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Abstract

A set of axioms which characterizes a preference representable by the iterated Choquet
expected utility is presented. This objective function is attractive since it possesses a feature
of dynamical consistency. Furthermore, we show that under the same axioms the conditional
preference is represented by the Choquet expected utility with respect to the capacity which
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axiom of comonotonic independence to our axiom of constrained comonotonic independence
and by adding the axiom of dynamical consistency.
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1. Introduction

This paper provides a set of axioms under which a preference relation is represented by

the iterated Choquet expected utility with respect to some probability capacity in a two-period

dynamic setup.1 The iterated Choquet expected utility axiomatized in the current paper is

attractive since it can incorporate atemporal theory of Choquet expected utility, which has been

motivated by huge literature on Knightian uncertainty or ambiguity, into a dynamic setup while

still retaining a feature of dynamical consistency. Here, the dynamical consistency means that

observing a state realized in the first period should not give the decision-maker any incentive to

revise her initial plan for the remaining period optimally chosen before the observation, which

is a desirable feature for any tractable economic model dealing with a choice over time.2

Furthermore, we show that under our axioms the conditional preference given the first-

period’s observation, that is, the restriction of the preference over the realized state, is also

represented by the Choquet expected utility and that the Choquet integral here is defined with

respect to the probability capacity which is obtained by updating some probability capacity

according to the Dempster-Shafer rule, the updating rule which is extensively studied in the

statistics literature (see, for example, Shafer, 1976 and Dempster, 1967, 1968). This provides

one justification of a usage of the Dempster-Shafer rule in the literature on learning under

Knightian uncertainty or ambiguity.3

A similar objective function is axiomatized by Wang (2002), who employes a rather com-

plicated hierarchical domain of preferences in order to incorporate preferences on the information

filtration in the Savege-act framework.4 In contrast, we assume that the information filtration is

exogenously given and that the domain of the preferences are lottery acts along the line devel-

oped by Anscombe and Aumann (1963). With these sacrifices in generality, however, our axioms

1For the definitions of the probability capacity, the Choquet integral and other related concepts, see Section 2.
2For example, Nishimura and Ozaki (2001) study a job-search behavior of an unemployed worker whose

preference is given by a general-state-space and infinite-horizon extension of the preferences axiomatized in the
current paper. The dynamical consistency allows them to show that the optimal strategy for the worker has a
reservation-wage property.

3Nishimura and Ozaki (2002) study learning behavior under Knightian uncertainty by assuming dynamically
consistent preferences which are similar to the one axiomatized in the current paper and by using the Dempster-
Shafer rule as an updating rule.

4One of the novelty in Wang’s approach which is absent from here is that it can explicitly analyze the decision-
maker’s preference on the timing of uncertainty resolution.
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are much easier to state and to interpret than those by Wang. In particular, our axioms can be

easily compared with those of Schmeidler’s (1989, first appeared in 1982 as a working paper)

pioneering work in the literature of Choquet expected utility. Roughly, we weaken Schmeidler’s

axiom of comonotonic independence to what we call the axiom of constrained comonotonic in-

dependence, which seems to be new to the literature, and then add the axiom of dynamical

consistency.

We see that if both the (unconditional) preference and the conditional preference are

represented by the noniterated Choquet expected utilities with respect to some probability

capacity, which would be the case if we maintain the comonotonic independence, then the

dynamical consistency implies that the capacity must be additive. (Similar observations are

made by Epstein and Le Breton, 1993; and Gilboa and Schmeidler, 1993. For more details,

see Section 4.) In contrast, we require that the unconditional preference should be represented

by the iterated Choquet expected utility by weakening the comonotonic independence to the

constrained comonotonic independence. Thus, the dynamical consistency is retained and the

conditional preference is still represented by the Choquet expected utility with respect to a

nonadditive probability capacity.

The organization of the paper is as follows. The next section provides some preliminary

definitions which are necessary for the following analysis. Section 3 presents our axioms and

the main results of the paper: the representation theorem and a corollary which states that the

updating rule in the theorem coincides with naive Bayes’ rule and the Dempster-Shafer rule.

The proof of the theorem is offered in Section 5. Section 4 discusses the axioms and relates our

results to the existing literature.

2. Preliminaries

Suppose that there are two periods. Let m,n ∈ N and let the first and the second period’s

state space be given by S = {s1, . . . , sm} and T = {t1, . . . , tn}, respectively. Therefore, the

whole state space is given by Ω ≡ S × T . A generic element of Ω is denoted by ω or (s, t). Let

Y be a mixture space. We call an element of Y a lottery. For example, if we let X be a set

of prizes and if we let Y be the set of simple probability measures on (X, 2X ), then Y will be
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clearly a mixture space with the operation in a vector space. Given y, y′ ∈ Y and λ ∈ [0, 1], we

denote by λy + (1 − λ)y′ the compound lottery.5

We follow Anscombe and Aumman’s (1963) framework and define a simple lottery act

as a Y -valued function on Ω whose range is a finite subset of Y . We henceforth call it a lottery

act , or more simply, an act. The set of simple lottery acts is denoted by L0. Given f, g ∈ L0

and λ ∈ [0, 1], a compound lottery act λf +(1−λ)g ∈ L0 is defined by (∀ω) (λf +(1−λ)g)(ω) =

λf(ω)+(1−λ)g(ω). A lottery act whose range is a singleton is referred to as a constant act and

the set of constant acts is denoted by Lc. We say that a lottery act f is 1st-period-measurable

if (∀s)(∀t, t′) f(s, t) = f(s, t′). As its name suggests, the outcome of the 1st-period-measurable

act is determined by the state of the first period only. We sometimes write the outcome of a

1st-period-measurable act f at (s, t) as f(s) rather than as f(s, t).

