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Abstract

Random matching models with different states are an important class of dynamic
games; for example, money search models, job search models, and some games in
biology are special cases. In this paper, we investigate the basic structure of the
models: the existence of equilibria, the global structure of the set of equilibria, and the
approximation and computation of equilibria. Under conditions which are typically
satisfied in monetary models, the equilibrium condition can be considered as a non-
linear complementarity problem with some new feature.
Keywords: Random Matching Model, Money, Stationary Equilibria, Non-linear

Comlementarity Problem.
Journal of Economic Literature Classification Number: C61, C62, C63, C72, C73,

D51, E40.

1 Introduction

In this paper, we study the basic structure of random matching models with a finite number
of states and a continuum of agents. Random matching models are an important class of
dynamic games; for example, money search models, job search models, and some games in
biology are special cases. In the models, each matched pair of agents play a game of which
action spaces and payoffs depend on their states. The states follow a Markov process, i.e.,
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the probability distribution on states in the next period is determined by the current states
and actions.
In spite of its importance, the structure of random matching models has not been fully

explored in the literature. For example, no existence theorem in a general framework has
been known. In this paper, we investigate the basic structure of the model: the existence of
equilibria, the global structure of the set of equilibria, and the approximation and computa-
tion of equilibria.
The existence of equilibria is one of the most important questions in any economic model.

In some specific random matching models, the existence of equilibria has been proved by
directly calculating equilibria. (See, for example, Green and Zhou (1998) and Kiyotaki and
Wright (1989).) However, to the best of our knowledge, no general existence theorem has
been proved in the literature. In this paper, first we present an existence theorem in a general
framework. The existence theorems in stochastic games, e.g., Duffie et al. (1994), cannot
be applied to random matching models, since the number of players is typically finite in
stochastic games.
Second, assuming some condition that is typically satisfied in random matching models

with money, we show some remarkable features about the set of (monetary) equilibria. More
precisely, under that condition, the set of equilibria is at least one-dimensional, and adding
some transversality condition, it is a one-dimensional manifold with endpoints in which all
agents are at the same state. Moreover, under these conditions, the equilibrium condition
can be considered as a non-linear complementarity problem having one degree of freedom
and with a new feature. The equilibrium condition can be written as follows:

fn(x, y) = 0, n = 1, 2, . . . , N,

ymgm(x, y) = 0, m = 1, 2, . . . ,M,

xn ≥ 0, n = 1, 2, . . . , N,
gm(x, y) ≥ 0, ym ≥ 0, m = 1, 2, . . . ,M.

The first system, the condition for stationary probability distribution, has one redundant
equation and seems to be a standard system of equations, while the second and the fourth
system, the condition for dynamic optimization, look as a standard complementarity prob-
lem. However, because of the random matching structure, the whole system can be seen as a
complementarity problem. Suppose some xn becomes zero when we follow a one-dimensional
set of equilibria. Then, by the random matching structure, fn(x, y) = 0 becomes an identity
and precisely one positive ym simultaneously becomes zero, and thus we can follow the set
of equilibria further by setting xn = 0 and ym = 0 and relaxing gm(x, y) ≥ 0. In this way
a connected component of equilibria can be obtained by finding an endpoint and following
the one-dimensional manifold by some simplicial or predictor-corrector algorithm. (See, for
example Allgower and Georg (1990).)
We also consider the case that the transversality condition does not necessarily hold.
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In this case, a higher dimensional set of equilibria may exist. We present a method to
follow the set of equilibria approximately by perturbing the system. As is well known, some
perturbation of a system of equations can make the system regular. For example, adding
constant terms to the system, the regularity directly follows from Sard theorem. However,
in our case, such perturbation does not work and some sophisticated perturbation is needed.
By the perturbation, the set of approximated equilibria becomes a one-dimensional manifold
and one of its connected components can be followed by finding an endpoint and using some
path-following algorithm.
The paper is organized as follows. In Section 2, we describe the basic model and present

an existence theorem. In Section 3, we present an example of the random matching model
with money, a special case of the basic model. In Section 4, assuming some transversality
condition and some special condition, being typically satisfied in monetary model, we com-
pletely characterize the global structure of the set of equilibria. Finally, in Section 5, we
consider the case that the transversality condition is not satisfied and approximate the set
of equilibria by perturbing the system.

2 The Basic Model and the Existence of Stationary

Markov Perfect Equilibria

Time is discrete starting from 0. There are a finite number of states denoted by n =
0, 1, . . . , N . Let N = {0, 1, . . . , N} denote the set of states. We assume that there are
infinitely lived agents with a nonatomic mass of measure one. A probability measure on N is
denoted by a vector vector h = (h(0), h(1), . . . , h(N)) with all h(n) ≥ 0 andPN

n=0 h(n) = 1,
where h(n) is the proportion of agents at state n.
An agent at state n chooses an action in the set An = {an1 , . . . , ankn

}. The number

K =
PN

n=0 kn denotes the total number of actions. Let βnj ≥ 0 satisfying
Pkn

j=1 βnj = 1
be the proportion of the agents choosing action anj among the agents at state n, and let
β = (β01, . . . ,βnj, . . . ,βNkN

). The number h(n, j) = βnjh(n) will denote the proportion of
agents choosing action anj .
At each time period, ordered pairs of agents are matched. Suppose an (n, j) agent, who

is at state n and chooses action anj , is matched to an (n
0, j0) agent, who is at state n0 and

chooses action an
0
j0 . Then in the next period the first agent’s and the second agent’s states

will be f1((n, j), (n
0, j0)) and f2((n, j), (n

0, j0)), respectively. That is both f1 and f2 map an
ordered pair ((n, j), (n0, j0)) to elements in N .

Example 1 When one agent chooses an action and the other agent chooses an action after
observing the first agent’s action, we may order the pair ((n, j), (n0, j0)) in such a way that
the (n, j) agent chooses first and the (n0, j0) chooses second.
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Example 2 A special case occurs when it holds that

f1((n, j), (n
0, j0)) = f2((n

0, j0), (n, j)) for all (n, j) and (n0, j0).

In these models there is no ordering in the pair of agents being matched.

We assume a random matching structure; the proportion of matching between agents with
(n, j) and (n0, j0) is equal to µh(n, j)h(n0, j0), where µ ∈ (0, 1] is exogenously given, and with
probability 1

2
one of the two agents becomes the first agent and the other one becomes the sec-

ond agent in the ordering. Therefore, in each period a proportion 1
2
µh(n, j)h(n0, j0) of agents

move from state n to state f1((n, j), (n
0, j0)) and from state n0 to state f2((n, j), (n

0, j0)).
Let u1((n, j), (n

0, j0)) and u2((n, j), (n
0, j0)) be the one-period utilities of an (n, j) agent

and an (n0, j0) agent, respectively, when the first agent is matched to the second agent. Let
α ∈ IR+ be the discount factor and let γ ∈ IRL be the vector of parameters of the model
including α and µ.
We adopt a Bellman equation approach. Let V (n) be the value of state n, n = 0, 1, . . . , N,

and let V = (V (0), V (1), . . . , V (N)). The variables in the model are denoted by x = (V, h,β).
Let

B1
n = {((i, j), (i0, j0)) | f1((i, j), (i

0, j0)) = n},
B2
n = {((i, j), (i0, j0)) | f2((i, j), (i

0, j0)) = n}.
Then the value of action anj ∈ An at state n = 0, 1, . . . , N is defined as:

Wnj(x; γ) = U((n, j), h,β; γ) + α

NX
n0=0

qn0((n, j), h, β;µ)V (n0),

where

U((n, j), h, β; γ) =
1

2

X
(n0,j0)

h(n0, j0) (u1((n, j), (n
0, j0)) + u2((n

0, j0), (n, j))) ,

the one-period expected utility of an (n, j) agent, and

qn0((n, j), h,β;µ) =
X

{(n00,j00)|((n,j),(n00,j00))∈B1
n0}

1

2
µh(n00, j00) +

X
{(n00,j00)|((n00,j00),(n,j))∈B2

n0}

1

2
µh(n00, j00),

the probability of state n0 in the next period conditional on ((n, j), h,β). We will define
stationary Markov perfect equilibria in our framework. First, by dynamic optimization, the
following conditions should be satisfied:

1.
Pkn

j=1 βnj = 1, n = 0, 1, . . . , N,
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2. V (n) = maxjWnj(x; γ), n = 0, 1, . . . , N,

3. βnj ≥ 0 for all (n, j), and βnj0 > 0 implies j0 ∈ argmaxjWnj(x; γ), n = 0, 1, . . . , N.

