
This paper was written under the CIRJE Reserach Project

"Statistical Aspects of Insurance and Finance".

CIRJE Discussion Papers can be downloaded without charge from:

http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-226

Empirical Characteristic Function Approach to
Goodness-of-Fit Tests for the Cauchy Distribution

with Parameters Estimated by MLE or EISE

Muneya Matsui
Akimichi Takemura

The University of Tokyo

June 2003



Empirical characteristic function approach to goodness-of-fit tests for

the Cauchy distribution with parameters estimated by MLE or EISE

Muneya Matsui and Akimichi Takemura
University of Tokyo

June, 2003

Abstract

We consider goodness-of-fit tests of Cauchy distribution based on weighted integrals of the squared
distance of the difference between the empirical characteristic function of the standardized data and
the characteristic function of the standard Cauchy distribution. For standardization of data Gürtler
and Henze (2000) used the median and the interquartile range. In this paper we use maximum
likelihood estimator (MLE) and an equivariant integrated squared error estimator (EISE), which
minimizes the weighted integral. We derive an explicit form of the asymptotic covariance function
of the characteristic function process with parameters estimated by MLE or EISE. The eigenvalues
of the covariance function are numerically evaluated and the asymptotic distribution of the test
statistics are obtained by the residue theorem. Simulation study shows that the proposed tests
compare well to tests proposed by Gürtler and Henze (2000) and more traditional tests based on the
empirical distribution function.

1 Introduction.

Let C(α, β) denote the Cauchy distribution with the location parameter α and the scale parameter β,
with the density

f(x; θ) = f(x;α, β) =
β

π(β2 + (x− α)2)
, θ = (α, β).

Given a random sample x1, . . . , xn from an unknown distribution F , we want to test the null hy-
pothesis H0 that F belongs to the family of Cauchy distributions. Since Cauchy distributions form a
location scale family, we consider affine invariant tests. The proposed tests are based on the empirical
characteristic function

(1.1) Φn(t) = Φn(t; α̂, β̂) =
1
n

n∑
j=1

exp(ityj), yj =
xj − α̂

β̂
,

of the standardized data yj . Here α̂ = α̂n = α̂n(x1, . . . , xn) and β̂ = β̂n = β̂n(x1, . . . , xn) are affine
equivariant estimators of α and β satisfying

α̂n(a+ bx1, . . . , a+ bxn) = a+ bα̂n(x1, . . . , xn),
β̂n(a+ bx1, . . . , a+ bxn) = bβ̂n(x1, . . . , xn).
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For α̂n and β̂n, we use maximum likelihood estimator (MLE) and an equivariant integrated squared
error estimator (EISE) defined in (2.6) below. The reason for considering MLE is its asymptotic
efficiency. Although optimality as estimators does not imply optimality for the goodness-of-fit tests,
it seems natural to consider MLE. The reason for considering EISE is a possible extension to stable
distributions other than the Cauchy distribution studied in this paper. Although the median and
the interquartile range used by Gürtler and Henze (2000) are attractive estimators because of their
simplicity, it seems theoretically more natural to consider MLE and EISE.

Following Gürtler and Henze (2000) we consider test statistic

(1.2) Dn,κ := n

∫ ∞

−∞

∣∣Φn(t)− e−|t|∣∣2w(t)dt, w(t) = e−κ|t|, κ > 0,

which is the weighted L2-distance between Φn(t) and the characteristic function e−|t| of C(0, 1) with
respect to the weight function w(t) = e−κ|t|, κ > 0. This weight function is chosen for convenience,
so that we can explicitly evaluate the asymptotic covariance function of the empirical characteristic
function process under H0. Using the relation∫ ∞

−∞
cos(ct)e−κ|t|dt =

2κ
κ2 + c2

,

the integral in (1.2) can be explicitly evaluated and an alternative convenient expression of Dn,κ is given
by

(1.3) Dn,κ =
2
n

n∑
j,k=1

κ

κ2 + (yj − yk)
2 − 4

n∑
j=1

1 + κ

(1 + κ)2 + yj2
+

2n
2 + κ

.

Our test statistic Dn,κ is a quadratic form of the empirical characteristic function process. Although
we derive an explicit form of the asymptotic covariance function of the empirical characteristic function
process, it is not trivial to derive the asymptotic distribution of Dn,κ under H0 from the covariance
function, especially when the parameters are estimated (e.g. chapter 7 of Durbin (1973a) and Durbin
(1973b)). Therefore finite sample critical values of goodness-of-fit tests are often evaluated by Monte
Carlo simulation, as was done in Gürtler and Henze (2000). Note that if we evaluate the critical values
by Monte Carlo simulation only, there is no need to derive the explicit form of the asymptotic covariance
function. Furthermore it is impossible to perform usual Monte Carlo simulation for the asymptotic case
n = ∞. Therefore numerical evaluation of the asymptotic distribution is important in order to check
the convergence of the finite sample distributions, which are evaluated by Monte Carlo simulations.

In this paper, we make use of the explicit form of the asymptotic covariance function for numerically
evaluating the asymptotic critical values of the test statistics. We introduce a homogeneous integral
equation of the second kind and consider the associated Fredholm determinant, which can be approxi-
mated by evaluating eigenvalues of the asymptotic covariance function numerically. Then we apply the
residue theorem in Lévy’s inversion formula and evaluate the asymptotic distribution function of Dn,κ.

This paper is organized as follows. In Section 2.1 we first define and summarize properties of MLE
and EISE. Then we state theoretical results on asymptotic distribution of Dn,κ under H0 in Theorem
2.1 and Theorem 2.2. Our method for numerically evaluating the asymptotic critical values of Dn,κ

is discussed in Section 2.2. In Section 3 we present computational studies of the proposed tests in
comparison to other testing procedures. We also give percentage points of some classical goodness-of-fit
statistics when the parameters of the Cauchy distribution are estimated by MLE. Appendix A gives
proofs of the theoretical results of Section 2.1. We utilize theorems of Csörgő (1983) and Gürtler and
Henze (2002). Appendix B gives proofs and some detailed technical arguments of results of Section 2.2.
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2 Main results

2.1 Asymptotic theory of the proposed test statistics

We first review maximum likelihood estimator of Cauchy distribution and define an equivariant inte-
grated squared error estimator. Except for differences in estimators, we follow the line of arguments in
Gürtler and Henze (2000).

1. MLE. The log-likelihood function is given by

L = n log β −
n∑

j=1

log{β2 + (xj − α)2} − n log π.

Differentiation of L with respect to (α, β) gives the likelihood equation

∂L

∂α
= 0 ⇔

n∑
j=1

xj − α

β2 + (xj − α)2
= 0,(2.1)

∂L

∂β
= 0 ⇔

n∑
j=1

β2

β2 + (xj − α)2
=
1
2
n.(2.2)

Equivariance of MLE is easily checked. According to Copas (1975), except for pathological cases such
that more than half of the observations are the same, the likelihood function L is unimodal. Therefore
with probability one, a local maximum of the likelihood function is actually the global maximum and
it is relatively easy to obtain MLE by solving the likelihood equation.
2. EISE. Here we define an affine equivariant version of the ISE (integrated squared error) estimator
proposed by Besbeas and Morgan (2001). The original ISE estimator of Besbeas and Morgan (2001) is
not equivariant. EISE is based on standardized empirical characteristic function. Let

Φn(t;α, β) =
1
n

n∑
j=1

exp(it(xj − α)/β),

which is the same as (1.1) with α̂n and β̂n replaced by α and β. Write

(2.3) I(α, β) =
∫ ∞

−∞
|Φn(t;α, β) − e−|t||2w(t)dt,

where we use the following weight function

(2.4) w(t) = exp(−ν|t|), ν > 0.

