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Abstract

This paper investigates regression quantiles (RQ) for unstable autoregres-
sive models. The uniform Bahadur representation of the RQ process is ob-
tained. The joint asymptotic distribution of the R} process is derived in a
unified manner for all types of characteristic roots on or outside the unit cir-
cle. It involves stochastic integrals in terms of a sequence of independent and
identically distributed multivariate Brownian motions with correlated com-
ponents. The related I.—estimator is also discussed. The asymptotic distri-
butions of the RQ and the L-estimator corresponding to the nonstationary
componentwise arguments can be transformed into a function of a normal
random variable and a sequence of i.i.d. univariate Brownian motions. This
is different from the analysis based on the LSE in the literature. As an auxil-
iary theorem, a weak convergence of a randomly weighted residual empirical
process to the stochastic integral of a Kiefer process is established. The results
obtained in this paper provide an asymptotic theory for nonstationary time
series processes, which can be used to construct robust unit root tests.

1 Introduction

An autoregressive (AR) time series process {y;} of order p is unstable if

Yo = Po + PrYs—1 + 00+ PpYip + €4y (1.1)
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where ¢ = 0; {e:} is a sequence of independent and identically distributed (i.i.d.)
random disturbances with a distribution F, zero mean and a finite variance o?; y,
is the observation with starting values (yo,y_1,"+,¥Y—_p+1) independent of {e}; and

the characteristic polynomial ¢(z) =1 — ¢12 — - -+ — P,2* has the decomposition

$(2) =9(2)(1 - 2)"(1 + 2)’ 1:[[(1 — 2 )(1 — ze7H)] %,

where a, b, I, dg, k = 1,---,1, are non-negative integers, 0 < 0y < 7 and ¢(z) is a
polynomial of degree ¢ = p — [a + b+ 2(dy + - -+ + d;)] with all roots outside the
unit circle. Model (1.1) is a general nonstationary autoregressive (AR) time se-
ries, which may include real or complex unit roots with various different multiples.
Such a model without drift was investigated by Chan and Wei (1988), Jeganathan
(1991), Truong-Van and Larramendy (1996), and van der Meer, Pap and van Zuijlen
(1999). Recently, Ling and Li (1998, 2001) considered an unstable ARMA model
with GARCH errors and an unstable fractionally integrated ARMA model. Such
research on unstable time series models is important because it provides a compre-
hensive understanding of the nature of nonstationary time series processes.
Nonstationary time series have played an important role in both econometric
theory and applications over the last fifteen years, and a substantial literature has
developed in this field (see Dickey and Fuller (1979), Dickey, Hasza and Fuller (1984),
Phillips and Durlauf (1986) and Phillips (1987)). A detailed set of references is given
in Phillips and Xiao (1998). Recently, there has been increasing interest in exploring
robust estimation methods for nonstationary time series. For example, Cox and
Llatas (1991) considered maximum likelihood (ML)-type estimation for a near unit
root process; Lucas (1995) investigated M-estimators and related unit root tests for
the unit root process with drift; Herce (1996) considered least absolute deviation
(LAD) estimation, and showed through simulation that unit root tests based on
mixing LAD and least squares estimators (LSE) are more robust than those based
on LSE alone for non-Gaussian unit root processes; and Hasan and Koenker (1997)

proposed robust rank tests based on the regression score rank process.
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Note that the LAD estimator is a special quantile estimator and the regression
score rank process is also related to the regression quantiles (RQ) process (see Koul
and Saleh (1995)). According to the same robustness principle, it would be expected
that quantile estimators, as well as the L-estimator based on the RQ, will retain the
robustness of non-Gaussian nonstationary time series processes. The RQ first de-
veloped by Koenker and Bassett (1978) have been popularly accepted as a powerful
approach for the robust analysis of linear models, and have led to a number of in-
teresting extensions [cf. Ruppert and Carroll (1980), Bassett and Koenker (1982),
Koenker and Bassett (1982), Koenker and D’Orey (1987), and Portnoy and Koenker
(1989)]. Recently, Koul and Saleh (1995) extended RQ to stationary AR models,
and obtained the uniform Bahadur representation of the autoregression quantile
process, and some related asymptotic distributions.

This paper investigates RQ for unstable AR models. The uniform Bahadur
representation of the RQ) process is obtained. The joint asymptotic distribution
of the RQ process is derived in a unified manner for all types of characteristic
roots on or outside the unit circle. It involves stochastic integrals in terms of a
sequence of i.i.d. multivariate Brownian motions with correlated components. The
related L—estimator is also discussed. The asymptotic distributions of the RQ
and the L-estimator corresponding to the nonstationary componentwise arguments
can be transformed into a function of a normal random variable and a sequence of
i.i.d. univariate Brownian motions. This is different from the analysis based on the
LSE, for which the result depends only on a sequence of i.i.d. univariate Brownian
motions. Koul and Saleh (1995) applied the uniform closeness of the randomly
weighted residual empirical process (RWREP) in Koul and Ossiander (1994) for the
RQ process in the stationary AR model. In this paper, we also establish a weak
convergence of a RWREP to the stochastic integral of a Kiefer process, so that the
uniform closeness can be applied to the RQ process in model (1.1).

The paper proceeds as follows. Section 2 develops two auxiliary theorems. Sec-

tion 3 presents the main results. Section 4 uses our results to construct unit root



tests for some special nonstationary AR models. Section 5 provides the proofs of
the main results. Throughout this paper, the following notation is used: A’ denotes
the transpose of the matrix or vector 4; O,(1) (or 0,(1)) denotes a sequence of ran-
dom variables that are bounded (or converge to zero) in probability; - (or i>)
denotes convergence in probability (or in distribution); || - || denotes the Euclidean
norm; [ denotes a k x k identity matrix; D = D]0, 1| denotes the space of functions
on [0,1] which is defined and equipped with the Skorokhod topology [Billingsley
(1968)]; D" = D x D--- x D (n factors); and Dy denotes the space of functions on
[0,1]% which is defined and equipped with the Skorokhod topology in Straf (1970)
and Bickel and Wichura (1971).

2 Auxiliary Theorems

This section introduces two auxiliary theorems. The first theorem is the weak con-
vergence of a RWREP, which will be used to establish Theorem 3.1 in Section 3.
The second theorem is an invariance principle, which will be used to establish the
limiting distribution in Theorem 3.2.

