j>p−q

(xj − α0j)
2

(dj + ψ∗)2

)−1

I(ψ∗ > ψm)IA

− p− q − 2

n + 2

(∑
j≤p−q

x2
j

(dj + λ∗)2

)−1

I(λ∗ > λ0)IAc , (4.8)

for ψm = max(ψ0, ψ1). From (4.7), the second term in the r.h.s. of (4.5) is evaluated as

2
∑

i>p−q

xi − α0i

(di + λ̂+ τ̂)2

∂(λ̂ + τ̂)

∂xi
=4

∑
i>p−q(xi − α0i)

2/(di + ψ∗)3∑
i>p−q(xi − α0i)2/(di + ψ∗)2

I(ψ∗ > ψm)IA

≤ 4

dp + ψ∗ I(ψ
∗ > ψm)IA. (4.9)

From (4.8), the fourth term in the r.h.s. of (4.5) is also evaluated by

−4
∑

i>p−q

(xi − α0i)
2

(di + λ̂+ τ̂ )3

∂(λ̂ + τ̂ )

∂S

=4
q − 2

n + 2

∑
i>p−q(xi − α0i)

2/(di + ψ∗)3∑
i>p−q(xi − α0i)2/(di + ψ∗)2

I(ψ∗ > ψm)IA

+ 4
p− q − 2

n+ 2

∑
i>p−q(xi − α0i)

2/(di + λ∗)3∑
i≤p−q x

2
i /(di + λ∗)2

I(λ∗ > λ0)IAc

≤4
q − 2

n + 2

1

dp + ψ∗ I(ψ
∗ > ψm)IA

+ 4
p− q − 2

n+ 2

d1 + λ∗

(dp + λ∗)2

∑
i>p−q(xi − α0i)

2/(di + λ∗)∑
i≤p−q x

2
i /(di + λ∗)

I(λ∗ > λ0)IAc . (4.10)

Note that the λ∗ is the solution of the equation (3.15). Since (d1+x)/(dp+x) is decreasing
in x, we can evaluate the second term in the r.h.s. of the inequality (4.10) as

4
p− q − 2

n+ 2

d1 + λ∗

(dp + λ∗)2

∑
i>p−q(xi − α0i)

2/(di + λ∗)∑
i≤p−q x

2
i /(di + λ∗)

I(λ∗ > λ0)IAc

≤4
d1 + λ∗

(dp + λ∗)2

∑
i>p−q

(xi − α0i)
2

di + λ∗
I(λ∗ > λ0)IAc . (4.11)

Since λ̂ ≥ ψ̂ ≥ ψ∗ on Ac and λ∗ = λ̂ on {λ∗ > λ0}, we see that the r.h.s. of the inequality
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(4.11) is evaluated as

4
d1 + λ̂

(dp + λ̂)2

∑
i>p−q

(xi − α0i)
2

di + λ̂
I(λ∗ > λ0)IAc ≤4

d1 + λ̂

(dp + λ̂)2

∑
i>p−q

(xi − α0i)
2

di + ψ∗ I(λ∗ > λ0)IAc

=4
q − 2

n+ 2

d1 + λ̂

(dp + λ̂)2
I(λ∗ > λ0)IAc , (4.12)

where the last equality follows from the fact that ψ∗ is the solution of the equation (4.2).

Noting again that λ̂ + τ̂ = ψ̂IA + λ̂IAc and combining (4.5), (4.9), (4.10) and (4.12),
we see that

∆̃2 =IA

{
−
∑

i>p−q

2

di + ψ̂
+

4

dp + ψ̂
I(ψ∗ > ψm) +

q − 2

n+ 2

n− 2

dp + ψ̂
+

4

n+ 2

q − 2

dp + ψ̂
I(ψ∗ > ψm)

}

+ IAc

{
−
∑

i>p−q

2

di + λ̂
+
q − 2

n + 2

n− 2

dp + λ̂
+ 4

q − 2

n+ 2

d1 + λ̂

(dp + λ̂)2
I(λ∗ > λ0)