The second condition is the Bellman equation and the third condition means that only the
best responses are used in an equilibrium. The above conditions are equivalent to:

βnj ≥ 0, j = 1, . . . , kn,
knX
j=1

βnj − 1 = 0, n = 0, 1, . . . , N,

V (n)−Wnj(x; γ) = 0, if βnj > 0, n = 0, 1, . . . , N,

V (n)−Wnj(x; γ) ≥ 0, if βnj = 0, n = 0, 1, . . . , N.

Indeed, since
Pkn

j=1 βnj − 1 = 0, there exists a j0 such that βnj0 > 0 and thus for all such j0

it holds that V (n) = Wnj0(x; γ) and Wnj0(x; γ) ≥ Wnj(x; γ) for all j. This implies the above
three conditions. The converse clearly holds.
The (gross) outflow On(h,β; γ) and the (gross) inflow In(h,β; γ) at state n are given by

On(h,β; γ) =
P

j,i0,j0
1
2
µh(n, j)h(i0, j0) +

P
i,j,j0

1
2
µh(i, j)h(n, j0),

and

In(h,β; γ) =
P

((i,j),(i0,j0))∈B1
n

1
2
µh(i, j)h(i0, j0)

+
P

((i,j),(i0,j0))∈B2
n

1
2
µh(i, j)h(i0, j0).

Note that “gross” means that the cases of f1 = n and f2 = n are included in the definition.
Needless to say, such terms appear both in On and in In. Thus the condition for stationarity
is

O0(h, β; γ) = I0(h,β; γ)

O1(h, β; γ) = I1(h,β; γ)

...

ON(h, β; γ) = IN(h, β; γ)

NX
n=0

h(n) = 1.

Since any term in On(h,β; γ) should be also in In0(h,β; γ) for some n0,

NX
n=0

On(h, β; γ) =

NX
n=0

In(h,β; γ)

is an identity and thus O0(h, β; γ) = I0(h,β; γ) is redundant.
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Definition 1 The tuple x∗ = (V ∗, h∗,β∗), with h∗(n) ≥ 0 for n = 0, 1, . . . , N , and β∗nj ≥ 0
for all (n, j), is a stationary Markov perfect equilibrium if

On(h
∗, β∗; γ)− In(h∗,β∗; γ) = 0, n = 1, 2, . . . , N,

NX
n=0

h∗(n)− 1 = 0,
knX
j=1

β∗nj − 1 = 0, n = 0, 1, . . . , N,

V ∗(n)−Wnj(x
∗; γ) = 0, if β∗nj > 0,

V ∗(n)−Wnj(x
∗; γ) ≥ 0, if β∗nj = 0.

Below, we present an existence theorem under the following assumption.

Assumption 1 For the discount factor α it holds that α ∈ (0, 1).
Theorem 1 Under Assumption 1, there exists a stationary Markov perfect equilibrium.

Proof:
For given γ, V (n), n = 0, 1, . . . , N , can be expressed as functions of (h,β) by solving the
following system of linear equations:

V (n) =

knX
j=1

βnj

Ã
U((n, j), h,β; γ) + α

NX
n0=0

qn0((n, j), h,β;µ)V (n0)

!
, n = 0, 1, . . . , N.

Clearly, by Assumption 1 the system is regular. Thus these functions are continuous func-
tions of (h, β) and will be denoted by Ṽn(h,β; γ), n = 0, 1, . . . , N .

1 AlsoWnj(x; γ) can be ex-
pressed as a continuous function of (h, β), to be denoted by W̃nj(h, β; γ), n = 0, 1, . . . , N, j =
1, . . . , kn.
For given γ, let g : SN+1 × ΠNn=0S

kn → IRN+1 × ΠNn=0IR
kn be defined by

g(h,β) =

µ
g1(h, β)
(g2
n(h,β))

N
n=0

¶
=

µ
(−On(h,β; γ) + In(h,β; γ))Nn=0

(Ṽn(h, β; γ)e
kn − W̃n(h, β; γ))

N
n=0

¶
,

where Sm = {x ∈ IRm+ |
P

i xi = 1} and em is the m-vector of ones.
Since the domain of g is a non-empty, convex, compact set and g itself is a continuous

function of (h, β), there exists a stationary point (h∗, β∗) of g, i.e.,

h>g1(h∗, β∗) ≤ h∗>g1(h∗,β∗), for all h ∈ SN+1,
β>n g

2
n(h

∗,β∗) ≤ β∗>n g
2
n(h

∗, β∗), for all βn ∈ Skn, n = 0, 1, . . . , N.
1Note that, since α ∈ (0, 1), Ṽn(h,β; γ), n = 0, 1, . . . , N, can be obtained by iteratively substituting

V (n), n = 0, 1, . . . , N , in the above system.
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Take d(t) = (1− t)h∗ + te(n), where e(n) denotes an n-th unit vector of appropriate length.
If h∗(n) > 0, then d(t) ∈ SN+1 for any t close to zero. Hence, if h∗(n) > 0,

g1
n(h

∗,β∗) = h∗>g1(h∗,β∗).

If h∗(n) = 0 then d(t) ∈ SN+1 for small positive t. Hence, since In(h
∗,β∗; γ)) ≥ 0 =

On(h
∗,β∗; γ) when h∗(n) = 0, we obtain that if h∗(n) = 0,

0 ≤ g1
n(h

∗,β∗) ≤ h∗>g1(h∗,β∗).

Since
PN

n=0 g
1
n(h

∗,β∗) = 0, we obtain g1
n(h

∗, β∗) = 0 for all n = 0, 1, . . . , N , and so
On(h

∗,β∗; γ) = In(h∗, β∗; γ) for all n = 0, 1, . . . , N .
Next take d(t) = (1 − t)β∗n + te(j). If β∗nj > 0, then d(t) ∈ Skn for any t close to zero.

Hence, if β∗nj > 0, then

g2
nj(h

∗,β∗) = β∗>n g
2
n(h

∗,β∗),

and so

W̃nj(h
∗, β∗; γ) = β∗>n W̃n(h

∗, β∗; γ).

If β∗nj = 0, then d(t) ∈ Skn for small positive t. Hence, if β∗nj = 0, then

W̃nj(h
∗,β∗; γ) ≤ β∗>n W̃n(h

∗,β∗; γ).

Therefore

W̃nj(h
∗,β∗; γ) = max

j0
W̃nj0(h∗,β∗; γ) if β∗nj > 0.

Consequently, for all n = 0, 1, . . . , N ,

Wnj(x
∗; γ) = V ∗(n) if β∗nj > 0

and

Wnj(x
∗; γ) ≤ V ∗(n) if β∗nj = 0.