Let S, () be a stochastic process on 7 € [0,1] and S, (t/n) be F;_;—measurable,
where t = 1,---,n and F, = o{e, *,20,Y0," "+, Y—p+1}. Define e(z) as one of
the random variables: I(g; < z) — F(z), (=1)"|I(g; < ) — F(=)], (sintf)[I(e; <
z) — F(z)] and (costd)[I (g, < ) — F(z)], where z € R and 6 € (0,7). Let &,; be a

sequence of F;_;—measurable random variables. Furthermore, define

U, ( ZS et (z + &) and U (z) = ZS

Denote K(7,c) as a Kiefer process in Dj, a two-parameter Gaussian process with
zero mean and covariance cov(K (11, 1)K (12, a2)) = (11 A 12)(0a A ag — cpavz). The
following theorem shows the weak convergence of U, (z) and U*(z).

Theorem 2.1. Assume that F(z) has a uniformly continuous and a.e. posi-
tive density f(z) on {z : 0 < F(z) < 1}. Suppose that: (i) S,(7) = S(r) in

D and S(7) is continuous in T € [0,1]; (i) the finite-dimensional distributions of
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{Ur(F~Y (), € [0,1]} converge to those of { [, S(T)dK (T, ), € [0,1]} in distri-

bution; and (iii) maxi<i<y |§nt| = 0p(1). Then

(a)  sup |t (z) — Up(z)] = op(1),

z€R
(b) U, (F —>/ T)dK(7,) in D,
() U —>/ T)dK (7, ) in D.

Remark 2.1. Koul and Ossiander (1994) studied the weak convergence of
the RWREP, U, (z) = n~ V25" v [l(e < o+ &) — F(z + &4)] and U (z) =
n~Y2y " ~ylI(e; < ) — F(z)]. Under the assumption that 7, 72,/n converges
to a positive random variable +? in probability, they obtained the asymptotic dis-
tribution of U, (z) and U*(x), which is the product of v and a Brownian bridge
on D. Here we provide a different condition set, i.e. condition (i) replaces their
condition that Y7 42, /n = 42 + 0,(1) with ~? being a positive random vari-

~1/2

able and n~Y2maxj<i<, ¥2; = 0p(1), and obtain a different weak convergence of

a RWREP. In Theorem 2.1, if conclusions (a)-(c) are modified as follows: (a)
SUD e e ton oy e (8) — U3 ()] = 05(1), (6) Un (F=1()) > [ S,(r)aK () in
Dlwy,ws], and (c) U(F1 (@) = L 8,(T)dK (7, ) in Dwy,w,], where [wy,ws] C
(0,1), then the uniform continuity of F(z) can be weakened as the assumptions in
Theorem 3.1 in the next section.

Proof of Theorem 2.1. The proof is quite similar to that of Theorem 1.1 in
Koul and Ossiander (1994). Thus, we give only an outline here. We first introduce

the following events:

Aps = | max |8 (= )| <av/n,

1<t<n

B, = [max |Ene| < b] and C,. = [%isﬁ(i) < c],

1<t<
where a,b,c > 0. For any fixed © € R, and a,b,c > 0 with F(z 4 b) — F(z — b) < q,

it follows that

2
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In fact, let X, = ) Sn(E)[|Sn(L)| < av/mle(z + &) — e(z)]. Then X, is
a martingale with respect to F,. Using the monotonicity of F(z), on the set

Apa N Bry N Che, it follows that
LS 218D < aviE {[ee + ) — eu@)PIFi)
ntZI n n n n =~ t nt t t—1

< =SS, ()] < aAllF( 1 8) — F(a b))

?

1 n

-~ (=)

a & t
< =3 82(=
< 23S
where [(+) is the indicator function. By Freedman’s (1975) inequality, we have that

P([[tn(z) = Us(z)] > 7 ﬂAmﬂBnbﬂCm)
< P([| Xl > nv/7] n[ 252 |8, ( )| < ay/nl[F(z +b) - F(z - b)] < ac])

Inequality (2.1) has a similar purpose as Lemma 2.3 in Koul and Ossiander (1994).
We next introduce the metric:
dy(z,y) = sup |F(z +a) — F(y +a)|V?, 2,y € R, and b > 0.
lal<b

Define N(4,b) as the minimal number of §—nets covering R with respect to dy,

0 n
> 4(<L 1/2
[1+1InN(s,b)1/2 — (n)

?

L (6,b) = A(mu + In N (u, )] V2du, > 1,

where 26(n) = 6Y2{[1 + In N(6,b)]n/n}"*, § > 0 and b > 0. For any = € R, let
7s(2) be a real number such that 7g(x) > z, dy(7s(z), 2) < 6, and 7s () belongs
to a minimal é—net in (R, d,) U{oo}.

Using Freedman’s (1975) inequality and (2.1) with a truncation argument, and
following exactly the proof of Proposition 2.1 in Koul and Ossiander (1994), we can

show that, for any n > 1,

d

sup U (2) — Un(750(2))] > (c1 +11¢2) (8 + Ly (9, b))]
N {mtax |Sn(%)| < /nd/(1+In N(J, b))1/2] ﬂBnbﬂCnn> < cge”, (2.2)
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where ¢, ¢ and c3 are constants.

By condition (i) given in this theorem and the continuous mapping theorem,

Ly, ¢
max [Sq (~)| — max |S(7)], (2.3)
Loy £ [ 9ryar (2.4)
n= "'n 0 ' '

Thus, by (2.2)-(2.4), we can show that

)
lim sup P| sup |t () — Uy (s (2))| > (1 +7702)(5+/ (1 +In N(u, b))"/*du)
n T 0

<P(f S (r)dr > ) + e, (2.5)

)
limsup P| sup Uy (z) — U (msn(2))| > (1 +nc2)(6+/ (1 + In N(w, b)) %du)
n x 0

<p(f 'S (r)dr > ) + cge, (2.6)

By (2.5)-(2.6), in a similar manner to the proof of (1.9) of Theorem 1.1 in Koul and

Ossiander (1994), we can obtain
sup [Uy () — Uy ()] = 0,(1),

so that (a) holds. By (2.6), we know that the {U}(z)} process is eventually tight in
metric dp. Moreover, by condition (ii) , we know that (c) holds and, by (a) and (c),
(b) holds. This completes the proof. O
Before giving the second theorem, we need the following notation: A, = [, B}’
and B; = [I(g; < F Y )) — ay, -+, I1(es < F~ Y am)) — am|, where 0 < a; <
+ < @, < 1. Furthermore, for each fixed & = (a4, +,qy,), define Wi(r,&) =
[Bi(7),K!(7,&)] as a sequence of i.i.d. (m + 1)-dimensional Brownian motions with

parameter 7 and with mean zero and covariance

~ 0'2 Qll
T —T( o o ) (2.7)
Q2 = (Uij)mxma oy = o — oy, 1 <4 < j < om, Oy = (01,"',Um) and o; =
fof F=Y(s)ds, where K;(7,&) = [Ki(T,01),+ -+, Ki(T,00)], and ¢ = 1,--+,21 + 2.