}
(4.13)

=∆̃21 + ∆̃22. (say)

Since ψ̂ ≥ ψm = max(ψ0, ψ1) ≥ ψ0, it is seen that

∆̃21 ≤IA 1

dp + ψ̂

{
−2

∑
i>p−q

dp + ψ̂

di + ψ̂
+ 4 + (n− 2)

q − 2

n+ 2
+ 4

q − 2

n+ 2

}

≤IA 1

dp + ψ̂

{
−2

∑
i>p−q

dp + ψ0

di + ψ0
+ q + 2

}

=IA
1

dp + ψ̂

{
2
∑

i>p−q

di − dp

di + ψ0
− (q − 2)

}
, (4.14)

which is equal to zero from the definition (2.13) of ψ0. Since λ̂ ≥ ψ̂ ≥ ψ1 on the set Ac,
we have that

∆̃22 ≤IAc

1

dp + λ̂

{
−2

∑
i>p−q

dp + λ̂

di + λ̂
+ (n− 2)

q − 2

n+ 2
+ 4

q − 2

n+ 2

d1 + λ̂

dp + λ̂

}

≤IAc

1

dp + λ̂

{
−2

∑
i>p−q

dp + ψ1

di + ψ1

+ (n− 2)
q − 2

n+ 2
+ 4

q − 2

n + 2

d1 + ψ1

dp + ψ1

}

=IAc

1

dp + λ̂

{
2
∑

i>p−q

di − dp

di + ψ1

+ 4
q − 2

n+ 2

d1 − dp

dp + ψ1

− (q + 2)

}
,

which is equal to zero from the definition of ψ1. Therefore the proof of Theorem 2 is
complete.

Proof of Theorem 3. From the expression (4.3), the risk function of β̂
DB

is written
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by

R(ω, β̂
DB

) =

p−q∑
i=1

E

[(
xi − θi − di

di + λ̂EB

xi

)2

/(d2
iσ

2)

]

+

p∑
i=p−q+1

E

[(
xi − θi − di

di + ψ̂DB

(xi − αi)

)2

/(d2
iσ

2)

]
.

By the same arguments as in the proof of Theorem 2, the risk R(ω, β̂
DB

) can be rewritten

as R(ω, β̂
DB

) = R(ω, β̂) + E[∆̃1 + ∆̃∗
2], where ∆̃1 is given by (4.4) and

∆̃∗
2 = − 2

∑
i>p−q

1

di + ψ̂DB

+ 2
∑

i>p−q

xi − α0i

(di + ψ̂DB)2

∂ψ̂DB

∂xi

+ (n− 2)
∑

i>p−q

(xi − α0i)
2/S

(di + ψ̂DB)2
− 4

∑
i>p−q

(xi − α0i)
2

(di + ψ̂DB)3

∂ψ̂DB

∂S
. (4.15)

From (4.6), it follows that ∆̃1 ≤ 0. ∆̃∗
2 corresponds to the case of IA = 1 in ∆̃2 in the

proof of Theorem 2. Hence from (4.14), it is seen that

∆̃∗
2 ≤

1

dp + ψ̂

{
2
∑

i>p−q

di − dp

di + ψ0

− (q − 2)

}
,

which is zero from the definition of ψ0, proving Theorem 3.