The decision-maker’s preference is given by a class of binary relations, {�i}i=0,1, ... ,m,

on L0. We understand that �0 denotes the decision-maker’s unconditional preference and �i

denotes her conditional preference after she knows that si ∈ S has been realized in the first

period. The two classes of binary relations, {�i}i and {∼i}i, are defined from {�i}i by: (∀i) �i

⇔ ⊀i and ∼i ⇔ [�i and ⊀i]. In general, a binary relation � is a preference order by definition

if it is asymmetric and negatively transitive.6 For each i ∈ {0, 1, . . . ,m}, we define a binary

relation over Y by restricting �i on Lc and denote it by the same symbol �i, that is,

(∀y, y′ ∈ Y ) y �i y′ ⇔ (∃f, g ∈ Lc) (∀ω ∈ Ω) f(ω) = y, g(ω) = y′ and f �i g .

A pair of acts, f and g, are comonotonic with respect to �i if (∀ω, ω′) f(ω) �i f(ω′) ⇒
g(ω) ⊀i g(ω′). Note that the comonotonicity is defined in terms of the preference induced on Y

from �i.

Let Ω′ be a generic finite set. A real-valued set function θ on Ω′ is a probability capacity

if it satisfies θ(φ) = 0, θ(Ω′) = 1 and A ⊆ B ⇒ θ(A) ≤ θ(B). If in addition θ is additive, that

is, if it satisfies that A∩B = φ ⇒ θ(A∪B) = θ(A)+ θ(B), then θ is a probability measure. Let
5Here, λy+(1−λ)y′ should be understood as the element of Y into which (y, y′, λ) is mapped by the operation

which defines Y as a mixture space, and hence, it does not necessarily mean the convex combination in a vector
space. Accidentally, it does when Y is the set of simple probability measures on (X, 2X) as in the example of the
main text.

6A binary relation � is asymmetric if (∀f, g ∈ L0) f � g ⇒ g � f , and it is negatively transitive if (∀f, g, h ∈
L0) [f � g and g � h] ⇒ f � h.
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a be a real-valued function on Ω′ and suppose that a is representable by

a =
k∑

i=0

aiχAi

where a0 < a1 < · · · < ak, (∀i) Ai = {ω′ ∈ Ω′ | a(ω′) = ai } and χA is the indicator function for

a set A.7 Such a representation is always possible and unique. Then, the Choquet integral of a

with respect to a probability capacity θ is defined by

∫
a dθ ≡

∫
Ω′

a(ω′) θ(dω′) ≡ a0 +
k∑

i=1

(ai − ai−1)θ
(
∪k

j=iAj

)
.

3. Axioms and Main Results

We take as a primitive a class of binary relations, {�i}i=0,1, ... ,m, that the decision-maker

possesses over L0, and we consider the following axioms which may be imposed on that class of

binary relations. In the axioms, f , g and h denote arbitrary elements in L0 and λ denotes an

arbitrary real number such that λ ∈ (0, 1].

A1 (Ordering) For each i ∈ {0, 1, . . . ,m}, the binary relation �i is a preference order.

A2(0) (Constrained Comonotonic Independence) If f, g, h are 1st-period-measurable and pair-

wise comonotonic with respect to �0, then f �0 g ⇒ λf + (1 − λ)h �0 λg + (1 − λ)h.

A2(1) (Conditional Comonotonic Independence) For each i ∈ {1, . . . ,m}, if f, g, h are pairwise

comonotonic with respect to �i, then f �i g ⇒ λf + (1 − λ)h �i λg + (1 − λ)h.

A3 (Continuity) For each i ∈ {0, 1, . . . ,m}, if f �i g and g �i h, then

(∃α, β ∈ (0, 1)) αf + (1 − α)h �i g and g �i βf + (1 − β)h .

A4 (Monotonicity) For each i ∈ {0, 1, . . . ,m}, if (∀ω ∈ Ω) f(ω) �i g(ω), then f �i g .

7That is, χA : Ω′ → {0, 1} is a function defined by

(∀ω′) χA(ω′) =

�
1 if ω′ ∈ A

0 if ω′ /∈ A .
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A5 (Non-degeneracy) (∃f, g ∈ L0) f �0 g .

A6 (Independence of Unrealized Events) (∀i ∈ {1, . . . ,m}) f(si, ·) = g(si, ·) ⇒ f ∼i g .

A7 (Ordinal Preference Consistency) (∀i ∈ {1, . . . ,m})(∀y, y′ ∈ Y ) y �0 y′ ⇔ y �i y′ .

