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Abstract 
 

We investigate two-player infinitely repeated games where the discount factor is less 
than but close to unity. Monitoring is private and players cannot communicate. We require 
no condition concerning the accuracy of players’ monitoring technology. We show the folk 
theorem for the prisoners’ dilemma with conditional independence. We also investigate 
more general games where players’ private signals are correlated only through an 
unobservable macro shock. We show that efficiency is sustainable for generic private signal 
structures when the size of the set of private signals is sufficiently large. Finally, we show 
that cartel collusion is sustainable in price-setting duopoly. 
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1. Introduction 
 

We investigate two-player infinitely repeated games where the discount factor is less 
than but close to unity. Players can only imperfectly and privately monitor their opponents’ 
actions. That is, players can only observe their noisy private signals that are drawn 
according to a probability function conditional on the action profile played. There exist no 
public signals and no public randomization devices, and players cannot communicate. The 
purpose of the paper is to clarify the possibility that players can make self-enforcing 
collusive agreements even if their private monitoring is far from perfect. 

First, we assume that players’ private signals are conditionally independent in the 
sense that players can obtain no information on what their opponents have observed by 
observing their own private signals when they choose a pure action profile. We show the 
folk theorem for the prisoners’ dilemma in that every individually rational payoff vector 
can be sustained by a sequential equilibrium in the limit as the discount factor approaches 
unity. This result is permissive because we require no conditions regarding the accuracy of 
players’ private signals. 

The study of repeated games with private monitoring is relatively new. Many of the 
past works have assumed that monitoring is either perfect or public and have investigated 
only perfect public equilibria. See Pearce (1992) for the survey on repeated games with 
public monitoring, and see Kandori (2002) for a brief survey on repeated games with 
private monitoring. It is well known that under mild conditions, in the limit as the discount 
factor approaches unity, every individually rational payoff vector can be sustained by a 
perfect public equilibrium when monitoring is imperfect but public. See Fudenberg, Levine, 
and Maskin (1994), for example. Perfect public equilibrium requires that the past histories 
relevant to future play are common knowledge in every period. This common knowledge 
attribute makes equilibrium analyses tractable because players’ future play can always be 
described as a Nash equilibrium. 

As monitoring is not public in this paper, the problem is more delicate. When 
monitoring is private, it is inevitable that an equilibrium sustaining implicit collusion 
depends on players’ private histories, and therefore, the past histories relevant to future 
play are not common knowledge. This makes equilibrium analyses much more difficult, 
especially in the discounting case, because players’ future play may not be described as a 
Nash equilibrium. Even when a player is certain that a particular opponent has deviated, 
the other players will typically not share this certainty, and they will be unable to 
coordinate on an equilibrium that punishes the deviant in the continuation game. Hence, 
each player’s anticipation on which strategies the other players will play may depend on 
her private history in more complicated ways. Nevertheless, a careful argument establishes 
the folk theorem for the prisoners’ dilemma. Hence, we have the folk theorem with 
completely public signals on the one hand, and we have the folk theorem even with 
completely private signals on the other hand. 
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To the best of our knowledge, Radner (1986) is the first to examine repeated games 
with private monitoring, which, however, assumed no discounting. 2  Two papers by 
Matsushima (1990a, 1990b) appear to be the first to investigate the discounting case. 
Matsushima (1990a) proved an anti-folk theorem that it is impossible to sustain implicit 
collusion by Nash equilibria when private signals are conditionally independent and Nash 
equilibria are restricted to be independent of payoff-irrelevant private histories. The present 
paper establishes the converse result: the folk theorem holds when we use Nash equilibria 
that can depend on payoff-irrelevant private histories. 

Matsushima (1990b) conjectured that a folk theorem type result could be obtained 
even with private monitoring and discounting when players can communicate by making 
publicly observable announcements. Subsequently, Kandori and Matsushima (1998) and 
Compte (1998) proved that the folk theorem with communication is valid. Communication 
synthetically generates public signals. Consequently, it is possible to conduct the standard 
dynamic analysis in terms of perfect public equilibria. The present paper assumes that 
players make no publicly observable announcements. 

Interest in repeated games with private monitoring and no communication has been 
stimulated by a number of more recent papers, including Sekiguchi (1997), Bhaskar (1999), 
Ely and Välimäki (2002), and Piccione (2002). Sekiguchi (1997) investigated a restricted 
class of prisoners’ dilemma based on the assumption that monitoring is almost perfect and 
that players’ private signals are conditionally independent. Sekiguchi is the first to show 
that a Nash equilibrium payoff vector can approximate an efficient payoff vector even if 
players cannot communicate. By using public randomization devices, Bhaskar and Obara 
(2002) extended Sekiguchi’s result to more general games. 

Ely and Välimäki (2002) also considered repeated prisoners’ dilemma where the 
discount factor is less than but close to unity. Ely and Välimäki investigated only a 
restricted class of two-state Markov equilibria that satisfy interchangeability in the sense 
that each player is indifferent between the collusive action and the defective action 
irrespective of her opponent’s possible future strategy, and therefore, all combinations of 
players’ possible continuation strategies are Nash equilibria.3 This restriction drastically 
simplifies equilibrium analysis. Hence, Ely and Välimäki could show that the folk Theorem 
holds for the repeated prisoners’ dilemma even if monitoring is private. Piccione (2002) 
independently introduced a similar idea by using dynamic programming techniques over 
infinite state spaces. The technical aspects of the present paper are closely related to Ely 
and Välimäki (2002), and to a lesser extent Piccione (2002). Both papers, however, 
investigated only the almost-perfect monitoring case, and most of their arguments rely 
heavily on this assumption. 

                                                 
2 See also Lehrer (1989) for the study of repeated games with no discounting and private monitoring. 

Fudenberg and Levine (1991) investigated infinitely repeated games with discounting and private 
monitoring in terms of epsilon-equilibria. 
3 A related idea is found in Piccione (2002). See also Obara (1999) and Kandori and Obara (2000). 
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Mailath and Morris (2002) investigated the robustness of perfect public equilibria 
when monitoring is almost public, i.e., each player can always discern accurately which 
private signal her opponent has observed by observing her own private signal. The present 
paper does not assume that monitoring is almost public. 

Therefore, this paper has many substantial points of departure from the earlier 
literature. We assume that there are no public signals, players make no publicly observed 
announcements, and no public randomization devices exist. We do not require that 
monitoring is either almost perfect or almost public. Hence, the present paper can be 
regarded as one of the first works to provide affirmative answers to the possibility of 
implicit collusion with discounting when monitoring is truly imperfect, truly private, and 
truly conditionally independent.4 

We construct review strategies, which are originated in Radner (1985) and cultivated 
by Matsushima (2001b), as follows. The infinite time horizon is divided into finite period 
intervals named review phases. In each review phase, each player counts the number of 
periods in which a particular event occurs. If the resultant number of the event occurring 
during the review phase is larger than a threshold level, the player will be likely to punish 
the opponent in the next review phase. Here, the player chooses the event as being ‘bad’ in 
that the probability of its occurrence is the smallest when the opponent plays collusively. 
According to the law of large numbers, a review strategy profile approximately induces the 
efficient payoff vector. 

In order to simplify the equilibrium analysis, we require a review strategy profile to 
satisfy a weaker version of interchangeability à la Ely and Välimäki (2002): Each player is 
indifferent between the repeated collusive choices and the repeated defective choices 
during each review phase. Moreover, by choosing the threshold level to be as severe as 
possible, we can strengthen each player’s incentive not to deviate. The latter idea is 
basically originated in Matsushima (2001b).  

