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Abstract 
 

This paper investigates the agency problem with moral hazard, where the principal 
hires multiple agents, and can only imperfectly monitor their action choices by 
observing their correlated public signals. The principal will penalize any detected 
deviant only by firing her and other agents. The key assumption of the paper is that 
agents are divided into multiple distinct groups. Within each group, all its members can 
make the binding commitments to achieve their collusive action choices. It is shown 
that it may be easier to provide the agents with the incentive to make the most desired 
action choices when multiple groups are established than when either no group or only 
the grand group is established. It is also shown that in terms of uniqueness, relative 
performance evaluation through inter-group competition will work better than that 
through inter-individual competition. 
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1. Introduction 
 

This paper investigates the agency problem in which the principal hires multiple 
agents. The key assumption of the paper is that agents are divided into multiple distinct 
groups. Within each group, all its members can make the binding commitments to 
achieve their collusive action choices that maximize the sum of their expected payoffs. 
Since their collusive action choices do not necessarily maximize the principal’s welfare, 
the principal have to write incentive schemes carefully in order to equalize each group’s 
collusive action choices to the most desirable choices to the principal. Otherwise, their 
collusive action choices may even extract the expected surplus from the principal in 
more severe ways than what they will independently choose in order to maximize their 
own self-interests. 

This paper assumes that the principal has the limited capability to penalize deviating 
agents in the following two ways. First, the principal cannot directly observe agents’ 
action choices. She can only imperfectly monitor their action choices by observing their 
respective random public signals, the distributions of which depends on their action 
choices. Second, the principal cannot provide agents with monetary fines and rewards. 
Hence, the only way of penalizing each deviant is to fire her and other agents. 

When grouping is permitted, each agent will take into account any other agent who 
belongs to the same group. This implies that the principal can penalize any detected 
deviant in more powerful ways than when grouping is not permitted. Suppose that the 
principal writes an incentive scheme in ways that if any agent deviates and is detected, 
then the principal will fire not only this agent but also the other agents who belong to 
the same group. Then, this incentive scheme can provide any agent with the stronger 
incentive not to deviate than any incentive scheme that fires only detected deviants. 

This paper assumes that the realizations of the public signals depend on either a 
random macro shock or a random private shock profile, but not on both. Which works 
between the macro shock and the private shock profile is randomly determined, and is 
unknown to the principal and the agents. Hence, the random public signals as 
monitoring instruments are imperfectly correlated, as far as the probability of the macro 
shock working is positive. This implies that relative performance evaluation through 
competition between groups would be a powerful tool to incentivize the agents, where 
agents who belong to any group that has low performance relatively to the other groups 
will be fired. This point is in contrast with the case where all agents are permitted to 
establish only the grand group, because by definition there exists no counter-group that 
can provide the principal with information about whether the grand group deviates or 
not. 

The previous works such as Holmstrom (1982) have studied relative performance 
evaluations in the models where grouping is not permitted and any competing individual 
who has low performance relatively to the other individuals will either be penalized or 
not be rewarded.1 The present paper will show what is the point of differences between 

                                                 
1 See also Lazear and Rosen (1981), Green and Stokey (1983), and Nalebuff and Stiglitz (1983). 
These works assumed that agents are risk averse and showed that relative performance 
evaluation provides for better risk sharing than independent evaluation. In contrast, the present 
paper does not assume that agents are risk averse, and assumes that the principal’s tools to 
incentivize agents are restricted. Legros and Matsushima (1991) investigated partnerships where 
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inter-group competition and inter-individual competition. 
When grouping is not permitted, incentive schemes on the basis of relative 

performance evaluation have the weak point in terms of uniqueness that all agents’ 
neglecting their duties together might be another equilibrium behavior (See Mookherjee 
(1984), Demski and Sappington (1984), and Ma (1988), for example). It is hard for the 
principal to detect any deviant when the other agents all deviate, because this deviant’s 
performance is not necessarily low relatively to the other agents’ performances in this 
case. Hence, the probability of any deviant’s being detected is left small, which implies 
that relative performance evaluation does not work on agents’ incentives. 

When grouping is permitted, on the other hand, the principal can easily provide any 
group with the incentive to induce at least one agent belonging to this group to make the 
desired action choice whenever the other groups deviate. Suppose that the principal 
write an incentive scheme in ways that this agent, by making the desired action choice 
instead of deviating from it, can prevent not only herself but also all other members of 
the same group from being fired. Since this agent will take into account the welfare of 
any other agent who belongs to the same group, she will have the stronger incentive not 
to deviate than she will do when grouping is not permitted. In this way, each group is 
willing to provide the principal with information about the fact that the other group 
deviate. This is the driving force of eliminating unwanted equilibrium behaviors. 