5 Simulation and Empirical Studies

Now we investigate the risk-performances of estimators of β numerically. The estimators
we want to investigate are described below: The usual ridge regression estimators in the
multicollinearity case shrink the LS estimator toward zero, that is, H0 : β = 0. In this
case, the adaptive or empirical Bayes ridge regression estimators are written by

β̂
B
(λ̂, 0) =

[
AtA + λ̂−1I

]−1

Aty = β̂ − [I + λ̂AtA]−1β̂. (5.1)

Three estimators λ̂AD, λ̂TR and λ̂EB of λ are given by (3.21), (3.22) and (2.8) with q = 0,
and these estimators of λ yield the estimators

β̂
B
(λ̂AD, 0), β̂

B
(λ̂TR, 0), β̂

B
(λ̂EB, 0), denoted by AD, TR, EB,

respectively, whose minimaxities were shown by Propositions 1, 2 and 3 with q = 0 for
p ≥ 3. Adaptive or empirical Bayes ridge regression estimators shrunken towards the
linear hypothesis H0 : β = H t

2α for α ∈ Rq, are given by

β̂
B
(λ̂AD, α̂), β̂

B
(λ̂TR, α̂), β̂

EB
= β̂

B
(λ̂EB, α̂), denoted by ADp−q, TRp−q, EBp−q,

respectively. Their minimaxities are guaranteed by Propositions 1, 2 and 3. We also treat
the hierarchical and decomposed empirical Bayes ridge regression estimators

β̂
HB

and β̂
DB
, denoted by HBp−q and DBp−q,
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Table 1: Relative Efficiencies of the Estimators under L0, L1, L2 Losses for D =
diag (10316., 195.0, 73.4, 20.2, 2.6, 1.0, 0.9, 0.5, 0.2), p = 9, q = 5, n = 6, θi = i × η,
i = 1, . . . , 9

η AD TR EB AD4 TR4 EB4 HB4 DB4 PC4 PC1

L0 0 0.494 0.417 0.059 0.639 0.625 0.309 0.309 0.309 0.000 0.026
1 0.985 0.945 0.066 0.670 0.656 0.310 0.310 0.310 0.005 0.026
2 0.996 0.985 0.079 0.739 0.728 0.312 0.312 0.312 0.021 0.026
3 0.998 0.993 0.095 0.811 0.803 0.315 0.315 0.315 0.047 0.027
4 0.999 0.996 0.114 0.866 0.860 0.320 0.320 0.320 0.083 0.027

L1 0 0.938 0.927 0.607 0.956 0.954 0.894 0.894 0.637 0.445 0.887
1 0.998 0.993 0.730 0.960 0.958 0.894 0.894 0.890 1.635 0.887
2 0.999 0.998 0.800 0.968 0.967 0.895 0.895 0.894 5.204 0.887
3 0.999 0.999 0.837 0.977 0.976 0.896 0.896 0.896 11.15 0.887
4 0.999 0.999 0.858 0.984 0.983 0.898 0.898 0.898 19.48 0.887

L2 0 0.999 0.999 0.952 0.999 0.999 0.999 0.999 0.670 0.952 0.999
1 1.000 1.000 0.995 0.999 0.999 0.999 0.999 0.996 1.346 0.999
2 1.000 1.000 0.998 0.999 0.999 0.999 0.999 0.998 2.526 0.999
3 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999 4.494 0.999
4 1.000 1.000 0.999 1.000 1.000 0.999 0.999 0.999 7.249 0.999

which are minimax from Theorems 2 and 3. As alternative estimators, we deal with

the principal component regression estimators β̂
PC

p−q = H t
2α̂ = H t

2H2β̂, denoted by

PCp−q, and β̂
PC

1 , denoted by PC1, where PCp−q is obtained by deleting the eigenvectors
corresponding to the p − q largest eigenvalues of (AtA)−1 and PC1 corresponds to the
one obtained by deleting the largest eigenvalue.