Conditional independence can simplify the way to check whether the review strategy 
profiles are sequential equilibria. All we have to do is to show that there exists no strategy 
preferred to the review strategy that does not depend on private signal histories during the 
first review phase. Without conditional independence the problem may be more 
complicated, because there may exist a strategy preferred to the review strategy that does 
depend on private signal histories. When the private signal history observed by a player in 
the middle of the review phase implies that with high probability the opponent has already 
received many bad events and recognized that the review has failed, the player will have no 
incentive to choose collusively in the remainder of the review phase. Conditional 
independence, together with the pure action plays during the review phase, guarantees each 
player’s private signal to have no information about whether the opponent observed the bad 
event, and therefore, have no information about which strategy she will play from the next 
period. This uninformative property will be the driving force to incentivize players to play 
the review strategies. 

                                                 
4 See Piccione (2002) and Ely and Välimäki (2000) for the discussion on the case that private 

monitoring is not almost perfect. 
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In many real economic situations such as price-setting oligopoly, however, it is not 
appropriate to assume conditional independence, because there may exist unobservable 
macro shocks through which players’ private signals are correlated. Based on this 
observation, the latter part of this paper will show a sufficient condition under which 
players’ private signals satisfy the uninformative property and the above review strategy 
construction works even if their private signals are not conditionally independent but 
imperfectly correlated. We assume that players’ private signals are correlated only through 
an unobservable macro shock. We show that whenever the size of the set of private signals 
for each player is large relatively to the sizes of the set of macro shocks and the set of 
actions for the opponent, then efficiency is sustainable for generic private signal structures. 

This efficiency result would provide the study of cartel oligopoly with the following 
substantial impact. The classical work by Stigler (1964) has pointed out that each firm may 
have the option of making secret price cuts in that it offers to consumers a sales price that is 
lower than the cartel price in secret from the other firms. Stigler then emphasized that secret 
price cuts would be the main course of preventing the firms’ cartel agreement from being 
self-enforcing. Since Stigler did not provide a systematic analysis, we should carefully 
check to what extent his arguments was correct by making an appropriate model, which 
would be a discounted repeated game with correlated private monitoring. In contrast to 
Stigler’s argument, our efficiency result implies that the full cartel agreement can be self-
enforcing even if firms have the option of making secret price cuts. 

The present paper will not investigate the three or more player case. Whether the ideas 
of equilibrium construction in this paper such as review strategies and interchangeability 
can be applied to the three or more player case should be carefully studied in future 
researches. 

The organization of this paper is as follows. Section 2 shows the basic model. Section 3 
shows the folk theorem for the prisoners’ dilemma with conditional independence. Section 
4 shows that efficiency is generically sustainable when the size of the set of macro shocks 
is sufficiently large. Section 5 applies this result to price setting duopoly. In Subsection 5.3, 
we will discuss the implications of this application in relation to the literature of price-
maintenance by cartels. 
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2. The Model 
 
A two-player infinitely repeated game with discounting is denoted by 

Γ( )δ = ),,),,(( }2,1{ puA iiii δ∈Ω , where δ ∈[ , )0 1  is the common discount factor. In every 
period t ≥1, players 1 and 2 play the component game defined by }2,1{),( ∈iii uA , where iA  is 
the finite set of actions for player }2,1{∈i , A A A≡ ×1 2 , and player i s'  payoff function is 
given by u A Ri: → , which satisfies the expected utility hypothesis. Let ),( 21 aaa =  and 

2
21 ))(),(()( Rauauau ∈= . The set of feasible payoff vectors 2RV ⊂  is defined as the 

convex hull of the set })(|),({ 2
21 AasomeforvauRvvv ∈=∈= . A payoff vector v  is 

said to be efficient if Vv∈  and there exists no }/{vVv ∈′  such that vv ≥′ . A mixed action 
for player i  is denoted by ]1,0[: →ii Aα , where 1)( =∑

∈ ii Aa
ii aα . Let i∆  denote the set of 

mixed actions for player i . We denote j = 1 ( j = 2 ) when i = 2  ( i = 1, respectively). We 
define the minimax point Vv ∈*  by 

])()(max[min* ∑
∈∈∆∈

=
jj

iijj Aa
jjiAai aauv α

α
 for both }2,1{∈i . 

A payoff vector 2Rv∈  is said to be individually rational if Vv∈  and *vv ≥ . Let VV ⊂*  
denote the set of individually rational payoff vectors. 

At the end of every period, player i  observes her private signal ωi . The opponent 
ij ≠  cannot observe player si'  private signal ωi . The finite set of private signals for 

player i  is denoted by iΩ . Let Ω Ω Ω≡ ×1 2  denote the set of private signal profiles. A 
signal profile ω ω ω≡ ∈( , )1 2 Ω  occurs with probability p a( | )ω  when players choose the 
action profile Aa∈ . Let Aaapp ∈⋅≡ ))|(( . Let ),( pΩ  denote a private signal structure. A 
private signal structure associated with Ω  is denoted by p  instead of ),( pΩ . Let 

)(Ω= PP  denote the set of private signal structures associated with Ω . For convenience, 
we assume that the private signal structure Pp∈  has full support in the sense that 

0)|( >ap ω  for all Ω×∈ Aa ),( ω . 
Let ∑

Ω∈
≡

jj

apap ii
ω

ωω )|()|( . We regard u ai ( )  as the expected value defined as 

∑
Ω∈

=
ii

apaau iiiiii
ω

ωωπ )|(),()( , 

where ),( iii aωπ  is the realized payoff for player i  in the component game when player i  
chooses ai  and observes ω i . Note that for every Aa∈ , each }2,1{∈i , and every jj Aa ∈′ , 

),|()|( jiii aapap ′⋅≠⋅  if ),()( jiii aauau ′≠ . 
A private signal structure Pp∈  is said to be conditionally independent if 

)|()|()|( 2211 apapap ωωω =  for all Aa∈  and all Ω∈ω . 
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Conditional independence implies that for every Ni∈  and every ii Ω∈ω , the opponent 
sj′  private signal has no information about whether player i  observed iω  when players 

choose pure actions, i.e., for every Aa∈ , and every jj Ω∈ω , 
)|(),|( apap iijii ωωω = , 

where 
∑
Ω∈′

′
=

ii

ap
apap

ji
jii

ω
ωω

ωωω
)|,(

)|(),|(  is the probability of iω  occurring conditional on 

),( ja ω . 

A private history for player i  up to period t  is denoted by t
ii

t
i ah 1))(),(( =≡ ττωτ , where 

a Ai i( )τ ∈  is the action for player i  in period τ , and ω τi i( )∈Ω  is the private signal for 
player i  in period τ . The null history is denoted by hi

0 . The set of private histories for 
player i  up to period t  is denoted by t

iH . A strategy for player i  is defined as a function 

i
t

t
ii Hs ∆→

∞

=
U

0
: .5  Player i  chooses the action ia  with probability ))(( 1

i
t
ii ahs −  in period t  

when 1−t
ih  is realized. The continuation strategy of is , which player i  plays after period t  

when 1−t
ih  is realized, is denoted by 1| −t

ihis . Let Si  denote the set of strategies for player i . 

Let S S S≡ ×1 2 . Player i s'  normalized long-run payoff induced by a strategy profile s S∈  
after period t  when 1−t

ih  is realized is given by 

],|))1(([)1(),,( 1

1

11 −
∞

=

−− ∑ −+−≡ t
ii

t
ii hstauEhsv

τ

τ τδδδ , 

where ],|[ 1−⋅ t
ihsE  implies the expectation conditional on ),( 1−t

ihs . Player i s'  normalized 
long-run payoff induced by s S∈  is denoted by 

),,(),( 0
iii hsvsv δδ ≡ . 

Let v s v s v s( , ) ( ( , ), ( , ))δ δ δ≡ 1 2 . 
A strategy profile s S∈  is said to be a Nash equilibrium in Γ( )δ  if for each }2,1{∈i , 

and every ′ ∈s Si i , 
),,(),( jiii ssvsv ′≥ δδ . 