As Aoki (1990, Chapter 8) has written, it is well-accepted view that not individuals, 
but groups, are the robust cores at various levels of organizations in Japanese and Asian 
societies. In the studies of Japanese economy and society, it has long been a puzzle how 
to show theoretical foundations on what is the point of difference between 
inter-individual competition and inter-group competition. For instance, Aoki wrote: ‘… 
although the small-group values inherited from the cultural tradition have played a 
significant role in shaping Japanese organizational practices, in order to be efficient the 
J-firm (Japanese firm) had to consciously design and develop efficient intergroup 
coordination mechanisms and an accompanying incentive structure. Groupism is not a 
sufficient condition for the competitive performance of the J-firm. I argue further that it 
is not a necessary condition either’ (Aoki, 1990, Chapter 8, pp.299). His statement 
above might rely on the presumption that there exist no substantial differences between 
inter-individual competition and inter-group competition. In contrast, the present paper 
will show that inter-group competition can provide for better match between agents’ 
incentives and their welfare loss than inter-individual competition, mainly because each 
agent will take into account the welfare of not only herself but also the other members. 

It is an implicit assumption of this paper that within each group, its members can 
mutually observe their action choices and can write a side contract contingent on their 
action choices, which is enforceable in non-judicial ways such as a ‘word of honor’. See 
Tirole (1992) for the issue on how to specify the hidden side-contracting technology. 

The previous works such as Varian (1990), Holmstrom and Milgrom (1990), 
Ramakrishnan and Thankor (1991), Ito (1993), and Macho-Stadler and Perez-Castrillo 
(1993) investigated the agency problem with multiple risk averse agents where only the 
grand group is permitted. These works commonly showed that grand grouping may 
provide for better risk sharing when the agents share information that is not held by the 

                                                                                                                                               
agents are risk neutral and the principal’s tools to incentivize agents are restricted in that agents’ 
liability is limited. 
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principal. In contrast, this paper does not assume that agents are risk averse and assumes 
that the principal’s instruments to incentivize agents are restricted. Although the main 
concern of this paper is the case that multiple groups are established, the paper will even 
show an alternative explanation on why grand grouping is welfare improving compared 
with when it is prohibited. 

The organization of the paper is as follows. Section 2 shows the model. Section 3 
investigates the case that no groups are established, and investigates also the case that 
only the grand group is established. Section 4 is the main part of the paper, which 
investigates the case that multiple groups are established and compete each other. 
Section 5 concludes. 
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2. The Model 
 

We consider the following agency problem with multiple agents and a single 
principal. Let  denote the set of agents, where . Each agent  
chooses an action . We assume that the principal prefers action 0 to 
action 1 for each agent. The payoff for each agent  does not depend on the other 
agents’ action choices and is given by 

},...,1{ nN ≡
∈ ii Aa

2≥n Ni∈
}1,0{=

Ni∈

iii aau =)( . 
Hence, the choice of action 0 for each agent provides her with the higher payoff than the 
choice of action 1. Let . Agents’ action choices are denoted by 

 Let  and , where  
 is regarded as the action profile that is the most (least) desired by the principal. 

∏
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The principal cannot observe the agents’ action choices, but can observe a random 
public signal  for each agent , the distribution of which depends on all agents’ 
action choices . Let  denote the set of possible public signals for 
each agent i . Let  and . Let  

denote the conditional distribution over the signal profile, where  for all 
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We assume that there exist two random macro shocks denoted by  and θ , and 

 random private shocks denoted by , , which are independently drawn and 
cannot be observed by the principal and the agents. Let  denote the set of 
possible . For every , let  denote the set of possible . We 
assume that when  is the shock profile realized, the principal certainly 
observes the public signal for each agent  given by 
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The implication of the specification of public signals above is the following. The 

realization of the public signal for each agent , , depends either on the second 
macro shock  or on the private shock  for her, but not on both. The realization of 
the first macro shock  determines which actually works between the second macro 
shock  and the private shock profile . When , the second macro 
shock  works for all signals, and the principal observes 

Ni∈
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When , the private shock profile  works for all signals, and the 
principal observes 
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]1,[max iii a θω +=  for all i . N∈
Note that when the second macro shock works, it holds that for every , and every 

, 
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and 
  ω  if and only if  and . 1

0

0

+= ji ω 1=ia 0=ja
Note that when the private shock profile works, it holds that 

0≠iω , 
and 

2≠iω  if . 0=ia
Fix  arbitrarily. Let )1,0(∈q

  λ  with probability q , =
and 

  θ  with probability =h 2
1  for all h . },...,0{ n∈

Based on the shock profile  above, we will specify  as the 
conditional probability of the occurrence of any shock profile  satisfying 
that 