As in (1.3) the integral I(α, β) can be calculated as

(2.5) I(α, β) =
2
n2

n∑
j,k=1

νβ2

ν2β2 + (xj − xk)
2 − 4

n

n∑
j=1

(1 + ν)β2

(1 + ν)2β2 + (xj − α)2
+

2
2 + ν

.

EISE (α̂n, β̂n) is defined to be the minimizer of I(α, β):

(2.6) I(α̂n, β̂n) = min
α,β

I(α, β).
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It is easy to see that EISE is affine equivariant by definition.
Note that the weighting constant κ in the test statistic (1.2) and the weighting constant ν in (2.4)

for EISE may be different. In our theoretical results on EISE and Dn,κ we treat ν and κ separately.
However for performing goodness-of-fit test, it seems natural to set ν = κ. In our simulation studies in
Section 3 we set ν = κ.

Setting ∂I/∂α = ∂I/∂β = 0 in (2.5), we obtain the following estimating equations for EISE.

∂I

∂α
= 0 ⇔

n∑
j=1

xj − α

((ν + 1)2β2 + (xj − α)2)2
= 0,(2.7)

∂I

∂β
= 0 ⇔ 1

n

n∑
j,k=1

ν(xj − xk)2

(ν2β2 + (xj − xk)2)2
−

n∑
j=1

2(1 + ν)(xj − α)2

((1 + ν)2β2 + (xj − α))2
= 0.(2.8)

Although these estimating equations are somewhat more complicated than the likelihood equations in
(2.1) and (2.2), we can employ standard theory of U -statistics to study the asymptotic behavior of
the estimating equations. We could not establish unimodality of I(α, β), but in our experiences the
estimating equations can be solved numerically if an appropriate initial value is chosen and apparently
produced a unique solution.

The test statistics Dn,κ has yet another alternative representation, which is useful for obtaining its
asymptotic distribution.

Dn,κ =
∫ ∞

−∞
Ẑn(t)2β̂ne−β̂nκ|t|dt,

where

(2.9) Ẑn(t) =
1√
n

n∑
j=1

{
cos(txj) + sin(txj)− e−β̂n|t|(cos(tα̂n) + sin(tα̂n)

)}
.

Ẑn(t) corresponds to the empirical characteristic process. We use the Fréchet space C(R) of continuous
functions on the real line R for considering the random processes. The metric of C(R) is given by

ρ(x, y) =
∞∑
j=1

2−j ρj(x, y)
1 + ρj(x, y)

,

where ρj(x, y) = max|t|≤j |x(t)− y(t)|.
In the rest of this paper we use the following notations. D−→ means weak convergence of random

variables or stochastic processes, P−→ means convergence in probability and i.i.d. means “independently
and identically distributed” as usual.

Now we state results on weak convergence of Ẑn(t) and weak convergence of test statistics Dn,κ in
the following two theorems. Note that because our tests are affine invariant, we can assume without
loss of generality that X1, . . . ,Xn is a random sample from C(0, 1).

Theorem 2.1 Let X1, . . . ,Xn be i.i.d. C(0, 1) random variables and let Ẑn be defined in (2.9). Then
Ẑn

D−→ Z in C(R), where Z is a zero mean Gaussian process with covariance functions given below for
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MLE and EISE, respectively.

MLE : Γ(s, t) = e−|t−s| − {1 + 2(st+ |st|)}e−|s|−|t|,(2.10)
EISE : Γ(s, t) = e−|t−s| − e−|s|−|t| +M1(st+ |st|)e−|s|−|t|(2.11)

−M2

{
(t · sgn s+ |t|)(1− e−ν|s|) + (s · sgn t+ |s|)(1 − e−ν|t|)

}
e−|s|−|t|

+M3(e−ν|s| + e−ν|t|)(st+ |st|)e−|s|−|t|,

where

M1 =
(ν + 2)2(5ν2 + 14ν + 10)

16(ν + 1)3
, M2 =

(ν + 1)(ν + 2)
ν2

, M3 =
(ν + 2)2

2ν
,

and ν is the weighting constant in (2.4).

These asymptotic covariance functions do not involve definite integrals as was the case of the median
and the interquartile range in Gürtler and Henze (2000). In particular the case of MLE is very simple.

Note that for both cases Γ(s, t) is symmetric with respect to the origin and Γ(s, t) = 0 for s, t such
that st < 0. This implies that {Z(t) | t > 0} and {Z(−t) | t > 0} are independently and identically
distributed for both cases. Covariance functions Γ(s, t) for MLE and for EISE with ν = 1.0 are plotted
in Figure 1 and Figure 2.
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Figure 1: MLE
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Figure 2: EISE (ν = 1.0)

Theorem 2.2 Under the conditions of Theorem 2.1

Dn,κ =
∫ ∞

−∞
Ẑn(t)2β̂ne−β̂nκ|t|dt D−→ Dκ :=

∫ ∞

−∞
Z(t)2e−κ|t|dt.

By Fubini, the exact expectation of Dκ can be evaluated as

E(Dκ) =
∫ ∞

−∞
E(Z(t)2)e−κ|t|dt =

∫ ∞

−∞
Γ(t, t)e−κ|t|dt.

Substituting (2.10) and (2.11) we obtain E(Dκ) for the case of MLE and EISE as

MLE : E(Dκ) =
4

κ(κ + 2)
− 16
(κ+ 2)3

,(2.12)

EISE : E(Dκ) =
4

κ(κ+ 2)
+

8M1

(κ+ 2)3
− 8M2

(κ+ 2)2
+

8M2

(κ+ ν + 2)2
+

16M3

(κ+ ν + 2)3
.(2.13)
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These exact expectations of Dκ for both cases will be used as numerical checks in approximating the
eigenvalues of the covariance function Γ(s, t)e−κ(|s|+|t|)/2 in Section 3.4.

2.2 Approximation of the asymptotic critical values of the proposed test statistics

In this section we investigate the distribution of Dκ. For convenience, we briefly review some basic
material on a homogeneous integral equation of the second kind and the associated Fredholm determi-
nant. The Fredholm determinant gives the characteristic function of Dκ. Detailed treatments of this
approach in statistical applications are given in Tanaka (1996) or Anderson and Darling (1952). We
refer to Hochstadt (1973) for standard material on integral equation. Later in this section we transform
our kernels Γ(s, t) on R2 to kernels K(s, t) on [−1, 1]2.

Theorem 2.3 (Mercer’s Theorem, Chapter 5 of Hochstadt (1973)) Let K(s, t) be the kernel
of a positive self-adjoint operator on L2[−1, 1] and suppose that K(s, t) is continuous in both variables.
Then

(2.14) K(s, t) =
∞∑
j=1

1
λj

fj(s)fj(t), 0 < λ1 ≤ λ2 ≤ · · · ↑ ∞,

where λj is an eigenvalue and fj(t) is the corresponding orthonormal eigenfunction of the integral
equation

λ

∫ 1

−1
K(s, t)f(t)dt = f(s).(2.15)

The series (2.14) converges uniformly and absolutely to K(s, t).

Usually Mercer’s theorem is stated for functions in L2[0, 1], but for convenience in our proofs we stated
it in terms of L2[−1, 1]. For our problem we need to deal with kernels which are not continuous at
(−1,−1) and (1, 1). As in Anderson and Darling (1952) the following version of Mercer’s theorem by
Hammerstein (1927) is useful.