Here, each K;(7, ) is a Kiefer process in Dy, defined as K (7, @) in Theorem 2.1.
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Theorem 2.2. Let {2z :t = 1,---,n} be generated by the AR(q) model, z, =
S Wizye_i +ey, with all roots of the polynomial 1 —33_, 4; B* outside the unit circle.
Denote S, = [A,, (—1)*Al, (sint0,)Al, (cost0;) A}, - - (sintf) A%, (costd) A}, B; ®
Z, |, where 0; € (0,70), 0; £0; ifi £5,4,5=1,---,1, and Zs_y = (2s_1,+++, 2—q)'-
Then

1 [

\/—ﬁ;& £ W(r,a&) in D¥NtDEDTam (2.8)
where W(T,&) - [W{(Ta 5‘)’ W2I(T7 5‘); T W2ll+1(7-75‘)’ W2ll+2(7-75‘)’ NI(T)]I; and

N(7) is an mg—dimensional Brownian motion independent of W;(7,&), and has
mean zero and covariance TQ @ X, with X = F(Z,_17,_,).

Proof. Let A = (A1, +, Magms1)+1)s Amg)’ be @ [2(m + 1)(1 + 1) + mg|— dimen-
sional constant vector with A'A # 0, where A, is an mg—dimensional constant.
Denote a; = N'Sy. Then {a;} is a sequence of martingale differences in terms of F;.

It is straightforward to show that € is positive definite and

[n7]

~ 3" E(af|Fi1) =5 TNQTA > 0, (2.9)
t=1

where O* = diag(/a(41) ® Q,Q®%). Denote a; = co + ¢1]eq] + ¢ 5L |2—i|, where

co, ¢1 and ¢y are constant such that a? < 2. Since Fa? < oo, for any small 7,

[nT] n
1
—ZE[afI o] > V)] < =3 Blag(|a] > /)]
t=1
= ElaI(|a] > +/nm)] = . z?dP — 0, (2.10)

where P is the distribution of a;. By (2.9)-(2.10), we can show that the conditions of
Theorem 3.3 in Helland (1982) are satisfied. Furthermore, applying the invariance
principle in Helland (1982, Theorem 3.3) and the Gramér-Wold advice, we can

complete the proof. O

3 Main Results

Let w, = ¢(B)(1 — B) %y, v, = ¢(B)(1 + B) by, 2, = ¢(B)W~YB)y;, and z, =
#(B)(1 — 2B cosly, + B)~%y,, where B is the backward shift operator and k =
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1,-++,1. Then (1 — B)®u; = &, (1 + B)'v, = &, and (1 — 2B cos 0 + B:) %z, = &,
Denote uy = (ut, -+, U—g11), Vi = (U, Vpt1)y Zy = (24,7, Z4—gs1), and
xi(k) = (z4,-++, T4_go 1)’k = 1,-++,1. As shown in (3.2) of Chan and Wei (1988),

abbreviated hereafter as CW, there exists a non-singular matrix ¢ such that

QXt - (u;,v;,x;(l), e ,X;(l), Zt,)’7 (31)

where X; = (ys,+,Yi—ps1). Furthermore, let Uy(j) = (1 — B)*Ju, for j =
0,1, -+,a, Uy = (Uya), -, U(1)), Vi(j) = (1 + B)b~ I, for j = 0,1,--+,b, V, =
(Vi(d), -, Vi(1)Y, Yi(k,7) = (1 — 2Bcosty + BY)% g, for j = 0,1,---,ds, and
Yi(k) = (Yi(k, 1), Yi_q(k, 1), -+, Yi(k,di), Yio1(k,di)), where &k = 1,--- 1. Then

there exist non-singular matrices M, M and Ck, such that

Mu, = Uy, Mv, =V, Cixe(k) =Yy(k), k=1,---,1.

?

Denote X;_; = (1,¥_1," -, ¥—p) and G = diag(1, M, M,Cy,---,C,, I)diag(1, Q).

It follows that
GXy = (L U,V Y/ (1), Y] (1), Z). (3.2)

Thus, X; has been decomposed into various nonstationary componentwise argument
vectors corresponding to the locations of unit roots and the stationary component-
wise argument vector.

Let ho(w) = cul(v > 0) — (1 — o)ul(u < 0), where v € R and a € (0,1).
Following Koenker and Bassett (1978) and Koul and Saleh (1995), define the a—th

regression quantile (RQ) as any member ¢, (a) of the set

R(cr) = {)\ € RP*L D Tha(y — Xi_yA) = minimum},
t=1
and refer to {¢,(c) : 0 < o < 1} as a RQ process. In practice, ¢, () can be obtained
using a linear programming version of the minimization problem above, as given in

Koenker and D’Orey (1987, 1993). ¢, (1/2) is the important LAD estimator of ¢,
where ¢ = (do, P1, -+, Pp)’. Denote p(a) = ¢ + (F~1(),0,---,0)". Define