A8 (Dynamical Consistency) [ (∀i ∈ {1, . . . ,m}) f �i g ] ⇒ f �0 g .

We discuss each axiom in the next section.

The main results of this paper are the following theorem and corollary. The theorem

shows that under Axioms A1-A8, the unconditional preference �0 is represented by an iterated

Choquet expected utility with respect to some class of probability capacities (see (1) in the

Theorem) and each conditional preference �i is represented by its restriction over {si}× T (see

(2) in the Theorem). The proof of the Theorem is relegated to Section 5.

Theorem. A class of binary relations, {�i}m
i=0, satisfies A1-A8 if and only if there exist

a unique probability capacity θ0 on S, a unique class of probability capacities 〈θsi〉mi=1 on T and

a nonconstant affine function u : Y → R, which is unique up to a positive affine transformation,

such that

f �0 g ⇔
∫

S

∫
T

u(f(s, t)) θs(dt) θ0(ds) >

∫
S

∫
T

u(g(s, t)) θs(dt) θ0(ds) (1)

and (∀i ∈ {1, . . . ,m}) f �i g ⇔
∫

T
u(f(si, t)) θsi(dt) >

∫
T

u(g(si, t)) θsi(dt) . (2)

We now turn to the corollary. Let θ̂0 be any probability capacity on S and let 〈θ̂si〉mi=1

be any class of probability capacities on T . Define a real-valued set function θ̂ on Ω by

(∀A ∈ 2Ω) θ̂(A) =
∫

S

∫
T

χA(s, t) θ̂s(dt) θ̂0(ds) . (3)

It follows immediately that θ̂(φ) = 0, θ̂(Ω) = 1 and A ⊆ B ⇒ θ̂(A) ≤ θ̂(B). Therefore, θ̂ is a

probability capacity on Ω.

First, we observe8 that (∀E ⊆ S)(∀F ⊆ T )

θ̂(E × F ) =
∫

S

∫
T

χE×F (s, t) θ̂s(dt) θ̂0(ds) =
∫

S
θ̂s(F )χE(s) θ̂0(ds) ,

8Similar observations to those in this and the next paragraphs are also made by Wang (2002).
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from which it follows that

(∀E) θ̂(E × T ) =
∫

S
θ̂s(T )χE(s) θ̂0(ds) = θ̂0(E)

and (∀i)(∀F ) θ̂({si} × F ) =
∫

S
θ̂s(F )χ{si}(s) θ̂0(ds) = θ̂0({si})θ̂si(F ) .

We thus conclude that

θ̂si(F ) =
θ̂({si} × F )

θ̂0({si})
=

θ̂({si} × F )

θ̂({si} × T )

as far as the denominators are non-zero. This is an update rule which would be obtained if we

simply applied Bayes’ rule to θ̂ by regarding θ̂ as a probability measure and may be called naive

Bayes’ rule.

Second, we observe that (∀i)(∀F )

θ̂ (({si} × F ) ∪ (S\{si} × T )) =
∫

S

∫
T

χ({si}×F )∪(S\{si}×T )(s, t) θ̂s(dt) θ̂0(ds)

=
∫

S

(
θ̂si(F )χ{si}(s) + χS\{si}(s)

)
θ̂0(ds)

= (1 − θ̂si(F ))θ̂0(S\{si}) + θ̂si(F )

= (1 − θ̂0(S\{si}))θ̂si(F ) + θ̂0(S\{si}) ,

from which we conclude that

θ̂si(F ) =
θ̂ (({si} × F ) ∪ (S\{si} × T )) − θ̂0(S\{si})

1 − θ̂0(S\{si})

=
θ̂ (({si} × F ) ∪ (S\{si} × T )) − θ̂(S\{si} × T )

1 − θ̂(S\{si} × T )

as far as the denominators are non-zero. This is an update rule for capacities which is known

as the Dempster-Shafer rule in the statistics literature (see, for example, Shafer, 1976 and

Dempster, 1967, 1968).

By taking, as θ̂0 and 〈θ̂si〉i, θ0 and 〈θsi〉i whose existence is guaranteed by the Theorem

under A1-A8 and by defining θ̂ from θ0 and 〈θsi〉i via (3), we have the next corollary.

Corollary. Suppose that a class of binary relations, {�i}m
i=0, satisfies A1-A8. Then,

there exist a probability capacity θ̂ on Ω and an affine function u : Y → R, which is unique up to a
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positive affine transformation, such that for any i satisfying θ̂({si}×T ) �= 0 and θ̂(S\{si}×T ) �=
1, it holds that

f �i g ⇔
∫

T
u(f(si, t)) θsi(dt) >

∫
T

u(g(si, t)) θsi(dt) ,

where θsi is derived from θ̂ by

(∀F ) θsi(F ) =
θ̂({si} × F )
θ̂({si} × T )

=
θ̂ (({si} × F ) ∪ (S\{si} × T )) − θ̂(S\{si} × T )

1 − θ̂(S\{si} × T )
.

