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Abstract

In this paper we examine the asymptotic properties of the estima-
tor of the long-run coefficient (LRC') in a dynamic regression model
with integrated regressors and serially correlated errors. We show that
the OLS estimators of the regression coefficients are inconsistent but
the O LS-based estimator of the LRC' is superconsistent. Furthermore,
we propose an alternative consistent estimator of the LRC', compare
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the two estimators through a Monte Carlo experiment, and find that
the proposed estimator is M .S E-superior to the O LS-based estimator.
JEL Classification Numbers: C13, C15, C22

1 Introduction

An autoregressive distributed lag model with serially correlated distur-
bances represents an important class of dynamic regression model in econo-
metrics. Such a model containing lagged dependent and lagged independent
variables with lag-orders p and g, respectively, is called an autoregressive
distributed lag model (henceforth, denoted by ADL(p,q)). An ADL model
can be written as

ye = ¢+ A(L)ye + B(L)z + s, (1)
where A(L) and B(L) are the polynomials of the lag operator L, defined by
A(L) = gL+ -+ a,I7,
B(L) = Bo+B L+ ‘I‘ﬂqu-
The long-run effect of z on ¥y is given by the long-run coefficient, defined as

q

B(1) =’

§ = = .
=40
=1

If (1) is regarded as a consumption function, with consumption y and in-
come z, 6 is the long-run marginal propensity to consume (abbreviated as
LRMPC).

Since many economic time series are nonstationary processes, such as in-
tegrated or cointegrated processes, we need to develop the asymptotic theory
for nonstationary AD L(p, q) models. Furthermore, such models with serially
correlated disturbances are important in both theory and practice.

Mackawa, Yamamoto, Takeuchi and Hatanaka (1996, abbreviated as MYTII)

dealt with the ADL(1,0) model with an integrated regressor and serially cor-
related disturbances: namely, v, = ay, | + 52 + us, where 2; is integrated
of order 1. When u; is assumed to be a stationary AR(1) process, MYTH
showed that a and B are v/T—inconsistent but asymptotically normally dis-
tributed.



This paper proceeds as follows. Section 2 presents the model and the
assumptions. Section 3 derives the asymptotic distributions of the OLS es-
timators of the regression coefficients and the long-run coefficient. Section 4
proposes an alternative estimator of the long-run coefficient and investigates
its asymptotic properties. Section 5 compares the small sample distribu-
tional properties of two estimators of the long-run coefficient by performing
Monte Carlo experiments for the most simple case of the model. Section
6 summarizes the main results of the paper and provides some concluding
comments. Detailed derivations and proofs are tedious and hence are largely
omitted from the paper. Instead, an outline of the proofs and derivations
are provided. Their details are given in a Supplement to this paper, and are
available from the authors upon request.

2 ADL (p,q) Model and OLS-Estimator

First we specify the model (1) as follows:

ye = c+ A(L)y: + B(L)z + uy, (2)
Uy = C (L) ’Ut,
Zt = Zi1+t &

1 = 1727"'7T7

where v ~ 1.i.d.N (0,0%) ,g¢ ~ 1.1.d.N (0,03) , v; and &; are independent, all
the roots of the characteristic equation 1 — A (L) = 0 liec outside the unit
circle, and C' (L) = Y00 ¢; LF, with Y27 |¢;| < oo,

As is well known, we have

[Tr] [Tr]

th;xgl th;»BQ ), r€[0,1],

where By (1) and By (r) are Brownian motions, = signifies weak convergence,
and [x] denotes the integer part of .

To derive the asymptotic properties of the OLS estimators of the coeffi-
cients and the O LS-based estimator for LRC' in model (2), we introduce the
following vectors:

/

y = <y17...7yT)7



Yo = W Yoy, Yra), i=1,p,

2 = (o),

2. = (in g, G=1 g,
Vo= (11 1),

7 = <y71 Yo o Y, Z Z - Z 1)7
I' = (a B ¢),

a = (o a o ),

B (8o 5 By ),

u = (u1 uT).

Using this notation, model (2) can be rewritten as follows:
y = 2T +u, (3)

and the OLS estimator of (3) is given as
I -T= (7227 (4)

Obviously, if the exogenous variable z; is a stationary process, the asymptotic
distribution of the estimator of (3) is straightforward to obtain. However, it
is difficult to apply the same method to integrated exogenous variables. We
can show that the regressors in (2) are cointegrated (see in (8) below), and
hence we have (2/2)" % (0/0)(p+q+2)x(p+q+2)
cointegrated regressors have an effect similar to multicollinearity which re-

as T' — oo. In other words,

duces rank(Z'7Z) as T" — oco. We make an appropriate transformation given

by (9) below for the right side of the model (4) to avoid the indeterminacy

in (77 )71. To do this, we first show that 1, 1 and z; are cointegrated.
Note that (2) can be rewritten as