A strategy profile s S∈  is said to be a sequential equilibrium in Γ( )δ  if for each }2,1{∈i , 
every ′ ∈s Si i , every 1≥t , and every 11 −− ∈ t

i
t
i Hh , 

                                                 
5 The earlier version of this paper, i.e., Matsushima (2000, 2001a), assumed that the set of private 

signal profiles is the continuum and showed the folk theorem for the prisoners’ dilemma by using 
only pure strategies. The purification is possible for all parts of this paper when we replace the finite 

set of signal profiles with the continuum. 
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),,,(),,( 11 −− ′≥ t
ijii

t
ii hssvhsv δδ . 

Since the private signal structure has full support, it follows that the set of Nash equilibrium 
payoff vectors equals the set of sequential equilibrium payoff vectors.6 

A payoff vector v v v R= ∈( , )1 2
2  is said to be sustainable if for every ε > 0  and every 

infinite sequence of discount factors ( )δ m
m=
∞

1  satisfying lim
m

m

→+∞
=δ 1 , there exists an infinite 

sequence of strategy profiles ( )sm
m=
∞

1  such that for every large enough m , sm  is a sequential 
equilibrium in Γ( )δ m  and 

εδε +≤≤− i
mm

ii vsvv ),(  for both }2,1{∈i . 
Hence, v  is sustainable if a sequential equilibrium payoff vector approximates it whenever 
players are sufficiently patient. Since the set of Nash equilibrium payoff vectors equals the 
set of sequential equilibrium payoff vectors, it follows that v  is sustainable if a Nash 
equilibrium payoff vector approximates it whenever players are sufficiently patient. Note 
that the set of sustainable payoff vectors is compact and convex. 
 

                                                 
6 With full support, by replacing the continuation strategy of any subgame off the equilibrium path 

with the best response, we can transform any Nash equilibrium into a sequential equilibrium. 
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3. Conditional Independence and Prisoners’ Dilemma 
 

This section considers the repeated prisoners’ dilemma where for each }2,1{∈i , 
A c di i i= { , }, ),( 21 ccc ≡ , d d d≡ ( , )1 2 , 

u ci ( ) = 1, u di ( ) = 0 , u d c xi j i( / ) = + >1 1, and u c d yi j i( / ) = − < 0 , 
where )1)(1( 2121 yyxx ++≤ . Note that the action profile d  is the unique one-shot Nash 
equilibrium, )0,0()( =du  is the minimax point, and )1,1()( =cu  is efficient and 
individually rational. 
 
Theorem 1: If p  is conditionally independent, then the folk theorem holds, i.e., every 
individually rational payoff vector is sustainable. 
 

This theorem is in contrast to the anti-folk theorem provided by Matsushima (1990a). 
Matsushima showed that the repetition of the one-shot Nash equilibrium is the only Nash 
equilibrium if players’ private signals are conditionally independent and only strategies 
satisfying independence of payoff-irrelevant histories are permitted. Here, a strategy profile 
s  is said to be independent of payoff-irrelevant histories if for each }2,1{∈i , every 
t = 1 2, , ... , every h Hi

t
i∈ , and every ′ ∈h Hi

t
i , 

s si h i hi
t

i
t| |=
′

 whenever p h s h p h s hi j
t

i
t

i j
t

i
t( | , ) ( | , )= ′  for all h Hj

t
j∈ , 

where p h s hi j
t

i
t( | , )  is the probability anticipated by player i  that the opponent j  

observes private history h Hj
t

j∈  when player i  observes h Hi
t

i∈ , given that players 
behave according to s S∈ . The independence of payoff-irrelevant histories implies that 
whenever a player anticipates the same future strategy for the opponent then she plays the 
same strategy. In contrast to Matsushima (1990a), this paper shows the folk theorem when 
players’ private signals are conditionally independent and strategies depending on 
payoff-irrelevant histories are permitted. 

The proof of Theorem 1 will be shown in Appendix B. We will show the outline of the 
proof of the result that the efficient payoff vector )(cu  is sustainable as follows. Since 

)()( auau ii ′≠  for all Aa∈  and }/{aAa ∈′ , we can choose the first and second bad 
private signals for each player i , denoted by *

iω  and **
iω , respectively, that satisfy that 

(1)   ),|()|( **
jiiiii dcpcp ωω <  and )|(),|( **** dpcdp iijiii ωω < . 

As we will see later, how many times player i  observes the bad private signal during a 
fixed period interval will be crucial for the future punishment of the opponent j . Since p  
is conditionally independent, it satisfies the uninformative property in the sense that the 
opponent sj′  private signal has no information about whether player i  observed the bad 
private signal, i.e., for every jj Aa ∈  and every jj Ω∈ω , 

(2)   ),|(),,|( **
jiiijjiii acpacp ωωω =  and ),|(),,|( ****

jiiijjiii adpadp ωωω = . 
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As we will see later, this uninformative property will be crucial for player si'  incentive to 
choose collusively. 

Fix a sufficiently large integer 0>T  arbitrarily. We divide the infinite time horizon 
into infinitely many T  period intervals, and call each interval a review phase. From 
inequalities (1), for each }2,1{∈i , we can choose a positive integer },...,1{ TM i ∈  
satisfying that 

),|()|( **
jiii

i
ii dcp

T
Mcp ωω << . 

We specify a strategy is  named the collusive review strategy, and another strategy is  
named the defective review strategy, for each player i  in the following way. 

According to the collusive review strategy is , player i  continues by choosing ic  
collusively during the first review phase. When the number of periods in which the first bad 
private signal *

iω  occurs is less than or equals iM , the opponent j  will pass player si'  
review, and therefore, player i  will continue choosing ic  during the next review phase 
and repeat the same strategy as is  from period 1+T . When this number is more than iM , 
the opponent j  will fail player si'  review, and therefore, player i  will continue by 
choosing id  defectively during the next review phase and repeat the same strategy as the 
defective review strategy is , which will be specified later, from period 1+T  (continue by 
choosing ic  collusively during the next review phase and repeat the same strategy as is  
from period 1+T ) with positive probability ]1,0[)( ∈ii cξ  (probability )(1 ii cξ− , 
respectively). Here, for each }2,1{∈i , and every ii Aa ∈ , the real number ]1,0[)( ∈ii aξ  
will be specified later. 

According to the defective review strategy is , player i  continues by choosing id  
defectively during the first review phase. When player i  never observes the second bad 
private signal **

iω , the opponent j  will pass player si'  review, and therefore, player i  
will continue by choosing ic  collusively during the next review phase and repeat the same 
strategy as is  from period 1+T  (continue by choosing id  defectively during the next 
review phase and repeat the same strategy as is  from period 1+T ) with probability 

)(1 ii dξ−  (probability )( ii dξ , respectively). When there exists a period during the first 
review phase in which player i  observes **

iω , the opponent j  will fail player si'  
review, and therefore, player i  will continue by choosing id  defectively during the next 
review phase and repeat the same strategy as is  from period 1+T . Note that all 
continuation strategies of is  and is  that start from period 1+T  are mixtures of is  and 

is . 
It is straightforward from the law of large numbers that ),( sv δ  and ),( sv δ  

approximate )(cu  and )(du , respectively. The law of large numbers implies that when 
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),( 21 sss =  is played, it is almost certain that the number of periods in which *
iω  occurs 

during the first review phase, divided by T , is close to )|( * cp ii ω . Since 
T
Mi )|( * cp ii ω> , 

the opponent j  will almost certainly pass player si′  review. This implies that ),( sv δ  
approximates )(cu . The law of large numbers implies also that when ),( 21 sss =  is played, 
it is almost certain that the number of periods in which **

iω  occurs, divided by T , is close 
to )|( ** dp ii ω . Since the threshold for this review equals zero and )|( ** dp ii ω  is positive, 
the opponent j  will almost certainly fail the review. This implies that ),( sv δ  
approximates )(du . 

The following three steps will show that s , ),( 21 ss , ),( 21 ss , and s  are Nash 
equilibria. 
 