This corollary shows that under Axioms A1-A8, each conditional preference is repre-

sented by the Choquet expected utility with respect to the probability capacity which is up-

dated from some probability capacity θ̂ according to the Dempster-Shafer rule. Therefore, the

Corollary provides one justification of a usage of the Dempster-Shafer rule in the literature on

learning under Knightian uncertainty or ambiguity (see, for example, Nishimura and Ozaki,

2002).

Furthermore, the Corollary also shows that for the probability capacity θ̂, naive Bayes’

rule and the Dempster-Shafer rule coincide, which is not always the case for general probability

capacities. This and that the updating rule must be the Dempster-Shafer rule are among strong

implications of the dynamical consistency imposed on the class of (un)conditional preferences.

4. Discussion of Axioms

This section discusses the axioms in the Theorem with relation to those in the existing

literature. The whole set of the axioms are divided into two groups, that is, Axioms A1 through

A5 and Axioms A6 through A8.

Except for Axiom A2, each axiom in the first group, A1 and A3-A5, requires that all

of the binary relations, {�i}m
i=0, should satisfy the axiom of Schmeidler (1989) with the same

name. Note that, while Axiom A5 requires the non-degeneracy only of �0, Axioms A4 and A5

applied to �0 and Axiom A7 imply that �i also satisfies the non-degeneracy for all i (see Step

1 of the proof in Section 5).9

9To be precise, Schmeidler’s axioms of ordering and non-degeneracy are stated in terms of the weak order
while ours are stated in terms of its asymmetric part. Of course, his and ours are equivalent.
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Axiom A2(1) (conditional comonotonic independence) requires that all conditional pref-

erences should satisfy Schmeidler’s comonotonic independence. The motivation for the axiom

of comonotonic independence can be found in Schmeidler’s (1989) original work.

In contrast, Axiom A2(0) (constrained comonotonic independence) is concerned with the

unconditional preference. On the one hand, when applied to the unconditional preference, the

axiom of comonotonic independence would require

A2S(0) (Comonotonic Independence) If f, g, h are pairwise comonotonic with respect to �0,

then f �0 g ⇒ λf + (1 − λ)h �0 λg + (1 − λ)h .

On the other hand, Axiom A2(0) requires the comonotonic independence to hold only among

acts which are 1st-period-measurable and does not say anything about a triplet of acts at least

one of which is not 1st-period-measurable. Clearly, Axiom A2(0) is implied by Axiom A2S(0).

Actually, it is substantially weaker than A2S(0). We come back to this point later.

Among the second group of the axioms, Axiom A6 (independence of unrealized events)

applies only to the conditional preferences. It is well-known also as the axiom of consequential-

ism10 and requires that if two acts behave exactly in the same manner after the realization of

state si, the conditional preference given si should evaluate these two acts indifferently. Axiom

A6 forces the representation of �i to be independent of unrealized states, sj (j �= i) (see (2) in

the Theorem).

The last two axioms are concerned with the connection between the unconditional pref-

erence and the conditional preferences. The former, Axiom A7 (ordinal preference consistency),

is also well-known11 and requires that all the preferences should evaluate constant acts in the

same manner. This axiom implies that the von-Neumann-Morgenstern (vNM) utility index,

u, in the Theorem can be taken to be common for all representations (see (1) and (2) in the

Theorem).

The latter, Axiom A8 (dynamical consistency), is a version of a well-known axiom of

10See, for example, Axiom 7 of Ghirardato (2002), which, in the Savage-act framework, axiomatizes the class of
(un)conditional preferences which can be represented by an expected utility with respect to a probability measure
P and conditional expected utilities with respect to the conditional probability measures updated from P by
Bayes’ rule.

11See, for example, Axiom 3 of Ghirardato (2002), cited in the previous footnote.
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dynamical consistency.12 To see an implication of this axiom, suppose that the axiom is now

violated so that there exists a pair of acts, f and g, such that (∀i) f �i g and g �0 f . Then,

there are two possible cases: (a) (∀i) f ∼i g and g �0 f ; and (b) (∀i) f �i g, (∃i) f �i g and

g �0 f , in the latter case of which there exists some state such that the decision-maker has a

definite incentive to revise her initial plan after observing that state. Axiom A8 requires that

there should be no such pair of acts that either (a) or (b) is the case.

We now turn to a discussion of implications of the axioms as a whole. In particular,

we argue that although the dynamical consistency (A8) seems to be a mild requirement, its

implication is fairly strong in the presence of other axioms. To see this, assume that all the

axioms of the Theorem is satisfied. Further, assume that Axiom A2(0) is now strengthened to

Axiom A2S(0). Then, by Axioms A1, A2S(0) and A3-A5, Schmeidler’s (1989) theorem implies

that there exists a unique probability capacity θ on Ω and an affine function u : Y → R such

that

f �0 g ⇔
∫

Ω
u(f(ω)) θ(dω) >

∫
Ω

u(g(ω)) θ(dω) , (4)

where u may be assumed, without loss of generality, to be the same as the one in the Theorem.13

Furthermore, the Theorem shows that (1) holds with some θ0 and 〈θsi〉i. Therefore, it follows

that14

(∀f ∈ L0)
∫

Ω
u(f(ω)) θ(dω) =

∫
S

∫
T

u(f(s, t)) θs(dt) θ0(ds) . (5)

By considering an act fA satisfying u(fA(·)) = χA for each A,15 equation (5) implies that

(∀A) θ(A) = θ̂(A), where θ̂ is derived from θ0 and 〈θsi〉i by (3) right after the statement of

the Theorem in the previous section (set θ̂0 and 〈θ̂si〉i there to be equal to θ0 and 〈θsi〉i here).