Y1 = ¢+ @(L)z—1 + ¢(L)ve_y, (5)
where
. c c
© T 140

1— Z a;
i=1



o) = Ty = e

It is easy to see that
q

J

j=0
6=——F—=0(). (6)
1-— E Q;
=1
We can prove that
ZH%‘KOO; Z’¢z’<oo (7)
=0 i=0

(see Appendix A in the Supplement to this paper.) Without loss of generality,
we assume that the initial values for z ;,4 = 0,1,---  p— 1, are zero. Using
the Beveridge-Nelson decomposition yields

e(L)zer = )21 — Z (%‘H + Oipa t ) Et—i—1
=0
= (SZt — (Sc":t + Z <<70i+1 + Pit2 + - ) Et—i—1
=0
Define v; = ¢, + ¢,41 +-++, 1 =0,1,2,---. Then § = 7§ and ¢ (L) 21 =
82t — > vieri. We thus have the following expansion:
i=0

Yi1 = C+ 02 + ay, (8)
where a; = > v 51— > vier; ~ 1(0) and z ~ I (1), implying that y; 4
=0 =0

and z; are C(;integrated, so that our model has cointegrated regressors. This
could be called “stochastic multicollinearity”. From (8) we see that y, 1 can
be written as the sum of an integrated process and a stationary process. This

formula will be used to obtain the asymptotic distributions of I = (d, B ,é)

and &.

To write the system compactly, we introduce the following notation:

al, = <a7(i71) SR 7 SR aT,i),z':0717...7p_17



(5*(3'*1) &0 &1 e 5T*i>7j:0,1,"',q—1,
W = <a.0 a ; - a,p+1 )7
<€0 €1t €gtl );

Xz(WVlz).

Without loss of generality, we assume p < ¢ — 1. To avoid the indeterminacy
in (77 )71 we introduce an inverse transformation

X = za, (9)
where
H H®
¢ - (1, 1)
_ I, Opyq
H = <H1 H, !
0 0
1 px1 px1 (2) _ Nt U
H o <O(q+1)><1 eq+1>7H _< Ly Ong)’
1 0 0
-1 1 0 0
oo <851p >7H2: 0 7
(g—p+1)xp 0 .0 11
0 -0 0o -1
(g+1)xg

where [, is an identity matrix of order p, and e; is the first element vector of
the identity matrix [; for i = 2,¢ + 1.
Using this transformation, we have

I-T=(Z2)""Zu=(G'XXGH'GVX'u=GXX) ' Xu,

where
Ww WV W1 Wa W'a
V'w V'V V1 Vz V'ua
I _ [
XX=V 9w v 7 1z |7 1w
ZW 2V  Z1 7'z z'u



Tet

1”f/”f 1””‘7 1””1 lnf/z
A — T T Br = T T
’ < 11“ / 11“ / > o < 11“ 1 11“ 'z > ’

1w 11V
Cr = (CLT 02,T>,C1,T=<\/1T >702,T:<\/1T >7

T3/2z’W TS/QZ’V
1 21z —=W'u —+1'u
DT = < %le EZ/Z > JBLT = ( ;V/u JBQ,T = \/_i\/_zlu .
T T T 7T

The normalized O LS-estimator can be written as

. Ar Br \ '/ Biy
TII'-T)=d ’ . 11
a(e-n)=6( 4o o) (n Y

3 Asymptotic Distributions of [ and 6

We derive the asymptotic distributions of &, B, ¢ by using the functional
central limit theorem and the continuous mapping theorem (see Phillips,
1987). The theoretical results are given as follows:

Theorem 1 (v/T-inconsistency of &, B3, &) In model (2), we have

(@ (s

) .
\/T(ﬁ— >:>N(O,2),

B
()
VT (6 —c—c*) = N (0,5%) + f [By (r),By ()],

*k

where a*, 3%, c** are, respectively, the biases of «, (3, ¢; 3 and X* are
matrices of non-random elements; f[By (r),Bs (r)] is a functional of By (1)
and By (r). The expressions for a* and B* are given below. The precise
expressions for ¢**, 3, X* and f () are lengthy and unnecessary to follow
the discussion here, but are given in Appendiz C of the Supplement to the

paper.



Proof. We only sketch the outline of the proof which consists of the
following steps. [For the precise proof, see Appendix C in the Supplement to
the paper.|

Step 1. After lengthy manipulation, we can show that

a(35)

B-8
— HA'Byg+HW <DTlBQ,T — %D;CTATIBLT> +0, (1), (12)
where
HW <DT1B2,T - \/LTDTICTATIBLT> =0, (1),
and ~
VT < g:g > = HA'Byr+0,(1). (13)

Step 2. We can show that

w'w Ww'v

Ar = E<V’W AT >521asT—>oo,

P’LUU
Bir = ﬁ< 0 >—|—u—|—0p(1),u~N(O,22).

Step 3. Substituting the above two formulae into (13) yields

*

ﬁ<d_a>=ﬁ<g* >+v+op(1), v~ N (0,5)

B-8
with
Z;o GiCiv1
Zfio GiCitp

which produces Theorem 1(a).