The theorem states that if the discount factor α lies between 0 and 1, there exists at least
one stationary Markov perfect equilibrium.
Now we investigate the case that, for each matched pair, the sum of their states does not

change. That is we assume the following.
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Assumption 2 For all (n, j) and (n0, j0),

f1((n, j), (n
0, j0)) + f2((n, j), (n

0, j0)) = n+ n0.

This assumption is satisfied in random matching models with money. In such models, n
stands for the amount of money an agent has, i.e. any agent at state n has n units of money.
For a matched pair ((n, j), (n0, j0)), an (n, j) agent is a (potential) seller and an (n0, j0) agent
is a (potential) buyer, and a possible transaction is made using money. Since the amount
of money the seller pays is the same as the buyer gets, the total amount of money does not
change. For details, see the next sections and Green and Zhou (1988), Kamiya and Shimizu
(2002), and Zhou (1999).
In this case, the following lemma holds.2

Lemma 1 Under Assumption 2,

NX
n=0

nOn(h, β; γ) =

NX
n=0

nIn(h,β; γ). (1)

Proof:
Consider an ordered pair ((n, j), (n0, j0)). By the matchings between them, a proportion
1
2
µh(n, j)h(n0, j0) of agents move from n to f1((n, j), (n

0, j0)), and the same proportion moves
from n0 to f2((n, j), (n

0, j0)). Corresponding to the moves, the following terms appear in the
left hand side (LHS) and in the right hand side (RHS) of (1):

the LHS the RHS
1
2
nµh(n, j)h(n0, j0) 1

2
f1((n, j), (n

0, j0)))µh(n, j)h(n0, j0)
1
2
n0µh(n, j)h(n0, j0) 1

2
f2((n, j), (n

0, j0)))µh(n, j)h(n0, j0)

Because of Assumption 2 the sum of the terms in the LHS is equal to the one in the RHS.
Since this holds for every pair ((n, j), (n0, j0)), formula (1) holds.

From the lemma it follows that

NX
n=0

n(On(h, β; γ)− In(h,β; γ)) = 0. (2)

Since also
PN

n=0(On(h,β; γ)− In(h,β; γ)) = 0, without loss of generality, we can first delete
O0(h,β; γ) − I0(h, β; γ) = 0 and then, by (2), we can delete O1(h,β; γ) − I1(h, β; γ) = 0.
Thus the distribution h is stationary if and only if On(h, β; γ)−In(h, β; γ) = 0, n = 2, . . . , N,

2Kamiya and Shimizu (2002) presented a similar theorem.
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and
PN

n=0 h(n) − 1 = 0 hold. This means that the tuple x∗ = (V ∗, h∗, β∗) is a stationary
Markov perfect equilibrium if

On(h
∗,β∗; γ)− In(h∗,β∗; γ) = 0, n = 2, . . . , N,

NX
n=0

h∗(n)− 1 = 0,
knX
j=1

β∗nj − 1 = 0, n = 0, 1, . . . , N,

V ∗(n)−Wnj(x
∗; γ) = 0, if β∗nj > 0,

V ∗(n)−Wnj(x
∗; γ) ≥ 0, if β∗nj = 0.

Suppose the inequalities are strict and for n, n = 0, . . . , N , let A∗n be the set of actions at
state n being chosen in the equilibrium with positive probability. Then the total number of
variables, V (n), h(n), and βnj, j ∈ A∗n, n = 0, 1, . . . , N , is (N + 1) + (N + 1) +

PN
n=0#A

∗
n,

and the number of equalities is (N − 1) + 1 + (N + 1) +
PN

n=0#A
∗
n. Thus the dimension

of the set of equilibria is typically at least equal to one. Moreover, if some transversality
conditions are satisfied, the dimension is equal to one. In Section 4, we show this rigorously.

3 An Example

In this section, we present a discrete time version of Zhou (1999)’s model with an exogenously
given upper bound of money holdings and we completely characterize some of the sets of
stationary Markov perfect equilibria.

3.1 A discrete time version of Zhou’s model

There are k ≥ 3 types of agents with equal fraction and the same number of types of goods.
Only one unit of good i can be produced and held by a type i − 1 (mod. k) agent. The
production cost is c > 0. A type i agent obtains utility u > 0 only when she consumes one
unit of good i. If a type i − 1 agent is matched to a type i agent, then the first agent is
a (potential) seller and the second agent is a (potential) buyer. The first agent refuses to
trade or posts a take-it-or-leave-it price offer and the second agent can accept the offer or
not. For example, when k = 3 a type 1 agent produces one unit of good 2 being desired by
a type 2 agent, a type 2 agent produces one unit of good 3 being desired by a type 3 agent,
and a type 3 agent produces one unit of good 1 being desired by a type 1 agent. Moreover,
if a type 1 agent meets a type 2 agent, then the former becomes a (potential) seller and the
latter one a (potential) buyer. Similar arguments apply to the cases of a matching of a type
2 agent and a type 3 agent, and of a matching of a type 3 agent and a type 1 agent.
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Fiat money is assumed to be divisible. We confine our attention to the case that, for
a given p > 0, the support of money holding distribution is {0, p, 2p, . . . , Np}, where N is
exogenously given. The number p is determined by

PN
n=0 pnh(n) = M , where M > 0 is an

exogenously given supply of money. Thus, without abuse of notation, a distribution h on N
is identified with a distribution on {0, p, 2p, . . . , Np}. We will focus on symmetric stationary
Markov perfect equilibria for which the strategies that agents with an identical money holding
take are time-invariant and type-invariant. Therefore, we will hereafter discuss a generic type
i. A strategy of an agent (of any type) is defined as a set of two correspondences, an offer
strategy ω : N → N ∪ {NT} and a reservation price strategy ρ : N → N , where NT stands
for no trade. For n ∈ N , ω(n) is a set of prices and/or no trade that an agent with money
holding np offers when she is a (potential) seller. More precisely, if o ∈ ω(n) and o 6= NT,
then op is an offer price, and if o ∈ ω(n) and o = NT, then she does not sell, no matter what
the buyer’s reservation price is. A seller with money holding n offers one of the elements in
ω(n). Since for any agent his money holding cannot exceed the amount N , the offer price
is at most equal to (N − n)p. For n ∈ N , r ∈ ρ(n) is a reservation price, below which
offers are accepted and above which they are rejected. In fact, we will show that, by the
perfectness condition, ρ(n) gives the maximum price that a buyer is willing to defray for the
consumption good, and so ρ becomes a function rather than a correspondence. Since the
reservation price of a buyer cannot exceed her money holdings, ρ should satisfy the following
feasibility condition:

ρ(n) ≤ n, n = 0, 1, . . . , N. (3)

For a money holding np, an offer price op, and a reservation price rp, H(n, o, r) denotes a
stationary distribution defined on N×(N ∪{NT})×N . From H, the stationary distribution
of offer prices, Ω, and the stationary distribution of reservation prices, R, are given by

Ω(x) = H({(n, o, r)|o 6= NT, o ≤ x}) (4)

R(x) = H({(n, o, r)|r < x}). (5)

Let V : N → IR be the value function. That is, V (n) is the maximum value of discounted
utility achievable by the agent’s current money holding np. At every moment, a type i agent
with money holding np is a (potential) buyer when meeting a type i− 1 agent, which occurs
with probability 1/k. Transaction does not occur and money holding does not change if the
seller chooses NT or her offer op exceeds the type i’s reservation price rp. If the partner’s
offer price op is not more than reservation price rp, then transaction occurs and the type i
agent derives utility u from consumption and enters in the next trading opportunity with
money holding (n− o)p. The probability that type i with money holding np is a seller and
meets a type i + 1 agent is also 1/k. Transaction does not occur if the type i chooses NT
or her offer op is greater than the partner’s reservation price rp. If type i’s offer op does not
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exceed rp, then transaction occurs and she faces the next matching opportunity with money
holding (n+ o)p. Then, using α, Ω, and R, the Bellman equation is given by