T (s,0) = 3 Xoall(e0 < F-'() 1 6, Xo1) — ], (3.3)

t=1



where o € |0,1], s € RPY) 5, = G'JY, J, = diag(y/m, N1, -+, Niya, v/nly), Ny =
diag(n®, n*1, ... n), Ny = diag(n®,nb=1 ... n), and Ny = diag(nly,---,n% ),
k=1, 0+ 1.
The following theorem gives the Bahadur representation of the RQ, ggn(a).
Theorem 3.1. Under model (1.1), if it is assumed that F'(z) has a continuous

and positive density function f(z) on {z : 0 < F(z) < 1}, then

~

Bu() — B(0) = —1a(0) 3 Xed Xty (0, @) + 8r0y(1),

=1
where g(a) = f(F~'()) and o,(-) holds uniformly for o € w(e) = |e,1 — €| with any
ce (0,1/2].
The following notation is needed to state the limiting distribution of ggn(a):
3 1 3 1 .
6(@) = ( / Lamr(5)dKG (5, ), -, / Lo(s)dK} (5,3))'
Lo(r) = Ba(r), Ty(r) = [ Tima()ds, T = (@ig)axas 955 = [ Li()Ls(s)ds;
n(@) / D1 (r)dKy(r, &), /0 Fy(r)dKy(r, &),
~ T . ~ ~ ~ 1. ~
Lo(r) = Ba(r), Ti(r) = [ Diea()ds, T = @ig)axay 9 = [ Tl (s)ds
(&) = (&(@), -+, &a (@)
Hi = (03)2dex2d,5 Jo(T) = Bar41(7), 90(T) = Barya(7),
1 . T T
fi(r) = 2sin9{8m9/o fi-1(s)ds — cos@/o gj—1(s)ds},
1 T . T
gi{T) = 5 ng{cos@[) Ji—1(s)ds + sm@A gi—1(s)ds},
- 1 1 - 1 .
62-1(8) = 571 | Ji-1(5)Khy5(5,8) = [ g5-1(s)dKp (5,8},
§;(@) = 281119{0059[/ fi-1(s)dKy 1 5(s, &) / 9i-1(8)dK 11 (s, @)]
0l [ a3V (5,6) + [ g5o1(5)0Khu (s, ],
1 1 1
02i-1,2j—-1 — 02i,2j — m{/ fi—1(8) fi-1(s)ds +/ gi-1(8)gj—1(s)ds},
02i-1,2j = 0252i-1 = 29{ 059[/ Ji-1(8) fi=1( d8+/ gi-1(s)gj-1(s)ds]

—81119[/ fi=1(8)gi—1 /g] 1(8) fi—1(s)ds]},
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where 4,5 = 1,--+,dg, k = 1,---,1, and [B;(s), K.(s, @)] is defined in Theorem 2.2.

Theorem 3.2. Under the assumption of Theorem 3.1,

5;1[§gn(al) - ¢(a1)7 e 7én(am) - ¢(am)]
(K1, @), €' @) ;, )@@y,
(HPG@Y, -+, (HGE) N | g oo )

forany0 < o) <y < - < am < 1, where & = (fy Ta1(s)ds, - - -, fo Lo(s)ds)’ and
N3 is a g X m—uvariate normal matriz independent of [B;(1), Ki(&,T)], and has a
null mean malriz and covariance malriz Q@ X1, with Q and ¥ defined in Theorem
2.2.

Let v be a finite signed measure with compact support on (0,1). The L—estimator

of ¢ is defined by

= [ dn@avta)

Denote ¢(v, F) = ¢ [y dv(a) + (fy F~'(a)dv(a),0,--+,0). The following theorem
follows directly from Theorems 3.1-3.2.
Theorem 3.3. Under the assumption of Theorem 3.1,

(@) 3~ 3 F) =[5 Xea Xp_i]™ [ [T0(0,00/a(e)}d(e) + Guop(1;

t=1

) 5710 - 60, ) S =[O0 § )7
@), (H QW) -, (H W), N

where £(v), n(v) and {(v) are defined as £(&), n(&) and (x(&) in Theorem 3.2, with
[Bi(7),K.(1, &)] replaced by [BY(7), K¥(7)] which are a sequence of i.i.d. bivariate
o? Ocv )

Brownian motions with mean zero and covariances given by 7€), = T( 5

Oy O,

/ / F-1(s)dsdv(c), (3.4)

o [) [) m(s A a — sa)dv(a)dy(s), (3.5)
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and N, is a g-dimensional normal random wvector with mean zero and covariance
o271,

Remark 3.1. The assumptions and the asymptotic distributions of the RQ
and the L—estimator corresponding to the stationary componentwise argument in
Theorems 3.2-3.3 are the same as those given in Koul and Saleh (1995). Those
corresponding to the nonstationary componentwise arguments are new results and
involve a sequence of i.i.d. bivariate Brownian motions. These distributions can be
transformed into a function of a normal random variable and a sequence of i.i.d.
univariate Brownian motions (see the special cases in Section 4). Thus, our asymp-
totic distributions corresponding to the nonstationary componentwise arguments are
different from those of the LSE given by Chan and Wei (1988), Jeganathan (1991),
Truong-Van and Larramendy (1996), and van der Meer, Pap and van Zuijlen (1999),
which depend only on a sequence of i.i.d. univariate Brownian motions. The result
here is similar to that given by Ling and Ti (1998) for ML estimators, which can
also be transformed into a function of a normal random variable and a sequence of

i.i.d. univariate Brownian motions.

4 Two Special Cases

In this section, we apply the results in Section 3 to two special nonstationary AR

models and construct corresponding unit root tests.

4.1 AR(1) model
Consider the AR(1) model,

Yo = Qo + QY1 + &4, (4.1)

where ¢9 = 0 and ¢ = 1. This model is a special case of model (1.1) with a = 1,
b=1=0and ¢(z) = 1. Let [on(cx),n(c)] be the a—th RQ of (¢o,¢) = (0,1).

Then we can obtain directly from Theorem 3.1 that
Vido(e) ) e, (1 Jy Blrydr ) ( K(1,0) )
( nlon (o) — 1] ) — ( W B(rydr [ B¥r)dr B (ra) ) (4.2)

12



where, for each fixed «, (B(7), K(7,)) is a bivariate Brownian motion with covari-
_ 2
ances 7§} = T( Z 0021 ), o1 = [ F71(s)ds/ q(a) and 02, = (@ — a?)/¢*(c). From
1 01

(4.2), we can obtain that
o B(r)dK(r,0) — K(1,0) fy B(r)dr
Jo BX(r)dr — (fo B(r)dr)?

npn(c) — 1] =5 p(er) = (4.3)

Let

1
wi(r) = ;B(T) and wy(r) = o2\ 020 —0? i ooty — of

Then w;(7) and wy(7) are two independent standard Brownian motions. As shown
in Herce (1996), we have

alo (o) — 11 £ _ailfo wi(r)dwa(r) — wi(1) fo wa(r)dr]
ol =4 T Gl iy — (g wn ()7

oot — o fo wi(r)dwy(r) — wy(1) fo wi(r)dr
o? o wi(r)dr — (fy wi(r)dr)?]
The second term in (4.4) can be simplified to [/o20}; — 03/0?] [fo w3 (T)dT—(fy w1 (T)

dr)?~/2®, where ® is a standard normal random variable independent of fol wi(r)dr

(4.4)

—(fg wy(7)d7)? (see Phillips, 1989). Thus, it follows that
nldo(e) — 1] £, il wi(ndun(r) —wid) fo w(r)dr]
Pule) =4l 02| fo wi(r)dr — (fo wi(7)dr)?]