Step 4. Similarly, we can show that

1

ﬁ (é — C) = H(Q)A;IBLT + 6/2 <DT1B2,T - \/TDTICTATIBLT> + Op (1) s
where

(14)
HPA B,y

VTe™ +w+o0,(1), w~N(0,X7),
1
6/2 <DT1B2’T — ﬁ

DTICTATIBLT> = f [Bl (7") ,BQ (7")] as T — o0,
implying that Theorem 1(b) holds. B

Now consider the O LS-based estimator for § defined in (6)

. B
6

By &7
1_

J

M -y
=1

q

0

:B>/,:

which can be rewritten as

(15)

(617 1/ )<ﬁ<:_a) )
ﬁ(é—é): ﬁ(ﬁ_

’) "
1-1& (16)
By virtue of (13), we can write
VT (& — a)
(61, 1544) ( JT (B _ 5) = (61, 15,,) HAZ Bur + 0, (1).
Note that
511/ H= (511 ]p Op><q o
( L 1q+1> - ( L 1q+1> H, H, = O1x(p1g)-

(17)
This means that the asymptotic distribution of VT (5 — 6) degenerates as

T — o0. Therefore, we cannot use v/1’ as the normalizer as the denominator

degenerates in obtaining the asymptotic distribution of (5 — 6) as ' — oo.

9



Instead, normalize (5 — 6) by T" to calculate the asymptotic distribution of

) directly, and we have the following result:

Theorem 2 The asymptotic distribution of T (3 - 6) , defined in (15), is
given by

where

F)dBy(r) — Bl<1)/0132<7~)d7~1+

/B<>dr (¢<> <6+sz> By (1 )1;—fevz
(

1
n l / By(r)drBy (1)1, — ng] s2p
0

fi=1-1Ta-1a") {/01 Bi(r)dr — Uol BQ(T)dTr} .

In the above expressions, fiy,, and f., are functionals of the Brownian motion
By and By; and XY and X?' are malrices of non-random elements. Their
precise expressions are unnecessary here, but are given in Appendiz B of the
Supplement to the paper. B

Ellpwu

and

Proof. Here we only give a sketch of the proof. [For the precise proof, see
Appendix D in the Supplement to the paper.]

Step 1. We normalize (5 — 6) by 1":

T(ES—&) ) ( << ) ) (18)

1-1Té&

10



Step 2. From (12) and (17) it can be written as

. T(&— a)
(6110 1q+1> ( T (B — 5) )
:(Qm(VTD;BM_JEH%A;BM)+QAU. (19)

Step 3. Applying the functional central limit theorem and the continuous
mapping theorem to (19) , we can show that as T" — oo

Ja 2
fol B3(r)dr — [fol BQ(T’)d7{|

(0,) (VID; Bar = Dy CrA; Bir) =

and
1-17a21-1a-1a"

It follows from (18) that Theorem 2 holds. B

Remark 1 From Theorems 1 and 2, the asymptotic distributions of

VT(& — o — a*) and VT (B — B — B*) are normal, but the asymptotic
distributions of VT (¢ — ¢ — ¢**) and T(é—é) are non-standard. Furthermore,
although the OLS estimators ¢, & and B in our model are \/T —inconsistent,
the OLS-based estimator & is T'— consistent, or superconsistent.

Next we examine how the serial correlation in u; affects the asymptotic
properties of ¢, &, B, and 6 in the simplest case of ADL(1,0), ie.,

Y=ctay 1+ Butu, |a|<l
U = pup_y v, | p|< 1
2t = Zt-1+ &,
t=1,2,---,T,

(20)

where vy ~ 1.1.d.N (0, 0%) and &; ~ i.i.d.N(0, 03) are assumed to be indepen-
dent. When ¢ = 0, (20) reduces to the model in MYTIL. In this case, the
asymptotic distributions of ¢, & and B are given in the following corollaries.
The proofs are given in an earlier version of this paper, which is obtainable
from the authors upon request.

11



Corollary 1 In model (20), we have
plim(d — a) = a*

)
;phm(ﬁ 8) = ﬂ,

plim(é — ¢) = ¢*;

d)\/_(a—a—a*) :>N(0,5%);
)WT(B—B—p5) = £5N(0,5});
f) \/_(c—c—c*) — N(O 5%)+L Bi1(1) [ B3(r)dr— [ Ba(r)dr[Ba(r)dBi (r)—(1—p)7* Qo]

€

(a
(b
(c
(
(
(

1 1
1-p Jo B3(r)dr—[f; Ba(r)dr]? ’
in which
* _ P x _ B * ok __ _ _cC *
oz—QS =700, = Al

2 2
52 = No2o2 4 N0l

)\1:

B8 = [ 1 _ p ]L
(1-a)2(1-p)Q3 7 "2 (I—a)(1=p)?  (I—ap)(1-p*)1Q3’

= p3otod + pdot + plo?,
p = M s = e s = (75) b
pP=_—P7
(1—ap)(1-p2)>’

Q2 (11a 1 p fO B2 dBl( )_%<%)<ﬁ>[B%<1)+O_%]7
— g (1+ap)ot
Q?’ - <171a2)<1 a> 02 + (1— aQ)(lfip)%lpr)' u

Note that ¢, & and ﬂ are v/T —consistent only if there is no serial corre-
lation in u, that is, p = 0 in model (20).

Corollary 2 In model (20), the asymptotic distribution of 6 collapses to
the following:
T(6—6) =

= Jo Ba(r)dBi(r) — {75 B1(1) + 15 uBy(1)} [y Ba(r)dr + 375 p{B3(1) + 03}
(1= a){ [y BE(r)dr — ([, Ba(r)dr)*}

(11 a)p0?
(1—ap)(1—p2) () 203 +(1—p)o?

