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Abstract 

This paper examines the optimal tariff structure under a revenue constraint.  When a fixed level of tax revenue 

has to be collected from the tariff alone, no adjustment in tariff rates can achieve an efficient resource 

allocation, even in a small open economy.  Hence, the optimal tariff problem arises under a revenue constraint.  

We show that the revenue-constrained optimal tariff structure is characterized by the following two rules: (i) 

the optimal tariff rate is lower for the import good that is a closer substitute for the export good; and (ii) the 

stronger the cross-substitutability between imports, the closer the optimal tariff is to uniformity.  This 

theoretically explains why empirical studies have shown that the efficiency loss from a uniform tariff structure 

is negligible. 
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1.  Introduction 

In many developing countries, tariffs are the main source of government revenue.1  However, if a fixed level 

of tax revenue has to be collected from tariffs alone, no adjustment in tariff rates can achieve efficient resource 

allocation, as first pointed out by Dasgupta and Stiglitz (1974).  Thus, we need to analyze the tariff structure 

that attains the second-best resource allocation.  We call this the optimal tariff problem under a revenue 

constraint.  This problem does not arise in an economy with a lump-sum tax, but it does arise in an economy 

without a lump-sum tax even when the economy is small. 

This problem is entirely different from the more familiar optimal tariff problem in a large economy, 

which was studied by Kaldor (1940) and Johnson (1954–55) among others.  In a large economy, the optimal 

tariff problem arises even if a lump-sum tax is available. 

The optimal tariff problem under a revenue constraint is an extension of the optimal taxation problem 

pioneered by Ramsey (1927) and Diamond and Mirrlees (1971).2  This is caused strictly by an institutional 

framework within which a fixed level of tax revenue has to be collected by tariffs alone.  The exportable good 

in the optimal tariff model plays the role of the leisure good in the optimal commodity tax model, as the 

untaxed good.3  Dasgupta and Stiglitz (1974) originated the study of optimal tariffs in a small open economy.  

Dahl, Devarajan and van Wijnbergen (1986), Heady and Mitra (1987) and Mitra (1992) numerically analyzed 

                                                                 

1 See Rajaram (1994) for a survey on actual trade policies under a revenue constraint in several developing 

countries. 
2 In the R-D-M model, labor supply is endogenous, and the distortion is generated between goods and leisure.  

Commodity taxes and wage subsidies at a uniform rate remove this distortion.  However, tax revenue is zero.  At 

this point, the optimal commodity tax problem is generated.  In the optimal tariff model, we make the labor supply 

constant, and hence we can disregard this distortion. 
3 See Hatta (1994) for a comparison of the two theories in a simple context.  In the optimal commodity tax model, 

labor supply is endogenous and leisure is untaxable.  Hence, a distortion is generated between goods and leisure.  In 

the revenue-constrained optimal tariff model, labor supply is assumed to be constant, but the consumption of the 

exportable goods is untaxed.  Hence, a distortion is generated between the exportable and the importable goods.  As 

Hatta (1994) explains, the exportable good in the optimal tariff model plays the role of the leisure good in the 
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optimal tariff rates for a few developing countries.  More recently, this problem has been studied by Hatta 

(1994), Dahl, Devarajan and van Wijnbergen (1994), Panagariya (1994), Chambers (1994), Mitra (1994) and 

Keen and Ligthart (2002).4 

This literature has shown non-uniformity of the optimal tariff structure in a number of ways.  Dasgupta 

and Stiglitz (1974), Dahl, Devarajan and van Wijnbergen (1986) and Panagariya (1994) have derived the 

inverse elasticity rule in the trade context under the assumption of zero cross-substitutability between 

importable goods.  In addition, simulations have been conducted by assuming Leontif-type production 

functions in part. 

However, the literature has not demonstrated an explicit, general optimal tariff formula for a three-good 

trade model that allows full technological substitutability.  This is in contrast with the literature on optimal tax, 

where the Harberger expression (1964) gives a fully general optimal tax formula for a three-good economy.  A 

Harberger-like formula has been derived for an optimal tariff in Hatta (1994), but only under an extremely 

simple assumption about technology. 

In the present paper, we derive an explicit formula for a revenue-constrained optimal import tariff in a 

trade model with full technological substitutability.  Our optimal tariff formula is expressed in terms of the 

elasticity of the excess demand function, i.e., the compensated demand function minus the supply function.  