P i eyar — ([ ()i

o

(4.5)

If it is further assumed that £, has median zero, then o2, = 1/[4f%(0)] and oy =

—E(|e0])/[2£(0)]. In this case, n|p,(1/2) — 1], as well as its asymptotic distribution
above, are the same as those given by Herce (1996).

Let gg,’fb be the L—estimator of ¢ = 1 and assume [y dv(a) = 1. Similarly, we can
obtain that

1) Ly o) = _fol B(r)dK (r,v) — K(1,v) [ B(r)dr
R T T

where (B(7), K(7,v)) is a bivariate Brownian motion with covariance 78, defined

as in Theorem 3.3. Furthermore, let

Oey o2 o2
’LUQ(T) = —F

7t —ar,
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Then wy(7) and wsy(7) are two independent standard Brownian motions. It can be

shown that
(Y — e, Oulfy wi(T)dwn (1) — wi(1) fy wi(r)dr]
ot = 02[]01 Wi(r)dr — (o wn(ryar )] (47
7o % [/ T)dT — /01 wl(T)dT)2]_l/2(I).

Since the limiting distributions in (4.5) and (4.7) include nuisance parameters, it is
difficult to directly use them for testing unit roots. However, they can be used to
construct unit root tests by the following two methods.

The first method is to combine the LL.SE so that the nuisance parameter can
be cancelled. Denote gBLS as the L.SE of ¢. It is well known that n(QBLs -1) =
L wi(r)dun(r) —wn(1) fo wi(r)drl/ [ wd(r)dr — (3 wi(r)ar)?]. Define

o2

My = ———={nln(e) — 1] + Sln(drs — DI},
1/020%;—01 o
M,——C = Infrs — 1)

———{n(dr — 1) +
\Jolo?2 — o2,

1 -
[_ Z(yz—l — )2]1/2Ma and M, ; = [ﬁ Z(yi—l _ y)2]1/2M,,,
i=1

i=1

where § = 31 | y;_1/m. It is straightforward to show that

Mo [ ayar = ([ wn(ryin e,
[ wdn)dr = ([ wn(r)ar?) e,

M,; %5 ® and M,; 5 ®.

Herce (1996) derived the limiting distributions of M; s2 and My g ;. The results above
provide a more general asymptotic theory. M,, M, ., M, and M, can be used to
test for a unit root in model (4.1). From the simulation results given in Lucas (1995)
and Herce (1996), these tests should be more robust, especially for a non-Gaussian
unit root process. Note that these asymptotic distributions are invariant to o and

v, so that the critical values given by Herce (1996) can still be used.

14



As the LSE is used in the above method, it may not be quite robust. Another
method of accommodating the nuisance parameters is given in Hansen (1995). Let
M, = n|p,(c) — 1]o/0oy, and M, = n|¢* — 1|o/o,. Then

~ c Ta[fol wl(T)dwl(T) - wl(l) folwl(T)dT]
Mo = T () dr — (g wn(r)dr ]

+1/1—r2[/ w(T)dr — ( / wy (1)dr)? V2,
= o Tylfo wi(r)dwi (1) — wi(l) fg wa(r)dT]
M = T @ — (o wi(r)dry)

1
+1—2/ d—/ dr)2| 1?3,
YI= 2l wie)ar = ([ wn(r)an?
where r, = —oy/o0oy and 1, = —0,,/o0,. It is easy to see that r, and r, €
(0,1). Similarly, let M, = n|d, () — 1][2%, (i1 — §)2)V2/011 and M,,;, = n|¢” —

[ (yiz1 — 9)%]Y2 /0, so that we can write down their limiting distributions.

These distributions include a nuisance parameter so that the critical values can be

determined by the simulation method for different r, and 7, (see Hansen (1995)).

4.2 AR(p) model with one unit root
Consider the model

H(B)ys = Po + e, (4.8)

where ¢9 = 0 and ¢(B) = (1 — B)¢*(B), with all the roots of ¢*(B) outside the unit

circle. Reparameterize (4.8) as

b
Y = G0 + NYio1 + 3 Vi(Wemivs — Yimi) + &5

i=2

where 1 = Yl ¢ and v; = — 37 ;¢i, § = 2,---,p. Suppose that én(c) and
¢ are the a—th RQ and the L—estimator of the parameter ¢ = (¢, -, dp),
respectively, and fj dv(a) = 1. Denote ¥ = (71, +,%) and 4 (@) = (F1,--+, %),
with 4, = SF_, & and A = = i $i, j =2,--+,p, where ¢; is the i—th element
of ggn(a), and similarly define 47 . Then, by Theorems 3.1-3.2, as in Ling and Li

(1998), we can show that

tqt

G (@) — 7] =5 [ep(er), N,) and G52 — 7) =5 [ep(v), N,
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where G,, = diag(1/n, Ip—1)x@-1)/vn), ¢ = 1/(1 — XI_y), p(a) and p(v) are
defined as in (4.3) and (4.6), respectively, and N, and NV, are normal random vectors
with zero means and covariances 02F(Z;_1Z!_,) and ¢2F(Z;_17Z!_,), respectively,
and independent of p(«) and p(v), where Zy—1 = (24—1,*+, 24—p+1)’ and 2z = Yr—Yi—1.
As in Section 4.1, the asymptotic distributions, p(«) and p(v), can be used to

construct robust unit root tests of v; = 1.

5 Proofs

Before giving the proofs of our results, we will need the following seven lemmas.