I

(21)

where p =
The following corollary shows that fo Ba(r)dr occurs only if ¢ # 0.

12



Corollary 3 When the constant term ¢ =0 in model (20), we have

T(5—6)2> ﬁfo BQ( )dB1< )+21 ok {BQ< )‘I'U%}‘
(1-a) f0B2 r)dr

(22)

[ |
Remark 2 Comparing (21) and (22), the asymptotic distributions depend
on the existence of the constant term, c, bul not on its value.

Since the long-run relationship in model (20) is given by

&
hor = et S a0, (1), (23)

it is possible to estimate 6 = 3/ (1 — «) by simply regressing y;—1 on z;. We

have the following corollary:

Corollary 4 The asymptotic distribution of the O LS—estimator § based
on (23) is given by:
T(ES/ —6) =
1 1
T Jo Ba(r)dBi(r) = [$5 B1(1) — 15 Bo(1)] [y Ba(r)dr — 355 [B5 (1) + 03]

(1 - a)[fol B%(T)d?" o (fol BQ<T)dT)2]

(24)

Remark 3 The asymptotic distributions given in (21) and (24) differ
slightly from each other (note that p in (21) is not included in (24)).

4 An Alternative Estimator of the Long-run
Coefficient

In this section, we introduce an alternative estimator of § in (2). In the
previous section, it was shown that the serial correlation in u; causes the
inconsistency of the OLS estimators ¢, & and 8. To obtain a consistent
estimator, we transform the model to eliminate the serial correlation before
applying OLS. Assume

C*(L)=1/C(Ly=1-c{L—c3L*— .- —c} I,

13



Then, the model (2) can be rewritten as:

o= ALYt B (L) + o, (25)
u = C (L) Ut,
2t = Zt1+ &,

t = 1,2,---,T,
where
pto= cC* (1),
AN(L) = 1-C"(L)+C*(L)A(L) =aiL+asL” + -+ +a}, LP",
B*(L) = C*(L)B(L)=by+ L+ +0, L7

In this model, the long-run effect of 2 on y is defined as above, namely

B*(1)/[L — A*(1)] . It is straightforward to show that
B () BQ) B _,
1A () I-[I-Cc(+CMAQ] 1-4@1) ©

We propose an alternative estimator, defined by

g+l _

. b

< B* (1) J;) !
6= = : (26)

1 — A* (1) o+

=>4
=1

where af,i =1,---,p+1{, and Zv);‘,j =0,1,---,9 41, are the OLS estimators
for model (25). As this transformation assumes that v, ~ i.i.d.N(0,07), it is
independent of y;_1 and 2, so that the OLS estimators a} and l;;‘, 1=1,2---
p+1,j=01,---,q+1, are consistent. Therefore, § is also a consistent
estimator. We would expect 6 to have better distributional properties than
é in small samples because the OLS estimators, ¢&; and Bi, are inconsistent.

Using a similar method to that employed in Section 3, we present the
following Theorem.

5 Theorem 3 For model (25), the asymptotic distribution of the estimator,
8, defined in (26) is given as:

C (1) ﬁBmw&vyJMUﬁBmw@

T-6 ' 2
( ) = —A(D) fol B2(r)dr — [fol BQ(r)dr}
14




Proof. See Appendix FE in the Supplement to the paper. B

5 Simulation Experiments

Although we have shown that § and 8 are T'-consistent, and both T(S —0)
and T(3 — 6) converge to non-standard distributions, we do not know the
small sample properties of 5 and 6.

To investigate their finite sample performance, we conduct some Monte
Carlo experiments by using the model given by

Y = Qo+ QY1+ G2l + A32¢ + Q421 + Vg,
2y = Zpqtet= 1727"'7T'

In the experiments, we fix the parameters as follows:
Qo = C<1 _p)7a’1 = a+p7a2 = —ap,az = ﬂ?a’él = _ﬂp,
and

05 =1.0,02=025c=1,a=0.383=04,5 = 0.645.

We specify the other parameters as p = 0.0,0.5,0.8; T" = 50,100, 500; and
calculate d = (& — 6)/s; and d = (5 — 6)/s; 5000 times for each parameter
combination, where s; and s; represent the estimated standard errors.

Figures 1 through 9 are the empirical distributions obtained from the
experiments. From these figures we observe that 6 is almost unbiased, but
§ is slightly biased in small samples. The bias does not vary greatly as the
sample size increases, but increases with p.

To compare the performance of § and (5 we calculate the sample mean

squared errors (MSE):

1 . 1 .
s — N5, =62 = ——S (8, — 6)
© = 5000 ;< ) €= 3000 ;< )

The calculated values of é and € are given in Table 1.

It can be seen that the difference between € and € becomes large as p
increases. Moreover, the values of ¢ are generally larger than those of € if
p # 0, the difference becoming small as the sample size increases. Judging
by the MSE criterion, é is superior to 8.