Step 1: The opponent j  is indifferent to the choice between js  and js , whenever player 
i  plays either is  or is , that is, 
(3)   ),( sv j δ ),,( jij ssv δ=  and ),( sv j δ ),,( jij ssv δ= . 
 
Proof Sketch: Suppose that s  is played. Then, it is almost certain that the number of 
periods in which *

iω  occurs, divided by T , is close to ),|( *
jiii dcp ω . Since 

T
Mi ),|( *

jiii dcp ω< , the opponent j  will almost certainly fail player si′  review. Hence, 

the opponent j  does not necessarily prefer js  to js  even if she can earn the short-term 
benefit from playing js  instead of js . In fact, by choosing )( ii cξ  appropriately, we can 
make the opponent j  indifferent to the choice between js  and js , i.e., 

),( sv j δ ),,( jij ssv δ= . Suppose that ),( ji ss  is played. Then, the probability that **
iω  

occurs in all periods is T
jiii cdp ),|( **ω . On the other hand, when s  is played instead of 

),( ji ss , this probability equals T
ii dp )|( **ω . Since )|(),|( **** dpcdp iijiii ωω <  and T  is 

sufficiently large, T

ii

jiii

dp
cdp

)
)|(

),|(
( **

**

ω
ω

 is close to zero. Hence, the opponent j  does not 

necessarily prefer js  to js  even if she can earn the short-term benefit from playing js  
instead of js . In fact, by choosing )( ii dξ  appropriately, we can make the opponent j  
indifferent to the choice between js  and js , i.e., ),( sv j δ ),,( jij ssv δ= . 

Q.E.D. 
 

Straightforwardly from Step 1, we can check that each player i  is indifferent to the 
choice among all strategies that induce her to make either the repeated choices of the action 
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ic  or the repeated choices of the action id  during each review phase. This 
interchangeability, implied by Step 1, is closely related to Ely and Välimäki (2002). There, 
however, exists a difference between Ely and Välimäki and Step 1 of this paper. Ely and 
Välimäki require each player }2,1{∈i  to be indifferent to the choice between ic  and id  
in every period, whereas Step 1 requires each player }2,1{∈i  to be indifferent to the 
choice between the repeated choices of ic  and the repeated choices of id  in every review 
phase. In other words, Ely and Välimäki investigated review strategies only in the case of 

1=T  where equalities (3) imply that all strategies for player i  are the best replies to s , 
i.e., 

),,(),( jiii ssvsv δδ =  for all ii Ss ∈ . 
Hence, equalities (3) are sufficient for s , s , ),( 21 ss  and ),( 21 ss  to be Nash equilibria 
in the case where 1=T . By assuming that monitoring is almost perfect, Ely and Välimäki 
could prove that )(cu , ))(),(( 21 cudu , ))(),(( 21 ducu , and )(du  are sustainable. Step 1 
extends this idea to general cases with large T . In contrast to the case where 1=T , 
however, equalities (3) do not imply that s , s , ),( 21 ss , and ),( 21 ss  are Nash equilibria 
when 2≥T . This is why we need the following two more steps for the proof of Theorem 
1. 

Let ii SS ⊂ˆ  denote the set of all strategies is  for player i  that are 
history-independent during the first review phase in the sense that there exists 

T
ii ATaa ∈))(),...,1((  such that 

)()( 1 tahs t
ii =−  for all Tt ,...,1=  and all 11 −− ∈ t

i
t
i Hh , 

and the continuation strategy after period 1+T  is either the collusive review strategy or 
the defective review strategy, i.e., },{| iihi sss T

i
∈  for all T

i
T
i Hh ∈ . Step 2 will show that 

each player i  has no strict incentive to play any strategy in }/{ˆ
ii sS . Let ii SS ⊂

~  denote 
the set of all strategies is  for player i  that are history-dependent during the first review 
phase in the sense that the continuation strategy after period 1+T  is either the collusive 
review strategy or the defective review strategy but there does not exist such 

T
ii ATaa ∈))(),...,1((  as above. Step 3 will show that each player i  has no strict incentive 

to play any strategy in iS~ . 
 
Step 2: For each }2,1{∈i  and every ii Ss ˆ∈ , 

),,(),( jiii ssvsv δδ ≥  and ),,(),( jiii ssvsv δδ ≥ . 
 

Proof Sketch: Suppose that the opponent j  plays js . By letting 
T

M j  as close to 

)|( * cp jj ω  as possible, we can make the increase in the probability of player i  being 
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punished sufficiently large even if she deviates from is  by choosing id  only in a small 
number of periods. Next, suppose that the opponent j  plays js . Since the threshold for 
the opponent sj′  review equals zero, it follows that the increase in the probability of 
player i  being punished is sufficiently large even if she deviates from is  by choosing 

id  only in a small number of periods. These large increases in probabilities of player si'  
being punished will be the driving forces to prevent player i  from playing any strategy in 

}/{ˆ
ii sS . 

Q.E.D. 
 
The basic logic for Step 2 is closely related to Matsushima (2001b), which investigated 

repeated games with public monitoring where in every period players play T  different 
prisoner-dilemma games and observe T  different public signals at one time. Matsushima 
showed in a similar way to Step 2 that with sufficiently large T , the efficient payoff vector 
is sustainable even if the discount factor is far less than unity.7 
 
Step 3: For each }2,1{∈i  and every ii Ss ~

∈ , 
),,(),( jiii ssvsv δδ ≥  and ),,(),( jiii ssvsv δδ ≥ . 

 
Proof Sketch: This step relies crucially on the uninformative property (3). When each 
player i  plays is  (plays is ), the opponent sj′  private signal jω  has no information 

about whether *
iω  ( **

iω , respectively) occurs. This implies that jω  has no information 
about which strategy player i  will play from the next period. Hence, during the first 
review phase, the best-response actions for each player can be chosen independently of 
which private signals she has ever observed. This implies that whenever there exists 

ii Ss ~
∈  such that 

either ),,(),( jiii ssvsv δδ <  or ),,(),( jiii ssvsv δδ < , 

then we can find such is  also in the set iŜ . Since we have already shown in Step 2 that no 

such is  exists in iŜ , we have proved Step 3. 
Q.E.D. 

 
Remark: The uninformative property is crucial in proving Step 3. Suppose that the 
uninformative property does not hold, and there exists jj Ω∈ω̂  such that 

),|()ˆ,|( **
jiiijii dcpcp ωωω > , 

                                                 
7 See also Kandori and Matsushima (1998), which investigated repeated games with private 
monitoring and with communication, and showed the folk theorem by using a similar technique. 
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Then, when the opponent j  chooses jc  and observes jω̂ , she will update the 

probability of player si'  observing *
iω  so that it is higher than the probability when she 

chooses jd . This implies that the opponent j  will expect to fail player si′  review with 
high probability so that she will have strict incentive to stop choosing jc  from the next 
period. This contradicts the Nash equilibrium property. 

 
Based on the arguments above, we can prove that )(cu , ))(),(( 21 cudu , ))(),(( 21 ducu , 

and )(du  are sustainable. 
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4. Correlated Signals 
 

This section investigates more general two-player repeated games where there may exist 
three or more actions for each player and the private signals are correlated.8 Fix two action 
profiles Accc ∈= ),( 21  and Addd ∈= ),( 21  arbitrarily, where we assume that 
(4)   )(),( cucdu ijii > , ),()( jiii dcudu > , 
(5)   ),(max)( jiiAai daucu

ii∈
> , 

and the payoff vector )(du  may be efficient. Note that the action profiles c  and d  in the 
prisoners’ dilemma satisfy inequalities (4) and (5). 