),...,,( 0 nθθλ )|( ap ω
),..., nθ,( 0θλ
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)
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Before agents’ choosing their actions, the principal will write an employment 

scheme for each agent  denoted by , where “ ” 
(“ ”) means that agent i  will be fired (not be fired) when the principal 
observes the signal profile . Let  denote an employment scheme. The 
loss for each agent from being fired is given by . The payoff for each agent 

 associated with the employment scheme  when she chooses the action  
and the principal observes the signal profile  is given by 

Ni∈
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The purpose of the principal is to provide every agent  with the incentive to 

choose the desired action  without firing any agents, i.e., with the constraint that 
for every , 

Ni∈
00 =ia

Ω∈ω
(2)   for all i  if . 0)( =ωix N∈ 0)|( 0 >ap ω
Note that 
   if and only if  for all i . 0)|( 0 >ap ω 21 ≠= iωω N∈
Hence, an employment scheme  satisfies the equalities (2) if and only if for every 

, 
x

Ω∈ω
(3)   for all i  whenever ω  for all . 0)( =ωix N∈ 21 ≠= iω Ni∈
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3. Basic Results 
 

This section investigates the following two situations, in which either no group or 
only the grand group is permitted to be established, and shows several properties on the 
possibility of the desired action profile  being played, which will be regarded as the 
benchmark results of this paper. 

0a

 
3.1. Case I: Individual Incentives 

 
This subsection considers the situation named Case I, in which there exists no 

possibility of agents’ establishing the binding commitments to achieve their collusive 
action choices. Hence, in Case I, each agent chooses the action that maximizes her 
expected payoff associated with the employment scheme . In addition to the 
equalities (2), we will require  to satisfy that for every , 

x
x Ni∈
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The inequalities (4) imply that each agent  has incentive to choose the desired 
action  when the other agents choose the desired action choices , i.e.,  is a 
Nash equilibrium in the game associated with the employment scheme . Note that 
with the constraint of the equalities (2), an employment scheme  satisfies the 
inequalities (4) if and only if for every , 

Ni∈
0
ia 0

ia−

x
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−

ω
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The following proposition shows the necessary and sufficient condition under which 
there exists an employment scheme, in the game associated with which, the desired 
action profile  is a Nash equilibrium. 0a
 
Proposition 1: There exists an employment scheme  that satisfies the equalities (2) 
and the inequalities (4) if and only if 

x
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q
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+

≥
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2 . 

 
Proof: Note that we can choose an employment scheme  satisfying the equalities (3) 
and 

x

   whenever  for all . 1)( =ωix ji ωω > }/{iNj∈
Note that the specified employment scheme  above satisfies the equalities (2). Note 
also that any agent will be fired whenever she is the unique deviant and the principal 
detects her deviation. 

x

Whenever the second macro shock works, then any single deviant will be certainly 
detected and fired. Whenever the private shock profile works, then any single deviant 
will be detected and fired only with probability half. Hence, the probability of a single 
deviant’s being fired equals 

  
2
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This implies that  satisfies the inequalities (4) if and only if x
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which equals the inequality (6). 
Note that for every , both  and  hold if and 

only if 
Ni∈ 0)|( 0 =ap ω 0),|( 10 >− ii aap ω

   for all . ji ωω > }/{iNj∈
This implies that the specified employment scheme above makes the severest 
punishment on any deviant when the other agents choose the desired actions. Hence, we 
have proved that the inequality (6) is not only sufficient but also necessary for the 
existence of employment scheme  satisfying the equalities (2) and the inequalities 
(4). 

x

Q.E.D. 
 

In addition to the equalities (2) and the inequalities (4), we will require  to satisfy 
that for every , there exists an agent  who has no incentive to choose 

 when the other agents conform to , that is, 

x
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   , where . Ni∈ ii aa ≠′

This implies that there exists no (pure strategy) Nash equilibrium other than  in the 
game associated with . The following proposition shows the necessary and sufficient 
condition under which there exists an employment scheme, in the game associated with 
which, the desired action profile  is the unique Nash equilibrium. 

0a
x

0a
 
Proposition 2: There exists an employment scheme  that satisfies the equalities (2), 
the inequalities (4), and the inequalities (7), if and only if 

x

(8)   2>H .
 
Proof: Note that we can choose  satisfying the inequalities (3) and that for every 

, and every , 
x

Ni∈ Ω∈ω
   whenever either , or  for some . 1)( =ωix 2=iω ji ωω > }/{iNj∈
Note that the specified employment scheme  above satisfies the inequalities (2). Note 
also that any agent will be fired whenever she deviates and the principal detects her 

deviation. Since 

x

q+
>

1
22 , the inequality (8) implies the inequality (6), and therefore, it 

follows, in the same way as in Proposition 1, that the inequality (8) implies the 
inequalities (4). 