15



6 Concluding Remarks

In this paper, we developed an asymptotic theory for the estimators in a gen-
eral autoregressive distributed lag model with serially correlated disturbances
and integrated regressors. It was found that the OLS estimators ¢, & and
B for the regression coefficients are VT-inconsistent but have asymptotic
normal distributions, and that the O LS-based estimator 6 for the long-run
coeflicient is T-consistent, i.e., superconsistent, but with a nonstandard as-
ymptotic distribution. Therefore, standard statistical inference which relies
on asymptotic normality for the regression coeflicients and the long-run coef-
ficient can be misleading. Furthermore, we proposed an alternative estimator
6 for the long-run coefficient, obtained by transforming the original model
to eliminate the serial correlation in the disturbances, and examined the as-
ymptotic properties of the proposed estimator. Monte Carlo experiments
showed that the proposed estimator ¢ is MSE-superior to the O LS-based
estimator.

16



Table 1. Comparison of § and 6 by MSE

P MSE  T=50
0.0 ¢ 0.003146
& 0.003593
0.5 ¢ 0.013747
& 0.013722
0.8 ¢ 0.101997
& 0.116559

T=100
0.000772
0.000813
0.003642
0.003041
0.027711
0.018894

T=500
0.000003
0.000003
0.000150
0.000115
0.001292
0.000689

5 1
Note. € = >

5000
=1

((ASi—(S)Qandé:ﬁz

17
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Figure 1. (T' =50, p =0.0)
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Figure 3. (T'=50, p =0.8)
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Figure 4. (T'=100, p = 0.0)
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Figure 5. (T =100, p =0.5)

0.50
=

0.20 0.30 0.40
T T T

0.10
i

0.00

0.1 0.2 0.3 0.4 0.5 0.6

0.0




0.10 0.20 0.30 0.40

0.00

Figure 7. (T =500, p = 0.0)
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Figure 9. (T =500, p = 0.8)
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and derivations for “Asymptotic Properties of the Estimator of the Long-run
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related Errors”, by K. Maekawa, M. McAleer and 7. He (2002) (henceforth

Appendix A

Proof of (7) in MMH. First, we give the proof of " i|¢,| < co.
Suppose that 1/A\;, k = 1,2 -+ p, are the roots of 1 — A (z) = 0. Then
we can write

1 1 Kk
1—A(L) (=ML (1 =XL)- (1= NI) :;1—ARL

and
i B(L) ~rB(L) -~y SNATTY
Z%L 1-A(L) AP SO DILEY KA
k—1 k i—0 j—=0 —1
Denote kf = Y 7, ppAL for i = 1,2, k¥ = 0 for i < 0. It is easily seen
that

= Boks + Prki 1+ + Ok
We thus have

[o0) [o0) [o0)
Z“%"S ’ﬂolzi”{:’*’ml ?
=0 =0 =0
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where
o0 o0 ) o0 )
D ilrg] < Jral D il e ] Y i A < o0
i=0 i=0 i=0

since |Az| < 1for k =1,2,---,p. We can similarly prove that } ° i
00, =1,2,--- q. It follows that

[o0)
Zi |p;| < o0
i—0

holds. We can prove Y .° | ¢; |< oo in the same manner. B

*
K| <

Appendix B

To obtain the asymptotic distributions of the OLS-estimator (11) in
MMH, the following lemma is useful. In Lemma 1, (ak)kzo,l,z---,pq denotes

(ap,a1,az,-++,a, 1) and (ak)j_19,. 4 denotes (ay, ay, - - ,a,)", and so on.

Lemma 1. For the series {z;} and {3} in model (2) in MMH, we have

(a) =lu= C(1)Bi(1);

zZu= C(1) fol By(r)dBi(r);

Pyu = U% <Z ¢z‘ci+k> ;
1=0

k=1,2,,p

T
_ 1
Ny, = Do DGR D Veih-1Ui—j
jAitE+L t=1
173:0717"'700 k:()’l”pfl

00 00 T
+ <— > 2 Vi tzlmkvm) ;

=05=0 F=0,1,-p1
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T

(f) %V/u = (i Cj% E 5tkvtj> = Nsu;
=0 =0 k=0,1,+,g—1
@ FW1= [0 B (1) = (54 i) B 1,
i=0

(h) F=V'1 = By (1) 15

(1) %W/Z = ¢ (1 fo By (r)dBy (r )_% <6 + i)i@i) [B% (1) + 0%] = fwz;

() 7V'z= 5 (B3 (1) + 03] 14 = fezs

(k) 1 < wWw W'V > » < EWW) EW'V) > _s

VW V'V E(V'W) E(V'V)
where
WA
pawy = | 0w e
O
('a) @ b
Yp=1 0 M1 7o

’Yl(ga) = E(a'a_y) =0} E¢ Dirk + 03 Z%%M; =01 p—1

Y M e
EWV)=-—o3| D0
I
0 -+ 0

E(V'V) =03l

1 fpB, +0p (1)
o (515 )

where
Bi(1) Jo B3(r)dr — fy Ba(r)dr Jy Ba(r)dBi(r)
fol B2(r)dr — [fo Ba(r) d7"}2 |
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(m) D7'Cy = ( Jow +0, (1) fov 0y )
(5" 68
where
o — B BB BIQ) = (647 W) BOIL, — Jy Bolr)drfivy
fl B2(r)dr — [fol Ba(r dr}
fol B3(r)drB, (1) 1, — fo By(r)drfl,
Jo B3(r)dr — [fo B2<7")d7"}
(fowZE" + fovE?!) Pyy + 0, (1)
n) =D 'Cr A By r = ;
o ("o (35 )

211 212 B
< Y21 322 > = 2113

(0) Ap'BrDy' By g = 0, (1) 5

fov =

I

(p) \/LTA;IBTD%ICTA;IBLT = Op (1) .