We assume that the private signal structure p  is decomposed into two functions q  and 0f  
in the following way. In every period, after players choose Aa∈ , a macro shock 0θ  is randomly 
drawn according to the conditional probability function ]1,0[:)|( 00 →Ξ⋅ af , where 0Ξ  is the 
finite set of macro shocks. Players cannot observe the realization of this shock. After players 
choose Aa∈  and 00 Ξ∈θ  occurs, the private signal profile Ω∈ω  is randomly drawn 
according to the conditional probability function ]1,0[:),|( 0 →Ω⋅ θaq . Hence, the probability 

)|( ap ω  of a private signal profile Ω∈ω  occurring when players choose Aa∈  equals 
∑
Ξ∈

=
00

)|(),|()|( 000
θ

θθωω afaqap . 

Hence, the private signal structure p  is described by the triplicate ),,( 00 qfΞ . Let 

∑
Ω∈

≡
jj

aqaq ii
ω

θωθω ),|(),|( 00  and ∑
Ω∈

≡
ii

aqaq iiiiii
ω

θωωψθψ ),|()(),|( 00 . We assume that 

players’ private signals are correlated only through this unobservable macro shock. That is, we 
assume that for every 00),( Ξ×∈ Aa θ , ),|( 0θaq ⋅  is conditionally independent in the sense that 

),|(),|(),|( 0220110 θωθωθω aqaqaq =  for all Ω∈ω . 
 
Condition LI: For each }2,1{∈i  and each },{ iii dca ∈ , the collection of the probability 
functions on iΩ  given by }),(|),|({ 000 Ξ×∈⋅ jji Aaaq θθ  is linearly independent in the sense 
that there exists no function RAe j →Ξ× 0:  such that 0)),((

00 ),(0 ≠Ξ×∈ jj Aajae θθ  and 

0),|(),(
00 ),(

00 =⋅∑
Ξ×∈ jj Aa

ij aqae
θ

θθ . 

 
Theorem 2: Under Condition LI, any individually rational payoff vector *Vv∈  is sustainable if 

)(),(max cuvdau iijiiAa ii

≤≤
∈

 for both }2,1{∈i . 

 
Let ),( 0

** ΩΞ= PP  denote the set of private signal structures associated with  0Ξ  and Ω . 

                                                 
8 See Ely and Välimäki (2000) for two-player games with three or more actions. 
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If 
(6)   0Ξ×≥Ω ji A  for both }2,1{∈i , 

then Condition LI holds for generic private signal structures in *P . Hence, Theorem 2 implies 
that the efficient payoff vector )(cu  is sustainable for generic private signal structures in *P  if 
the size of the set of private signals for each player is so large relatively to the sizes of the set of the 
opponent’s actions and the set of macro shocks as to satisfy inequality (6). 

The proof of Theorem 2 will be shown in Appendix A.  The outline of this proof is as 
follows. For each }2,1{∈i , we define a random event on iΩ  as a function ]1,0[: →Ωiiψ . A 
random event iψ  is interpreted as follows. Suppose that player i  observes not only the private 
signal iω  but also a real number ix  that is drawn according to the uniform distribution on the 
interval [0,1], which is independent of ω  and a . We will say that the random event iψ  occurs 
when player si'  observation ),( ii xω  satisfies )(0 iiix ωψ<≤ . Hence, we will say that the 
random event iψ  occurs with probability )( ii ωψ  when player i  observes the private signal iω . 
The probability that the random event iψ  occurs when players choose Aa∈  is given by 

∑
Ω∈

≡
ii

apap iiiiii
ω

ωωψψ )|()()|( . 

The probability that iψ  occurs when players choose a  and the opponent j  observes jω  is given 
by ∑

Ω∈
≡

ii

jiiiijii apap
ω

ωωωψωψ ),|()(),|( . 

 
Lemma 3: Under Condition LI, for each }2,1{∈i , there exist four random events on iΩ  denoted 
by *

iψ , +
iψ , **

iψ  and ++
iψ  that satisfy the following properties. 

(i) For every },{ jjj dca ∉ , 

),|(),|()|( ***
jiiijiiiii acpdcpcp ψψψ =< , 

),|(),|()|( jiiijiiiii acpdcpcp +++ <= ψψψ , 

),|()|(),|( ******
jiiiiijiii adpdpcdp ψψψ =< , and 

),|()|(),|( jiiiiijiii adpdpcdp ++++++ <= ψψψ . 
(ii) For every jj Aa ∈ , and every jj Ω∈ω , 

),|(),,|( **
jiiijjiii acpacp ψωψ = , 

),|(),,|( jiiijjiii acpacp ++ = ψωψ , 

),|(),,|( ****
jiiijjiii adpadp ψωψ = , and 

),|(),,|( jiiijjiii adpadp ++++ = ψωψ . 
 

Proof: See Appendix C. 
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Property (i) implies that each of the random events is ‘bad’ in the sense that the probability of 
its occurrence is the lowest when the opponent chooses collusively. Property (ii) implies the 
uninformative property in the sense that the opponent sj′  private signal has no information about 
whether the random events *

iψ  and +
iψ  ( **

iψ  and ++
iψ ) on iΩ  occur or not, provided that player 

i  chooses ic  ( id , respectively).  
The existence of the bad random events or private signals satisfying the uninformative 

property is crucial in the way of how to prove sustainability that was shown in Section 3, and 
therefore, guarantees it applicable to more general cases without conditional independence. For 
example, consider the prisoners’ dilemma that is the same as in Section 3 except for the point that 
the private signal structure is not conditionally independent but satisfies Condition LI. Since ic  
and id  are the only available action choices for each player i , we can choose  +

iψ  and ++
iψ  as 

being equivalent to the null event, i.e., 0)()( == +++
iiii ωψωψ  for all ii Ω∈ω . Construct the 

review strategies in the same way as in Section 3 except for the point that the bad private signals 
*
iω  and **

iω  for each player i  are replaced with the bad random events *
iψ  and **

iψ , respectively. 
Property (i) guarantees that we can prove Steps 1, 2, and 3 under Condition LI in the same way as 
in the conditionally independent case. The uninformative property implied by property (ii) 
guarantees that we can prove Step 4 under Condition LI in the same way as in the conditionally 
independent case. 
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5. Secret Price Cuts 
 

This section investigates price-setting dynamic duopoly with product differentiation, and 
shows the possibility that cartel collusion is sustainable even if the price level for each firm is not 
observable to its rival firm and each firm has the option of making secret price cuts. 
 In Subsection 5.1, we will show the model of dynamic duopoly where consumers’ 
demands are correlated only through a macro shock, and show that this model can be regarded 
as a special case of Section 4. In Subsection 5.2, we will find the collusive and defective price 
vectors denoted by c  and d , respectively, which satisfy inequalities (4) and (5), and show that 
Theorem 2 can be applied to this dynamic duopoly. In Subsection 5.3, we will discuss the 
implications of this analysis in relation to the literature of price-maintenance by cartels. 
 

5.1 Dynamic Duopoly 
 

There exist two firms 2,1=i  that sell their differentiated products. For each }2,1{∈i , let 
},...,2,1{ ii aA =  and }...,2,1{ ii ω=Ω , where ia  and iω  are positive integers. In every 

period t , each firm }2,1{∈i  chooses the price level ii Ata ∈)( , which is not observable to its 
rival firm ij ≠ . At the end of the period, firm i  receives its sales level ii t Ω∈)(ω , which is 
not observable to its rival firm j  and is regarded as firm si'  only available information about 
the rival firm’s price choice )(ta j . Firm si'  production capacity is limited so that iω  is 
regarded as the maximal amount up to that firm i  can produce and supply at one time, and 
therefore, iω  is the upper bound of firm si'  sales level. 

When firm i  chooses the price level ii Aa ∈  and receives the sales level ii Ω∈ω , its 
instantaneous profit is given by )(),( iiiiiii zaa ωωωπ −= , where )( iiz ω  is the cost for firm 

si′  production. The expected instantaneous profit for firm i  is given by 
∑

Ω∈

−=
ii

apzaau iiiiiii
ω

ωωω )|()}({)(  for all Aa∈ . 