V (n) =
1

k
max

r∈{0,1,... ,n}

½ rX
x=0

(u+ αV (n− x))(Ω(x)− Ω(x− 1)) + (1− Ω(r))αV (n)

¾
+
1

k
max

o∈{0,1,... ,N−n}∪{NT}

½
R(o)αV (n) + (1−R(o))(−c+ αV (n+ o))

¾
+ (1− 2

k
)αV (n), n = 0, 1, . . . , N, (6)

where Ω(−1) = 0. Thus

V (n) =
1

(1− α)k + 2α

µ
max

r∈{0,1,... ,n}

½ rX
x=0

(u+ αV (n− x))(Ω(x)− Ω(x− 1)) + (1− Ω(r))αV (n)

¾
+ max
o∈{0,1,... ,N−n}∪{NT}

½
R(o)αV (n) + (1−R(o))(−c+ αV (n+ o))

¾¶
,

n = 0, 1, . . . , N. (7)

In terms of V (n), it is optimal for a buyer to accept offer op if u+ αV (n− o) ≥ αV (n).
Then the perfectness condition with respect to the reservation price is as follows:

ρ(n) = max
©
r ∈ {0, . . . , n}¯̄u+ αV (n− r) ≥ αV (n)

ª
. (8)

That is, agent of type i’s reservation price is her full value for good i, and thus it is a function
of n.
From the above, the action space and the matching technology can be written as follows:

• An = {an(o,r)|o = 0, 1, . . . , N − n,NT, and r = 0, 1, . . . , n}. An action an(o,r) means
that an agent with n offers op or no trade NT when she is a seller, and she accepts the
partner’s offer only if the offer price is less than or equal to rp when she is a buyer.

• f1 and f2 are given by

f1 ((n, (o, r)) , (n
0, (o0, r0))) =

(
n+ o if o 6= NT, and o ≤ r0
n otherwise

f2 ((n, (o, r)) , (n
0, (o0, r0))) =

(
n0 − o if o 6= NT, and o ≤ r0
n0 otherwise.

• The proportion of matching between agents with (n, j) and (n0, j0) is equal to 2
k
h(n, j)h(n0, j0),

and with probability 1
2
one of the two agents becomes the first agent and the other one

becomes the second agent.
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3.2 The Case of N = 1

We completely characterize the set of equilibria in the case of N = 1, k = 3, u = 15
4
, c = 3

4
,

and α = 3
4
. Note that in what follows an agent with np units of money is called an agent

with n. The set of equilibria consists of the following two pieces (see Figure 1):

1. The strategy of the first piece is

• agents with 0 offer p and agents with 1 accept any price less than or equal to p.
Thus the conditions for a stationary Markov perfect equilibrium are

h(0) + h(1)− 1 = 0
V (0)− (9

4
)−1

µ
h(1)(−3

4
+
3

4
V (1)) +

3

4
h(0)V (0) +

3

4
V (0)

¶
= 0

V (1)− (9
4
)−1

µ
3

4
V (1) + h(0)(

15

4
+
3

4
V (0)) +

3

4
h(1)V (1)

¶
= 0

h(1)(−3
4
+
3

4
V (1)) +

3

4
h(0)V (0)− V (0) ≥ 0

h(0)(
15

4
+
3

4
V (0)) +

3

4
h(1)V (1)− V (1) ≥ 0,

where the last two inequalities are the incentive constraints for agents with 0 and with
1, respectively. From the first three equations in the above system, V (0) and V (1) can
be solved as a function of h(0) as follows:

V (0) = −1
2
+
5

2
h(0)− 2h(0)2

V (1) =
9

2
h(0)− 2h(0)2.

At h(0) = 1, all incentives are satisfied. When h(0) is decreased, the incentive of
agents without money becomes binding first at h(0) = 1

4
, because h(1)

¡−3
4
+ 3

4
V (1)

¢
+

3
4
h(0)V (0) = V (0) holds for h(0) = 1

4
.

2. The strategy of the second piece is

• agents with 0 are indifferent between offering p and NT, i.e., a proportion a ∈ [0, 1]
of agents with 0 offers p and a proportion 1 − a chooses NT, and agents with 1
accept any offer less than or equal to p.

12



Thus the conditions for a stationary Markov perfect equilibrium are

h(0) + h(1)− 1 = 0
V (0)− (9

4
)−1

µ
h(1)(−3

4
+
3

4
V (1)) +

3

4
h(0)V (0) +

3

4
V (0)

¶
= 0

3

4
V (0)− h(1)(−3

4
+
3

4
V (1)) +

3

4
h(0)V (0) = 0

V (1)− (9
4
)−1

µ
3

4
V (1) + ah(0)(

15

4
+
3

4
V (0)) + (h(1) + ah(0))

3

4
V (0)

¶
= 0

h(0)(
15

4
+
3

4
V (0)) +

3

4
h(1)V (1)− V (1) ≥ 0,

where the last inequality is the incentive constraint for the agents with 1. From the
first four equations in the above system, V (0), V (1), and a can be solved as a function
of h(0) as follows:

V (0) = 0, V (1) = 1, a =
1

4h(0)
. (9)

At h(0) = 1
4
, the endpoint of the first piece, all incentive constraints for the agents

with 0 are satisfied. When h(0) is increased, all incentive constraints for the agents
with 0 remain satisfied until h(0) = 1. That is the solution path reaches an endpoint.

In this example the set of stationary Markov perfect equilibria consists of one one-
dimensional manifold and both endpoints satisfy h(0) = 1.

3.3 The Case of N = 2

Next, we consider the case N = 2, k = 3, u = 15
4
, c = 3

4
, and α = 3

4
. In this case, there are

two connected components of solutions, but we only investigate one of them. The connected
set consists of six pieces as follows. The other component looks quite similar. For simplicity,
we do not present the Bellman equations.

The first piece:

• the strategies: agents with 0 offer p, agents with 1 offer p and their reservation price
is p, and the reservation price of agents with 2 is 2p.

• the starting point: (h(0), h(1), h(2)) = (1, 0, 0).
• the endpoint: (h(0), h(1), h(2)) = (0.62321, 0.26452, 0.11227).

13



• at the endpoint, agents with 1 become indifferent between offering p and NT.

The second piece:

• the strategies: agents with 0 offer p, agents with 1 are indifferent between offering p
and NT and their reservation price is p, and the reservation price of agents with 2 is
2p.

• the starting point: the endpoint of the first piece.
• the endpoint: (h(0), h(1), h(2)) = (0.84307, 0.15693, 0).
• at the endpoint, h(2) becomes 0 and the proportion of agents with 1 offering 1 becomes
0.

The third piece:

• the strategies: agents with 0 offer p, agents with 1 choose NT and their reservation
price is p, and the reservation price of agents with 2 is 2p.

• the starting point: the endpoint of the second piece.
• the endpoint: (h(0), h(1), h(2)) = (0.25, 0.75, 0).
• at the endpoint, agents with 0 become indifferent between offering 1, 2, and NT.

At the endpoint of the third piece, we should analyze the case that three actions are used.
However, we first analyze the case that agents with 0 offer p or 2p.