The probability of any agent who chooses action 0 being fired equals zero 
irrespective of the other agents’ action choices, i.e., for every , and every , Ni∈ Aa ∈
   if . 0)|()( =∑

Ω∈ω
ωω apxi

0
ii aa =

Whenever there exists an agent who chooses the desired action 0 and the second macro 
shock works, then any deviant will certainly be detected and fired. On the other hand, 
whenever there exist no such agents and the second macro shock works, then any 
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deviant will be detected and fired only with probability half. Whenever the private 
shock profile works, then any deviant will be detected and fired with probability half. 
Hence, the probability of a deviant’s being fired equals 

  




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
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, it follows that only the inequalities (7) for  are binding. 

Hence,  satisfies the inequalities (7) if and only if 

1aa =

0
2
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inequality (8) holds. 
Note that for every , if both  and  hold, 

then it holds that either , or  for some . Note also that for 

every ,  holds whenever either , or  for some 
. These imply that the specified employment scheme above makes the 

severest punishment on any deviant irrespective of the other agents’ action choices. 
Hence, we have proved that the inequality (8) is not only sufficient but also necessary 
for the existence of the employment scheme satisfying the equalities (2), the inequalities 
(4), and the inequalities (7). 
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Q.E.D. 
 

3.2. Case G: Grand Group Incentives 
 

This subsection considers the situation named Case G, in which all agents establish 
the grand group that is binding in the sense that they can be committed to choose the 
action profile that maximizes the sum of their expected payoffs associated with the 
employment scheme . Instead of the inequalities (4) and (7), we will require  to 
satisfy that for every , 

x
a
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The inequalities (9) imply that the desired action profile  is the unique maximizer of 
the sum of their expected payoffs associated with the employment scheme . Note that 
with the constraint of the equalities (2), an employment scheme  satisfies the 
inequalities (9) if and only if for every , 
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x
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The following proposition shows the necessary and sufficient condition under which 
there exists an employment scheme, in the game associated with which, the grand group 
has strict incentive to be committed to choose the desired action profile . 0a
 
Proposition 3: There exists an employment scheme  that satisfies the equalities (2) 
and the inequalities (9) if and only if 

x
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Proof: Note that we can choose  satisfying the equalities (3) and x
   whenever . 1)( =ωix 0)|( 0 =ap ω
Note that the specified employment scheme  above satisfies the inequalities (2). Note 
that all agents will be fired whenever the principal can see that there exists at least one 
agent who deviates. Note also that  makes the severest punishment on the grand 
group for deviating from . Hence, all we have to do in this proof is to show the 
necessary and sufficient condition under which the specified employment scheme  
above satisfies the inequalities (10). 

x

x
0a

x

Suppose that all agents deviate from the desired action profile , i.e., choose the 
action profile . Whenever the second macro shock works, then at least a single 
agent’s deviation will be detected with probability half. Whenever the private shock 
profile works, then at least a single agent’s deviation will be detected with probability 

0a
1a

n2
11− . Since all agents will be fired whenever there exists at least one detected deviant, 

the expected total loss for the grand group from being fired equals 
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Next, suppose that all agents choose any action profile , where there 
exists at least one agent who chooses the desired action. Whenever the second macro 
shock works, then at least a single agent’s deviation will be certainly detected. 
Whenever the private shock profile works, then at least a single agent’s deviation will 

be detected with probability 

},/{ 10 aaAa∈
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where  is the number of agents  choosing . Hence, it follows 
that  satisfies the inequalities (9) for all  if and only if 
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Hence, it follows that for every , and every , }1,...,1{ −∈ nm }1,...,{ −∈′ nmm
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This implies that the inequalities (12) hold for all  if and only if the 
inequalities (12) hold for  and m , i.e., if and only if 
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The latter inequality is implied by the inequality (11). The former inequality is implied 
by the inequality (11), because 

  )1(
2
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2
11)(1(

2
{1

+<−−+ qqq
n n . 

Hence, it follows that the inequality (11) is the necessary and sufficient condition under 
which  satisfies the inequalities (9). Since the inequality (11) equals the inequality 
(10), we have proved Proposition 3. 

x

Q.E.D. 
 

3.3. Discussion 
 

Note 

  
)

2
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2
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2
11

1

nn q −−−
>2 . 