We thus compare the estimators AD, TR and EB for q = 0; ADp−q, TRp−q, EBp−q,
HBp−q, DBp−q and PCp−q for α ∈ Rq; PC1 for α ∈ Rp−1. Every estimator δ is evaluated
by three types of risk functions Rj(ω, δ) under the loss functions Lj(ω, δ, (A

tA)j) =
(δ − β)t(AtA)j(δ − β)/σ2, called the Lj-loss, for j = 0, 1, 2. The risk functions of the

above estimators and the LS estimator β̂ are obtained from 1,000 replications through
simulation experiments, and the relative efficiencies Rj(ω, δ)/Rj(ω, β̂), j = 0, 1, 2, of

estimator δ over β̂ are reported. The simulation experiments are done in the following
three cases:

Case 1: D = diag (10316., 195.0, 73.4, 20.2, 2.6, 1.0, 0.9, 0.5, 0.2), p = 9, q = 5, n = 6
and θi = i× η, i = 1, . . . , 9

Case 2: D = diag (300, 250, 200, 150, 100, 100, 100, 80, 80, 80, 1, 1, 1, 1, 1), p = 15, q = 5,
n = 50 and θi = (3i+ 1) × η, i = 1, . . . , 15

Case 3: D = diag (300, 250, 200, 150, 100, 10, 10, 10, 5, 5, 5, 1, 1, 1, 1), p = 15, q = 10,
n = 50, θi = (p− i+ 2)

√
η, i = 1, . . . , 10

The relative efficiencies of the above estimators for the three cases are given in Tables
1, 2 and 3, respectively. Form these tables, the following conclusions can be drawn.

(1) The empirical Bayes estimator EB for q = 0, namely β̂
B
(λ̂EB, 0) has a very nice

risk behavior for L0- and L1- losses; it is highly recommended in the case of multicollinear-
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Table 2: Relative Efficiencies of the Estimators under L0, L1, L2 Losses for D =
diag (300, 250, 200, 150, 100, 100, 100, 80, 80, 80, 1, 1, 1, 1, 1), p = 15, q = 5, n = 50,
θi = (3i+ 1) × η, i = 1, . . . , 15

η AD TR EB AD10 TR10 EB10 HB10 DB10 PC10 PC1

L0 0 0.541 0.456 0.115 0.721 0.693 0.525 0.348 0.240 0.309 0.803
1 0.998 0.996 0.763 0.812 0.800 0.689 0.662 0.662 0.716 0.814
2 0.999 0.999 0.923 0.909 0.906 0.850 0.843 0.843 1.935 0.847
3 0.999 0.999 0.963 0.951 0.951 0.916 0.913 0.913 3.967 0.902
4 0.999 0.999 0.978 0.970 0.970 0.948 0.946 0.946 6.813 0.979

L1 0 0.732 0.675 0.415 0.875 0.862 0.777 0.578 0.437 0.663 0.936
1 0.999 0.998 0.877 0.921 0.916 0.870 0.842 0.842 0.958 0.940
2 0.999 0.999 0.961 0.964 0.964 0.946 0.939 0.939 1.843 0.950
3 0.999 0.999 0.981 0.981 0.981 0.970 0.967 0.967 3.319 0.968
4 0.999 0.999 0.989 0.989 0.989 0.981 0.979 0.979 5.384 0.993

L2 0 0.989 0.985 0.956 0.998 0.997 0.996 0.975 0.901 0.994 0.999
1 0.999 0.999 0.997 0.998 0.998 0.998 0.997 0.997 1.001 0.999
2 0.999 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.023 0.999
3 1.000 0.999 0.999 0.999 0.999 0.999 0.999 0.999 1.059 0.999
4 1.000 1.000 0.999 0.999 0.999 0.999 0.999 0.999 1.110 0.999

Table 3: Relative Efficiencies of the Estimators under L0, L1, L2 Losses for D =
diag (300, 250, 200, 150, 100, 10, 10, 10, 5, 5, 5, 1, 1, 1, 1), p = 15, q = 10, n = 50, θi =
(p− i+ 2)

√
η, i = 1, . . . , 15

η AD TR EB AD5 TR5 EB5 HB5 DB5 PC5 PC1

L0 0 0.460 0.405 0.033 0.514 0.469 0.112 0.111 0.105 0.046 0.728
1 0.886 0.851 0.614 0.869 0.855 0.596 0.595 0.596 0.988 0.971
2 0.936 0.915 0.823 0.924 0.916 0.767 0.767 0.767 1.930 1.215
3 0.955 0.940 0.917 0.947 0.941 0.845 0.845 0.845 2.872 1.459
4 0.966 0.954 0.964 0.959 0.954 0.887 0.887 0.887 3.814 1.702