Theorem 2.4 Suppose that the covariance function K(s, t) of a Gaussian process is continuous except
at (−1,−1) and (1, 1) with ∂K(s, t)/∂s continuous for |s|, |t| < 1, s �= t, and bounded in |s| ≤ 1 − ε
for every t ∈ [−1, 1] and every ε > 0. Then the right hand side of (2.14) converges uniformly in every
domain in the interior of [−1, 1]2.

We apply the above theorems to a continuous covariance function K(s, t) of a zero mean continuous
Gaussian process Z(t), −1 < t < 1, with a finite trace

∫ 1
−1 K(t, t)dt < ∞. Let X1,X2, . . . , be i.i.d.

standard normal random variables. Then the series

Y (t) =
∞∑
j=1

1√
λj

fj(t)Xj

converges in the mean and with probability one for each t ∈ (−1, 1). Then Y (t) is a Gaussian process
with EY (t) = 0 and E[Y (t)Y (s)] = K(s, t). Thus Y (t) defines the same stochastic process as Z(t). Let

(2.16) W 2 =
∫ 1

−1
Y 2(t)dt =

∫ 1

−1

{ ∞∑
j=1

1√
λj

fj(t)Xj

}2

dt =
∞∑
j=1

1
λj

X2
j .
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The characteristic function of W 2 is given as

E(eiuW
2
) = E[exp(iu

∞∑
j=1

X2
j /λj)] =

∞∏
j=1

E[exp(iuX2
j /λj)] =

∞∏
j=1

(1− 2iu/λj)−
1
2 .

The characteristic function has an alternative expression 1/
√
D(2it) where D(λ) is the associated

Fredholm determinant

D(λ) =
∞∏
j=1

(
1− λ

λj

)
.

There are two problems in treating the characteristic function in the form of Fredholm determinant.
One is in the approximation of D(λ) itself and the other is in the Lev́y’s inversion formula. In many
previous works, the exact Fredholm determinant was available and the exact characteristic function
was inverted analytically or numerically. For example, Anderson and Darling (1952) inverted the
exact characteristic function of their statistics and expressed the distribution as series, although each
term in the series needs numerical computation. Many examples of characteristic functions given in
Tanaka (1996) are numerically inverted.

In our problem Fredholm determinant can not be explicitly evaluated and we need to first approxi-
mate D(λ). We discretize the homogeneous integral equation and use the eigenvalues of resulting finite
system of linear equations. Since the eigenfunctions {fj(x)} are continuous, we can approximate fj by
a step function

f̃j,N(x) =
N∑

k=1

fj(ξk)ϕk(x),

where

ϕk(x) =
{
1, if − 1 + 2(k−1)

N < x ≤ −1 + 2k
N ,

0, otherwise,

is the indicator function of the interval (−1+2(k− 1)/N,−1+2k/N ] and ξk ∈ (−1+2(k− 1)/N,−1+
2k/N), k = 1, . . . , N . As shown in Section 3.4 our approximation works well for the present prob-
lem. In the literature on numerical treatment of integral equations (e.g. Baker (1977)), many other
approximations of the eigenfunctions are considered.

By the above discretization the integral equation (2.15) is approximated by the following finite
system of linear equations

f̃ =
λ

N
K̃f̃ ,

where

K̃ =



K(ξ1, ξ1) . . . K(ξ1, ξN )

...
...

K(ξN , ξ1) . . . K(ξN , ξN )


 , f̃ =




f(ξ1)
...

f(ξN)


 .

Then Fredholm determinant is approximated as

D̃N (λ) =
∣∣∣∣I − λ

N
K̃

∣∣∣∣ =
N∏
j=1

(
1− λ

λ̃j

)
, 0 < λ̃1 ≤ · · · ≤ λ̃N ,

where 1/λ̃j = 1/λ̃j(N) are the eigenvalues of K̃/N . This method is called a quadrature method and
we state a version of Theorem 3.4 of Baker (1977) concerning the convergence of eigenvalues.
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Theorem 2.5 Let the eigenvalues λ̃j(N) be obtained by the quadrature method. If K(s, t) is positive
definite and continuous in s, t ∈ [−1, 1],

lim
N→∞

λ̃j(N) = λj ,

for each j and
lim

N→∞
D̃N (λ) = D(λ)

for each λ.

Remark 2.1 The covariance functions in (2.19) and (2.20) below do not satisfy the conditions of this
theorem if κ ≤ 1. However this theorem gives only a sufficient condition for the convergence. In
our problem the values of D̃N (λ) seems to converge as we increase N even for the case κ ≤ 1 and
the resulting value is consistent with our Monte Carlo simulations. Therefore in Section 3.4 we use
the approximation of this theorem even for the case κ ≤ 1. It remains to theoretically prove that the
approximation is valid for the case κ ≤ 1.

Inverting the characteristic functions gives the distribution functions and the probability density
functions of the proposed statistics. As we have seen, the characteristic function is usually expressed as
the square root of a complex valued function, which sometimes causes computational difficulty (Section
6.1 of Tanaka (1996)). But in our problem the eigenvalues appear in pairs and we do not need the square
root in the characteristic function. This follows from the independence and the identical distribution
of {Z(t) | t < 0} and {Z(−t) | t > 0}. We state this as a theorem.

Theorem 2.6 Suppose that K(s, t), −1 ≤ s, t ≤ 1 satisfies the conditions of Theorem 2.3 or 2.4.
Furthermore suppose that K(s, t) is symmetric with respect to the origin, K(s, t) = 0 if st < 0 and has
finite trace

∫ 1
−1 K(t, t)dt < ∞. Then the characteristic function of the quadratic form W 2 in (2.16) is

given by

φ(t) = E(eitW
2
) =

1
D(2it)

,

where D(λ) is the Fredholm determinant of the kernel K(s, t) restricted to [0, 1]2.

A proof of this theorem is given in Appendix B.
Using the residue theorem, we can now invert characteristic function analytically. Assuming that

the kernel K(s, t) restricted to [0, 1]2 has only single eigenvalues, the corresponding density function
and distribution function are calculated as

(2.17) fW 2(y) =
∞∑
j=1

λj

2
exp(−λj

2 y)∏∞
k �=j(1− λj

λk
)
,

(2.18) FW 2(y) = 1−
∞∑
j=1

exp(−λj

2 y)∏∞
k �=j(1− λj

λk
)
.

Note that the series on the right hand side is alternating and we can bound the fW 2(y) and FW 2(y)
relatively easily.
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Remark 2.2 In the case of multiple eigenvalues, the residue calculation becomes somewhat more com-
plicated and we omit the results for the case of multiple eigenvalues. As shown in Table 12, our numerical
study indicates that our kernels restricted to [0, 1]2 have single eigenvalues only.

Note that our kernel Γ(s, t) on R2 does not satisfy finite interval condition of Mercer’s theorem.
In such a case, integral equation (2.15) is called a singular integral equation and is difficult to treat.
Therefore we will make a transformation of variable and map R into [−1, 1]. First, in view of Theorem
2.6 we only consider s, t ≥ 0 in Γ(s, t). Furthermore for deriving the distribution of Dκ, we have to
incorporate the weight function e−κt into the kernel, i.e., we consider the following kernels

MLE : ΓM (s, t) = {e−|t−s| − (1 + 4st)e−(s+t)}e−κ
2
(s+t),

EISE : ΓI(s, t) = [e−|t−s| − {1− 2M1st+ 2M2(s+ t)}e−(s+t)

+2{(M2t+M3st)e−κs + (M2s+M3st)e−κt}e−(s+t)]e−
κ
2
(s+t).

Now we make the transformation s �→ u defined by

u =
∫ s

0
e−xdx = 1− e−s, 0 ≤ u ≤ 1.