The forth piece:

• the strategies: agents with 0 offer p or 2p, agents with 1 choose NT and their reservation
price is p, and the reservation price of agents with 2 is 2p.

• the starting point: the endpoint of the third piece.
• the endpoint: (h(0), h(1), h(2)) = (0.58333, 0.41667, 0).
• at the endpoint, agents with 1 become indifferent between offering p and NT.
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Next, we investigate the general case at the endpoint of the third piece. There exists the
following two-dimensional solution set.

Piece A:

• the strategies: agents with 0 choose p, 2p, or NT, agents with 1 choose NT and their
reservation price is p, and the reservation price of agents with 2 is 2p.

• the piece has four extreme points: two endpoints of the fourth piece, one extreme point
at h = (1, 0, 0), where the proportions of offering p and 2p are 1

4
and 0, respectively,

and an other extreme point at h = (1, 0, 0), where the proportions of offering p and 2p
are 1

4
and 1

3
, respectively. (See Figure 2.)

Remark 1 In piece A, although there are three best actions for agents with 0, one indiffer-
ence condition is redundant; namely, the indifference between offering 2p and NT is written
as

3

4
V (0) = h(2)

µ
3

4
V (2)− 3

4

¶
+ (h(0) + h(1))

3

4
V (0).

However, by h(2) = 0 and h(0) + h(1) + h(2) = 1, the above equation is in fact an identity.
Thus there are two free variables in the system of equations and the dimension of the set of
equilibria is two.

The fifth piece:

• the strategies: agents with 0 offer p or 2p, agents with 1 offer p or NT and their
reservation price is p, and the reservation price of agents with 2 is 2p.

• the starting point: the endpoint of the forth piece.
• the endpoint: (h(0), h(1), h(2)) = (0.61193, 0.23247, 0.15226).
• at the endpoint, the proportion of agents with 1 choosing NT becomes 0.

The sixth piece:

• the strategies: agents with 0 offer p or 2p, agents with 1 offer p and their reservation
price is p, and the reservation price of agents with 2 is 2p.

• the starting point: the endpoint of the fifth piece.
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• the endpoint: (h(0), h(1), h(2)) = (1, 0, 0).
• at the endpoint, the path has returned to h(0) = 1.
In this example the connected sets of stationary Markov perfect equilibria are not one-

dimensional. We showed the existence of a two-dimensional piece on one of the sets of
equilibria. However, if certain transversality conditions are satisfied, the dimension of each
piece is one, as we will show in the next section.

4 The Random Matching Model with Conservation Law

In this section we discuss conditions under which the dimension of stationary Markov per-
fect equilibria is equal to one. Let B denote the power set of {(n, j) | j = 1, . . . , kn, n =
0, 1, . . . , N} and let B̂ = {b ∈ B |∀n,∃(n, j) ∈ b}. An element b ∈ B̂ can be considered to
be a set of actions potentially used in an equilibrium. For given b ∈ B̂, let

Ωb = {(βnj)(n,j)∈b | βnj > 0 for all (n, j) ∈ b}.

Let xb = (V, h, βb), for some βb ∈ Ωb. For given b ∈ B̂ and (n, j) ∈ b, W b
nj(x

b; γ) is defined
from Wnj(x; γ) by setting βn0j0 = 0 for all (n0, j0) /∈ b. In parallel with this, Ibn(h,βb; γ) and
Obn(h,β

b; γ) are defined.
Let

Γ = {(b, J) ∈ B̂ × 2N | h(n) = 0, n /∈ J, and h(n) > 0, n ∈ J,
imply Ibn(h, β

b; γ) = 0 for all n /∈ J,βb ∈ Ωb}.
Note that if Ibn(h,β

b; γ) = 0 for some (h,βb) such that h(n) > 0 for n ∈ J and h(n) = 0 for
n /∈ J , then by the random matching structure Ibn(h,βb; γ) = 0 holds for all (h,βb) such that
h(n) > 0 for n ∈ J and h(n) = 0 for n /∈ J . Notice that every stationary Markov perfect
equilibrium corresponds to some (b, J) ∈ Γ and therefore we only need to consider elements
in Γ. For every (b, J) ∈ Γ it holds that Obn − Ibn = 0, n /∈ J , is an identity. Therefore, these
identities can be deleted from the system of equations. Note that if J = {n0}, i.e., a singleton,
then

PN
n=0 h(n)− 1 = 0 can also be deleted. Let J = {j1, . . . , jm}, where j1 < · · · < jm.

For (b, J) ∈ Γ, let

g(b,J)(xb; γ) =



Obn(h,β
b; γ)− Ibn(h,βb; γ) n ∈ J \ {j1, j2},PN

n=0 h(n)− 1 if #J 6= 1P
{j|(n,j)∈b} β

b
nj − 1 n = 0, 1, . . . , N,

V (n)−W b
nj(x

b; γ) (n, j) ∈ b,
V (n)−W b

nj(x
b; γ) (n, j) /∈ b,
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where J \ {j1, j2} = ∅, if J is a singleton.
Let

E(b,J)
γ = {xb | h(n) > 0, n ∈ J, h(n) = 0, n /∈ J, g(b,J)(xb; γ) ∈ {0} × · · · × {0}| {z }

N+m+#b

× IR+ × · · · × IR+| {z }
K−#b

},

be the set of stationary Markov perfect equilibria for given (b, J) ∈ Γ. Moreover, for (b, J) ∈
Γ, let

C(b,J) = {0} × · · · × {0}| {z }
N+m+#b

× IR++ × · · · × IR++| {z }
K−#b

,

and, for (n, j) /∈ b,

C(b,J),(n,j) = {0} × · · · × {0}| {z }
N+m+#b

× IR++ × · · · × IR++ × {0} × IR++ × · · · × IR++| {z }
K−#b

,

where the last {0} corresponds to the component V (n)−W b
nj(x

b; γ). Moreover, for (n, j), (n0, j0) /∈
b such that (n, j) 6= (n0, j0), let

C(b,J),(n,j),(n0,j0) = {0} × · · · × {0}| {z }
N+m+#b

× IR× · · · × IR× {0} × IR× · · · × IR× {0} × IR× · · · × IR| {z }
K−#b

,

where the last two {0}s correspond to the components V (n) − W b
nj(x

b; γ) and V (n0) −
W b
n0j0(xb; γ).

Assumption 3 For every (b, J) ∈ Γ, g(b,J), with domain restricted to h(n) > 0 for n ∈ J
and h(n) = 0 for n /∈ J when #J > 1 and to h(n̄) = 1 and h(n) = 0 for n /∈ J when
J = {n̄}, transversely intersects C(b,J), C(b,J),(n,j), C(b,J),(n,j),(n0,j0) for all (n, j), (n0, j0) /∈ b
such that (n, j) 6= (n0, j0).

Theorem 2 Under Assumptions 1, 2, and 3, each connected component of the set of sta-
tionary Markov perfect equilibria is homeomorphic either to a circle or to the unit interval
[0, 1]. Moreover, the two endpoints of a component, if they exist, are at h(n) = 1 and
h(n0) = 1 for some n and n0.

Intuitively, for given (b, J) ∈ Γ such that #J 6= 1, the system for stationary Markov
perfect equilibria contains N + m + #b equations and N + m + 1 + #b variables. Thus,
under the transversality condition, the set of equilibria is a one-dimensional manifold. At
the endpoints, one of the following four cases may occur:
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• βnj = 0 for some (n, j) ∈ b;
• V (n)−W b

nj(x
b; γ) = 0 for some (n, j) /∈ b;

• h(n̄) = 0 for some n̄ ∈ J and h(n) < 1 for all n ∈ J ;
• h(n) = 1 for some n ∈ J.