L1 0 0.806 0.782 0.411 0.830 0.811 0.618 0.599 0.365 0.663 0.936
1 0.962 0.950 0.851 0.957 0.952 0.851 0.844 0.847 1.016 0.993
2 0.979 0.972 0.928 0.975 0.973 0.914 0.911 0.913 1.368 1.050
3 0.985 0.980 0.961 0.983 0.981 0.942 0.940 0.942 1.721 1.107
4 0.988 0.985 0.977 0.986 0.985 0.957 0.955 0.957 2.073 1.163

L2 0 0.986 0.983 0.789 0.993 0.991 0.964 0.930 0.322 0.994 0.999
1 0.998 0.997 0.972 0.998 0.998 0.992 0.978 0.971 1.000 0.999
2 0.999 0.998 0.986 0.999 0.999 0.995 0.989 0.985 1.007 1.000
3 0.999 0.999 0.991 0.999 0.999 0.997 0.992 0.989 1.014 1.001
4 0.999 0.999 0.993 0.999 0.999 0.997 0.994 0.992 1.021 1.001
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ity. As seen from Table 1, the risk performance is quite well when d1 is extremely large.
(2) As seen from Tables 2 and 3, the empirical Bayes estimators EBp−q, HBp−q and

DBp−q are much better than the LS estimator for L0- and L1- losses. The estimators
HBp−q and DBp−q have slightly smaller risks than EB except for small values of η. In
the case where several eigenvalues di’s are large, the estimators HBp−q and DBp−q are
also recommended.

(3) Although the minimaxity of the proposed estimators are guaranteed under the
L2-loss, their risk performances are much better than the LS estimator under L0- and
L1-loss functions.

(4) Through the tables, we see that the principal component regression estimator
PCp−q has the smallest risks for smaller values of θ and gets larger as ‖θ‖ increases.

We shall provide an empirical study for a set of data.

Example 1. (Response Surface) We consider the acetylene data analyzed by Mar-
quardt and Snee (1975). The data consisted of 16 observations on the response variable y
(conversion of n-heptane to acetylene), three predictor variables a1 (reactor temperature),
a2 (ratio of H2 to n-heptane) and a3 (contact time). It is anticipated that the response y
is on a quadratic response surface, that is, y is expressed by the model

y = β0 +

3∑
i=1

βiai +

3∑
i=1

βiia
2
i +

3∑
i=1

3∑
j=i+1

βijaiaj + ε.

Such an analysis includes multicollinearity and the above data have been repeatedly an-
alyzed by Beisley (1984) and Wetherill (1986). Before any computation were done, the
means were removed from the variables y, a1, a2 and a3. Then the squares and cross
products of the predictor variables were computed and standardized.

The eigenvalues of the matrix AtA are 4.205, 2.162, 1.138, 1.040, 0.385, 0.0495, 0.0136,
0.00512 and 0.0000969, and so the eigenvalues of (AtA)−1 are given by

D = diag (10316., 195.015, 73.393, 20.186, 2.595, 0.961, 0.878, 0.462, 0.237),

which means that the problem is highly ill-conditioned. The ridge curves of the ridge

regression estimate β̂
R
(λ) given by (1.2) are drawn for k = 1/λ ∈ [0, 0.07] in Figure

1 where the horizontal axis denotes the value of k = 1/λ. This figure demonstrates
that each ridge regression estimator is instable for smaller k or larger λ because of the
multicollinearity.