Then
s = − log(1− u), ds =

1
1− u

du = esdu.

The kernel and the eigenfunctions are transformed as

Γ(s, t) �→ K(u, v) =
Γ(− log(1− u),− log(1− v))√

(1− u)(1− v)
,

fj(s) �→ fj(− log(1− u))√
1− u

.

Eigenvalues of (2.15) do not change by this transformation and so is Fredholm determinant.
After this transformation, writing s, t instead of u, v again, we have the following kernels on [0, 1]2:

MLE : KM (s, t) = ((1 − s)(1− t))
κ−1

2

[
min

{
1− t

1− s
,
1− s

1− t

}
(2.19)

−{1 + 4 log(1− s) log(1− t)}(1− s)(1− t)
]
.

EISE : KI(s, t) = ((1 − s)(1− t))
κ−1

2

[
min

{
1− t

1− s
,
1− s

1− t

}
(2.20)

−{1− 2M1 log(1− s) log(1− t)− 2M2 log((1 − s)(1− t))}(1 − s)(1− t)

−2
{(

M2 log(1− t)−M3 log(1− s) log(1− t)
)
(1− s)κ

+
(
M2 log(1− s)−M3 log(1− s) log(1− t)

)
(1− t)κ

}
(1− s)(1− t)

]
.

If κ > 1, the conditions of Mercer’s theorem are satisfied. In the case of 0 < κ ≤ 1 these kernels are
discontinuous at (1, 1), but Theorem 2.4 is applicable. Note that by (2.12) and (2.13) traces of these
kernels are finite. Figure 3 and Figure 4 show the graphs of ISE and MLE kernels K(s, t) respectively
with κ = 1.0. Figure 5 and Figure 6 are for the case κ = 3.0. In the case κ = 1.0, we can see
discontinuity of K(s, t) at (1, 1).
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Figure 3: MLE (κ = 1.0)
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Figure 4: EISE (κ = 1.0)
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Figure 5: MLE (κ = 3.0)
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Figure 6: EISE (κ = 3.0)

3 Computational studies

In this section, some simulation results are given. Since the exact finite sample distributions are difficult
to obtain, first we approximate the percentage points of Dn,κ by Monte Carlo simulation. Then the
power of both tests for the finite sample is evaluated. In the end of this section percentage points of
Dκ is computed by the residue theorem.

For MLE, the estimates are easily found by Newton method. Convenient initial values are suggested
by Copas (1975). But for EISE simple Newton method does not work well and we often need grid search
of initial values. In the case of EISE we use the same initial value as MLE for Newton method. If it fails
to converge we do grid search of initial values and we obtain the parameter value which minimizes (2.3)
among, say, 20000 points, and use it as the initial value of Newton method. When the values of the
estimators have converged, we can compute Dn,κ by (1.3). Based on 100,000 Monte Carlo replications,
the upper 10 and 5 percentage points of the statistics Dn,κ, κ ∈ {0.1, 0.5, 1.0, 2.5, 5.0, 10.0} are tabulated
in Table 1, Table 2 for MLE and Table 3, Table 4 for EISE.
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3.1 Tests based on empirical distribution function

Here we give critical values for some classical procedures based on the empirical distribution function of
Cauchy distribution C(0, 1), which were not tabulated in Section 4.14 of D’Agostino and Stephens (1986).
They stated that MLE was computationally difficult and only gave critical values based on estimators
proposed in Chernoff et al. (1967). Let F0(x) = 1/2+π−1 arctan x be the distribution function of C(0, 1),
Y(j) = (X(j)−α̂)/β̂, j = 1, . . . , n, be the order statistic of the standardized data, and let Z(j) = F0(Y(j)).
We consider the Anderson-Darling statistic AD, Cramér-von Mises statistic CM, Kolmogorov-Smirnov
statistic KS, Watson statistic W, defined by

KS = max
{
max

1≤j≤n
(
j

n
− Z(j)), max

1≤j≤n
(Z(j) −

j − 1
n

)
}
,

CM =
n∑

j=1

(
Z(j) −

2j − 1
2n

)2

+
1
12n

,

AD = −n− 1
n

n∑
j=1

{
(2j − 1) logZ(j) + (2n+ 1− 2j) log(1− Z(j))

}
,

W = CM− n

(
1
n

n∑
j=1

Z(j) −
1
2

)2

.

We tabulate critical values of above tests in Table 5 and Table 6 for the case that the parameters are
estimated by MLE. It is interesting to compare these classical tests when estimators other than MLE are
used. However our main concern here is the comparison of the tests based on the empirical characteristic
function to those based on empirical distribution function when the parameters are estimated.

3.2 Alternative hypotheses

For studying the power functions of various tests considered, we use the following family of distributions
containing the Cauchy distribution as a special case.

1. t(j). Student’s t distribution with j degrees of freedom for j = 1, 2, 3, 4, 5, 10,∞. Note t(1) =
C(1, 0) and t(∞) = N(0, 1).

2. st(a, b). Stable distributions with the characteristic function

Φ(t) =
{
exp

(−|t|a[1− ib sgn t tan(aπ/2)]
)
, if a �= 1,

exp
(−|t|[1 + ib(2/π) sgn t log t]

)
, if a = 1.

Here we only consider symmetric stable distributions (b = 0). Characteristic exponent a ∈ (0, 2]
concerns the tail behavior of the distribution. Note that st(1, 0) = C(0, 1) and st(2, 0) = N(0, 1).

3.3 Analysis of finite sample power

For the significance levels ξ = 0.1, 0.05, finite sample power of the tests are tabulated in Table 7, Table
9, Table 11 for MLE and Table 8, Table 10 for EISE based on 10,000 Monte Carlo replications. In these
tables ’*’ stands for 100, i.e. the power of 100 percent. We omit the case of EISE with the sample size

11



n = 200, because the simulation study becomes computationally very heavy due to frequent need of
grid search of initial values under various alternative hypotheses.

In comparison to the test proposed by Gürtler and Henze (2000) for the nominal level of 10 percent,
our test has about 10 percent less power than their test for the case of n = 50 and the alternatives
t(2), t(3), t(4). Our tests are slightly more powerful than their test when the alternative distribution is
far away from the null (e.g. N(0, 1)) or the weight κ is small and the alternative is close to the null (e.g.
st(1.2, 0)).

We also see that our tests compare well to more traditional tests based on the empirical distribution
function tabulated in Gürtler and Henze (2000).

For future research, it is worth investigating the problem of choosing weights κ and ν depending on
alternatives in order to maximize power.

3.4 Approximation of Dκ

First we calculate the eigenvalues of kernels (2.19) and (2.20) numerically. 500 eigenvalues are easily
approximated by the above simple algorithm except for the case κ = 0.1. For the case of κ = 0.1,
we had some numerical difficulty and the approximated sum of 2

∑∞
j=1 1/λj did not converge to E[Dκ]

quickly. Therefore we omit the case κ = 0.1 and present results for the cases κ ∈ {0.5, 1.0, 2.5, 5.0, 10.0}.
Note that the powers of both tests are the lowest for the case of κ = 0.1. Table 12 gives the largest 10
values of 1/λj for both MLE and EISE with κ ∈ {0.5, 1.0, 2.5, 5.0, 10.0}.

The infinite sum and the infinite products in (2.18) have to be approximated by a finite sum and
finite products. Let l and m (l < m) denote the number of terms in the sum and the products,
respectively. Then FW 2(y) in (2.18) is approximated as

FW 2(y) ≈ 1−
l∑

j=1

exp(−λj

2 y)∏m
k �=j(1− λj

λk
)
.