12Another version of the dynamical consistency, which is conceptually pretty close to ours but adapted to a
different framework, appears as Axiom 5 (consistency) in Wang (2002). For the difference between his framework
and ours, see the Introduction of the current paper.

13From (4), it follows that u is an affine function which represents �0 on Y . The vNM utility index in the
Theorem is also an affine function representing �0 on Y . Therefore, one index is an affine transformation of the
other, and hence, we can take u in (4) to be the same as the one in the Theorem.

14To see this, note that the both sides of equation (5) coincide when f is a constant act. Step 1 of the proof
in Section 5 proves that for any f ∈ L0, there exists a constant act which is indifferenct to f with respect to �0

(see (9)). Therefore, the both sides of equation (5) must always coincide since they both represent �0.
15Such an act certainly exists. See (8) in Step 1 of the proof in Section 5 (let fA be such that fA(ω) = y∗ if

ω ∈ A and fA(ω) = (1/2)y∗ + (1/2)y∗ if ω /∈ A).
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Therefore, the discussion there and the fact that θ̂ = θ show that

θ0 = θ̂(· × T ) = θ(· × T ) and θs =
θ̂({s} × ·)
θ̂({s} × T )

=
θ({s} × ·)
θ({s} × T )

. (6)

It is well-known that the probability capacity θ which satisfies both (5) and (6) must be ad-

ditive.16 Therefore, a class of (un)conditional preferences which satisfies Axioms A1, A2S(0),

A2(1) and A3-A8 can be represented by an expected utility with respect to a unique probability

measure and conditional expected utilities with respect to the conditional probability measures

updated by Bayes’ rule.

Epstein and Le Breton (1993) observe that in the Savage-act framework, if the uncon-

ditional preference is represented by using a unique probability measure P (but not necessarily

in a form of expected utility), the axiom of dynamical consistency implies that each conditional

preference is represented by using the conditional probability measure updated from P by Bayes’

rule (again not necessarily in a form of conditional expected utility).17 The discussion in the

previous paragraph shows that if both the unconditional and conditional preferences are repre-

sented by the (noniterated) Choquet expected utilities (under Axioms A1, A2S(0), A2(1) and

A3-A5), the axiom of dynamical consistency (as well as Axioms A6 and A7) implies that the

representation of the preferences must be the (un)conditional expected utilities with respect to

a probability measure and the conditional probability measures updated by Bayes’ rule. This is

a variant of the observation made by Epstein and Le Breton in our lottery-act framework.

Furthermore, in the lottery-act framework as ours, Gilboa and Schmeidler (1993) show

that if both the unconditional and conditional preferences are represented by the (noniterated)

Choquet expected utilities, the dynamical consistency must be violated except for the trivial case

where the capacity is additive.18 In contrast, we require that the unconditional preference should

be represented only by an iterated Choquet expected utility by substantially weakening A2S(0)

to A2(0). By this, the class of (un)conditional preferences restores the dynamical consistency

while still allowing the conditional preferences to be represented by the Choquet expected utility

with respect to a probability capacity which is not necessarily reduced to a probability measure.
16See, for example, Yoo (1991).
17Their work is largely motivated by Machina and Schmeidler’s (1992) theory of probabilistical sophistication.
18To be more precise, they show that both the unconditional and conditional preferences are represented by

the (noniterated) Choquet expected utilities if and only if the class of (un)conditional preferences satisfies what
they call an f-Bayesian rule with f being an act which takes on the best and the worst outcomes only.
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5. Proof of Theorem

Showing that the axioms in the Theorem are necessary for the representation is straight-

forward in view of the comonotonic additivity of Choquet integrals (Schmeidler, 1986), and

hence, it is omitted. We prove the sufficiency of them in several steps.

Step 1. This step shows that there exists a function U : L0 → R which represents �0, that is,

(∀f, g ∈ L0) f �0 g ⇔ U(f) > U(g) , (7)

and whose restriction on Lc is an affine function. Note that Lc is a mixture space and that by

A1, A2(0) and A3, �0 restricted on Lc satisfies all the axioms of the mixture-space theorem of

Herstein and Milnor (1953). Therefore, it follows that there exists an affine function J on Lc

which represents �0 restricted on Lc. Define a function u on Y by (∀y) u(y) = J(f) where f ∈ Lc

is such that (∀ω) f(ω) = y. Clearly, u is an affine function on Y . By A4 and A5, there exist

y∗, y∗ ∈ Y such that y∗ �0 y∗. Therefore, by making a suitable positive affine transformation

on u, we may assume without loss of generality that

u(y∗) = 1 and u(y∗) = −1 . (8)

We claim that for any f ∈ L0, there exist ȳ, y ∈ Y and α ∈ [0, 1] such that

f ∼0 αȳ + (1 − α)y . (9)

This holds because it follows from A4 that there exist ȳ, y ∈ Y such that ȳ �0 f �0 y and

because it follows from A2(0) and A3 that there exists α ∈ [0, 1] such that f ∼0 αȳ + (1− α)y .