Lemma 5.1. Suppose that {y,} is generated by model (1.1). Then

(a)  sup |6, X[ = op(1),
1<t<n
1 n
(b) == I8, Xial] = Op(1),
i 0 !
(€ DolleXemll” = 0p(1).
=1
Proof. A direct application of Lemma 2.1 in Ling (1998) completes the proof.O

Let ~,; be an F;_;-measurable random variable and assume that the following

condition is satisfied:
3l - 15,6em1 1] = Oy(0) (5.)
Denote B, = RN{z: ¢ < F(z) <1 — ¢}, v, = max{0, v}, Ve = Ve — Vot
918, A) = 86, X1 + A6, X | (5.2)
and

Zlﬂf(a:,s,)\) - Z'Vi:t[l(et <z+ gt(sa )‘))

t=1

— F(z+g(s,N) — I(gr < z) + F(z)], (5.3)

where € € (0,1/2], s € RP*! and X € R.
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Lemma 5.2. Let Z5(z,s) = Z5(z,5,0) and Z,(z,s) = ZF(z,s) — Z7(z,s).
Under the assumption of Theorem 8.1 and (5.1), if sup,en, |2 (x,8,A)| = 0,(1) for

any s € BP* and X\ € R, then

sup sup |Zn($7s)| = Op(l);

s€Dp wER,
where Dp = |[—A, AjPt! C RPFL.

The proof of Lemma 5.2 is similar to that of Lemma 3.2 in Koul (1996) (also see
Koul (1991)). The main difference is to use Lemma 5.1 to replace Koul’s Lemma
3.1, and hence the details are omitted. In the following, we will state three lemmas.
Lemmas 5.1-5.2 and these three lemmas are used to prove Lemma 5.6. In addition,
these three lemmas will be used to derive the limiting distribution in Theorem 3.2.

Denote U;"(5) = max{0, Uy(4)}, Uy (4) = U"(4) — Un(3), Ij (r) = max{0,I;(7)}
and I'j (1) = I'j(7) — I'J (7). For the process {U,} defined in (3.2), we have the
following lemma.

Lemma 5.3. Under the assumption of Theorem 5.1,

1
(a) NG
(b) N UiBL 5 €(@)

NS UL S
t=1

t=1
(©) SN U_ NP 5T,
t=1
.2 1
@ 7 S UEGB S [ TR ()dK(7,8),5 = 1, a.
t=1

Proof. For (a), note that

t

00 = 3300 = s il 1) = Y2 UhG)
where 7 = 0,---,a — 1. By Theorem 2.3 of CW and Theorem 2.2,
n%_jU[m](j) L 0y_(r) in D for j=1,--+,a. (5.4)
By Theorem 2.3 of CW and (5.4), we obtain the joint convergence, i.e.,
VAN W) =5 Doy (1), -+, To(7))’ in D (5.5)
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By (5.5) and the continuous mapping theorem (Billingsley, 1968, Theorem 5.1),

\/_ZN‘IUt L= iz(\/‘N W,_y) L5 € in D, (5.6)

t—=1

so that (a) holds. By (5.5) and Theorem 2.2, applying Theorem 2.4 of CW, (b)
holds. By (5.5) and the continuous mapping theorem, it is easy to show that (c)

holds. Again by (5.5) and the continuous mapping theorem, we have
JU[i]()—w (1) in D for j=1,--+,a. (5.7)

Furthermore, by Theorem 2.4 of CW and Theorem 2.2, we know that (d) holds.
This completes the proof. O

Denote Vi*(j) = max{0,(=1)'Vi())}, Vi (§) = Vi (§) — (=1)Vi(3), I'f () =
max {0, f‘](T)} and F]_( T) = f‘ (1) — f‘j(T). For the process {V;} defined in (3.2),

we have the following lemma.

Lemma 5.4. Under the assumptions of Theorem 3.1,

1 n
(a) —=N;'> Vi 50,
t=1

N

(b)  Ny'3ViaBi -5 (@),
=1

() YN VLNt ST

=1

. 1.
(d) n™’ Z‘/t:fl(])(_l)tBt i> /(; F;E—I(T)dK2(T7 5‘)7.7 - 17 e 7b'
=1
Proof. It is similar to the proof of Lemma 5.3, and hence is omitted. O

In the following, we will show the asymptotic properties of the process {Y;(k)}
defined in (3.2), where k = 1,---,1. Let

t t

St(ka.j) - ZY;(ka.j) sin 0 and Tt(ka.j) - Z}/z(ka.j) cos O

=1 i=1
Denote S;" (k,j) = max{0, S;(k,5)} and S; (k,7) = S; (k,j) — Se(k, ), and similarly
define Tt:b(kaj)a where k = 1,--+,1, 5 =0, -+, dx.

Lemma 5.5. Under the assumption of Theorem 5.1,
1 n
(6) —=NLY Vi (k) B0,
\/ﬁ k+2 ;
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(B Noh S Vi (BB, 55 (@),

t=1

1w 1 £
() NkJrlzzYt—l(k)Ytl—l(k)NkJrlz — Hpg,

_ I k;]) i £
(4) n ”Z( 2 ) ) (cos 19,83, sin 16, B7)

=+
[ D) ) a0 7,6, K, ),
where [3(7) = max{0, fi;} and [i5(7) = fi5(r) = fi;(7), and similarly define gi&;(r).

Proof. By direct verification, we have
Yi(k,7)sin O = Sy(k,7 — 1) sin(t + 1)0, — Ty(k,5 — 1) cos(t + 1)6, (5.8)
where j = 1,---,d;. By Lemma 3.3.7 of CW,
VIS ), ), T (ks 1)) > (g7, i () i D, (5.9)

where k = 1,---,1, j = 0,--+,d;, — 1. By Proposition 8 of Jeganathan (1991), we

obtain
t —-@G-1)-1/2 i _
E%Jn E n Se—1(k, 5 — 1) sintby| = o0,(1), (5.10)
Z —-@G-1)-1/2 ; —
E%Jn E n Ty—1(k,5 — 1) costhy| = 0,(1), (5.11)

where j = 1,-++,dg. By (5.8) and (5.10)-(5.11), we have

1 2.
||%2Nk—i}2y}—l(k)|| = Op(1)7 k= 17' ' '7l7
t=1

so that (a) holds. By Theorem 2.2 and (5.10)-(5.11), the proofs of (b)-(c) are
similar to those given in CW, and hence are omitted. By Theorem 2.4 of CW, (5.9),
Theorem 2.2, and the continuous mapping theorem, we can show that (d) holds.
This completes the proof. O