For the remaining part of the product 1/
∏∞

m+1(1− λj

λk
), we can give bounds by using the equation

1
1− x

= exp

( ∞∑
n=1

xn

n

)
.

A lower bound of the j-th term of the series is given by

exp(−λj

2 y)∏m
k �=j(1− λj

λk
)
exp

(
λj

∞∑
k=m+1

1
λk

)
,

and an upper bound is given by

exp(−λj

2 y)∏m
k �=j(1− λj

λk
)
exp

(
λj

{
1 +

λj

2(λm+1 − λj)

} ∞∑
k=m+1

1
λk

)
.

For evaluating
∑∞

k=m+1 1/λk, we can utilize the expected value E(Dκ) = 2
∑∞

k=1 1/λk. The sum∑m
k=1 1/λk is evaluated numerically by approximating the firstm eigenvalues as

∑m
k=1 1/λk ≈ ∑m

k=1 1/λ̃k

and then E(Dκ)/2−
∑m

k=1 1/λ̃k approximates
∑∞

k=m+1 1/λk.

12



Note that the series is alternating. Therefore the range of the critical values is obtained by sub-
stituting the above bounds for positive terms and negative terms separately, i.e., by substituting the
upper bound for positive terms and the lower bound for negative terms, or vice versa. We present
Tables 13 and 14 of approximate percentage points of Dκ.

More extensive numerical results on the ranges are tabulated in Tables 15–18. In these tables four
values are presented for each combination of l,m and κ. The upper left value gives a lower bound (a)
for percentage points of Dκ and the upper right values gives the corresponding upper bound (b). The
lower left value is difference of the upper bound and the lower bound. Furthermore the lower right
value gives

∑∞
k=m+1 1/λ̃k. These are summarized in the following table.

κ

l/m a b

b− a E(Dκ)/2 −
∑m

k=1 1/λ̃k

where

a : a lower bound for percentage points of Dκ ,

b : an upper bound for percentage points of Dκ ,

b− a : the range for percentage points of Dκ.

Note that more accurate approximations may be obtained if we evaluate higher order moments of
Dκ.

A Proofs of the results in Section 2.1.

Proofs of the theorems are essentially the same as those of Gürtler and Henze (2000). Although we
could state only the differences in our case from Gürtler and Henze (2000), for convenience we reproduce
here the outline of the whole proof.

Before considering Fréchet space C(R), we first assume the restricted space C(S) of continuous
functions on a compact subset S with the supremum norm ‖f‖ = supt∈s |f(t)|. Defining k(x, t) =
cos(tx) + sin(tx), alternative representation of Ẑn(t) is given by

Ẑn(t) =
1√
n

n∑
j=1

{
cos(tXj) + sin(tXj)− e−β̂n|t|(cos(tα̂n) + sin(tα̂n))

}

=
∫

k(x, t)d
{√

n
(
Fn(x)− F (x, θ̂n)

)}
.

We only have to check the conditions (iv) and (v) of Csörgő (1983). The first step is to obtain the
“Bahadur representations”

√
nα̂n =

1√
n

n∑
j=1

l1(Xj) + r1n,
√
n(β̂n − 1) = 1√

n

n∑
j=1

l2(Xj) + r2n, r1n, r2n
P−→ 0

of the estimators for the standard Cauchy case C(0, 1).
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Lemma A.1 The Bahadur representations l(x) = (l1(x), l2(x)) and their covariance matrices for MLE
and for EISE are given by
1. MLE

l1(x) =
4x

1 + x2
, l2(x) =

2(x2 − 1)
1 + x2

,

E[l(X)l(X)′] =
(
2 0
0 2

)
.

2. EISE

l1(x) = (ν + 1)(ν + 2)3
x

((ν + 1)2 + x2)2
,

l2(x) =
1
2
(ν + 2)− 1

2
(ν + 2)3

(ν + 1)2 − x2

((ν + 1)2 + x2)2
,

E[l(X)l(X)′] =
(ν + 2)2(5ν2 + 14ν + 10)

16(ν + 1)3
× I2,

where ν is the weighting constant in (2.4) and I2 is the 2× 2 identity matrix.

Proof. In the case of MLE, l1 and l2 are easily obtained from the score functions and the Fisher
information matrix.

For EISE we apply the delta method to the estimating equations (2.7), (2.8) for the case of C(α, β)
and obtain

√
n(α̂n − α) =

1√
n

∑n
j=1 g1(Xj)∑n

j=1 g2(Xj)/n
+ r1n, r1n

P−→ 0,

√
n(β̂n − β) =

√
n

4β

1
n(n−1)

∑n
j,k=1 h1(Xj ,Xk)− 1

n−1

∑n
j=1 2h2(Xj)

1
n(n−1)

∑n
j,k=1 h3(Xj ,Xk)− 1

n−1

∑n
j=1 2h4(Xj)

+ r2n, r2n
P−→ 0,(A.1)

where

g1(x) = − (x− α)
((x− α)2 + (ν + 1)2β2)2

, g2(x) =
3(x− α)2 − (ν + 1)2β2

((x− α)2 + (ν + 1)2β2)3
,

h1(x1, x2) =
ν(x1 − x2)

2

((x1 − x2)
2 + ν2β2)2

, h3(x1, x2) =
ν3(x1 − x2)

2

((x1 − x2)
2 + ν2β2)3

,

h2(x) =
(ν + 1)(x− α)2

((x− α)2 + (ν + 1)2β2)2
, h4(x) =

(ν + 1)3(x− α)2

((x− α)2 + (ν + 1)2β2)3
.

Returning to the standard case (α, β) = (0, 1), the numerator of
√
n(β̂n − 1) in (A.1) can be expressed

in the form of a U -statistic

√
n
{
Un − 1

n(n− 1)
n∑

j=1

2h2(Xj)
}
=

√
nUn + r3n, r3n

P−→ 0,

where

Un =
(

n
2

)−1 n∑
1≤j<k≤n

h(Xj ,Xk) =
2

n(n− 1)
n∑

1≤j<k≤n

{h1(Xj ,Xk)− h2(Xj)− h2(Xk)} .
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By standard argument on U -statistic (Chapter 3 of Maesono (2001), Chapter 5 of Serfling (1980)) we
only need to evaluate

a(x1) = E[h(X1,X2) | X1 = x1],

since
√
nUn =

1√
n

n∑
j=1

2a(Xj) + r4n, r4n
P−→ 0.

It can be shown that a(x1) is written as

a(x1) =
1
2
(ν + 1)2 − x2

1

(x2
1 + (ν + 1)2)2

− 1
2(ν + 2)2

.

The denominators of
√
nα̂n and

√
n(β̂n − 1) converge in probability to their expectations

E
[ n∑

j=1

g2(Xj)/n
]
= − 1

(ν + 1)(ν + 2)3
,

E
[

4
n(n− 1)

n∑
j,k=1

h3(Xj ,Xk)− 8
n− 1

n∑
j=1

h4(Xj)
]
= − 2

(ν + 2)3
.

Thus the Bahadur representation of EISE is given by

√
nα̂n =

1√
n

n∑
j=1

(ν + 1)(ν + 2)3
Xj

(X2
j + (ν + 1)2)2

+ r1n,

√
n(β̂n − 1) =

1√
n

n∑
j=1

{
(ν + 2)3

2
Xj

2 − (ν + 1)2
(Xj

2 + (ν + 1)2)
2 +

(ν + 2)
2

}
+ r2n.