Then, define U : L0 → R by

(∀f ∈ L0) U(f) = u
(
αȳ + (1 − α)y

)
, (10)

where ȳ, y ∈ Y and α ∈ [0, 1] are such that (9) holds. Such ȳ, y and α certainly exist as shown

in the previous paragraph. It is then immediate that U is well-defined and represents �0 on L0.

Furthermore, its restriction on Lc is an affine function since u is an affine function on Y .
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Step 2. Define L′
0 by

L′
0 =

{
f ′ : T → Y

∣∣ f ′(T ) is a finite subset of Y
}

.

That is, L′
0 is the space of simple lottery acts whose domain is T . Given any f ∈ L0 and any

s ∈ S, it holds obviously that f(s, ·) ∈ L′
0.

For each i ∈ {1, . . . ,m}, we define a binary relation �′
i on L′

0 by

(∀f ′, g′ ∈ L′
0) f ′ �′

i g′ ⇔ (∀f, g ∈ L0)
[
f(si, ·) = f ′ and g(si, ·) = g′ ⇒ f �i g

]
. (11)

We derive �′
i, ∼′

i and �′
i on Y , from �′

i as usual. Two acts, f ′ and g′, are comonotonic with

respect to �′
i if (∀t, t′ ∈ T ) f ′(t) �′

i f ′(t′) ⇒ g′(t) ⊀′
i g′(t′).

The rest of this step shows that the following holds:

(∀f ′, g′ ∈ L′
0) f ′ �′

i g′ ⇔ (∃f, g ∈ L0) f(si, ·) = f ′, g(si, ·) = g′ and f �i g . (12)

To show (⇒), suppose that f ′ �′
i g′. Then, the right-hand side of (12) clearly holds true by the

definition (11) since we can always find f and g such that f(si, ·) = f ′ and g(si, ·) = g′ for any

f ′ and g′. To show (⇐), suppose that the right-hand side of (12) holds, that is, assume that

there exist f̂ and ĝ such that f̂(si, ·) = f ′, ĝ(si, ·) = g′ and f̂ �i ĝ. Let f, g be any pair of acts

such that f(si, ·) = f ′ and g(si, ·) = g′. Then, A6 implies that f̂ ∼i f and ĝ ∼i g, and hence, it

follows that f �i g by A1. Therefore, f ′ �′
i g′ holds by the definition (11).

Step 3. This step proves that �′
i defined in the previous step satisfies all the axioms of Schmei-

dler’s Theorem (1989, p.578). In the rest of this step, we fix i ∈ {1, . . . , n} arbitrarily.

(Ordering) We need to show that �′
i is asymmetric and negatively transitive. The

asymmetry is immediate from the definition (11) of �′
i and the asymmetry of �i (A1). To show

the negative transitivity, let f ′, g′, h′ ∈ L′
0 be such that f ′ �′

i g′ and g′ �′
i h′. Then, by the

definition (11) of �′
i, there exist f, g ∈ L0 such that f(si, ·) = f ′, g(si, ·) = g′ and f �i g and

there exist ĝ, h ∈ L0 such that ĝ(si, ·) = g′, h(si, ·) = h′ and ĝ �i h. Since A6 implies that g ∼i ĝ

and since �i is a preference order (A1), it follows that f �i h. Therefore, we have f ′ �′
i h′ by

the definition (11) of �′
i, which completes the proof of the negative transitivity.
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(Comonotonic Independence) Let f ′, g′, h′ ∈ L′
0 be pairwise comonotonic with respect

to �′
i and such that f ′ �′

i g′. We need to show that for any λ ∈ (0, 1),

λf ′ + (1 − λ)h′ �′
i λg′ + (1 − λ)h′ . (13)

Let λ ∈ (0, 1) and let f, g, h ∈ L0 be such that (∀s) f(s, ·) = f ′, g(s, ·) = g′ and

h(s, ·) = h′. This paragraph proves that f, g, h thus defined are pairwise comonotonic with

respect to �i. To see this, let s, s′ ∈ S and t, t′ ∈ T be such that f(s, t) �i f(s′, t′). Since

f(s, t) = f ′(t) and f(s′, t′) = f ′(t′), it follows that f ′(t) �′
i f ′(t′) by (12) and that g′(t) ⊀′

i g′(t′)

by the comonotonicity of f ′ and g′ with respect to �′
i. Since g(s, t) = g′(t) and g(s′, t′) = g′(t′),

(12) also implies that g(s, t) ⊀i g′(s′, t′). The same argument applies to the other pairs of acts.

Note that f �i g by the definition (11) of �′
i and the assumption that f ′ �′

i g′. Therefore,

A2(1) and the pairwise comonotonicity of f, g, h proven in the previous paragraph imply that

λf + (1 − λ)h �i λg + (1 − λ)h. Finally, (13) follows from (12) because (λf + (1 − λ)h)(si, ·) =

λf(si, ·)+ (1−λ)h(si, ·) = λf ′ +(1−λ)h′ and (λg +(1−λ)h)(si, ·) = λg(si, ·)+ (1−λ)h(si, ·) =

λg′ + (1 − λ)h′.