Lemma 5.6. Under the assumption of Theorem 3.1, for any constant M > 0,

(@)  sup ||6p[Tu(s, ) = Tr(0, cx) — i Xi1 Xi_10nsq()]|| = op(1),

a€w(e)lsl|<M Pt
(b) sup 16T (0, )| = Op(1)-
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Proof. By (3.2),
X, = [0, (NTYY, (NFVLY, (N1, (NGAYD), w22 (5.12)

Let S, (1) = n'/271U; (§) and & = gi(s,0). By (5.7), Lemma 5.3 (d), and Lemma
1 (a), {Sn(7),7 € [0,1]} and &, satisfy the conditions of Theorem 2.1. Thus, by

Theorem 2.1, for any s € RFH,

n= Y U () (e < F7Ha) + gi(5,0))

t=1

—F(FYa) + gi(s,0)) — I(g; < F7H (@) + | = 0,(1), (5.13)

sup
a€w(e)

S 1
WS UE (e < FN@) — o £ [ TE (M)dKi(r ) in Dlu(e)], (5.14)
t=1 0
where K;(7,q) is a Kiefer process in D, with the finite-dimensional distribution
Ki(7,&). Let v = n~U;_1(j). By Lemma 5.1 (c), we know that (5.1) is satisfied.
By Lemma 5.2, we have

sup ~ ZUt— (e < F7He) + g4(s,0))
o46‘0(6):||c‘?||SM

—F(F~(a) +9t(8, 0)) = I(ee < F7 () +af| = 0p(1).  (5.15)
By (5.14) and the continuous mapping theorem,

sup 179 S U ()50 < FN () — o] <S5 sup | [ Ty (r)dii(r, o),

a€w(e) t—=1 acw(e) YO
that is,
Su]?)|n ”ZUt 1) (e < F7He)) — of| = Oy(1), (5.16)
aew(e

where j = 1,---,a. By the triangle inequality and (5.15)-(5.16), we obtain

sup [N Y UpalI(er < F7He) + g4(s,0))
oco@ <M S

—F(F"l( )+ 9:(5,0)) = I(ee < () + o || = 0,(1), (5.17)

sup || Ny ZUt 1l (e < F~ () — o] = Op(1). (5.18)

a€w(e)
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Similarly, by Lemma 5.4 (d), Theorem 2.1 and Lemmas 5.1-5.2, we can show

that

sup  INT S Vieall (e < F(0) + i(s,0))

agw(e)|ls||l<M t=1
—F(F"l( )+ 9:(5,0) = 1(z: < P () + || = 0p(1), (5-19)
ailiﬁ)HNZ ;Vi 1(B)[I(ee < F~H (@) — o] = Op(1). (5.20)

In a similar manner to (5.15)-(5.16), by (5.9), Lemma 5.5 (d), Lemmas 5.1-5.2

and Theorem 2.1, we can show that

n~ Z ( %_1 ) )(cos 0k, sint0)[I (e, < F~Ha) + gi(s,0))
—F(F o ) +9:(s,0)) = I(ee < F~H(a)) + afl| = 0p(1), (5.21)

sup [jn~ Z( % i (k J.) ) (cos tOy,sin t0x) [ Iz < F~' () — al|| = Op(1), (5.22)

a€w(e)

weo(o)] ||s||<M

where k = 1,---,l and j = 1,---,d;. Using the equation:
Yi_1(k, ) sin Oy = cos 0x[S;_1(k, j) cos(t + 1)0
—Ty_1(k,7)sin(t + 1)0x] — sin 0x[S;_1(k, 7) sin(t + 1)0x + Ti_1(k, 5) cos(t + 1)0]

for k = 1,---,l and j = 1,-+-,dg, and by (5.8), (5.21)-(5.22), and the triangle

inequality, we can show that

aew(es)l,II%EM k+2ZYt— (e < F7H(e) + gi(s,0)
—F(F Yo ) +91(5,0)) = I(es < F7H (@) + || = 0,(1), (5.23)
Sup ||Nk+2ZYt 1) (es < F~H (@) — || = Op(1). (5.24)

Let 4; be 1 or any element of Z;_;. Since {Z;_;} is stationary and ergodic, we
have (n™' Y1, #2)Y/2 = 5+ 0,(1), where # is a positive constant. By Lemma 5.1 (a),
Y2 max;<i<n |35 = 0p(1) and max;<i<r, |g:(s,0)| = 0,(1). Now applying Theorem

1.1 of Koul and Ossiander (1994) and Lemma 5.2, we can show that

|<M\/— Z% 1[(ee < P e) + g4(5,0))

oéEw(e)II |
—F(F )+gt(s 0)) = I(ee < () + o | = 0,(1), (5.25)
ai‘iﬁ)\/‘|z% 1ll(ee < F7H(a)) — af| = Op(1). (5.26)
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By (5.12), (5.17), (5.19), (5.23), (5.25) and the triangle inequality, we can show that
(a) holds. Similarly by (5.12), (5.18), (5.20), (5.24) and (5.26), we can show that
(b) holds. This completes the proof. O

Lemma 5.7. Under the assumption of Theorem 3.1,

sup {18, Tn (8, [P (@) — d(a)], )| = 0p(1).

a€w(e)

Proof. Denote W, = [Xq,---,X,) and Y, = [L,¥1,---,¥s). Under model
(1.1), the rows of W, are linearly independent a.s. and the columns of W, are also
linearly independent a.s. (otherwise, £; will be F;_;—measurable). Let h be a subset
of {1,--+,n} of size p+ 1 and W, (or V) be the subdesign matrix (or subresponse
vector) with row X/_;,¢ € h (or coordinates y;,4 € h). Then W, is invertible a.s..
By a linear programming algorithm given by Koenker and Bassett (1978) and Koul
and Saleh (1995), ¢y, (@) is & solution of the form b = W; '), Furthermore, note that
T (67 [ () — 90, 0) = Sy Xeca{T(ee < [ () — )] Xum + I () — 0} =
S X {I(ye — ¢, (@) X,y < 0) — a}. In a similar manner to Koul and Saleh
(1995), by the inequality in (3.1) of Theorem 3.3 of Koenker and Bassett (1978), we

can show that

sup. [18,T,(57" [ (0) — ()] )| < 2(p + 1) ymax 18, Xocal .