In the first three cases, the next lemma implies that the endpoint is also an endpoint of

precisely one other connected component of some E
(b0,J 0)
γ . On the other hand, if |J | = 1,

the system for stationary Markov perfect equilibria contains N + m + #b equations and
N + m + #b variables. Thus generically the equilibria are determinate. Because of this,
the paths in E

(b,J)
γ can be linked for different (b, J) in Γ to form loops and paths with two

different endpoints in the spaces h(n) = 1 and h(n0) = 1 for some n and n0.
First, we prove the following lemma.

Lemma 2 Under Assumptions 1, 2, and 3, if a connected component of E
(b,J)
γ for a given

(b, J) ∈ Γ has an endpoint in the space of h(n̄) = 0 for some n̄ ∈ J and h(n) does not
become equal to 1 for some n ∈ J , then some βn0j0 , (n0, j0) ∈ b, becomes zero at the endpoint.
Moreover, this βn0j0 is unique.

Proof:
Let J 0 be the subset of J for which h(i), i ∈ J 0, becomes zero at the endpoint. Since h(n)
does not become equal to 1 for some n ∈ J , the endpoint is a solution of the system deleting
the variables h(i), i ∈ J 0 ∪ Jc, and the equations Obi − Ibi = 0, i ∈ J 0 ∪ J c.3 Consider the set
of solutions in the space of h(i) > 0, i ∈ J, h(i) = 0, i /∈ J . At the endpoint of the set of
solutions, all terms in Ibi , i ∈ J 0, become zero, since Obi , i ∈ J 0, become zero. There are two
cases:

1. For at least one term 1
2
βn0j0h(n0)βn00j00h(n00) in Ibi such that i ∈ J 0, either βn0j0 or βn00j00

becomes zero. As in Kamiya and Shimizu (2002), because of Assumption 3, only one
incentive constraint becomes binding in the space of h(i) > 0, i ∈ J \ J 0, h(i) = 0, i ∈
J 0 ∪ Jc, and thus only one of them included in such terms can be zero.

2. For all terms 1
2
βn0j0h(n0)βn00j00h(n00) in Ibi such that i ∈ J 0, at least one of n0 and n00 is

in J 0, and βn0j0 and βn00j00 remain positive.

In the first case, the lemma holds. In the second case, all of such terms 1
2
βn0j0h(n0)βn00j00h(n00)

are included in at least one Obi , i ∈ J 0. Thus
P

i∈J 0 Obi −
P

i∈J 0 Ibi = 0 is an identity in the
space of h(i) > 0, i ∈ J . This contradicts Assumption 3 so that the second case does not
occur.

3Jc denotes the complement of J .
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Lemma 2 shows the new feature in the complementarity problem with respect to the
variables h and β. If at an endpoint some h(n) becomes zero, then In −On = 0 becomes an
identity and simultaneously βn0j0 becomes 0 for some unique (n0, j0).

Proof of Theorem 2: For given (b, J) ∈ Γ, E
(b,J)
γ is a one-dimensional manifold because of

the assumptions. (See Kamiya and Shimizu (2002).) Therefore it consists of loops and paths
with two endpoints. From Lemma 2 and the assumptions it follows that at each endpoint,
exactly one of the following possibilities occurs:

• βnj = 0 for precisely one (n, j) ∈ b and h(n0) > 0 for all n0 ∈ J ;
• V (n)−W b

nj(x
b; γ) = 0 for precisely one (n, j) /∈ b;

• h(n̄) = 0 for some n̄ ∈ J and βnj = 0 for precisely one (n, j) ∈ b;
• h(n) = 1 for some n ∈ J.

In the first case, the endpoint is also an endpoint of a unique path in E
(b0,J)
γ , where b0 =

b \ {(n, j)}. In the second case, the endpoint is also an endpoint of a unique path in E(b0,J)
γ ,

where b0 = b ∪ {(n, j)}. In the third case, the endpoint is also an endpoint of a unique path
in E

(b0,J 0)
γ , where b0 = b \ {(n, j)} and J 0 = J \ {n̄ ∈ J |h(n̄) = 0}. In the fourth case, we

can delete all equations On − In = 0, n ∈ J , and
P

n h(n) − 1 = 0, so that the system has
the same number of equations as number of variables. Therefore, from the assumptions, it

follows that the endpoint is not an endpoint of any other path in some E
(b0,J 0)
γ . Because of

this, the paths in E
(b,J)
γ can be linked for different (b, J) ∈ Γ to form loops and paths with

two different endpoints in the spaces h(n) = 1 and h(n0) = 1 for some n and n0.

In random matching models with money, h(n) = 1 for some n 6= 0 typically does not
hold in monetary equilibria. In such models, a stationary Markov perfect equilibrium is a
monetary equilibrium if f1((n, j), (n

0, j0)) 6= n holds for some (n, j), (n0, j0) ∈ b, where b is
the set of actions in the equilibrium. For more details, see Green and Zhou (1998), Kamiya
and Shimizu (2002), and Zhou (1999). Thus, under Assumption 3, the global structure of
the set of equilibria is described as in the following corollary.

Corollary 1 Suppose Assumption 3 holds and h(n) = 1 for some n 6= 0 does not hold in
any stationary Markov perfect equilibrium. Then each connected component of the set of
stationary Markov perfect equilibria is homeomorphic to either a circle or to [0, 1]. Moreover,
the two endpoints of a component, if they exist, are at h(0) = 1.

Since, in random matching models with money, at h(0) = 1, the Bellman equation is
typically quite simple, it is often easy to compute an equilibrium in the space of h(0) = 1.
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Then following the set of equilibria starting at this equilibrium by some path-following
method, we eventually reach another equilibrium with h(0) = 1. In this way, we can generate
a continuum of equilibria of random matching models with conservation law.

5 Approximation of the Set of Equilibria

In this section we consider the case that Assumption 3 does not necessarily hold. When
Assumption 3 holds, every connected set of equilibria is one-dimensional and in case it is not
a loop it can be followed from one endpoint at h(n) = 1 for some n to the other endpoint
at h(n0) = 1 for some n0. However, as the forth piece in the example in the previous section
shows, a higher-dimensional piece may exist if Assumption 3 is not satisfied. Below, we
present a method to follow the set of equilibria approximately by perturbing the system. As
is well known, certain perturbations of a system of equations can make the system regular.
For example, adding constant terms to the system, regularity may directly follow from Sard
theorem. However, in our case, such perturbation does not work; in the set of approximated
equilibria, the endpoints may not be at h(0) = 1 and it may not be the case that some βn0j0

becomes zero when h(n) becomes zero.

5.1 The Perturbation Method

In this subsection, we assume the structure of monetary economies. Let

B∗ = {b ∈ B̂|∃n, ∃βb ∈ Ωb, ∃h, Ibn(h, βb; γ) > 0},

the set of actions that are candidates for monetary equilibria, i.e., transactions potentially
occur for b ∈ B∗. First, we assume the following as in the examples of Section 3.
Assumption 4 For all b ∈ B∗, h(n) = 1 for some n 6= 0 does not hold in any stationary
Markov perfect equilibrium xb.

For simplicity, we also assume that if no transaction is made, then for every agent the
value is equal to zero.

Assumption 5 In stationary Markov perfect equilibria, V (n) = 0, n = 0, 1, . . . , N , if b /∈
B∗.

The above assumptions are satisfied in the example in Subsection 3.1 if the cost parameter
c is small enough.