Thus, the optimal tariff structure depends on the supply elasticities as well as the demand elasticities.  This 

contrasts with the Harberger expression for optimal tax, which is expressed in terms of demand elasticities 

alone, even if the production possibility frontier is strictly convex, as shown by Auerbach (1985).  This 

difference is caused by a variation in the consumer’s budget constraints in the two models: the producer’s 

behavior does not affect the consumer’s income in the optimal tax model, while it does in the optimal tariff 

models. 

As special cases of this general formula, we obtain various optimal tariff rules, such as the inverse 

                                                                                                                                                                                                           

optimal commodity tax model, as the untaxed goods. 

4 Among the literature cited here, Keen and Ligthart (2002) analyzed the welfare effect of a simultaneous change 

in tariffs and commodity taxes under a revenue constraint.  A similar analysis was undertaken by Panagariya (1992), 
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elasticity rule and the Corlett and Hague-type tariff rule.  In particular, we observe that the stronger the 

cross-substitutability between imports, the closer the optimal tariff is to uniformity.  These rules are expressed 

in terms of the elasticities of excess demand functions.  This means that the optimal tariff rules depend upon 

both producer’s and consumer’s responses to price changes.  This is in contrast with the optimal tax rules, 

which are expressed in terms of demand elasticities alone. 

We investigate two features of the optimal tariff rules through this formula.  First, the formula enables 

us to untangle the puzzle shown by Dahl et al.  (1994, p.  222) and Mitra (1992, p.  246), which is that the 

welfare loss caused by a uniform tariff rather than the optimal tariff is negligible.  Indeed, the welfare loss 

reported by Dahl et al.  (1994) is 0.005% of the welfare level under the optimal tariff, and that reported by 

Mitra is 0.05%.  The reason for this negligible welfare loss from a uniform tariff has not been explained.  Our 

formula shows that the virtual optimum is attained by any tariff structure close to uniformity when imports are 

closely substitutable for each other in consumption and production. 

Second, our formula is generalized to complex trade settings.  For example, it is extended to the case 

where a non-tradable good exists.  The non-tradable good has an endogenous price, which is adjusted so as to 

keep the amount of demand equal to that of supply.  Even in this case, the implication of our basic formula, 

that the optimal tariff structure is close to uniformity when imports are closely substitutable, is robust.  In 

addition, our formula is interpretable in the case where one of the imports is an imported input (intermediate 

good).  An imported input is used in the production of final goods, so that imposing a tax on it distorts resource 

allocation in the production sector. 

The imported input and the non-tradable good are peculiar to the optimal tariff framework, and do not 

appear in the optimal tax framework analyzed in a closed economy model.  Our optimal tariff formulae 

expressed in terms of elasticities of net demand are essential in analyzing the imported input case. 

In Section 2, we present the model.  Section 3 proves that the first-best tariff (subsidy) policies would 

yield zero tariff revenue.  In Section 4, a formula that characterizes the optimal tariff structure is derived and 

we examine the optimal tariff structure.  Section 5 analyzes the optimal tariff problems in the presence of the 

                                                                                                                                                                                                           

who considered an economy where only tariffs can be adjusted and there is an imported input subject to a tariff. 
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non-tradable good.  Section 6 extends the optimal tariff rules to the cases with the export tax (or subsidy) and 

with an imported input. 

 

2.  The Model 

We consider an economy that satisfies the following assumptions: 

 

Assumption 1:  The economy is small and open.  It has perfectly competitive markets for goods and factors.  

The economy produces three goods: one export good and two import goods.  The only inputs of the economy 

are endowed factors.  We denote the export good by 0 and the import goods by 1 and 2. 

 

Assumption 2:  There is a representative consumer, who initially possesses all of the factors (whose 

endowments are fixed), has an income , consisting of factor incomes,m 5 and consumes all of the three final 

goods.  The consumer has a well-behaved utility function u , where )(x )( 210 xxx   ,  ,=′x  is the demand 

vector of the final goods, and he or she chooses the commodity bundle that maximizes the utility level under 

given prices and income.6 

 

The budget constraint of the consumer is given by: 

 

 , (1) m=′xq

 

where q  is the domestic-price vector. )( 210 qqq   ,  ,=′

The consumer’s compensated demand function for the i -th good is given by: 

                                                                 

5 The profit is zero, because free entry and exit are assumed. 

6 Since the level of the public good provision is fixed in the analysis, it does not enter the utility function as an 

explicit argument.  The function is well behaved if it is: (i) increasing in each argument; (ii) strictly quasi-concave; 
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 , for )( uxx ii   ,q= =i 0,1,2, (2) 

 

where u  is the utility level. 