This implies that the inequality (8) is more restrictive than the inequality (10), and 
therefore, Case G is easier to implement the desired action profile  as the unique 
maximizer of the sum of all agents’ expected payoffs than Case I to implement it as the 
unique Nash equilibrium. In Case G, each agent will take into account the loss for the 
other agents from being fired, while in Case I, she will not do so. Hence, in Case G, the 
principal can strengthen each agent’s incentive not to deviate from the desired action, by 
firing not only her but also the other agents whenever her deviation is detected. In Case 
I, on the other hand, the principal cannot do this way. 

0a
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As the number of agents  increases, the right hand side of (10) approaches n
q−2

2 . 

Hence, in the limit of the increase of , the necessary and sufficient condition for Case 
G to implement  equals 

n
0a

(13)  
q

H
−

≥
2

2 . 

Since 

  ≥
+ q1
2

q−2
2  if and only if 

2
1

≤q , 

it follows that if the probability of the second macro shock working is less than half, i.e., 

2
1

<q (if the probability of the private shocks working is less than half, i.e., 
2
1

>q ), 

then, in this limit, Case G is easier (more difficult) to implement  than Case I to 
implement it as a Nash equilibrium that is not necessarily unique. 

0a

Suppose that the second macro shock works. Then, in Case G, the grand group’s 
overall deviation from  to  will be detected only with probability half. In Case I, 
on the other hand, at most a single agent will deviate at one time and she will certainly 
be detected. This implies that whenever the second macro shock works, then Case G is 
more difficult to implement  than Case I. 

0a 1a

0a
Next, suppose that the private shock profile works. Then, in Case G, the grand 

group’s overall deviation will (almost) certainly be detected because of the Law of 
Large Numbers. A single agent’s deviation can be detected only with probability half in 
both cases, but only in Case G any agent will take into account the loss for the other 
agents from being fired. These observations imply that whenever the private shock 
profile works, then Case G is easier to implement  than Case I to implement it as a 
Nash equilibrium. 

0a

The idea of firing not only the deviant but also the other agents the welfare of whom 
the deviant will take into account is related to the idea of ‘sphere of influence’ 
originated in Bernheim and Whinston (1990) in the context of repeated oligopoly with 
multimarket contact. Matsushima (2001) is more closely related to the present paper 
from technical aspects, which investigated the imperfect monitoring case of repeated 
oligopoly with multimarket contact a la Bernheim and Whinston, and showed, by using 
the Law of Large Numbers in the same way, the efficiency result in the limit of the 
increase of the number of distinct markets that firms encounter each other. 
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4. Case MG: Multi-Group Incentives 
 

This section considers the situation named Case MG, in which the agents are 
divided into two distinct groups, i.e., group  and group , 
where we assume , and that the size of group  is not larger than that of group 

, i.e., 

}ˆ,...,1{ mA =
A

},...,1ˆ{ nmB +=
4≥n

B
  2 . mnm ˆˆ −≤≤
All agents belonging to each group can make the binding commitment to choose their 
actions that maximize the sum of their expected payoffs associated with the 
employment scheme . x
 

4.2. Desired Action Profile As An Equilibrium 
 

Instead of the inequalities (4) and (9), we will require  to satisfy that for every 
, and every , 

x
},{ BAC ∈ ∏

∈
∈ =∈=

Ci
iCCiiC AAaa )(

(14)   ∑ ∑
∈ Ω∈

−
Ci

iii apxHau })|()()({ 00

ω
ωω

  ≥ . ∑ ∑
∈ Ω∈

−
Ci

CCNiii aapxHau }),|()()({ 0
/

ω
ωω

The inequalities (14) imply that each group  has incentive to choose their 
desired actions  whenever the other group  choose their desired actions 

, i.e., a  is a Nash equilibrium associated with  when the two 
groups  and  are regarded as players. Note that with the constraint of the 
inequalities (2), an employment scheme  satisfies the inequalities (14) if and only if 
for every , and every , 

},{ BAC ∈
CN /

}

0
Ca

( 0
Aa

B

}, BA

0
/ CNa ), 00

Ba=

{∈

x
A

x
/{C 0

CCC aAa ∈

(15)  . ∑∑
∈Ω∈∈

≥
Ci

i
Ci

CCNi aaapxH
ω

ωω
,

0
/ ),|()(

The following theorem shows the necessary and sufficient condition under which 
is a Nash equilibrium associated with  in the above sense. ),( 000

BA aaa = x
 
Theorem 4: There exists an employment scheme  that satisfies the equalities (2) and 
the inequalities (14) if and only if 

x

(16)  
)

2
11)(1(

1

m̂qq
H

−−+
≥ . 