✷

Note that the covariance matrix E[l(X)l(X)′] for both MLE and EISE is finite and positive definite.
Therefore condition (iv) of Csörgő (1983) is satisfied. Since l1 and l2 are bounded and differentiable,
condition (v) of Csörgő (1983) is satisfied. Therefore the weak convergence of Ẑn(t) to a zero mean
Gaussian process Z is proved in the space (C(S), ‖·‖∞). Since the compact set S is arbitrary, the space
(C(s), ‖ · ‖∞) can be extended to Fréchet space C(R) easily.

In order to derive the covariance function of Z, we set up some notations. Define

∇θF (x, θ) :=
(

∂

∂α
F (x, θ),

∂

∂β
F (x, θ)

)′
= − (β, x− α)′

π
(
β2 + (x− α)2

) ,
where F (x, θ) = 1/2 + π−1 arctan((x− α)/β) and define its kernel transform

H(t, θ) =
(
H1(t, θ),H2(t, θ)

)′ := ∫
k(x, t)d∇θF (x, θ).

In the Cauchy case H(t, θ) is written as

H1(t, θ) =
2
πβ

∫ [
cos

(
t(α+ βy)

)
+ sin

(
t(α+ βy)

)] y

(1 + y2)2
dy,

H2(t, θ) =
1
πβ

∫ [
cos

(
t(α+ βy)

)
+ sin

(
t(α+ βy)

)] 1− y2

(1 + y2)2
dy.
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Putting (α, β) = θ0 = (0, 1) we obtain

H(t, θ0) =
(
te−|t|,−|t|e−|t|)′.

Write F0(x) = F (x, θ0) for simplicity. The kernel transform of Bahadur representations are given
as follows.
1. MLE ∫

k(x, s)l1(x)dF0(x) = 2se−|s|.(A.2) ∫
k(x, s)l2(x)dF0(x) = −2|s|e−|s|.

2. EISE∫
k(x, s)l1(x)dF0(x) =

(ν + 1)(ν + 2)
ν2

(
e−|s| sgn s− e−(ν+1)|t|

)
− (ν + 2)2

2ν
se−(ν+1)|t|.(A.3) ∫

k(x, s)l2(x)dF0(x) =
(ν + 1)(ν + 2)

ν2

(
e−(ν+1)|t| − e−|t|

)
+
(ν + 2)2

2ν
|t|e−(ν+1)|t|.

Let 〈·, ·〉 denote the standard inner product of R2 . Write

Fn(x)− F (x, θ̂n) = Fn(x)− F0(x)− (F (x, θ̂n)− F0(x))
= Fn(x)− F0(x)−

〈
θ̂n − θ0,∇θF (x, θ∗n)

〉
,

where θ∗n is some value between θ0 and θn. Note that θ∗n
P−→ θ0. Now replace

√
n(θ̂n − θ0) by its

Bahadur representation. Then Ẑn(t) is written as

Ẑn(t) =
∫

k(x, t)d
{√

n
(
Fn(x)− F0(x)

)}−
〈√

n(θ̂n − θ0),H(t, θ∗n)
〉

= Z∗
n(t) +∆

(2)
n (t) + ∆(3)

n (t),

where

Z∗
n(t) :=

∫
k(x, t)d

{√
n
(
Fn(x)− F0(x)

)}−
〈
1√
n

n∑
j=1

l(Xj),H(t, θ∗n)

〉

=
1√
n

n∑
j=1

[
cos(tXj) + sin(tXj)− e−|t| − te−|t|l1(Xj) + |t|e−|t|l2(Xj)

]
.

Z∗
n also converges to Z. The remainder terms ∆(2)

n and ∆(3)
n are defined by

∆(2)
n :=

〈√
n(θ̂n − θ0),H(t, θ0)−H(t, θ∗n)

〉
,

∆(3)
n := −〈εn,H(t, θ0)〉 , εn = (rn1, rn2)′.

These remainder terms satisfy sup
t∈S

|∆(2)
n | P−→ 0, and sup

t∈S
|∆(3)

n | P−→ 0 by conditions (iv) and (vi) of

Csörgő (1983). The asymptotic process Z has an alternative expression

Z(t) =
∫

k(x, t)dBF0(x)−
〈∫

l(x)dBF0(x),H(t, θ0)
〉
,
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where BF0(x) is the Brownian bridge corresponding to the distribution function F0, having covariance
function E[BF0(s)BF0(t)] = F0(s ∧ t)− F0(s)F0(t). Z∗ and Z have the same covariance function

Γ(s, t) = K̃0(s, t)−K0(s)K0(t) +H(s, θ0)′E[l(X1)l(X1)′]H(s, θ0)(A.4)

−
〈
H(t, θ0),

∫
k(x, s)l(x)dF0(x)

〉
−

〈
H(s, θ0),

∫
k(x, t)l(x)dF0(x)

〉
,

where
K0(t) =

∫
k(x, t)dF0(x) = e−|t|, K̃0(s, t) =

∫
k(x, s)k(x, t)dF0(x) = e−|t−s|.

Evaluating (A.4) for the case of MLE and EISE using (A.2) and (A.3) proves Theorem 2.1. ✷

We here remark a relation between the Bahadur representation lM of MLE and the Bahadur rep-
resentation lI of EISE. From the asymptotic efficiency of MLE it follows that lM and lI − lM are
orthogonal, i.e.,

E[lM (lI − lM )] = 0.

B Proofs of the results in Section 2.2.

We first give a proof of Theorem 2.6. Because K(s, t) is symmetric with respect to the origin and
K(s, t) = 0 for st < 0

K(s, t) =




∑∞
j=1

1
λj
fj(s)fj(t), if 0 ≤ s, t < 1,

∑∞
j=1

1
λj
gj(s)gj(t), if − 1 < s, t ≤ 0,

0, otherwise,

where fi(t) = gi(−t) satisfies the integral equation (2.15) and fj(t) = 0 for t < 0. Then

W 2 =
∫ 1

−1
Y 2(t)dt =

∫ 0

−1
Y 2(t)dt +

∫ 1

0
Y 2(t)dt

=
∫ 1

0

[ ∞∑
j=1

1√
λj

X2j−1fj(t)
]2

dt+
∫ 0

−1

[ ∞∑
j=1

1√
λj

X2jgj(t)
]2

dt

=
∞∑
j=1

1
λj
(X2

2j−1 +X2
2j).

Therefore

E(eitW
2
) = [E(exp(it

∫ 1

0
Y 2(t)dt))]2 =

1
D(2it)

.

✷

We now derive the density function and the distribution function in (2.17) and (2.18). By the
inversion formula

f(x) =
1
2π

∫ ∞

−∞

e−ixt∏∞
j=1(1− 2it

λj
)
dt.
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Figure 7: Complex integration

We consider complex integration
1
2π

∮
−C

e−ixt∏∞
j=1(1− 2it

λj
)
dt,

where a closed curve C consists of a semicircle CR with radius R and a line segment [−R,R] and −C
means the clockwise direction. See Figure 7. In the region D = {re−iθ | 0 < r < R, 0 < θ < π}, the
integrand has singular points at aj = −iλj/2. Except for these points, the integrand is regular and
continuous. The residual theorem tells us

1
2π

∮
−C

e−ixt∏∞
j=1(1− 2it

λj
)
dt = −i

∞∑
j=1

Res t=aj

[
e−ixt∏∞

j=1(1− 2it
λj
)

]

=
∞∑
j=1

λj

2
exp(−λj

2 y)∏∞
k �=j(1− λj

λk
)
,

In the integral on CR we transform t by R and θ as t = Re−iθ. Then

1
2π

∮
CR

e−ixt∏∞
j=1(1− 2it

λj
)
dt =

1
2π

∫ π

0

iR exp{−i(xRe−iθ + θ)}∏∞
j=1(1− 2iRe−iθ

λj
)

dθ −→ 0.

as R → ∞. Here we can take R to be the midpoint (aj + aj+1)/2 of neighboring aj ’s, so that the
denominator of the integrand never vanishes. Although the integrand is a function of all the eigenvalues
λj , the convergence to zero of the integral over CR is easily justified if

∏∞
j=1(1 − 2iu/λj)−1/2 is of

exponential order less than unity as R → ∞ (see Slepian (1957)). Heuristic arguments can be easily
given that

∏∞
j=1(1−2iu/λj)−1/2 is of exponential order less than unity based on the fact

∑
j 1/λj < ∞.