 

Assumption 3:  A producer maximizes profit, taking prices as given. 

 

The aggregate of the net revenues of all firms, and hence of all industries, is equal to the income of the 

consumer.  Thus, the aggregate budget equation of the producers is given by: 

 

 , (3) m=′yq

 

where  is the output vector. )( 210 yyy   ,  ,=′y

The supply function of the economy provides the commodity bundle that maximizes the total revenue 

 of the production sector, under a given level of technology and prices.  Its i -th element is given by:yq′ 7 

 

 , for =i 0,1,2. (4) )(qii yy =

 

Assumption 4:  Tariffs are imposed on the two imports. 

 

The relationship between world prices, domestic prices, and import tariffs is given by: 

 

                                                                                                                                                                                                           

and (iii) twice continuously differentiable. 

7 Since the domestic factors are fully employed by the production sector and their supply levels are fixed, they do 

not enter the supply function as explicit arguments. 
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 tpq += , (5) 

 

where  is the world price vector, and )( 210 ppp   ,  ,=′p )( 210 ttt   ,  ,=′t  is the specific tariff vector. 

 

Assumption 5:  The only revenue source of the government is import tariffs.  In particular, the government 

cannot levy commodity taxes or income taxes.  The government spends all of the tariff revenue on the 

purchase of the public good, which is imported from a foreign country.8 

 

Thus, the budget equation of the government can be written as: 

 

 , (6) r=−′ )( yxt

 

where r  is government spending on the public good and yx −  represents the net import vector of the 

private goods. 

 

Assumption 6:  The international balance of payments is in equilibrium, and is written as: 

 

 . (7) 0)( =+−′ ryxp

 

The left-hand side of the equation represents the sum of the international value of the net imports of private 

goods and the public good. 

 

                                                                 

8 Since the world price and the government revenue are constant, and since the government expenditure is equal 

to revenue, the quantities imported by the government should also be constants.  The public good may be the good 

traded by the private sector of the home country.  In that case, the excess demand for the i -th tradable good is 
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Assumption 7:  The world price of the export good is chosen as the numeraire: 10 =p . 

 

Equation (7) is the market equilibrium condition.  Equations (1), (3) and (6) are the budget equations 

of the economic agents.  However, Equations (1) and (3) can be combined into: 

 

 . (8) yqxq ′=′

 

This equation is the budget constraint of the private sector, and implies that the consumer’s expenditure equals 

the producer’s revenue.  Since Equations (7) and (8) immediately yield (6), we represent this economy by 

Equations (2), (4), (5), (7) and (8) in the following. 

 

Definition:  An economy satisfying Assumptions 1 through 7 is called a General Tariff Economy (hereafter, 

GTE).  When Equations (2), (4), (5), (7) and (8) are satisfied, it is said that the GTE is in equilibrium. 

 

A special case of the GTE is given a name, as stated below. 

 

Definition.  An economy satisfying Assumptions 1 through 7 and 00 =t  is called an Import Tariff Economy 

(hereafter, ITE).  When Equations (2), (4), (5), (7) and (8) are satisfied and 00 =t , we say that the ITE is in 

full equilibrium. 

 

In the ITE,  holds from Assumption 7. 10 =q

We define the excess demand functions as: 

 

 , for )()()( qqq iii yuxuz −≡   ,  , =i 0,1,2. 

                                                                                                                                                                                                           

redefined as  where  is the amount the government imports of the i -th good. iiii gyxz −−= ig

 7



 

and 

 

 , )()()( qyqxqz −≡ uu   ,  ,

 

where .  By substituting these functions for ))()()(()( 210 uzuzuzu   ,  ,  ,  ,  ,  , qqqqz =′ yx −  in (7) and 

(8), we have: 

 

 , (9) 0)( =′ u  ,qzq

 . (10) 0)( =+′ ru  ,qzp

 

In terms of this notation, the GTE is in full equilibrium if and only if it satisfies Equations (5), (9) and (10).  

The set of Equations (9) and (10) contains four variables, , , q  and u , since 0q 1q 2 r  is fixed by assumption.  