(Continuity) Let f ′, g′, h′ ∈ L′
0 be such that f ′ �′

i g′ and g′ �′
i h′. We need to show

the existence of α, β ∈ (0, 1) such that αf ′ + (1 − α)h′ �′
i g′ and g′ �′

i βf ′ + (1 − β)h′. To

do this, let f, g, h ∈ L0 be such that f(si, ·) = f ′, g(si, ·) = g′ and h(si, ·) = h′. Then, the

definition (11) of �′
i shows that f �i g and g �i h. Therefore, A3 implies that there exists

α ∈ (0, 1) such that αf + (1 − α)h �i g. Finally, (12) shows that αf ′ + (1 − α)h′ �′
i g′ because

(αf + (1 − α)h)(si, ·) = αf(si, ·) + (1 − α)h(si, ·) = αf ′ + (1 − α)h′. The existence of β can be

proven similarly.

(Monotonicity) We first show that for any y, y′ ∈ Y , y �′
i y′ if and only if y �i y′. To

do this, suppose that y �′
i y′ and let f, g ∈ L0 be constant acts such that (∀ω ∈ Ω) f(ω) =

y and g(ω) = y′. Then, the definition (11) of �′
i immediately shows that f �i g, and hence,

that y �i y′. Next, suppose that y �i y′. Then, it follows that y �′
i y′ from (12) by letting f

and g there be the constant acts defined above.

We now turn to the proof of monotonicity. Let f ′, g′ ∈ L′
0 be such that (∀t ∈ T ) f ′(t) �′

i

g′(t). We need to show that f ′ �′
i g′. To do this, let f, g ∈ L0 be such that (∀s ∈ S) f(s, ·) = f ′
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and g(s, ·) = g′. Then, from the assumption that (∀t) f ′(t) �′
i g′(t), it follows that (∀ω ∈

Ω) f(ω) �′
i g(ω), and hence, that (∀ω ∈ Ω) f(ω) �i g(ω) by the claim proven in the previous

paragraph. Therefore, A4 implies that f �i g, which in turn implies that f ′ �′
i g′ by the

definition (11) of �′
i.

(Non-degeneracy) We need to show that there exist f ′, g′ ∈ L′
0 such that f ′ �′

i g′. To

do this, note that there exist y∗, y∗ ∈ Y such that y∗ �0 y∗ (Step 1). Then, A7 implies that

y∗ �i y∗, and hence, the first paragraph of the proof of monotonicity shows that y∗ �′
i y∗, which

completes the proof.

Step 4. By the previous step, we may invoke Schmeidler’s Theorem (1989, p.578) to conclude

that for each i ∈ {1, . . . ,m}, there exist a unique probability capacity θsi on T and an affine

function ui : Y → R, which is unique up to a positive affine transformation, such that

(∀f, g ∈ L′
0) f ′ �′

i g′ ⇔
∫

T
ui(f ′(t)) θsi(dt) >

∫
T

ui(g′(t)) θsi(dt) . (14)

In the rest of this step, we prove (2) in the Theorem. Fix i ∈ {1, . . . , n} arbitrarily.

First, we show that

(∀f, g ∈ L0) f �i g ⇔
∫

T
ui(f(si, t)) θsi(dt) >

∫
T

ui(g(si, t)) θsi(dt) . (15)

To show (⇐), assume that the right-hand side of (15) holds. Then, by (14), it holds that

f(si, ·) �′
i g(si, ·). Then, by the definition (11) of �′

i, it follows that f �i g. To show (⇒), assume

that the right-hand side of (15) does not hold. Then, by (14), it holds that f(si, ·) �′
i g(si, ·). If

f �i g holds, it must hold that f(si, ·) �′
i g(si, ·) by (12), which contradicts the asymmetry of

�′
i which was established in (Ordering) of Step 3.

Second, note that y∗ �i y∗ since y∗ �0 y∗ by the definitions of y∗ and y∗ (Step 1) and since

y∗ �0 y∗ ⇔ y∗ �i y∗ by A7. Therefore, by making a suitable positive affine transformation on

ui, we may assume without loss of generality that ui(y∗) = 1 and ui(y∗) = −1. Since two affine

functions which intersect at two distinct points coinside, it follows that (∀y ∈ Y ) ui(y) = u(y)

by (8), where u : Y → R is an affine function defined in Step 1. Therefore, we conclude that

there exist a unique class of probability capacity 〈θsi〉mi=1 on T and an affine function u : Y → R
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such that

(∀f, g ∈ L0) f �i g ⇔
∫

T
u(f(si, t)) θsi(dt) >

∫
T

u(g(si, t)) θsi(dt) , (16)

which completes the proof of (2) in the Theorem.