How each firm si'  sales level is to be determined is modeled as follows. There exist n  
consumers },...,1{ nh∈ . Each consumer sh'  utility depends on the macro shock 0θ  and her 
private shock hθ . Let ),...,( 0 nθθθ ≡  denote a shock profile that is randomly drawn according 
to the conditional probability function ]1,0[:)|( →Ξ⋅ af , where hΞ  denotes the finite set of 

private shocks hθ  for each },...,1{ nh∈ , and ∏
=

Ξ≡Ξ
n

h
h

0

 denotes the set of shock profiles. 

The shock profile Ξ∈)(tθ  is not observable to the firms but each consumer },...,1{ nh∈  can 
observe ),( 0 hθθ . Let +∈ Rail hh ),,,( 0 θθ  denote the amount that consumer h  buys from 
firm i  when she observes ),( 0 hθθ  and the firms choose the price vector a . The total 

demand level for firm i  is given by ∑
=

≡
n

h
hhi ailaD

1
0 ),,,(),( θθθ . Hence, the sales level for 
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firm i  is given by 
)},(|{max),( θωωθω aDa iiiii ≤Ω∈≡ . 

Let Ω∈≡ )),(),,((),( 21 θωθωθω aaa . 
We assume that each consumer never buys from both firms at one time, and which firm she 

buys from depends only on the price vector Aa∈ . That is, for every },...,1{ nh∈ , and every 
Aa∈ , there exists }2,1{),( ∈ahι  such that 

0),,,( 0 =hh ail θθ  if ),( ahi ι≠ .9 
 
Example: The following example of consumers’ utilities satisfies the above assumptions. When 
each consumer h  buys )(ilh  amount from firm i  for each }2,1{∈i , her utility is given by 

)2(})2({)1(})1({ 21 hhhh lavlav −+− , 
where )1(hv  and )2(hv  are positive real numbers. Consumer sh′  budget depends on 

),( 0 hθθ  and is given by +∈ RI hh ),( 0 θθ . Consumer h  maximizes her utility with the 
budgetary constraint, where she expects to buy as many as she wants. Hence, her demand vector 

)),,,2(),,,,1(( 00 hhhh alal θθθθ  must be the solution to the problem given by 
)]2(})2({)1(})1([{max 21

))2(),1(( 2 hhhh
Rll

lavlav
hh

−+−
+∈

 

subject to 
),()2()1( 021 hhhh Ilala θθ≤+ . 

Hence, we can choose }2,1{),( ∈ahι  by 
1),( =ahι  if and only if 21 )2()1( avav hh −≥− , 

and )),,,2(),,,,1(( 00 hhhh alal θθθθ  by 

i

hh
hh a

Iail ),(),,,( 0
0

θθθθ =  if ),( ahi ι=  and 0)( ≥− ih aiv , 

and 
0),,,( 0 =hh ail θθ  if either ),( ahi ι≠  or 0)( <− ih aiv . 

 
 
The expected instantaneous profit for each firm }2,1{∈i  equals 

∑
Ξ∈

−=
θ

θθωθω )|())},((),({)( afazaaau iiiii . 

Let ∏
≠′

′− Ξ≡Ξ
hh

hh , hhhhh −≠′′− Ξ∈≡ )(θθ , ∏
∉′

′−− Ξ≡Ξ
},0{

0
hh

hh , 

∑
−− Ξ∈

≡
00

)|()|( 00
θ

θθ afaf , 
)|(

)|(),|(
00

000 af
afaf

θ
θθθ ≡−− , and 

                                          
9 We can permit it to depend on the macro shock 0θ , but not on the private shock hθ . 
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∑
−−−− Ξ∈

−≡
hh

afaf hh
00

),|(),|( 000
θ

θθθθ  for all },...,1{ nh∈ . 

For every Ω∈ω , every Aa∈ , and every 00 Ξ∈θ , let 

∑
=Ξ∈

−−
−−

=
ωθωθ

θθθω
),(:

0000
00

),|(),|(
a

afaq . 

Hence, the private signal structure p  is given by 
∑

=Ξ∈
=

ωθωθ
θω

),(:
)|()|(

a
afap  for all Ω∈ω  and all Ξ∈θ , 

and is decomposed into q  and 0f  in the same way as in Section 4. 
We assume that the consumers’ demands are correlated only through the macro shock 0θ . 

That is, we assume that for every 00 ),( Ξ×∈ Aa θ , ),|( 00 θaf ⋅−  is conditionally independent 
in the sense that 

∏
∈

−− =
},...,1{

0000 ),|(),|(
nh

hh afaf θθθθ  for all 00 −− Ξ∈θ . 

The following proposition states that firms’ sales levels are correlated only through the macro 
shock 0θ . Hence, the price-setting duopoly specified in this section can be regarded as a special 
case of Section 4. 
 
Proposition 4: In the price-setting duopoly specified above, ),|( 0θaq ⋅  is conditionally 
independent for every 00 ),( Ξ×∈ Aa θ . 
 
Proof: For each }2,1{∈i , we denote by ),( aiN  the set of all consumers h  satisfying that 

iah =),(ι . Since ),( θω ai  does not depend on hθ  for every ),( aiNh∉ , we can write 
))(,,( ),(0 aiNhhi a ∈θθω  instead of ),( θω ai . For each }2,1{∈i , let 

),|( 0θω aq ii ∑ ∏
=

∏Ξ∈ ∈

∈

∈
∈

=

iaiNhhi

aiNh
haiNhh

a

aiNh
hh af

ωθθω

θ

θθ

))(,,(

:)( ),(
0

),(0

),(
),(

}),|({ . 

Note 

),|( 0θω aq ∑ ∏
=

Ξ∈ =−−

=

ωθω
θ

θθ
),(

: 1
0

00

}),|({
a

n

h
hh af  

∑ ∏∏
=

Ξ∈ ∈∈−−

=

ωθω
θ

θθθθ
),(

: ),2(
0

),1(
0

00

}),|(),|({
a

aNh
hh

aNh
hh afaf  

∑ ∏
=

∏Ξ∈ ∈

∈

∈
∈

=

1),1(01

),1(
),1(

))(,,(

:)( ),1(
0 }]),|({[

ωθθω

θ

θθ

aNhh

aNh
haNhh

a

aNh
hh af ]}),|({[

2),2(02

),2(
),2(

))(,,(

:)( ),2(
0∑ ∏

=

∏Ξ∈ ∈

∈

∈
∈

ωθθω

θ

θθ

aNhh

aNh
haNhh

a

aNh
hh af  

),|(),|( 022011 θωθω aqaq= , 
which implies that ),|( 0θaq ⋅  is conditionally independent.                                      

Q.E.D. 
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5.2. Price Cartel 

  
Fix the collusive price vector Ac∈  and the defective price vector Ad ∈  arbitrarily. 

From Theorem 2 and Proposition 4, it follows that the collusive payoff vector )(cu  is 
sustainable if Condition LI holds and the price vectors c  and d  satisfy inequalities (4) and (5). 
Hence, with inequalities (4) and (5), whenever each firm si′  production capacity iω  is so 
large relatively to the sizes of the set of macro shocks and the set of price levels for the rival 
firm’s product as to satisfy that 
(7)   0)1(1 Ξ+≥+ ji aω  for each }2,1{∈i , 

then the collusive payoff vector )(cu  is sustainable for generic private signal structures in *P . 
This subsection will show that we can choose the price vectors c  and d  satisfying 

inequalities (4) and (5) in the following way. For convenience of our arguments, for each 
}2,1{∈i , we will replace },...,0{ ii aA =  with the closed interval ],0[ ia . We assume that for 

each }2,1{∈i , iu  is increasing with respect to ja . Let iji AAr →:  denote the best response 
function defined by 

)()),(( auaaru ijjii ≥  for all Aa∈ . 