 
Proof: Note that we can choose  satisfying the equalities (3) and that for every 

, every , and every , 
x
ω},{ BAC∈ Ci∈ Ω∈

   whenever  for some  and all . 1)( =ωix jh ωω > Ch∈ CNj /∈
Note that it satisfies the equalities (2). Note that all members of any group will be fired 
whenever the principal can see that there exists at least one member of this group who 
deviates and all members of the other group do not deviate. Whenever the second macro 
shock works, then any group’s deviation will certainly be detected. Whenever the 
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private shock profile works, then any group’s deviation will be detected only with 

probability m2
11−

/{CA∈

, where  is the number of the agents  belonging to the group 

who deviate. Since all agents belonging to the same group will be fired whenever there 
exists at least one detected deviant who belongs to this group, it follows that for every 

, and every , the probability of agent  being fired when group  
chooses  equals 

m

C

i

},{ BAC∈

Ca
i∈ i C

}0
Ca

  )
2
11)(1(),|()( 0

/ mCCNi qqaapx −−+=∑
Ω∈ω

ωω , 

where  is the number of agents  choosing . Hence, it satisfies the 
inequalities (14) if and only if for every , 

m Cj∈
m∈

1
jj aa =

}ˆ,...,1{ mn −

  mqqmnH m ≥−−+− )}
2
11)(1(){ˆ( , 

and for every , }ˆ,...,1{ mm∈

  mqqmH m ≥−−+ )}
2
11)(1({ˆ . 

In the same way as in the proof of Proposition 3, it follows from the inequality 
 that the above inequalities hold if and only if mnm ˆˆ −≤

  1)
2

1(ˆ ≥
−

+
qqmH  and 1)}

2
11)(1({ ˆ ≥−−+ mqqH . 

Since , it follows that the first inequality holds if . Since the latter 
inequality implies , it follows that only the latter inequality is binding. Note that 
for every C , and every , both  and 

 hold if and only if 

2ˆ ≥m

, 10
/ CCN aa

1≥H

p
1≥H

}, BA{∈
0) >

}/{ 0
CCC aAa ∈ 0)|( 0 =aω

|(p ω
   for some  and all . jh ωω > Ch∈ CNj /∈
This implies that with the restriction of the equalities (2), the specified employment 
scheme  above makes the severest punishment on any deviating group when the 
other group chooses their desired actions. Hence, we have proved this theorem. 

x

Q.E.D. 
 

Note 

  
)

2
11)(1(

1
1

2

m̂qqq −−+
>

+
. 

This implies that the inequality (6) is more restrictive than the inequality (16), and 
therefore, Case MG is easier to implement  as a Nash equilibrium in the above sense 
than Case I to implement it as a Nash equilibrium in the standard sense. In Case MG, 
each agent will take into account the loss for any other member of the same group from 
being fired. Hence, in Case MG, especially when the private shock profile works, the 
principal can strengthen each agent’s incentive not to deviate by firing not only her but 
also the other agents belonging to the same group as her. In Case I, on the other hand, 
the principal can not do this way. Moreover, in Case MG, whenever the macro shock 
works, then any single group’s deviation will certainly be detected, because the other 

0a
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group making the desired action choices can inform the principal that the group deviates, 
by showing higher signals. These observations imply that Case MG is easier to 
implement  than Case I irrespective of the probability  of the second 
macro shock working. 

0a )1,0(∈q

1>

As the number  of the agents belonging to group  increases, the right hand 
side of the inequality (16) approaches . Hence, in the limit of the increase of , the 
necessary and sufficient condition for Case MG to implement  as a Nash 
equilibrium in the above sense equals 

m̂ A
1 m̂

0a

(17)  . 1≥H

Since 
2

2
− q

, it follows that, in this limit, the inequality (13) is more restrictive than 

the inequality (17), and therefore, Case MG is easier to implement  as a Nash 
equilibrium in the above sense than Case G to implement it as one of the maximizers of 
the sum of all agents’ expected payoffs. Not only in Case G but also in Case MG, 
whenever the private shock profile works, then any single group’s overall deviation will 
almost certainly be detected. Whenever the macro shock works, then the grand group’s 
overall deviation will be detected only with probability half in Case G. In Case MG, 
however, whenever the macro shock works, then any single group’s deviation will 
certainly be detected, because the other group can inform the principal that the second 
macro shock works and equals zero. These observations imply that Case MG is easier 
than Case G in the limit. 

0a

 
4.2. Uniqueness 

 
In addition to the equalities (2) and the inequalities (14), we will require  to 

satisfy that for every a , there exist C  and every  
such that 

x
/{a}/{ 0aA∈ },{ BA∈ }CCC Aa ∈′

(18)   ∑ ∑
∈ Ω∈

−
Ci

iii apxHau })|()()({
ω

ωω

  < . ∑ ∑
∈ Ω∈

′−′
Ci

CCNiii aapxHau }),|()()({ /
ω

ωω

The inequalities (18) imply that there exists no (pure strategy) Nash equilibrium other 
than  when the two groups  and  are regarded as players. The following 
theorem shows a sufficient condition under which the desired action profile is the 
unique Nash equilibrium in the above sense. 