When two of the four variables are exogenously given, the two equations determine the remaining variables.  

For example, if q  and u  are given, the model determines the remaining variables ( .  Therefore, 

from Equation (5), the tariff vector 

0 )21 qq   ,

t , which maximizes the utility level u , can be found.  The following 

definition is now required: 

 

Definition:  The tariff combination (  that maximizes the utility level u  in the model of (5), (9) and 

(10) for a fixed level of 

)21 tt   ,

r  and for the zero level of  is called the optimum tariff of the ITE. 0t

 

3.  Tariff Revenue and Efficient Resource Allocation 

A Pareto optimal resource allocation is attained only if the international and domestic prices of the traded 

goods are proportional.  At first, it may seem that the optimal tariff of the ITE must be a proportional tariff 

 8



structure, which makes the international and domestic prices of the traded goods proportional.  It turns out that 

a proportional tariff yields zero revenue, as is shown below.  Hence, any tariff structure that yields positive 

revenue has to be non-proportional and is inefficient in resource allocation.  In other words, the optimal tariff 

of the ITE is the one that minimizes the inevitable distortion. 

We now show that a proportional tax yields zero revenue.  To this end, we define the ad valorem 

equivalent rate of t  by: i

 

i

i
i q

t
=τ , for =i 0,1,2. (11) 

 

This and (5) yield:9 

 

 iiii qpq τ+= , for =i 0,1,2, (12a) 

and 

 i
i

i
ii ppq

τ
τ
−

+=
1

, for =i 0,1,2. (12b) 

 

From (12a), we also have:10 

 

 i
i

i pq
τ−

=
1

1
, for =i 0,1,2. (12c) 

 

A tariff structure is called proportional if all tradable (including exportable) goods share an identical 

                                                                 
9 Let t iii pσ= .  Then iiii qp τσ = , and hence iiii pqτσ = .  This and iii qp )1( τ−=  yield )1( iii ττσ −= , 

implying (12b). 
10 The definition of the ad valorem tariff rate, as shown by (11), ensures that 1<iτ .  Hence, 1 0>− iτ . 
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ad valorem tariff rate, i.e., if: 

 

 ετ =i , for =i 0,1,2, (13) 

 

holds for some scalar ε .  Equation (12c) implies that, under a proportional tariff structure, the domestic prices 

of both exports and imports are proportionally higher than their world prices.  Hence, efficient resource 

allocation is attained with a proportional tariff.  The fact that the domestic price of the exports is higher than 

the world price implies that a subsidy is given to the export goods at the same rate as the import tariffs.  Thus, 

the “proportional tariff”, defined as above, implies a combination of positive tariffs on the imports and a 

subsidy of equal rate to the export.  This means that a proportional tariff structure yields zero revenue, and 

hence we have the following: 

 

Theorem:  In the GTE, proportional tariff structures achieving efficient resource allocation yield zero 

revenue. 

 

Proof.  Under proportional tariffs, it follows from (12c) and (13) that: 

 

 ii pq
ε−

=
1

1
. (14) 

 

Substituting (14) for  in (9) yields: iq

 

 . 0=′zp

 

From this and (10), we obtain .      Q.E.D. 0=r
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This implies that under a proportional tariff structure, all of the revenue collected by import tariffs is spent on 

the export subsidy.  Therefore, only a non-proportional tariff can raise a positive tariff revenue.  In other words, 

a positive tariff revenue necessarily generates a distortion.11 

A tariff structure is called uniform if all import goods share an identical ad valorem tariff rate, i.e., if 

00 =τ , ετ =1 , ετ =2  for some scalar ε .  A uniform tariff structure can raise a positive tariff revenue.  

However, under a uniform tariff structure, the vector of the domestic prices of the three goods is not 

proportional to that of the world prices, even though the vector of the domestic prices of the two imports is 

proportional to that of the world prices.  Hence, the resource allocation under a uniform tariff is inefficient.  In 

the next section, we examine how the optimal tariff is different from uniformity under a positive revenue 

constraint. 

 

4.  Optimal Tariff Structure in the ITE 

4-1.  The Basic Lemma 

In this section, we examine the optimal import tariff structure of the ITE, i.e., the economy that has a zero 

export tariff and subsidy. 