We shall investigate how the proposed ridge-type regression estimators of the coef-
ficients β behave for the ill-conditioned data. The estimators we treat are the least
squares β̂ (denoted by LS), the adaptive ridge regression estimator shrunken towards

zero β̂
B
(λ̂TR, 0) (TR) and the empirical Bayes ridge regression estimator shrunken to-

wards zero β̂
B
(λ̂EB, 0) (EB). Since the first four eigenvalues d1, d2, d3, d4 are not small,

we may consider the linear subspace (2.3) constructed by eigenvectors of (AtA)−1 with
deleting the eigenvectors corresponding to the four largest eigenvalues. We thus deal with

the principal component (PC) regression estimator β̂
PC

(PC4) under the subspace and
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Figure 1: Curves of the Ridge Estimates of β1, β5 and β7 (The horizontal axis denotes
the values of k = 1/λ. The line EB shows the values of 1/λ̂EB for q = 0. )

Table 4: Estimates of β and prediction-error estimates for the Eight Estimators LS, TR,
EB, EB4, HB4, DB4, PC4 and PC1

LS TR EB EB4 HB4 DB4 PC4 PC1

β̂1 -108.5 -45.2 22.6 38.5 38.4 36.5 17.8 65.7

β̂2 21.2 20.0 14.5 18.1 18.1 14.4 15.7 17.9

β̂3 -197.5 -111.4 -9.5 2.7 2.7 4.4 -14.6 39.3

β̂4 7.2 8.1 -2.6 9.1 9.1 9.1 -4.9 9.7

β̂5 -814.7 -522.9 -6.8 -120.5 -120.5 -119.6 -4.4 -17.3

β̂6 11.3 14.3 8.1 18.4 18.4 18.4 5.4 19.6

β̂7 -426.5 -275.7 1.9 -67.6 -67.6 -69.0 8.6 -14.8

β̂8 -20.5 -18.6 -10.2 -15.6 -15.6 -12.5 -11.5 -15.5

β̂9 -331.5 -210.9 4.2 -43.6 -43.6 -44.4 1.3 -2.6
PE 299 276 114 267 267 252 100 270
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Table 5: Estimates of θ for the Eight Estimators LS, TR, EB, EB4, HB4, DB4, PC4

and PC1

di LS TR EB EB4 HB4 DB4 PC4 PC1

θ̂1 10316.04 -1000.0 -634.1 -1.5 -130.9 -130.9 -130.9 0.0 0.0

θ̂2 195.01 -65.4 -64.6 -5.0 -58.1 -58.1 -58.1 0.0 -65.4

θ̂3 73.39 -44.3 -44.1 -8.0 -42.3 -42.3 -42.3 0.0 -44.3

θ̂4 20.18 11.3 11.3 5.0 11.2 11.2 11.2 0.0 11.3

θ̂5 2.59 -11.3 -11.3 -9.7 -11.3 -11.3 -7.4 -11.3 -11.3

θ̂6 0.96 -12.7 -12.7 -12.0 -12.7 -12.7 -10.7 -12.7 -12.7

θ̂7 0.87 -25.5 -25.5 -24.2 -25.5 -25.4 -21.7 -25.5 -25.5

θ̂8 0.46 4.1 4.1 3.9 4.1 4.1 3.7 4.1 4.1

θ̂9 0.23 -10.2 -10.2 -10.0 -10.2 -10.2 -9.7 -10.2 -10.2

usual, hierarchical and decomposed empirical Bayes ridge regression estimators shrunken

towards the subspace : β̂
EB

= β̂
B
(λ̂EB4, α̂) (EB4), β̂

HB
(HB4) and β̂

DB
(DB4).