Proof.
(a) Omitted.
(b) Let &, =ct+e-1 4+ 52+ -+ +. We have

- 0(1)/0 Bs (r)dBi (1),

by making use of Proposition 17.3 in Hamilton (1994). Thus, we have shown

result (b).
(¢) Omitted.
(d) Omitted.
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(e) It can be seen that for k =0,1,--+ ,p—1,

T ') ')
1 1 N
—T=a_;u = — OVt k1— ViEt—i—k
T

NNgk
o
<

JYt—j

Il
o

J

00 T
YIRSt

= Citk+1m7n Vi i p—
. 7 T t—i—k—1
=0 t=1

+ Z e

jAitk+1
2,j=0,1,"+,00

1 T
\/_T thfifkflvtfj
t=1

0o 0O 1 T
*
_E § ’Yi%‘ﬁE Et—i—kVt—j-
i=0 j=0 t=1
Then, we can write

\/L— W

= VTo? (Z ¢¢Cz‘+k>

k=12,

~

nP

') T
1
+ E e E Vi gVt j
itk VT i3

2,J=0,1,"-,00

k=12,

0 00 . -
+ | — o e

k=0,1,-p—1
VT P,y + Ny, + o, (1), say,

as claimed in result (e).

(f) to (h) can be shown by the same manner as in (e)
(1) From the definitions of a; and ,, we can write

00 T
?a zZ = Z ¢z% thvtﬂ;l - Z’Y*l

[3 T Z Stgt*i' (27>
=0 t=1 3
Note that



and

o0 1 T E/Yz
Z’}/:?Zgﬁt,i = 2 [B2<1)+0';}
=0 t=1
5—|—§:i<pi
= %[33(1”03}.

Substituting (28) and (29) into (27) yields

1, ! 1
?az:>¢(1)/0 By (r)dBy (r —5 (6"‘2@‘701)

which implies that result (7) holds.
(7) Obviously, it is seen that

1 1

(k) It is seen that

@ (@ (@

Yo T ’Yp 1
1 (@ @ -
—ww L Eww)=| 7 y
T L@
@ . @ o
VYp-1o 0 Y1 o

where 7( V=K (@a ) =01 ) Sy + 05 ) Viviy for k=01,
i=0 i=0

Also
Y% M Va1
1 ! p ! 2 0 73 :
?WVHE(WV):—JQ o
P M
0 - 0 3
and

1
?v’v L EWV'V) =i,
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(1) It is easy to see that

1 1,/ 1 17/

. zZz —37'1 1'u
Di'Byr = Y r 1
— 75271 1 Tg/gzu

TIQZZfl’ Tg/gzu 171
%( T3/2z’1\/—1’u—|——zu)

on ()

_ (fDBQ_I_Op )
= Op(ﬁ) .

(m) It can be written as

D 'Cr
1 (her -1 =W =1V
D\~ 1 g W EEeV
1 T12z z\/— 1w — Tg/gz’l%z’W %z’z%l"/— Tg/g
e g (ﬁ) ac)
Using Lemma 1(a k) yields
. fDW‘|‘0p ) Jov+o,(1)
o o))
PAVT
as claimed in the result (m).
(n) Usmg the result (m) produces

D 'CrALI By

!DT!
1
| Dy
31 (1) fo B2(r)dr— fo Ba(r)dr fo Bg(r)dBl (r)
fo B2(r)dr— [fo Bg(r)dr]

z’l%z’V )

+0p (1)

- (o e ) )
h 0, (F= 0, J(r;)m ) < gi >Pwu +0p (1)

(fowZ + fovrE®) Py + 0, (1) )



Thus, the result (n) has been proved.

(0) and (p) Similarly, we can prove the results (o) and (p). W

Appendix C

Proof of Theorem 1 in MMH. On the right side of (11), we have

Ar Br\ ([ By
%CT DT

By r

B AL 0 Bir N — A By
- 0 o0 By

E

1

1 Bir
FCrdr! B) < Bor >

-1
X ( DT —\/LTCTA;IBT ) (
Note that

Ar By - B

\/LTCT Dy Bor

AL o —A'Br \ 1/ 1
K 0 o > + < I Dr (

-1 Bl,T
s 0] ()
. [ Ap'Bur — AP BrDy' By + = Ap BrDy Cr Az Bir

. D;IBQ’T 1

\/TD;ICTA;IBLT )
o
= < 0(2) > s Say.

g ) = HEUFHOCY 40, 1),

H?CW 4+ e,0® 10, (1), (31)
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1
CW = A'Bir— Ap'BrDy'Bor + —=Ap' BrDyp' CrAp' Bur,
VT
1

0(2) — D;IBQ’T - —D;ICTA;IBLT.