Let jiij qzz ∂∂= .  We define the import elasticity of the i -th good with respect to the price  by jq

iijjij zzq=η .  Then we have the following: 

 

Lemma.  In the ITE, the optimal tariff structure ( )21 ττ  ,  satisfies the following: 

 

 (i) 
1121

2212

2

1

ηη
ηη

τ
τ

−

−
= , 

 (ii) 
211210

211220

2

1

ηηη
ηηη

τ
τ

++
++

= , 

                                                                 

11 Sandmo (1974) discussed this problem in the optimal tax context. 

 11



 

and 

 

 (iii) 
, 

, 

θηηητ

θηηητ

)(

)(

2112102

2112201

++=

++=
  

 

where 0>θ . 

 

Proof.  We must first choose a level of  that maximizes the utility level in the model of (9) and (10) for the 

fixed level of 

q

r :12 

 

  

.0)(

0)(

max
,, 21

=+′

=′

ru

u

u
utt

  ,              

,  ,        s.t  

,       
    

qzp

qzq

 

The Lagrangian of this maximization problem is: 

 

 ))(())(( ruuuL +′−′−=   ,  , qzpqzq δλ , 

 

where λ  and δ  are Lagrange multipliers.  The first-order conditions with respect to  are iq 0=′+ iiz zpδλ , 

for , where 2i 1 ,= )()( 210 iiiii zzzq   ,  ,=∂∂=′ zz .  By using the homogeneity condition, , of the 

compensated demand function, this equation can be rewritten as: 

0=′ izq
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 , (15) 











=
























−

2

1

2

1

2212

2111

z

z

t

t

zz

zz
ν

 

where δλν −= .13  Solving (15) for t  and noting 1 2112 zz =  and iii qt=τ , we obtain: 

 

 θηητ ⋅−= )( 22121 , (16a) 

 

where 

 

 ))(( 2
1222112121 zzzqqzz −=νθ . (17) 

 

Similarly, we have: 

 

 θηητ ⋅−= )( 11212 . (16b) 

 

From (16), we obtain Formula (i). 

Since: 

 

 
, 

, 

20 0

0

2221

121110

=++

=++

ηηη

ηηη
 (18) 

 

Formula (i) immediately yields (ii). 

                                                                                                                                                                                                           

12 See Mirrlees (1976) and Hatta (1993) for this formulation of the maximization problem. 

13 The proof following this expression adapts the proof of Diamond and Mirrlees (1971, pp.  262-263) for optimal 
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From (16) and (18), we obtain two equations in Formula (iii).  Multiplying (15) by  gives: )( 21 tt   ,

 

  )(][ 2211
2

1

2212

2111
21 ztzt

t
t

zz
zz

tt +=















− ν  ,

 rν= . 

 

Since the left-hand matrix is negative semi-definite, ν  has the same sign as government revenue r .  From 

this and (17), we obtain 0>θ  since the denominator of (17) is positive. 

 Q.E.D. 

 

A formula similar to (ii) was first obtained by Harberger (1964) for an optimal commodity tax.14  

However, his formula is expressed in terms of demand elasticities.  Even in a model with a fully substitutable 

production possibility surface, the supply elasticities have no place in the optimal tax formula, as 

demonstrated by Auerbach (1985). 

On the other hand, our formula is expressed in terms of the elasticities of the excess demand function, 

i.e., the compensated demand function minus the supply function.  Hence, unlike the optimal tax structure, the 

optimal tariff structure is affected by supply elasticities.15 

                                                                                                                                                                                                           

taxation. 
14 This paper was later published as Chapter 2 in Harberger (1974).  The Harberger formula is found on p. 49 in 

Harberger (1974). 
15 We define the compensated demand elasticity as iijjij xxq=φ  and the supply elasticity as iijjij yyq=ε .  

From the definition of the excess demand elasticity, we have: 

 

 
i

ijj
ij z

zq
=η  

 
i

ijjijj

z
yqxq −

=  

 14



The consumer’s budget equations are different in the two models.  In the optimal tariff model, the 

budget equation is given by  as in (8); in the optimal tax model, it is given by yqxq ′=′ xqxq ′=′  where x  

represents the initial endowments that the consumer possesses.  Hence, the producer’s response to a price 

change affects the consumer’s budget in the optimal tariff model, but not in the optimal tax model. 

Note that in the optimal tax model, the producer’s profit is assumed to be zero either because of free 

entry or due to a 100% tax on profit, while in the model of the optimal tariff, no such assumptions are made. 