a€w(e)
By Lemma 5.1 (a), this completes the proof. O.
Proof of Theorem 3.1. Denote T, () = 6-1[pn () — ¢(c)]. For any ,7 > 0,

by Lemma 5.7, there exists an integer ny > 0 such that, when n > ny,

P{ sup |15, To(Yo(e), )l > n} <.

a€w(e)

Thus, for a positive constant M, when n > n;,

P{Tn(@)l] 2 M,V € w(e)}
< P{||Tn()]| 2 M, |6, Tn(Tn(a), a)|| < n,Ver € w(e)}
+P {]|6, To(Tr(a), ) || 2, Vo € w(e)}

< i ! <
< P{ ||311ﬁl£M |16] Ty(s1,@)|| < n, Vo € w(e)} +e. (5.27)
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Note that s76! T, (As1, ) is a non-decreasing function of A for any « € (0,1) and
s € PP Writing s, as s; = As with A > 1 and ||s|| = M for any ||s,|| > M, by

the Cauchy-Schwarz inequality, we have

inf |§'6, Tp(s,@)| < inf |88, Tn(As,@)| <M inf ||6, Tyn(s1, )]l
il WOTL(s,0) < W S0 T ()| <Mt (1T, )

Thus, by (5.27),

P{|[Tu(a)]| =2 M,Ya € w(e)}

<p{ inf 15/8, To(s, )| < nM, Vo € w(€)} + & (5.28)
Denote
Qn:a;LZXt—lXt,—l(sna qe — inf Q(Oé),
—1 a€w(e)
Ro(0) = sup |¢8,[To(s, @) — Tu(0,0)] — £ Dusq(e).
[|s]|=M
Since
0, To(s,00] 2 inl, [/0sq(@)] — Ra(e) = sup_ |$6,T, (0,0)),
[|s]|=M

by (5.28),

P{||Tn(@)]| > M,V € w(q)} < P{R,(a

| 1an [s'Qnsq()] — sup |59, T, (0,) —nM,Va € w(e)} +e (5.29)
= [sl|=M

By Theorem 3.5.1 of CW and (5.35) below, €,, converges to a matrix €2, in distrib-
ution and €2, is positive definite a.s.. Denote A, and Ag as the minimum eigenvalues
of ©,, and €}, respectively. Then A, converges to Ag in distribution with Ag > 0
a.s.. For the above £, there exists a constant ¢y > 0 such that P(Xy < ¢) < £/2.

Furthermore, there exists an integer ny such that, when n > ny,

P(|| 1Hn_f §' Qs < cgM?) < P(\, < o) < P(Mo < o) +€/2<e. (5.30)

By Lemma 5.6 (b), there exists a large constant M; and an integer ng such that,

when n > ng,
P( sup |50, T,(0,c) > MM,V € w(c))
|lsl|=p

< P(||8,T,(0,0)|| > My, Yo € w(c)) < e. (5.31)
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Thus, by (5.30)-(5.31), when n > max{ny, n3},

P{Rn(a) > inf [¢Q,sq(a)] — sup |¢'6] T, (0,a)| — nM,Vo € w(e)}
[Isl|=M [|s]|=M

< P{Rn(a) > inf [§Q,s¢(a)] — sup |§'8]T,.(0,c)| — nM,
|s]|=M [|s||=M
sup |s'6! T,,(0,c)| < MM, inf [s§'Q,s] > coM? Vo € w(e)}
||s||=M lIsll=M
+P( sup |§'6, Ty (0, )| > MM;,Va € w(e)) - P( inf [§'Q,s] < coM2)
||s||=M lIsl|=M
< P{Ru(a) > coM’q. — MMy — M, Vor € w(e)} + 2z, (5.32)

We may choose M large enough such that ¢ = coMg. — M; —n > 0. For the constant

¢, by Lemma 5.6 (a), there exists an integer ny such that, when n > ny,
P{Rn(a) > Mec,Va € w(e)}

< P{ H:lepM |67, [Ty(s, @) — Ty (0, )] — s'Qsq(@)]|| = ¢,V € w(e)} <e. (5.33)

Thus, by (5.29) and (5.32)-(5.33), when n > max{ny,ng, n3,ns}, P{|| To(a)| >
M,Va € w(e)} < 4e. Finally, by Lemmas 5.6 (a) and 5.7, we have

n

én(a) — ¢(a) = —[g() Z Xt—lXé—l]_lTn(O; ) + 0p(8n),

t=1

where 0,(+) holds uniformly for o € w(¢). This completes the proof.0

Proof of Theorem 3.2. Since 7, is a stationary and ergodic time series, by the
ergodic theorem, n=! 30 | Z; 1 = 0,(1) andn=! 30 | Z, 12, | = E+0,(1). By The-
orems 3.4.1 and 3.4.2 in CW, the quantities 37 (N7 U1 Vi N1, S0 (N7 U,y
Y (k) Ngs), SNy ViYL (R N), n= 2 i ((NT U Z)_y), no' 250,
(N3'Vie1Z]_;) and n~ Y237 (N ,Y,-1(k)Z]_;) converge to zero in probability,

where k = 1,---,1. Furthermore, by Lemmas 5.3-5.5 (a)-(c), we have

5;1 iXt—lB; i> {K,1(17 5‘)7 5(5‘)7 77(5‘)7 Cl(&)a e 7Cl(5‘)7 N&} ’ (534)

=1
-1 d 7 -1 £ : 1 f* [
o; ;Xt_lxt_lan > diag{ ( &7 )o 'y Hyyoe, S (5.35)
By Theorem 3.5.1 of CW, the limiting matrix of (5.35) is positive definite a.s.. By
Theorem 3.1,
0 [Pnlcr) — pler), -+ Pu(tn) — Plat)] (5.36)
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1

877

v IR W , 1
= — [énl ZXt_lXi_uSnl] [5n1 tZXt_lB;]dlag[q(al) - q(

| +op(1).
t=1 =1 )

Note that the random matrices and vectors involved in (5.34)-(5.35) are functionals
of the corresponding process of (2.8). By (5.34)-(5.36) and the continuous mapping

theorem, we complete the proof. O
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