Theorem 3 In the example in Subsection 3.1, Assumptions 4 and 5 hold if c < uαN/
PN−1

i=0 αi.
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Proof:
First, Assumption 5 clearly holds. Suppose x∗ is a stationary Markov perfect equilibrium
such that ∃n̄ 6= 0, h(n̄) = 1. Let b∗ be the set of indices (n, j) used in x∗. Recall that j can
be denoted by (on, rn), where on is an offer price and rn is a reservation price. Then

f1((n̄, j), (n̄, j
0)) = 0 holds for all (n̄, j), (n̄, j0) ∈ b∗. (10)

Thus by the assumptions V (n̄) = 0 holds and thus V (n) = 0 holds for all n ≤ n̄. This implies
that the reservation price of agents with n̄p is n̄p. Indeed, u = u+ V (n̄− q) > V (n̄) = 0 for
any positive integer q ≤ n̄.
Let ñ = n̄+max{o | (o, n̄) ∈ b∗}. Note that by b∗ ∈ B∗ there exists (o, n̄) ∈ b∗ satisfying

o 6= NT . We consider the following strategy:
1. ω(n) = {1} for n = n̄, . . . , ñ− 1 and ω(n) =NT otherwise;

2. ρ(n) = n for all n.

The payoff of this strategy at n̄ is at least equal to uα(ñ−1)−n̄ − cP(ñ−1)−n̄−1
i=0 αi > 0. This

contradicts V (n̄) = 0.

As in Matsui and Shimizu (2001), if there exists infinitesimally small cost on holding
money, the following condition holds.

Assumption 6 For all b ∈ B∗, h(0) = 0 does not hold in any stationary Markov perfect
equilibrium xb.

For b ∈ B∗, let β̂bn and ĥ be obtained by deleting the first element of βbn and h, respectively.
Let β̂b = (β̂b0, β̂

b
1, . . . , β̂

b
N ) and x̂

b = (V, ĥ, β̂b). For given ²n > 0, n = 1, 2, . . . , N , substituting

βbn1 = 1−
P

{j|(n,j)∈b,j 6=1} β̂
b
nj and h(0) = 1−

PN
n=1 ĥ(n), let

D̂b
0(ĥ, β̂

b; γ, ²) = Ob0(h, β
b; γ)− Ib0(h,βb; γ) +

PN
j=1

²j
N
ĥ(j)− ²1ĥ(1),

D̂b
n(ĥ, β̂

b; γ, ²) = Obn(h, β
b; γ)− Ibn(h,βb; γ) + ²nĥ(n)− ²n+1ĥ(n+ 1), n = 1, 2, . . . , N − 1,

D̂b
N(ĥ, β̂

b; γ, ²) = ObN(h, β
b; γ)− IbN(h, βb; γ) + ²N ĥ(N)−

PN
j=1

²j
N
ĥ(j).

Remark 2 The above ²-perturbation corresponds to the reallocation of assets in such a way
that agents with n 6= 0 give one unit to agents with n0 6= N . More precisely, the proportion
²nh(n) of agents with n give

1
N
units to each agent with n0 = 0, 1, . . . , N − 1. Then the

excess outflow at each state n becomes

Ob0(h,β
b; γ) +

NX
j=1

²j
N
ĥ(j)− Ib0(h,βb; γ)− ²1ĥ(1), n = 0,
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Obn(h,β
b; γ) + ²nĥ(n) +

NX
j=1

²j
N
ĥ(j)− Ibn(h,βb; γ)− ²n+1ĥ(n+ 1)−

NX
j=1

²j
N
ĥ(j),

n = 1, 2, . . . , N − 1,

and

ObN(h,β
b; γ)− IbN(h, βb, γ) + ²N ĥ(N)−

NX
j=1

²j
N
ĥ(j), n = N.

Thus they coincide with D̂b
n(ĥ, β̂

b; γ, ²), n = 0, 1, . . . , N−1, N . Note thatPN
n=0 D̂

b
n(ĥ, β̂

b; γ, ²) =

0 and
PN

n=0 nD̂
b
n(ĥ, β̂

b; γ, ²) = 0 hold.

Let

κ(ĥ, β̂b, ²) =
³
D̂b
n(ĥ, β̂

b; γ, ²)
´N
n=2

.

Lemma 3 Under Assumptions 4 and 6, for small enough ² > 0, κ(ĥ, β̂b, ²) = 0 implies
h(0) > 0 and ĥ(n) > 0 for all n ≥ 1, unless h(0) = 1.

Proof:
If ĥ(n) = 0 for some n ≥ 2, then Obn(h,βb; γ) = 0 holds and together with κn(ĥ, β̂

b, ²) = 0 it
follows that ĥ(n+1) = 0. By induction, ĥ(N) = 0 holds. On the other hand, when ĥ(N) = 0
it follows from κN (ĥ, β̂

b, ²) = 0 that ĥ(j) = 0, j = 1, 2, . . . , N . Thus h(0) = 1 holds. For
the case of ĥ(1) = 0, since

PN
n=0 D̂

b
n(ĥ, β̂

b; γ, ²) = 0 and
PN

n=0 nD̂
b
n(ĥ, β̂

b; γ, ²) = 0, a similar
argument applies. Note that h(0) = 0 cannot be a solution for small enough ².

For b ∈ B∗, let

f b(x̂b, ², σ) =

 f b1(x̂
b, ², σ)

f b2(x̂
b, ², σ)

f b3(x̂
b, ², σ)

 =

 κ(ĥ, β̂b, ²)
(V (n)−W b

nj(x̂
b; γ) + σnj)(n,j)∈b

(V (n)−W b
nj(x̂

b; γ) + σnj)(n,j)/∈b

 .
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Definition 2 For given b ∈ B∗, ² > 0 and σ, x̂b is an (², σ)-approximated equilibrium if

f b1(x̂
b, ², σ) = 0

f b2(x̂
b, ², σ) = 0

f b3(x̂
b, ², σ) ≥ 0.

Let

ϕb(V, β̂b,σ) = f b2(V, (0, . . . , 0), β̂
b, ²,σ).

The following lemma directly follows from Sard theorem.

Lemma 4 Let b ∈ B∗ be given. D(V,β̂b)ϕ
b is of full rank at almost every σ. Moreover, the

number of solutions to ϕb(V, β̂b,σ) = 0 for such σ is finite.

Let the set of solutions for some given σ be (V i, β̂bi), i = 1, . . . , `. The Jacobian matrix of
f b with respect to (V, ĥ, β̂, ², σ) is equal to

Df b =

µ
0 Dĥκ ° D²κ 0
° ° ° 0 I

¶
,

where ° represents some nonzero matrix and I is the identity matrix.

Lemma 5 Suppose Assumptions 4 and 6 hold. Let b ∈ B∗ be given. Then, if h(0) < 1,
Dx̂bf b(·, ²,σ) is of full rank for almost every (², σ), where ² > 0 is small enough, i.e., f b(·, ², σ)
is transversal to C(b,N ), C(b,N )(n,j), and C(b,N )(n,j)(n0,j0) for all (n, j), (n0, j0) /∈ b for almost every
(², σ), where ² > 0 is small enough.

Proof:
The first N − 1 columns of the Jacobian matrix D²κ are equal to

0 ĥ(2) −ĥ(3) 0 · · · 0

0 0 ĥ(3) −ĥ(4) · · · 0
...

...
...

...
. . .

...

0 0 0 0 · · · −ĥ(N − 1)
0 0 0 0 · · · ĥ(N − 1)

− 1
N
ĥ(1) − 1

N
ĥ(2) − 1

N
ĥ(3) − 1

N
ĥ(4) · · · − 1

N
ĥ(N − 1)


.