 

4-2.  The Inverse Elasticity Rule 

We say that import goods are independent of each other if )() 1221 qzqz ∂∂( =∂∂ 0= , i.e., 

02112 ==ηη . 

 

Inverse Elasticity Rule:  The optimal tariff rate is inversely proportional to the own elasticity of excess 

demand if the imports are independent of each other. 

 

Proof.  Independence among the imports implies 02112 ==ηη , and hence Formula (i) degenerates into: 

 

 
11

22

2

1

η
η

τ
τ

= , (19) 

 

which proves this rule.      Q.E.D. 

 

                                                                                                                                                                                                           

 . ij
i

i
ij

i

i

z
y

z
x

εφ ⋅−⋅=

ij

 
By substituting these for η s in the formulae in the Lemma, we find that the optimal tariff rates depend on the 

compensated demand elasticities and the supply elasticities. 
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This rule has been widely used in the literature on optimal tariffs under a revenue constraint.  The seminal 

paper by Dasgupta and Stiglitz (1974, p.  21) showed that the revenue-constrained optimal tariff is not uniform, 

by directly establishing the inverse elasticity rule.  The inverse elasticity rule was also derived by Dahl at al.  

(1994, p.  217) and Panagariya (1994, p.  234). 

Formula (i) of the Lemma immediately implies that if cross-elasticities between the two imports, 12η  

and 21η , are not equal to zero, the ratio 21 ττ  would diverge from the inverse elasticity rule.  In fact, when 

2112 ηη ≠ , the optimal tariff rate of the import with the lower own elasticity may become lower than the rate 

of the other import. 

Note, however, that Formula (i) does not imply that the tariff system necessarily approaches 

uniformity as cross-elasticities become large when 2112 ηη ≠ . 

 

4-3.  The Corlett–Hague Rule 

 

Definition:  We say that the i -th good is a closer substitute for the k -th good than the j -th good, if 

jkik ηη > . 

 

We are in a position to state and prove the following proposition. 

 

Proposition 1:  The optimal tariff rate is lower for the import good that is the closer substitute for the export 

good. 

 

Proof.  Taking the difference of the two equations in Formula (iii), we have θηηττ )( 102021 −=− .  Since 

0>θ , this expression shows that 21 )( ττ <>  if and only if 1020 )( ηη <> .      Q.E.D. 

 

This implies that the optimal tariff rate is higher for the good that is more complementary with the export good.  
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The export is the untaxed good, and hence it is over-consumed.  Taxation on the good that is more 

complementary with the export partially offsets this over-consumption.  This shows that the ranking of tariff 

rates depends upon the relative degree of complementarity between the taxed goods (import goods) and the 

untaxed good (the export good).  Since this was first shown by Corlett and Hague (1953), in the context of 

commodity taxation, we call this the Corlett–Hague rule. 

 

4-4.  The Cross-Substitutability Rule 

The Corlett–Hague rule shows that optimal tariff structure is non-uniform, while the following proposition 

shows that the degree of non-uniformity is limited by the degree of cross-substitutability between imports. 

 

Proposition 2:  Assume that 01 >τ  and 02 >τ .  The stronger the cross-substitutability between imports, 

the closer is the optimal tariff to uniformity if all the cross-elasticities involving the export good are kept 

constant. 

 

Proof.  In case 01 >τ  and 02 >τ , we obtain 0211220 >++ ηηη  and 0211210 >++ ηηη , respectively, 

from Formula (iii).  The cross-elasticity of imports 2112 ηη +  is common in both the numerator and the 

denominator of Formula (ii).  When 10η  and 20η  are kept constant, the larger is the cross-substitutability, the 

closer are the values of the numerator and denominator, and hence the closer is the ratio of the tariff to 

uniformity.      Q.E.D. 

 

Proposition 2 may be called the Cross-Substitutability Rule.  The non-uniformity of the tariff rates will create 

distortions in the choice among the imports.  In particular, when cross-elasticities among imports are high, a 

non-uniform tariff structure creates strong distortionary effects in the choice among the imports,16 and hence 

the optimum tariff structure tends to be close to uniform. 