VT

Applying Lemma 1 in Appendix B to (30) yields
(555)
B-B

1
= HA}IBLT + H®M <DTIBQ,T — \/—TDTICTATIBLT> +0p (1) ) (32>

where

- r -
H(l) <DT1B2,T - ﬁDTlcTATlBLT> = 0p (1)
and hence

& — o«
¢T<B—B

Applying Lemma 1 in Appendix B to the above formula, we have

e )= ()« ()]
=HS VT TR ) )] 33
(Vris—p ! o )"\ )
First, we give the asymptotic distribution of ( Nuyw Ney >/ .

Note that both {e;_,v,_;} and {ve;_4_1v,_;} for j # i+k+1 are martin-
gale difference sequences for fixed i, j, and finite integer number k. Noting

> = HA'Bir+0,(1).

that Y |7y < o0, Y |ej| < 00, and > |¢;| < 0o, we can prove that the as-
=0 =0 =0

ymptotic distributions of the elements in the vector ( Nuw New >/ are given

by

oo ©o T 00 00 2
ZZ%@-% th,i,kvt,j = N [0,0703 (Z o Zq) 34)
i—0 =0 t—1 =0 j=0

fork = 0,1,---,p—1,
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T
1
Y seSnn, = o] X an| o

JAitk+1 =1 AR,
4,5=0,1,,00 4,5=0,1,+,00
for k = 0717"'7p_17
o 2
ch\/_ th WUe—j = N |0 o102 (Z cj> (36)
=0 =0
fork = 0,1,---,9—1.

Next, we prove the above results by following the same line as the proof of

Theorem 6.3.3 of White (1984). First, we consider the case k = 0. Let

l l

}/tl = § § ngt iVt—7,
=0

l

00 00 1
Wy = Z ViCi€t—iVi; + Z Z’Y:ngtfivtfj (37)

i= i=l+1 j=0

+ Z Z Vi CiEt-ilt

i=l41 j=i+1
= W(l) + Wt(f) + Wt(;'), say,

and define the normalized sums

T T
1 1
Sir=—=3 Yu, D= —=>"Wy. 38
T \/thl tl T \/thl tl ( >

For fixed [, we have

l 00 l 00
Tww (s) = E (Z Y ovieEi ey Y Vf/cj’é?tz"vtj)

=0 j=I+1 2'=0 j'=I+1
00
= 0_10_2 § /Yz/YH»s E CjCj+s-
j=l+1

Similarly, it is seen that

l

Tw @) (3) = 0_10_2 Z 7171+s Z CiCji+ts;

1=I+1 =0
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o0

Tww (s) = (0102) Z Vi Vits Z CjCjts-

i=I+1 j=I41
Then,
= 3
Var (Dir) = Yo (T =D vwe (o)
s=—(T-1) i1

where, for any given € > 0 there exists [y such that [ > Iy, we have
T-1

1
T > (T =) vwa (9)]
s=—(T-1)
') T—-1 1 ')
< (o100 (Zv S ms\zrcjcﬂsr)
=41 s=1 i=1 G—i+1
') T—-1 oo
< o)’ (z 2125 3 rr)
G=1+1 s=1 j=I+1

0 2
K ( 3 m)
J=l+1

providing of > |v¥| < co and Y |¢;] < co. It is similarly shown that
=0 7=0

T-1 3
1
= > T=lsh ) vwe(s)<e
s=—(T-1) =2

implying that
Var (D) — 0 as | — oo.

It follows from Chebyshev’s inequality that
DlTiOasl—M)o (39)

uniformly in 7". Note that {s,_,u,_;} is a martingale difference sequence for
fixed 7 and j. Therefore, for fixed I, we have

S = \/—Z 0= ZZ%CJ\/—Z& iUt—j

=0 j5=0
I
= 01022%2 (0,1) as T'— o0 (40)
=0
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by the continuous mapping theorem and the central limit theorem. But

I I 2
syt 3 0= (00t (35030 ) | i
=0 j=0
(41)
By virtue of Lemma 6.3.1 of White (1984) and (39), (40) , and (41), we have

2
ZZ%CJQ ey = N | 0,0703 (Z%Z ) as T — oo.

t 1 4,7=0
It can be similarly proved that for k =1,2,---,p—1,

2
ZZ%CJ&kutJZ>N 00102<Z%Z ) as ' — oo,

t 1 2,5=0

as claimed in (34). We can similarly prove (35) and (36).

Define
Do iUt Z E%Cﬁt iVt j
JAi+1 J=03=
i:j:0717"'700
> DiCiV Vs Z Z%Cﬁ?t i—1V—j
JAI+2 J=03=
i:j:0717"'700
o0 o0
*
D PGV iV — Y D VG i pi 1Vt
Xt = J#i+p 7=0j=0
i:j:0717"'700
D> CiEtlej
7=0
> CiE 1V
Jj=0
o0
> CiEtq 1Vt j
Jj=0
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The covariance matrix of the vector ( Nyw New >/ is indicated by o =
FE (x;x}) . Then, we have

<%wu > = N (0,%,) as T" — oo.

B’ 0
Substituting the above two formulae into (33) yields

<\/T(d—a—a*)
VT (B—-B-5"

Similarly, applying Lemma 1 in Appendix B to (31) leads to
VT (¢—c)=
1

HOAB, 1 + &) <DT132,T — —DTlcTATlBLT> + 0, (1),

VT

< > > = Hy! < P > S = HY'S,E

>:>N(O,2).

where

HPA'B,p = VTHOS! < OP:LM > + HOSIN(0,%) 4 0, (1)

VTe* + N (0,5%) + o0, (1), say,

and

1
el <DT1B2,T — —DTlcTATlBl,T> = [pB, — (fDWEH + fDVEm) Puwu.