In general 1/λj = O(1/j2) as discussed in Section 4 of Anderson and Darling (1952).
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Table 1: MLE: Upper 10 percentage points of Dn,κ

n \ κ 0.1 0.5 1.0 2.5 5.0 10.0
10 21.23 3.054 1.111 0.307 0.127 0.0498
20 21.60 3.093 1.103 0.292 0.118 0.0451
50 21.83 3.119 1.105 0.287 0.115 0.0432
100 21.90 3.131 1.108 0.285 0.115 0.0430
200 21.89 3.136 1.111 0.286 0.114 0.0426

Table 2: MLE: Upper 5 percentage points of Dn,κ

n \ κ 0.1 0.5 1.0 2.5 5.0 10.0
10 22.95 3.406 1.271 0.373 0.160 0.0675
20 23.31 3.481 1.263 0.349 0.147 0.0592
50 23.59 3.514 1.268 0.338 0.141 0.0543
100 23.66 3.546 1.271 0.337 0.138 0.0533
200 23.65 3.555 1.275 0.335 0.137 0.0524

Table 3: EISE: Upper 10 percentage points of Dn,κ

n \ κ 0.1 0.5 1.0 2.5 5.0 10.0
10 19.88 2.806 0.992 0.209 0.0541 0.0109
20 20.74 2.916 1.040 0.228 0.0645 0.0154
50 21.22 3.006 1.078 0.241 0.0709 0.0192
100 21.39 3.026 1.085 0.244 0.0727 0.0202
200 21.45 3.040 1.089 0.245 0.0736 0.0209

Table 4: EISE: Upper 5 percentage points of Dn,κ

n \ κ 0.1 0.5 1.0 2.5 5.0 10.0
10 20.95 3.103 1.118 0.234 0.0585 0.0113
20 22.20 3.277 1.182 0.264 0.0754 0.0180
50 22.85 3.394 1.231 0.281 0.0836 0.0226
100 23.07 3.416 1.241 0.285 0.0858 0.0240
200 23.14 3.438 1.251 0.286 0.0870 0.0247
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Table 5: Upper 10 percentage points of KS CM AD W

n \ κ KS CM AD W
10 0.236 0.131 0.988 0.050
20 0.172 0.128 0.956 0.051
30 0.142 0.128 0.955 0.051
40 0.124 0.129 0.956 0.051
50 0.111 0.129 0.951 0.051
100 0.079 0.128 0.948 0.052
200 0.056 0.128 0.944 0.052

Table 6: Upper 5 percentage points of KS CM AD W

n \ κ KS CM AD W
10 0.259 0.168 1.272 0.057
20 0.188 0.166 1.228 0.058
30 0.156 0.168 1.230 0.060
40 0.136 0.169 1.228 0.060
50 0.122 0.169 1.233 0.060
100 0.087 0.168 1.221 0.060
200 0.062 0.169 1.223 0.061

Table 7: MLE: Power of Dn,κ (Significance levels ξ = 0.1, 0.05, n = 50)

ξ 0.1 0.05
κ 0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0

C(0, 1) 10 10 10 11 10 10 5 5 5 6 5 5
N(0, 1) 34 72 87 96 98 98 22 60 78 90 92 86
t(2) 15 22 25 26 27 24 8 13 16 15 14 9
t(3) 19 34 43 50 55 52 10 24 30 34 36 25
t(4) 22 43 54 64 71 70 13 30 42 49 52 40
t(5) 24 48 62 73 80 80 14 35 49 58 62 50
t(10) 29 60 75 87 92 92 17 47 63 77 80 71
st(0.5, 0) 75 90 94 97 98 98 64 84 89 94 96 97
st(0.8, 0) 14 21 27 35 40 42 7 13 17 24 29 31
st(0.9, 0) 10 12 15 18 19 21 5 7 8 10 12 13
st(1.1, 0) 6 8 9 10 11 10 2 3 4 5 6 6
st(1.2, 0) 8 11 12 14 15 12 2 4 6 8 8 6
st(1.5, 0) 20 34 40 42 44 34 11 23 28 28 26 15
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Table 8: EISE: Power of Dn,κ (Significance levels ξ = 0.1, 0.05, n = 50)

ξ 0.1 0.05
κ 0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0

C(0, 1) 10 10 10 10 10 10 5 5 5 5 5 5
N(0, 1) 30 66 86 98 * * 20 53 76 95 97 92
t(2) 13 19 24 30 29 19 8 11 15 19 16 8
t(3) 17 30 41 56 58 43 10 20 30 41 40 22
t(4) 19 37 52 71 74 62 11 25 40 57 58 36
t(5) 21 42 60 80 84 74 13 30 47 67 69 48
t(10) 24 53 73 91 95 91 15 40 62 84 88 73
st(0.5, 0) 50 88 94 93 87 72 32 80 89 88 79 60
st(0.8, 0) 12 21 27 31 28 25 6 12 17 20 18 15
st(0.9, 0) 10 12 14 16 16 15 5 6 8 9 9 8
st(1.1, 0) 7 8 9 10 10 10 3 3 4 5 5 6
st(1.2, 0) 7 10 13 13 13 12 3 5 7 7 7 6
st(1.5, 0) 18 29 39 47 41 24 10 19 28 33 26 11

Table 9: MLE: Power of Dn,κ (Significance levels ξ = 0.1, 0.05, n = 100)

ξ 0.1 0.05
κ 0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0

C(0, 1) 10 10 10 10 10 11 5 5 5 6 5 5
N(0, 1) 64 98 * * * * 95 * * * * *
t(2) 21 38 49 60 67 71 12 26 36 44 52 53
t(3) 31 63 79 90 95 97 20 50 67 82 89 92
t(4) 39 75 90 97 99 * 25 63 82 94 97 98
t(5) 43 83 94 * * * 30 72 90 97 99 *
t(10) 54 93 99 * * * 40 86 97 * * *
st(0.5, 0) 96 * * * * * 94 99 * * * *
st(0.8, 0) 20 33 42 51 56 59 12 22 29 39 45 48
st(0.9, 0) 11 15 18 22 25 26 6 8 10 13 16 17
st(1.1, 0) 11 13 12 11 11 10 6 7 6 5 5 4
st(1.2, 0) 14 20 22 22 22 20 7 12 14 13 13 10
st(1.5, 0) 31 61 74 82 85 84 20 48 62 71 74 70
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Table 10: EISE: Power of Dn,κ (Significance levels ξ = 0.1, 0.05, n = 100)

ξ 0.1 0.05
κ 0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0

C(0, 1) 10 10 10 10 10 10 5 5 5 5 5 5
N(0, 1) 55 97 * * * * 41 92 * * * *
t(2) 17 32 47 63 66 57 10 22 35 50 51 40
t(3) 24 56 77 92 95 92 14 43 66 86 89 82
t(4) 30 70 89 98 99 98 19 57 81 96 98 96
t(5) 35 77 94 * * * 23 66 88 99 99 99
t(10) 43 90 99 * * * 31 81 97 * * *
st(0.5, 0) 83 99 * * 99 92 71 98 * 99 97 87
st(0.8, 0) 15 31 42 46 40 32 8 20 30 34 29 21
st(0.9, 0) 11 15 18 20 19 17 5 8 10 12 11 10
st(1.1, 0) 9 11 12 12 12 11 4 5 6 6 6 6
st(1.2, 0) 13 18 22 24 20 14 7 11 14 14 11 6
st(1.5, 0) 16 63 80 84 72 55 25 46 68 75 61 42