We assume that ir  is increasing and there exists a Nash equilibrium Aa ∈*  where 
)( **

jii ara =  for each }2,1{∈i . We also assume the single-peakedness of iu  with respect to 

ia  in the sense that for each }2,1{∈i  and every jj Aa ∈ , ),( ji au ⋅  is increasing (decreasing) 
with respect to ii Aa ∈  when )(0 jii ara <≤  ( iiji aaar ≤<)( , respectively). 

Choose c  satisfying that 
*ac > , )()( *aucu > , and )( jii crc >  for each }2,1{∈i . 

Since iu  is increasing with respect to ja , we can choose )),(( jijj ccrd ∈  satisfying that 
(8)   )),(()()),(( jjiiijjii ddrucucdru >> . 
It is straightforward from inequalities (8) that c  and d  satisfy inequalities (5). Since 

iiji cdcr <<)(  and ),( ji cu ⋅  is decreasing with respect to ii Aa ∈  when iiji aacr ≤<)( , 
it follows from inequalities (8) that )(),( cucdu ijji > . Since iijiji cdcrdr <<< )()(  and 

),( ji du ⋅  is decreasing with respect to ii Aa ∈  when iiji aadr ≤<)( , it follows from 
inequalities (8) that ),()( jiii dcudu > . Hence, the chosen price vectors c  and d  satisfy 
inequalities (4). 
 

5.3. Discussion 
 
We may not be able to make the defective payoff vector 2)( Rdu ∈  very low. Suppose 

that we make d  equivalent to the one-shot Nash equilibrium *a  and choose c  so as to 
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satisfy )()( ducu > . Note that such c  and d  do not necessarily satisfy the first inequality of 
(4). Hence, we have to make d  higher than *a , and therefore, make the defective payoff 
vector )(du  larger than the one-shot Nash equilibrium payoff vector )( *au . This implies that 
although a price war surely occurs on the equilibrium path of our dynamic duopoly, the fall in 
prices during the price war is not so drastic and this war goes on for a long time. This point is in 
contrast to the previous works such as Abreu, Pearce, and Stacchetti (1986), which showed that 
in quantity-setting dynamic oligopoly, a price war on the optimal symmetric equilibrium path 
goes on only one period, and induces firms to make very severe competitive prices. 

Kandori and Matsushima (1998), Compte (1998), and Aoyagi (2002) have assumed 
that players could communicate, and showed their respective folk theorem. These works 
commonly concluded that communication enhances the possibility of self-enforcing cartel 
agreement. In real economic situations, however, the Anti-Trust Law prohibits 
communication among the firms’ executives. The present paper does not allow firms to 
communicate. Hence, contrary to these works, we will conclude that firms can make a 
self-enforcing cartel agreement even if their communication is severely regulated. 

The earlier work by Green and Porter (1984) has investigated cartel oligopoly in 
different ways from Stigler (1964) and this paper. In their model, not price but quantity is 
the only choice variable for each firm, which is not observable to the other firms. Each firm 
has to monitor the other firms’ quantity choices through the market-clearing price. This 
price is observable to all firms, and fluctuates according to the exogenous macro shock that 
the firms cannot observe. Hence, unlike what might be Stigler’s primary concern, Green 
and Porter did consider the public monitoring case. By using the trigger strategy 
construction, Green and Porter showed that business cycle takes place on the equilibrium 
path and cartel collusion can be self-enforcing. 

The basic logic behind this paper has the following substantial difference from Green 
and Porter. In the public monitoring case such as Green and Porter, it is inevitable that the 
macro shock influences players’ future behaviors because neither player can distinguish the 
impact of the opponent’s deviation from that of the macro shock. In the private monitoring 
case such as this paper, however, players’ future behaviors never depend on the macro 
shock because we choose a bad event so as not to have the probability of its occurrence 
depend on this shock. 

This point is also in contrast to Rotemberg and Saloner (1986), which investigated 
repeated games with perfect monitoring where the market demand condition fluctuates 
according to the exogenous macro shock that is observable to the firms. In their paper the 
market price fluctuates counter-cyclically to the macro shock fluctuation between boom 
and recession, whereas in the present paper firms’ pricing behaviors are never influenced 
by the macro shock fluctuation. 
 
 

Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113, 
Japan. 
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Appendix A: Proof of Theorem 2 
 

Let t
i

t
i aa 1))(( =≡ ττ , t

i
t
i 1))(( =≡ ττωω , and t

Tti
t
i

T
i h 1))(()( +−=≡ ττωω . When ii ca =)(τ  

( ii da =)(τ ) for all },...,1{ t∈τ , we will write t
i

t
i ca ≡  ( t

i
t
i da ≡ , respectively). Let 

),,(* t
ji atrf  ( ),,( t

ji atrf + ) denote the probability of *
iψ  ( +

iψ , respectively) occurring r  times 

during the first t  periods when ),( t
j

t
i ac  is chosen. Let ∑

=′
′≡

r

r

t
ji

t
ji atrfatrF

0

** ),,(),,(  and 

∑
=′

++ ′≡
r

r

t
ji

t
ji atrfatrF

0
),,(),,( . Let ),,(** t

ji atrf  ( ),,( t
ji atrf ++ ) denote the probability of **

iψ  

( ++
iψ , respectively) occurring r  times during the first t  periods when ),( t

j
t
i ad  is chosen. 

Let ∑
=′

′≡
r

r

t
ji

t
ji atrfatrF

0

**** ),,(),,(  and ∑
=′

++++ ′≡
r

r

t
ji

t
ji atrfatrF

0
),,(),,( . Fix an infinite 

sequence of positive integers ∞
=1)( m

mT  arbitrarily, where +∞=
∞→

m

m
Tlim . 

 
Lemma A1: There exist infinite sequences of integers ∞

=1
* )( m

m
iM , ∞

=
+

1)( m
m

iM , and ∞
=

++
1)( m

m
iM  

satisfying that 
3* },...,0{),,( mm

i
m

i
m

i TMMM ∈+++  for all 1≥m , 

(A1)   )1,1,1()),,(),,,(),,,((lim ** =++++++

∞→

mmm T
j

mm
ii

T
j

mm
ii

T
j

mm
iim

cTMFcTMFcTMF , 

(A2)   ))|(),|(),|((),,(lim *
*

dpcpcp
T

M
T

M
T

M
iiiiiim

m
i

m

m
i

m

m
i

m

+++
+++

∞→
= ψψψ , 

and 
(A3)   )),,(),,,(),,,((lim ** mmm T

j
mm

ii
mT

j
mm

ii
mT

j
mm

ii
m

m
cTMfTcTMfTcTMfT ++++++

∞→
 

   ),,( +∞+∞+∞= . 
 
Proof: Fix a positive real number z  arbitrarily. For every sufficiently large m , there exists a 
positive integer r  in the neighborhood of )|( * cpT ii

m ψ  such that zcTrfT
mT

j
m

i
m >),,(* . 

Hence, we can choose ∞
=1)( m

mε  and ∞
=1

* )( m
m

iM  satisfying 

0lim =
∞→

m

m
ε , 1),,(lim

)|(:

*

*

=∑
<−

∞→
m

iim

m

cp
T
rr

T
j

m
im

cTrf
εψ

, 

for every sufficiently large m , 
m

iim

m
i cp

T
M εψ <− )|( *

*

, zcTMfT
mT

j
mm

ii
m ≥),,( ** , 

and for every r , 
zcTrfT

mT
j

m
i

m ≤),,(*  if m
iii

m MrTcpT ** )}()|({ >>+ εψ . 
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Since 0})|({lim
*

* =−+
∞→ m

m
im

iim T
Mcp εψ , it follows that 

),,(lim ** mT
j

mm
iim

cTMF
∞→

 

∑
<−

∞→
≥

m
iim

m

cp
T
rr

T
j

m
im

cTrf
εψ )|(:

*

*

),,({lim }),,(
*

* )|(:

*∑
>>+

−

m

m
i

m
m

ii

m

T
M

T
rcpr

T
j

m
i cTrf

εψ

 

1})|({lim1
*

* =−+−≥
∞→ m

m
im

iim T
Mcpz εψ . 