VT
Thus, it is seen that
VT (¢ —c¢— ™) = N (0,5 + [ [By (r), By (r)],
with f [By (r), Ba ()] = foB, — (fowE" + fpyE?) Pwu, where fpp,, fow,

fov, . 321 and Pwu are given in Lemma 1 in Appendix B. We have thus
completed the proof of Theorem 1 in MMH. B

Appendix D
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Proof of Theorem 2 in MMH. We have already (19) in MMH:

T(&— a)

o559 (1(53) )
= (0,1) (\/TD;BQ,T - D;lCTA;lBLT) +o0,(1).

We evaluate each term in (19) as follows:
First, applying Lemma 1 in Appendix B, we have

(0 1)VTD'Byy

1 1,1 1,
= ’DT’ —T3/2z1ﬁ1u—|—?zu

fol By(r)dBi(r) — Bi(1) fol BQ(T)dT‘
Jy B3)dr = |y Ba(r)ar|

C (1) (42)

Next, applying Lemma 1 we have

D 'Cr AL By
1 X
| Dr|
( %z’z%l’w — ﬁz’l%z’w %z’z%l’v — ﬁz’l%z’v )

& (R 1R IW + 22W) G (—R 1V + A2V

VIS Py + S Ny + B2N ) )
VTS Py + 5 Nyw + 52Ney ) 7

T3/2

E-§H<g>+%u%w%

where

_ 1 ! 1 li 1 ! 11
[d] = <_T3/2Z1ﬁ1 LL‘I‘TZLL)E Pwu‘l'
1 ! 1 li 1 ! 21
z1—1V—|—?zV Y Py 40, (1).

SRt T
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Therefore,

1

< 0 1 )D;IC’TA;IBLT — W

[d] + 0, (1)

1 1,1 1
= — 1—1W + —2ZW | 1P,
Dy < Tan? T —I—Tz > +
1 1 1 1

< /1 1/V + _Z/V> EQIPwu + Op (1)

D\ TR T T

= — - 5+ 0, (1). (43)
Jo B3(r)dr — [fo BQ(T)dT:|

By the application of Lemma 1, we see that

| 5(1) B (1) - )
o = ), o (64 Sie) oy | 1o fiws 200
=0

1
+ l / By(r)drBy (1) 1), — gZ] S Py
0

= e, say.

It follows from (19) in MMII, (42), and (43) that

T(&— a)

(61, 1y11) ( 7 (8- 8) )

C (1) [ o Bo(r)dBi(r) — Bi(1) fyy BQ(T)dT} Te
fol B2(r)dr — [fol BQ(T)dT:| i

as claimed in Theorem 2 in MMH. R

=

I

Appendix E

Proof of Theorem 3 in MMH. Note that the estimators I' — ' in
(26) and I—Tin (15) of MMH have the same construction if p and ¢ are
replaced with p + 1 and g + [, respectively. Thus, we can prove Theorem 3
by the same principle as the proof of Theorem 2. First, we introduce similar

33



notation to Section 2, e.g., Cf., A}, Bip, By < Cr, Ar, Bir, By in (10)
of MMH such that

Pt P g+l g+l
(- En)er ()
:V@(J1y%; -
(0 1) (VID; By — D Ci A5 Br )
It 1s seen that
(0 1)VTD:'B;,

1 1,1 1,
= ’DT’ _T3/2Z1\/T1V+?ZV

fol By(r)dBy(r) — Bi(1) fol By(r)dr
fol B2(r)dr — [fol BQ(T)dT:|

Moreover,

DOy B
! X
| Dr|
T12zz\/— 1TW* — Tg/gz’l%z’W* % z 1V Ti/gz’liz’v*
J (—FRr 1w kW) (- T;/qu FUV o+ £V
ATNG, + APNZ,
><<A21N* 1 AN >+0p(1)

§;<5ﬂ>+%u%wm

1 1 1
<— a2 1 ﬁfw* + ?z’w*> (AN, + APNZ) +

1 1 1
<—T3/2z’1 ﬁrv* + ?z’v*> (AN, + ANZ) + 0, (1)
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Therefore,
1 P

< 01 ) D;IC;A;:IBLT = W [dl] — 0.

Then,

oT (Z - Z) +T (Zb - Zb)
fol By (r)dBy(r) — Bi(1) fol By(r)dr
fol B2(r)dr — [fol BQ(T)dT:|

holds, and hence

p+l p+l g+l q+l
or(Sar -3 ar) v (50 - L)
< . =1 =1 =0 =0
p+l
1-> 4
=1
o Bo(r)dBy(r) — By(1) Jy By(r)dr

(1= ) {1 10 = [y matryar] )

=1

C(1)  Jo Bor)dBi(r) = Bi(1) Jy B(r)dr
LA gy — ([} Bar)ar]

where the last line is obtained by making use of the relationship C* (1) =

1/C(1)and 1 —A* (1) = C* (1) [1 — A(1)]. We have thus obtained Theorem
3 in MMIH. R

I
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