The estimates of λ (or k), τ and ψ are given by λ̂TR = 17, 878.4, λ̂EB = 16.3, λ̂EB4 =

1, 554.2, τ̂HB = 1, 965.7 and ψ̂DB = 5.0. The estimates of β for the above procedures are
given in Table 4. Since λ̂TR is very large, the minimax adaptive ridge regression estimate

β̂
B
(λ̂TR, 0) is very close to the LS estimate β̂, which implies that β̂

B
(λ̂TR, 0) is not useful

in the multicollinearity case. From Figure 1 and Table 4, on the other hand, it is seen

that λ̂EB is estimated appropriately and that the resulting estimator β̂
B
(λ̂EB, 0) is well

stabilized. The hierarchical empirical Bayes estimate β̂
HB

and the decomposed empirical

Bayes estimate β̂
DB

are almost identical to the empirical Bayes estimate β̂
B
(λ̂EB4, α̂)

shrunken towards the PC estimate. The PC estimator β̂
PC

gives estimates different from
the ridge type estimators. Table 5 gives similar estimates in the canonical model with
θ = (θ1, . . . , θ9)

t = Hβ and it explains how the proposed procedures work in the presence
of the large eigenvalues of (AtA)−1. The tabel reveals that the estimates by EB, EB4,
HB4 and DB4 gets more shrunken for larger di.

The primary purpose of regression models may be prediction with the help of many
independent variables, and the predictors constructed by the ridge-type estimators pro-
posed in this paper are anticipated to have good performances. The prediction error of
the methods considered may be estimated via the leave-one-out cross-validation as de-
scribed in Srivastava (2002, p322). That is, 16 predictive errors are obtained by leaving
out one observation each time. The estimates of the prediction errors for the above con-
sidered estimators are given at the last row as PE in Table 4. It reveals that the use
of the estimators EB, EB4, HB4, DB4 and PC4 provides smaller prediction errors than
the least squares estimator (LS). Of these, EB and PC4 give much smaller prediction
error estimates. It is interesting to note that the ridge-type estimator EB gives estimates
different from the PC estimator PC4, but the estimates of the prediction errors for both
procedures are similar. The estimate of the prediction error of PC1 by the cross-validation
method is 270, which is much larger than that of PC4 and EB.
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6 Concluding Remarks

We have proposed and compared several empirical Bayes estimators which are minimax
under the Strawderman’s loss function. Although the idea of shrinking the estimators
towards the subhypothesis is an interesting one, it does introduce some arbitrariness as
to the selection of the subspace, same as in the principal component regression estimator.
On the other hand, the empirical Bayes estimator obtained under the hypothesis that
β = 0, given in (5.1), performs reasonably well and requires no special attention. The
final choice, however, rests with the analyst.

7 Appendix

We here show the following equation in the expression (2.10) of the hierarchical Bayes

estimator β̂
HB

(λ, τ):

β̂ − {AtA + (λIp + τH t
2H2)

−1
}−1

(λIp + τH t
2H2)

−1(β̂ − H t
2α0)

= β̂ − (AtA)−1
{
(AtA)−1 + λIp

}−1
{
β̂ − H t

2α̂
S(λ, τ)

}
. (7.1)

For G = G(λ) = (AtA)−1 + λIp, the l.h.s. of (7.1) is expressed by

β̂ − (AtA)−1
{
(AtA)−1 + λIp + τH t

2H2

}−1
(β̂ − H t

2α0) (7.2)

= β̂ − (AtA)−1G−1(Ip + τH t
2H2G

−1)−1(β̂ − H t
2α0).

Noting that

(Ip + τH t
2H2G

−1)−1 = Ip − τH t
2(Iq + τH2G

−1H t
2)

−1H2G
−1

= Ip − τH t
2

{
(H2G

−1H t
2)

−1 + τIq

}−1
(H2G

−1H t
2)

−1H2G
−1,

we see that

(Ip + τH t
2H2G

−1)−1(β̂ − H t
2α0)

= β̂ − H t
2α0 − τH t

2

{
(H2G

−1H t
2)

−1 + τIq

}−1
(α̂(λ) − α0)

= β̂ − H t
2

{
α̂(λ) − (Iq + τH2G

−1H t
2)

−1(α̂(λ) − α0)
}
,

where α̂(λ) = (H2G
−1H t

2)
−1H2G

−1β̂, being the weighted least squares estimator.
Hence from (7.2), we get the expression in the r.h.s. of the equation (7.1).
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