                                                                 

16 For the case that generalizes the number of taxed goods, see Hatta (1986). 
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Although the inverse elasticity rule is the most well-known optimal tax rule, its applicability is 

extremely limited.  A good usually has high demand elasticity because it has close substitutes.  For example, 

beef has high demand elasticity because chicken and pork are available as substitutes.  However, the inverse 

elasticity rule assumes that a good has no substitutes among imported goods.  In the context of our trade model, 

this assumption implies that an imported good has high demand elasticity if and only if it is a close substitute 

for the exported good, and a good has low demand elasticity if and only if it is independent of the exported 

good. 

There is an intriguing puzzle in this literature.  Empirical simulations by Dahl at al.  (1994, p.  222) 

and Mitra (1992, p.  246) show that the welfare loss caused by a uniform tariff, rather than the optimal tariff, is 

negligible. 

As was pointed out earlier, the inverse elasticity rule appears contradictory to the finding of Dahl et al. 

(1986, 1994) and Mitra (1992) that the welfare loss caused by a uniform tariff structure is negligible.  This is 

because their findings suggest that virtual optimality is attained by a uniform tariff structure.  However, the 

puzzle is solved if we realize the unrealistic nature of the assumption in the inverse elasticity rule that the 

imports are independent of each other in both consumption and production.  It is likely that the 

cross-substitutability term among the imports is dominating, undermining the basic assumption of the inverse 

elasticity rule. 

We assume that import tariffs are positive in Proposition 2.  Note that the optimal tariff rate can be 

negative for an import if the import is a substitute of the export and if it is a complement of the other import. 

 

5.  Optimal Tariff Rules under the Presence of a Non-Tradable Good. 

In this section, we introduce a non-tradable good to the ITE and examine the optimal tariff structure in such an 

economy. 

We consider the model obtained by adding the non-tradable good to the ITE as the fourth good.  We 

continue to adopt the notations of the ITE, and denote the non-tradable good by n .  The market-clearing 

condition of the non-tradable good is added to the equilibrium conditions in the ITE, and it is expressed as: 
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nn yx = , (20) 

 

where  and  denote the demand and supply level of the non-tradable good, respectively.  The excess 

demand function in this economy can be represented by: 

nx ny

 

 , for )( uqzz nii   ,  ,q= =i 0,1,2, , (21) n

 

where  is the price of the non-tradable good.  From (20) and (21), we obtain: nq

 

0)( =uqz nn   ,  ,q . 

 

This equation determines the price q  as a function  and .  Suppose that this equation can be solved for 

.  The resulting function may be written as 

n q

qn

u

)unq (qn   ,q= .  Substituting this for  in (21) yields: nq

 

 , for ))(()( uuqzuz nii   ,  ,  ,  , qqq =∗ =i 0,1,2. 

 

We call  the reduced form of the excess demand function (hereafter, the reduced form).  The reduced 

form has the same properties as the excess demand function used in the ITE.

)( uzi   ,q∗

17 

Note that Equations (9) and (10) also hold in this economy.18  Then, replacing the reduced form 

                                                                 
17 This function is (i) differentiable, (ii) homogenous of degree zero, and (iii) concave in q .  For the detail, see 

Dixit and Norman (1982, p.  91). 
18 The budget equation of the private sector in this economy can be written as q  nn xq+′x nn yq+′= yq .  

However, this equation is reduced to (8) by (20). 
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)( uzi   ,q∗  for the excess demand function  in (9) and (10), we find that the equilibrium equations in 

this economy can be expressed as: 

)( uzi   ,q

 

  , 0)(* =+′ ru  ,qzp

  . 0)(* =′ u  ,qzq

 

Solving the maximizing problem in the same way as in the proof of the Lemma, we obtain the Harberger 

expression for the presence of a non-tradable good: 

 

 
∗∗∗

∗∗∗

++

++
=

211210

211220

2

1

ηηη

ηηη
τ
τ

, (22) 

 

which is the same as Formula (ii) except that each  is replaced by ∗
ijη )()( jiijij qzzq ∂∂⋅= ∗∗∗η .  Formula 

(22) has implications similar to those of Propositions 1 and 2.  Note that )ji qz ∂∂ ∗(  involves the indirect 

effect through the price change of the non-tradable good. 

 

6.  Other Extensions. 

6-1.  An Export Tax or Subsidy 

In this section, we analyze the optimal tariff problem in the GTE, where a tax or subsidy is imposed on the 

export good. 

In the GTE, if all the tariffs  are simultaneously adjusted, the tariff vector that maximizes 

the utility level is not unique.