The absolute value of the determinant of this matrix is ΠN−1
n=1

1
N
ĥ(n). Thus, by Lemma 3, the

above matrix is of full rank if h(0) < 1 and ² > 0 is small enough. Since the lower part of
Df b has I, Df b is of full rank.
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Lemma 6 Let b ∈ B∗ be given. Then, if h(0) = 1, Dx̂bf b(·, ²,σ) is of full rank and thus
f b(·, ², σ) is transversal to C(b,N ), C(b,N )(n,j), and C(b,N )(n,j)(n0,j0) for all (n, j), (n0, j0) /∈ b for
almost every (²,σ).

Proof:
The first N − 1 columns of the Jacobian matrix Dĥκ can be written as

Dh̃((O
b
n − Ibn)Nn=2) +



0 ε2 −ε3 0 · · · 0
0 0 ε3 −ε4 · · · 0
...

...
...

...
. . .

...
0 0 0 0 · · · −εN−1

0 0 0 0 · · · εN−1

− 1
N
ε1 − 1

N
ε2 − 1

N
ε3 − 1

N
ε4 · · · − 1

N
εN−1


,

where h̃ = (ĥ(1), ĥ(2), . . . , ĥ(N − 1)). Let the first matrix evaluated at (V i, β̂bi) be denoted
by Ai and the second matrix, a function of ², by denoted by E(²).
First note that the absolute value of the determinant of the second matrix is ΠN−1

n=1
1
N
εn 6= 0

for ² > 0. Next, let

F i(²) = det(Ai + E(²)).

Choose an ²∗ > 0. Then

F i(
1

χ
²∗) =

1

χN−1
det(χAi + E(²∗)).

Since det(·) is a continuous function and detE(²∗) 6= 0, then, for small enough χ, det(χAi+
E(²∗)) 6= 0. Thus it follows that F i( 1

χ
²∗) 6= 0. Since F i(²) is an analytic function (polyno-

mial), then either (i) {² | F i(²) = 0} is a set of measure zero or (ii) F i(²) = 0 for all ². By
F i( 1

χ
²∗) 6= 0, (i) holds.
Thus the above matrix is of full rank at h(0) = 1 for almost every ². Since the lower part

of Df b has I, then Df b is of full rank at h(0) = 1 for almost every ².

By the above lemmata, f b(·, ²,σ) is transversal to these sets for almost every (²,σ), where
² > 0 is small enough.
To sum up, for given b ∈ B∗, for almost every (²,σ), with ² > 0 small enough, f b is

transversal to C(b,N ), C(b,N )(n,j), and C(b,N )(n,j)(n0,j0) for all (n, j), (n0, j0) /∈ b and D(V,β̂)ϕ
b is

of full rank. Applying the same argument for any b ∈ B∗, the above holds for all b ∈ B∗ and
almost every (², σ), where ² is small enough. Thus, for almost every (², σ) with ² > 0 small
enough, the approximated solution path is a one-dimensional manifold such that

1. h(n) > 0, n = 0, 1, . . . , N , unless h(0) = 1;
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2. the solution path transversely intersects the boundary at h(0) = 1.

Thus the set of approximated equilibria can be generated by finding an endpoint at h(0) = 1
and following the one-dimensional manifold by some simplicial or predictor-corrector algo-
rithm, see, for example, Allgower and Georg (1990). Moreover, by Assumption 5, a nonmon-
etary equilibrium cannot be an endpoint of the path if σnj > 0 for all (n, j).

Remark 3 It might happen that, at h(0) = 1, some indifference condition becomes an
identity in the original system. For example, in the sixth piece of the example in Subsection
3.3, agents with 0 offer p or 2p and thus

(1− h(0))(−c+ αV (1)) + h(0)V (0) = h(2)(−c+ V (2)) + (1− h(2))V (0)
holds. At h(0) = 1, the above equation becomes V (0) = V (0), an identity. If we add
constant terms on both sides of the equation, there is generically no solution. Thus the
approximation might be bad around h(0) = 1. In order to overcome this difficulty, we may
use the following general approximated system. Let

f b(x̂b, ², δ, ξ, σ) =

 f b1(x̂
b, ², δ, ξ,σ)

f b2(x̂
b, ², δ, ξ,σ)

f b3(x̂
b, ², δ, ξ,σ)

 =

 κ(ĥ, β̂b, ²)

(V (n)−W b
nj(x̂

b; γ) +
PN

n0=0 δnn0V (n0) +
PN

n0=0

P#An

k=2 ξnn0kβ̂
b
n0k + σnj)(n,j)∈b

(V (n)−W b
nj(x̂

b; γ) +
PN

n0=0 δnn0V (n0) +
PN

n0=0

P#An

k=2 ξnn0kβ̂
b
n0k + σnj)(n,j)/∈b

 .
The latter system typically does not contain an identity, not even at h(0) = 1.

5.2 Zhou’s Model Revisited

In this subsection, we investigate the case of N = 2, k = 3, u = 15
4
, c = 3

4
, and α = 3

4
. As

illustrated in Subsection 3.3, the set of equilibria contains a two-dimensional piece. However,
by using the perturbation above, the set of approximated equilibria becomes one-dimensional.
We use the following perturbed system:

²1 = ²2 = 1× 10−5,σ
0NT = 4.8× 10−5, σ01 = 5.1× 10−5,σ02 = 4.3× 10−5,

σ
1NT = 4.9× 10−5,σ11 = 4.3× 10−5, σ

2NT = 4.6× 10−5,

where σnj is the constant term for offering jp or NT at state n. Since in the original system
the incentive constraints for the reservation prices never become binding, we do not need to
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perturb these. As in Remark 3, the approximation is not very good around the endpoint of
the sixth piece. In fact, there should exist another short piece adjacent to the sixth piece.
However, we could not numerically identify it because the perturbation is too small.
Below, we present the (first) six approximated pieces corresponding to the pieces in the

original system; the strategies of each piece are the same as those of the corresponding piece.
(See Figure 3.) Note that the approximation is close except around the end of the sixth
piece.

The first piece:

• the starting point: (h(0), h(1), h(2)) = (1, 0, 0).
• the endpoint: (h(0), h(1), h(2)) = (0.62351, 0.26438, 0.11211).
• at the endpoint, agents with 1 become indifferent between offering p and NT.

The second piece:

• the starting point: the endpoint of the first piece.
• the endpoint: (h(0), h(1), h(2)) = (0.84299, 0.15699, 5× 10−5).

• at the endpoint, the proportion of agents with 1 offering p becomes 0.

The third piece:

• the starting point: the endpoint of the second piece.
• the endpoint: (h(0), h(1), h(2)) = (0.25001, 0.74999, 4.9997× 10−5).

• at the endpoint, agents with 0 become indifferent between offering p, 2p, and NT.

The forth piece:

• the starting point: the endpoint of the third piece.
• the endpoint: (h(0), h(1), h(2)) = (0.58347, 0.41645, 8.3252× 10−5).

• at the endpoint, agents with 1 become indifferent between offering p and NT.
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The fifth piece:

• the starting point: the endpoint of the forth piece.
• the endpoint: (h(0), h(1), h(2)) = (0.61067, 0.23378, 0.15555).
• at the endpoint, the proportion of agents with 1 choosing NT becomes 0.

The sixth piece:

• the strategies: agents with 0 offer p or 2p, agents with 1 offer p and their reservation
price is p, and the reservation price of agents with 2 is 2p.

• the starting point: the endpoint of the fifth piece.
• the endpoint: it is numerically hard to find the endpoint around h(0) = 1.
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