Step 5. Let K ⊆ R be defined by K ≡ u(Y ). Note that K is convex by the affinity of u and

[−1, 1] ⊆ K by (8). We denote by B0(K) the space of K-valued simple functions on S. Two

elements, a and b, of B0(K) are said to be comonotonic if (∀s, s′ ∈ S) (a(s)−a(s′))(b(s)−b(s′)) ≥
0. Given f ∈ L0, a mapping defined by

s �→
∫

T
u(f(s, t)) θs(dt)

is an element of B0(K). Furthermore, for any element a of B0(K), there exists a 1st-period-

measurable act f ∈ L0 such that

(∀s ∈ S) a(s) =
∫

T
u(f(s, t)) θs(dt) = u(f(s)) (17)

(recall that we may write the outcome of a 1st-period-measurable act as f(s) instead of f(s, t)).

We define a functional I : B0(K) → R by

(∀a ∈ B0(K)) I(a) = U(f) ,

where f ∈ L0 is an act which satisfies

(∀s ∈ S) a(s) =
∫

T
u(f(s, t)) θs(dt) .

Such an act certainly exists by (17). In the rest of this paragraph, we show that I is well-defined.

To this end, let a ∈ B0(K) and let f, g ∈ L0 be any pair of acts such that

(∀i) a(si) =
∫

T
u(f(si, t)) θsi(dt) =

∫
T

u(g(si, t)) θsi(dt) .

Then, (16) implies that (∀i) f ∼i g, which in turn implies that f ∼0 g by A8. We thus conclude

that U(f) = U(g) by (7).

By the definition of I, we have

(∀f ∈ L0) U(f) = I

(∫
T

u(f(·, t)) θ·(dt)
)

. (18)

In particular, when f is 1st-period-measurable, we have

U(f) = I (u(f(·))) . (19)
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Step 6. In this step, we show that the functional I defined in the previous step satisfies all the

assumptions of Corollary of Schmeidler (1986, p.258), which proves that I can be represented

as

(∀a ∈ B0(K)) I(a) =
∫

S
a(s) θ0(ds)

with some probability capacity θ0 on S. This, (18) and (7) complete the proof of (1) in the

Theorem.

(Positive Homogeneity) Let λ ∈ K. We need to show that I(λχS) = λ. To do this, let

y ∈ Y be an outcome such that u(y) = λ and let f ∈ L0 be a 1st-period-measurable act such

that (∀s) f(s) = y. Then,

I(λχS) = I (u(f(·))) = U(f) = u(y) = λ ,

where the second equality holds by (19) and the third equality holds by (10).

(Comonotonic Independence) Let a, b, c ∈ B0(K) be pairwise comonotonic (see the first

paragraph of Step 5). We need to show that for any α ∈ (0, 1),

I(a) > I(b) ⇒ I(αa + (1 − α)c) > I(αb + (1 − α)c) . (20)

To do this, let f, g, h be 1st-period-measurable acts such that (∀s) u(f(s)) = a(s), u(g(s)) = b(s)

and u(h(s)) = c(s). Such f , g and h certainly exist by (17). Then, f and g are comonotonic

because for any s, s′ ∈ S,

f(s) �0 f(s′) ⇔ f(s) �i f(s′) ⇔ u(f(s)) > u(f(s′)) ⇔ a(s) > a(s′)

⇒ b(s) ≮ b(s′) ⇔ u(g(s)) ≮ u(g(s′)) ⇔ g(s) ⊀i g(s′) ⇔ g(s) ⊀0 g(s′) ,

where the first and last equivalences hold by A7; the second and fifth equivalences hold by (16);

and the implication holds by the comonotonicity between a and b. Similarly, the other pairs

among f , g and h are comonotonic. Therefore, (20) holds because

I(a) > I(b) ⇒ I (u(f(·))) > I (u(g(·)))

⇒ U(f) > U(g)

⇒ U(αf + (1 − α)h) > U(αg + (1 − α)h)
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⇒ I (u(αf(·) + (1 − α)h(·))) > I (u(αg(·) + (1 − α)h(·)))

⇒ I (αu(f(·)) + (1 − α)u(h(·))) > I (αu(g(·)) + (1 − α)u(h(·)))

⇒ I (αa + (1 − α)c) > I (αa + (1 − α)c) ,

where the second and fourth implications hold by (19); the third implication holds by (7), the

assumption that f, g, h are 1st-period-measurable, the fact that they are pairwise comonotonic

(proven above) and A2(0); and the fifth implication holds by the affinity of u.

(Monotonicity) Let a, b ∈ B0(K) be such that a ≥ b. We need to prove that I(a) ≥
I(b). To do this, let f and g be 1st-period-measurable acts such that (∀s) u(f(s)) = a(s) and

u(g(s)) = b(s). Such f and g certainly exist by (17). Then, I(a) ≥ I(b) holds because

a ≥ b ⇔ (∀s) u(f(s)) ≥ u(g(s)) ⇔ (∀s) f(s) �0 g(s)

⇒ f �0 g ⇔ U(f) ≥ U(g) ⇔ I(u(f(·))) ≥ I(u(g(·))) ⇔ I(a) ≥ I(b) ,

where the second equivalence holds by (10) and (7); the implication holds by A4; the third

equivalence holds by (7); and fourth equivalence holds by (19). �
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