Table 11: MLE: Power of Dn,κ (Significance levels ξ = 0.1, 0.05, n = 200)

ξ 0.1 0.05
κ 0.1 0.5 1.0 2.5 5.0 10.0 0.1 0.5 1.0 2.5 5.0 10.0

C(0, 1) 10 10 10 11 10 10 5 5 5 5 5 5
N(0, 1) 96 * * * * * 91 * * * * *
t(2) 34 67 82 93 96 98 22 53 73 86 93 95
t(3) 58 94 98 * * * 42 88 98 * * *
t(4) 69 99 * * * * 55 96 * * * *
t(5) 77 99 * * * * 64 98 * * * *
t(10) 54 93 99 * * * 40 86 97 * * *
st(0.5, 0) 96 * * * * * 94 99 * * * *
st(0.8, 0) 32 54 63 72 78 81 21 41 51 62 69 72
st(0.9, 0) 14 20 23 29 32 34 7 11 14 20 22 24
st(1.1, 0) 12 15 16 17 17 16 7 8 9 9 9 8
st(1.2, 0) 18 32 39 43 47 46 11 21 27 30 34 31
st(1.5, 0) 57 92 97 99 * 99 85 95 98 98 99 99

23



Table 12: Approximate values of 1/λj (j = 1, . . . , 10) for Dκ

κ j 1 2 3 4 5 6 7 8 9 10
0.5 MLE 0.2835 0.1672 0.1083 0.0798 0.0637 0.0505 0.0396 0.0315 0.0255 0.0210

EISE 0.2713 0.1589 0.1054 0.0782 0.0627 0.0497 0.0391 0.0311 0.0253 0.0209
1.0 MLE 0.1131 0.0648 0.0366 0.0256 0.0180 0.0138 0.0107 0.00865 0.00706 0.00594

EISE 0.1130 0.0603 0.0366 0.0249 0.0180 0.0136 0.0107 0.00858 0.00706 0.00591
2.5 MLE 0.0349 0.0171 0.0084 0.0056 0.0037 0.0028 0.0021 0.0017 0.0013 0.0011

EISE 0.0298 0.0137 0.0076 0.0050 0.0034 0.0026 0.0020 0.0016 0.0013 0.0010
5.0 MLE 0.0165 0.0061 0.0029 0.0017 0.0011 0.0008 0.0006 0.0005 0.0004 0.0003

EISE 0.0097 0.0040 0.0026 0.0014 0.0009 0.0007 0.0005 0.0004 0.0003 0.0003
10.0 MLE 0.0070 0.0019 0.0009 0.0005 0.0003 0.0002 0.0002 0.0001 9.9E-5 8.1E-5

EISE 0.0029 0.0011 0.0006 0.0004 0.0002 0.0002 0.0001 0.0001 8.5E-5 7.0E-5

Table 13: MLE: Upper ξ percentage points of Dκ

ξ\κ 0.5 1.0 2.5 5.0 10.0
0.1 3.153 1.111 0.286 0.114 0.0431
0.05 3.571 1.276 0.336 0.137 0.0527

Table 14: EISE: Upper ξ percentage points of Dκ

ξ\κ 0.5 1.0 2.5 5.0 10.0
0.1 3.057 1.093 0.248 0.0750 0.0213
0.05 3.458 1.256 0.290 0.0886 0.0254

Table 15: MLE: Upper 10 percentage points of Dκ

l/m \ κ 0.5 1.0 2.5 5.0 10.0

3/10 3.14298 3.16643 1.10959 1.11398 0.28608 0.28645 0.11443 0.11448 0.04307 0.04307
0.02344 0.21733 0.00439 0.06614 0.00036 0.01135 4.8E-05 0.00298 7.4E-06 0.00077

25/50 3.15279 3.15303 1.11141 1.11147 0.28622 0.28623 0.11445 0.11445 0.04307 0.04307
0.00024 0.05641 0.00076 0.01385 5.6E-05 0.0025 7E-06 0.00062 1E-06 0.00015

50/100 3.15286 3.1529 1.11143 1.11144 0.28623 0.28623 0.11445 0.11445 0.04307 0.04307
3.6E-05 0.03801 5.3E-05 0.00608 4.1E-06 0.00123 4.9E-07 0.00029 7.2E-08 4.9E-05
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Table 16: MLE: Upper 5 percentage points of Dκ

l/m \ κ 0.5 1.0 2.5 5.0 10.0

3/10 3.56374 3.58307 1.27423 1.27802 0.33548 0.33581 0.1374 0.13745 0.05273 0.05273
0.01933 0.21733 0.00379 0.06614 0.00033 0.01135 4.7E-05 0.00298 7.4E-06 0.00077

25/50 3.57127 3.57147 1.27572 1.27577 0.3356 0.3356 0.13742 0.13742 0.05273 0.05273
0.0002 0.05641 4.5E-05 0.01385 3.8E-06 0.0025 4.8E-07 0.00062 7.2E-08 0.00015

50/100 3.57132 3.57135 1.27574 1.27575 0.3356 0.3356 0.13742 0.13742 0.05273 0.05273
3E-05 0.03801 5.1E-06 0.00608 5E-07 0.00123 6.2E-08 0.00029 7.9E-09 4.9E-05

Table 17: EISE: Upper 10 percentage points of Dκ

l/m \ κ 0.5 1.0 2.5 5.0 10.0

3/10 3.04655 3.07109 1.0915 1.09561 0.2478 0.24819 0.07497 0.07505 0.02133 0.02135
0.02454 0.21675 0.00411 0.06607 0.00039 0.01113 7.4E-05 0.00283 1.6E-05 0.00072

25/50 3.05684 3.0571 1.09317 1.09322 0.24795 0.24795 0.075 0.075 0.02134 0.02134
0.00026 0.0564 4.9E-05 0.01385 4.6E-06 0.00249 8.4E-07 0.00062 1.7E-07 0.00014

50/100 3.05692 3.05695 1.09319 1.0932 0.24795 0.24795 0.075 0.075 0.02134 0.02134
3.8E-05 0.03801 5.5E-06 0.00608 6.1E-07 0.00123 1.1E-07 0.00029 1.9E-08 4.9E-05

Table 18: EISE: Upper 5 percentage points of Dκ

l/m \ κ 0.5 1.0 2.5 5.0 10.0

3/10 3.44976 3.46987 1.25429 1.25788 0.28975 0.29011 0.08859 0.08866 0.02538 0.0254
0.0201 0.21675 0.0036 0.06607 0.00036 0.01113 7E-05 0.00283 1.5E-05 0.00072

25/50 3.4576 3.45781 1.25568 1.25572 0.28988 0.28989 0.08861 0.08861 0.02539 0.02539
0.00021 0.0564 4.3E-05 0.01385 4.3E-06 0.00249 8E-07 0.00062 1.7E-07 0.00014

50/100 3.45766 3.45769 1.25569 1.2557 0.28988 0.28988 0.08861 0.08861 0.02539 0.02539
3.1E-05 0.03801 3E-06 0.00608 5.7E-07 0.00123 1.1E-07 0.00029 1.9E-08 4.9E-05
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