)( 210 ttt   ,  ,

19  Fixing a tariff level on one of the three tradable goods, we can find the optimal 

                                                                 
19 Since x  and  are homogenous of degree zero with respect to , a proportional increase in  dose 

not affect the value of  and , keeping the level of utility and the tariff revenue of the GTE intact.  If  

)( u  ,q )(qy

)( u  ,q

q q

x )(qy ∗q
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tariff levels on the two remaining goods.  Here, we will fix the export tax (or subsidy) at a given level.  In this 

case, we obtain the following: 

 

 
211210

211220

02

01

ηηη
ηηη

ττ
ττ

++
++

=
−
−

. (23) 

 

This formula is derived from Lemma 4 in Hatta and Ogawa (2002, p. 12).20  Assume that 00 >−ττ i  (for 

1,2) and =i 021120 >++ ηηηi  (for =i 1,2).  Noting that the export tax (or subsidy) rate 0τ  is fixed, we 

find that the cross-substitution rule is satisfied since the cross-elasticity of imports 2112 ηη +  is common in 

both the numerator and the denominator of (23).  We also obtain the Corlett-Hague rule: if and only if 

2010 )( ηη ><  then 21 )( ττ <>  holds. 

 

6-2.  An Imported Input 

We can analyze an imported input in our model simply by assuming that the consumer neither consumes 

nor supplies one of the imported goods.  Then all the optimal tariff rules for the ITE hold as such. 

                                                                                                                                                                                                           
∗qκis an equilibrium domestic price vector of the GTE, then the vector  is also an equilibrium price vector of the 

same model for any positive scalar κ .  The vectors of q  and  have the identical equilibrium allocation and 

hence attain the same levels of utility and tariff revenue.  Let , and t .  It is readily found 

that  and t  have an identical equilibrium allocation.  Since  is any positive scalar, t  is not unique.  This 

result is not affected even if q  is the equilibrium price vector that maximizes the utility level.  Therefore, the 

optimal tariff vector in the GTE is not unique.  Hence, the optimal tariff rate vector is also not unique. 

∗ ∗qκ

pqt −= ∗∗ pq −= ∗∗∗ κ

∗t ∗∗ κ ∗∗

∗

20 Equation (19) in Hatta and Ogawa (2002, p.  12) is: 
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Multiplying both sides by )( 022 τττ −  and subtracting )( 020 τττ −  from both sides, we obtain (23). 
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It is generally considered that cross-substitution dominates in consumption.  Thus, it is natural to 

assume that two imports are substitutable if they are consumption goods.  However, the assumption of 

substitutable imports may not hold when one of the imports is an imported input.  As Lopez and Panagariya 

(1992) pointed out, an imported input is necessarily complementary with a produced good in certain models.  

The first model of Lopez and Panagariya had a fixed coefficient technology with respect to the imported input, 

and their second model was the Heckscher-Ohlin model, where the number of primary factors is equal to that 

of produced goods.  In both models, an increase in the price of an imported input necessarily increases the 

output level of the good that uses this input less intensively, through the Rybczynski effect. 

In models where the Rybczynski effect does not work, the imported input can be substitutable for all 

goods.  As was pointed out by Jones and Scheinkman (1977), the Rybczynski effect does not work even in a 

Heckscher-Ohlin model when the number of inputs is more than the number of outputs.  In addition, in the 

case where each sector employs a specific factor and an imported input, for example, all goods are necessarily 

substitutable for the imported input.  The cross-substitutability rule can then be applicable even in the case 

with the pure imported input. 

 

7.  Conclusion 

In the present paper, we derived an explicit formula for the revenue-constrained optimal import tariff in a 

general trade model.  This formula is expressed in terms of the elasticities of supply as well as those of 

demand. 

This formula indicates that the optimal tariff is close to uniformity when imported goods are close 

substitutes either in consumption or in production.  This theoretically explains why empirical studies show that 

the efficiency loss from a uniform tariff structure is negligible. 

Our formula reveals that the existence of close substitutes in production makes the optimal tariff 

structure more uniform than otherwise.  Our explicit formula was generalized to complex trade settings that 

incorporate a non-tradable good and an imported input.  In the case of the imported input, some elasticities in 

our formula become purely supply elasticities.  Even in these cases, our basic formula reveals the conditions 
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on the structure of production under which the optimal tariff structure is close to uniformity. 
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