0a A B

 
Theorem 5: There exists an employment scheme  that satisfies the equalities (2), the 
inequalities (14), and the inequalities (18), if the inequalities (16) hold with strict 
inequality and 

x

(19)  
}

2
1)1(){ˆ(

2

1ˆ −−−+−
≥

mnqqmn
H . 

 
Proof: For every , let Ai∈
   if  and  for all  and all , 0)( =ωix 2≠hω jh ωω ≤ Ah∈ Bj∈
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and 
   otherwise. 1

0
1

)( =ωix
For every , let Bi∈
   if  and  for all  and all , )( =ωix 2≠hω jh ωω ≤ Bh∈ Aj∈
   if  for some  and some , )( =ωix jh ωω > Bh∈ Aj∈
and 
(20)   if  for some  and all . 0)( =ωix jh ωω < Bh∈ Aj∈
Note that the specified employment scheme  above satisfies the equalities (3), and 
therefore, the equalities (2). In the same way as in Theorem 4, it follows that the 
inequality (16) implies the inequalities (14). From the specification (20), it follows that 
group  will not be fired whenever the principal can see that all members of group  
deviate and at least one member of group  chooses the desired action, even though 
there exist detected deviant who belong to group . On the other hand, group  will 
be fired whenever it deviates and the principal detects its deviation. 

x

B A
B

B A

Whenever all agents choose the undesired action profile , then the expected total 
loss for group  from being fired equals 

1a
B

  ∑
Ω∈∈ ω

ωω
,

1)|()(
Bi

i apxH )}
2

11)(1(
2

){ˆ( m̂nqqmnH −−−+−= , 

where it must be noted that group  deviation will be detected only with probability 
half when the second macro shock works. Consider any action choices , 
according to which, all members except one of group  choose the undesired actions. 
The expected total loss for group  from being fired equals 

sB'

B

),( 1
BA aa

B

  ∑
Ω∈∈ ω

ωω
,

1 ),|()(
Bi

BAi aapxH )
2

11)(1)(ˆ( 1ˆ −−−−−= mnqmnH , 

where it must be noted from the specification (20) that whenever the second macro 
shock works, then group  will never be fired in this case. Hence, from the 
inequalities (19), it follows that 

B

   ∑ ∑
∈ Ω∈

−
Bi

iii apxHau })|()()({ 11

ω
ωω

  −  ∑ ∑
∈ Ω∈

−
Bi

BAiii aapxHau }),|()()({ 1

ω
ωω

  =  ∑
Ω∈∈

−−
ω

ωω
,

1)|()(ˆ
Bi

i apxHmn }),|()(1ˆ{
,

1∑
Ω∈∈

−−−−
ω

ωω
Bi

BAi aapxHmn

  ))}
2

11)(1(
2

(1){ˆ( m̂nqqHmn −−−+−−=  

  )}
2

11)(1()ˆ(1ˆ{ 1ˆ −−−−−−−− mnqHmnmn−  

  0)}
2

1)(1(
2

()ˆ(1 ˆ <−+−− −mnqqHmn= , 

which implies the inequality (18) for . 1aa =
Fix  arbitrarily. Suppose  and . Let  denote the 

number of agents  choosing . Whenever the second macro shock works, 
then group  will certainly be fired. Hence, the expected total loss for group  from 

}/{ 0aAa∈
i

A

0
AA aa ≠ 1

BB aa ≠ m
A∈ 1

ii aa =
A
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being fired equals 

  ∑
Ω∈∈ ω

ωω
,

)|()(
Ai

i apxH )}
2
11)(1({ˆ mqqmH −−+= . 

Whenever group  chooses the desired action choices , then it will never be fired 
irrespective of group  action choices. Hence, 

A 0
Aa

sB'
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∈ Ω∈
−
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iii apxHau })|()()({
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ωω
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  )}
2
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In the same way as the proof of Proposition 3, it follows that 

(21)  
mH

qq
m m ˆ

1)}
2
11)(1({1

>−−+  for all m , }ˆ,...,1{ m∈

if and only if this inequality holds for each , i.e., if and only if }ˆ,1{ mm∈

  
)1(ˆ

2
qm

H
+

>  and 
)

2
11)(1(

1

m̂qq
H

−−+
> . 

Since , the former inequality automatically holds. Hence, the latter inequality, 
which equals the inequality (16) with strict inequality, implies the inequalities (18) for 
all  satisfying  and a . 

2ˆ ≥m

A∈a 0
AA aa ≠ 1

BB a≠
Next, suppose a . Let m  denote the number of agents i  choosing 

. Since any signal profile satisfying the specification (20) never takes place in 
this case, it follows that whenever the second macro shock works, then group  will 
certainly be fired. Hence, the expected total loss for group  from being fired equals 

0
AA a= B∈

1
ii aa =

B
B

  ∑
Ω∈∈ ω

ωω
,

)|()(
Bi

i apxH )}
2
11)(1(){ˆ( mqqmnH −−+−= . 

Whenever group  chooses the desired action choices , then it will never be fired 
irrespective of group  action choices. Based on these observations, and in the same 
way as the above, it follows from the inequalities (16) with strict inequality that 

B 0
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2
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Hence, we have proved the inequalities (18) for all . }/{ 0aAa∈
Q.E.D. 
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Note 

  
)

2
11)(1(

1

m̂qq −−+
>2  and 

}
2

1)1(){ˆ(

22
1ˆ −−−+−

>

mnqqmn
. 

These inequalities imply that both the inequalities (16) and (19) are less restrictive than 
the inequality (8). Hence, Case MG is easier to implement the desired action profile  
as the unique Nash equilibrium in the above sense than Case I to implement it as the 
unique Nash equilibrium in the standard sense. 

0a

In Case MG, whenever all members of group  deviate, then at least one member 
of group  has incentive to choose the desired action, which informs the principal that 
group  deviate when the second macro shock works. The specification (20) implies 
that by choosing the desired action, any single agent belonging to group  can prevent 
the other members of group  from being fired, even though they deviate and are 
detected by the principal. In Case MG, any agent will take into account the loss for all 
other members of the same group as her from being fired. In Case I, one other hand, no 
agents will do so. This makes the incentive for each member of group  to choose the 
desired action stronger in Case MG than in Case I. This is the driving force of the fact 
that it is easier to eliminate unwanted equilibria in Case MG than in Case I. 

B
A

B
B

B

B

As the number  of members of group  increases, the number  of 
members of group  as well as the number  of all agents diverges into infinity. 
Hence, as  increases, the right hand side of the inequality (19) approaches 0. In the 
limit of the increase of , the inequality (19) becomes trivial and only the inequality 
(16) with strict inequality becomes binding. This implies that in this limit, the sufficient 
condition for Case MG to implement the desired action profile  as the unique Nash 
equilibrium in the above sense equals 

m̂
B

A mn ˆ−
n

m̂
m̂

0a

  . 1>H

Since 1
2

2
>

− q
, it follows that Case MG is easier to implement  as the unique Nash 

equilibrium in the above sense than Case G to implement it as the unique maximizer of 
the sum of all agents’ expected payoffs. 

0a

In Case MG, whenever the private shock profile works, then any group’s overall 
deviation will certainly be detected because of the Law of Large Numbers. Even when 
the second macro shock works, group  overall deviation will certainly be detected, 
because the specification (20) implies that at least one member of group  has 
incentive to inform the principal that group  deviates, by choosing the desired action. 
In Case G, however, this incentive device does not work, because any member of group 

 will take into account the loss for, not only the other members of group , but also 
all members of group , from being fired. These observations imply that it is easier to 
eliminate unwanted equilibria in Case MG than in Case G. 

sA'
B

A

B B
A
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5. Concluding Remarks 
 

This paper has investigated the agency problem with multiple agents, where the 
principal could only imperfectly monitor their action choices by observing their 
correlated public signals, and could penalize any detected deviant only by firing her and 
other agents. We have assumed that agents were divided into multiple distinct groups, 
and that within each group, all its members could make the binding commitments to 
achieve their collusive action choices. We have shown that it was easier to incentivize 
the agents to make the desired action choices when multiple groups were established 
than when either no group or only the grand group was established. Although we have 
investigated only the special cases with signal correlations, most results of this paper 
might hold with minor modifications in a more general class of environments with 
signal correlations. 

This paper has investigated only the special cases that at most two distinct groups 
were established. In the same way as in this paper, we can investigate the cases that 
three or more distinct groups are established. We can then prove that it is the easiest to 
incentivize the agents to make the desired action choices in the case that two groups 
with the same size are established among all possible cases whether multiple groups are 
established or not. In contrast to the other results of the paper, however, this result 
depends on the specialty of the model. For instance, if there exist partial macro shocks 
that influence only subsets of public signals, then the establishment of three or more 
groups might be welfare improving more than that of only two groups. Moreover, if the 
principal cannot fire agents but can promote a limited number of agents, then it might be 
the case that the principal had better not make the size of each group too large. Hence, it 
would be important future researches to show what is the optimal number of groups, 
and to show what is the optimal size of groups, in more general models. 
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