Since we can choose z  as large as possible, we have proved the existence of such a 
∞
=1

* )( m
m

iM . Similarly, we can prove the existence of such ∞
=

+
1)( m

m
iM , and ∞

=
++

1)( m
m

iM . 
Q.E.D. 

 
Choose any payoff vector 2Rv∈  satisfying that 

   )(),(max cuvdau iiiiiAa ii

<<
∈

 for each }2,1{∈i . 

From the above specifications, we can choose ∞
=∈ 1}2,1{ )),,,(,,,( mi

m
i

m
i

m
i

m
i

mmm vv ςςξξδ  in the 

following way. Let 
mTmm )(δγ ≡ . For each }2,1{∈i , 

4)
2
1

,0(),,,(0 ∈< m

i

m
i

m

i

m

i ςςξξ  for all 1≥m , 

(A4)   )),(,1(),,(lim ii
m
i

m
i

m

m
vcuvv =

∞→
γ , 

+∞=
−∞→

m
im

m

m
ς

γ
γ

1
lim , 0

1
lim >

−∞→

m

im

m

m
ς

γ
γ , 0),,0(

1
lim ** =

−∞→

mT
j

m
i

m

im

m

m
dTfξ

γ
γ , 

and for every large enough m , 

(A5)   )},,(1{[
1

)( ** mT
j
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m
im

m

j
m
j cTMFcuv −

−
−= ξ

γ
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j

m
j

T
j
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m
i vvcTMF

m
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1

),( ** mT
j
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m
im

m
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−
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j

m
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T
j
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m
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m

−−+ ++ζ , 
and 

(A6)   ),,0({
1

)( ** mT
j

m
i

m
im

m

j
m
j dTfduv ξ

γ
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−

+= ))}(,,( m
j

m
j

T
j
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ii
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i
vvdTMF
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−+ ++++ζ  

),,0({
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m
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m
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T
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vvcTMF
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−+ ++++ζ . 

Let ),,(* t
ii trw ω  ( ),,(** t

ii trw ω , ),,( t
ii trw ω+ , and ),,( t

ii trw ω++ ) denote the probability of 
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*
iψ  ( **

iψ , +
iψ , and ++

iψ , respectively) occurring r  times during the first t  periods when 

player i  observes t
jω . Let ∑

=′

′≡
r

r

t
ii

t
ii trwtrW

0

** ),,(),,( ωω , ∑
=′

++ ′≡
r

r

t
ii

t
ii trwtrW

0
),,(),,( ωω , 

and ∑
=′

++++ ′≡
r

r

t
ii

t
ii trwtrW

0
),,(),,( ωω . We define 

)(
mT

i
m
i ωρ )},,(1{1 ** mT

i
mm

ii
m

i TMW ωξ −−≡ )},,(1{
mT

i
mm

ii
m

i TMW ως ++−− , 
and 

),,0()( ** mm T
i

m
i

m
i

T
i

m
i

Tw ωξωρ ≡ ),,(
mT

i
mm

ii
m
i

TMW ως +++++ . 

We specify an infinite sequence of two strategy profiles ( , )s sm m
m=
∞

1  as follows. For every 
1≥t , and every h Hi

t
i

− ∈1 , 
0))(( 1 =−

i
t
i

m
i ahs  and 0))(( 1 =−

i
t
i

m
i ahs  for all },{ iii dca ∉ . 

For every },...,1{ mTt∈  and every h Hi
t

i
− ∈1 , 

1))(( 1 =−
i

t
i

m
i chs  and 1))(( 1 =−

i
t
i

m
i dhs . 

For every ,...}2,1{∈k , every })1(,...,2{ mm TkkTt ++∈ , and every i
t
i Hh ∈−1 , 

1))(( 1 =−
i

t
i

m
i chs  and 1))(( 1 =−

i
t
i

m
i chs  if ii cta =− )1( , 

and 
1))(( 1 =−

i
t
i

m
i dhs  and 1))(( 1 =−

i
t
i

m
i dhs  if ii cta ≠− )1( . 

For every ,...}2,1{∈k , and every i
kT
i Hh

m

∈ , 

))(())((
mmm kT

i
T
i

m

ii
kT
i

m
i hchs ωρ=  and ))(())((

mmm kT
i

T
i

m
ii

kT
i

m
i hchs ωρ=  

if i
m

i ckTa =)( , 
and 

))(())((
mmm kT

i
T
i

m
ii

kT
i

m
i hchs ωρ=  and ))(())((

mmm kT
i

T
i

m
ii

kT
i

m
i hchs ωρ=  

if i
m

i dkTa =)( . 
According to m

is , player i  continues choosing ic  during the first mT  periods. When 

the number of periods in which *
iψ  occurs is more than m

iM * , she will play m
is  from period 

1+mT  with probability 
m
iξ . When the number of periods in which +

iψ  occurs is more than 
m

iM + , she will play m
is  with probability 

m
iς . When both numbers are more than their 

respective thresholds, she will play m
is  with probability 

m
i

m
i ςξ + . Otherwise, she will play m

is . 

Hence, )(
mT

i

m

i ωρ  is regarded as the probability of player si'  playing m
is  collusively from 

period 1+mT  when she observes 
mT

iω . 

According to m
is , player i  continues choosing id  during the first mT  periods. When 
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the number of periods in which **
iψ  occurs equals zero, she will play m

is  from period 1+mT  

with probability 
m
iξ . When the number of periods in which ++

iψ  occurs is less than or equals 
m

iM ++ , she will play m
is  with probability m

i
ς . When both numbers are less than or equal their 

respective thresholds, she will play m
is  with probability m

i

m
i ςξ + . Otherwise, she will play m

is . 

Hence, )(
mT

i
m
i
ωρ  is regarded as the probability of player si'  playing m

is  collusively from 

period 1+mT  when she observes 
mT

iω . 
Since 

],|),,([),,( 1** t
j

t
i

t
ii

t
ji actrwEatrf −= ω , ],|),,([),,( 1**** t

j
t
i

t
ii

t
ji adtrwEatrf −= ω , 

],|),,([),,( 1 t
j

t
i

t
ii

t
ji actrwEatrf −++ = ω , and 

],|),,([),,( 1 t
j

t
i

t
ii

t
ji adtrwEatrf −++++ = ω , 

it follows from equalities (A5) and (A6) that for every large enough m , 
v s v s s vj

m m
j

m m
j
m

j
m( , ) ( , / )δ δ= =  and v s v s s vj

m m
j

m m
j
m

j
m( , ) ( , / )δ δ= = , 

and therefore, 
)()/,(lim),(lim cussvsv j

m
j

mm
jm

mm
jm

==
∞→∞→

δδ , and 
m
j

m
j

mm
jm

mm
jm

vssvsv ==
∞→∞→

)/,(lim),(lim δδ . 

We will show below that s m , sm , ),( 21
mm ss , and ),( 21

mm ss  are Nash equilibria for 
every large enough m . All we have to do is to prove that each player has no incentive to 
choose any strategy other than m

is  and m
is  whose continuation strategies after period 

1+mT  are either m
is  or m

is . Let ii SmS ⊂)(ˆ  denote the set of strategies is  for player 

i  satisfying that },{| m
i

m
ihi sss mT

i

∈  for all i
T
i Hh

m

∈  and the action choices during the first 

mT  periods are history-independent in the sense that there exists ))(ˆ),...,1(ˆ(ˆ m
ii

T
i Taaa

m

=  
such that 1))(ˆ)(( 1 =− tahs i

t
ii  for all },...,1{ mTt∈ . Property (ii) of Lemma 3 implies that 

when each player i  plays m
is  (plays m

is ), the opponent sj′  private signal jω  has no 

information about whether *
iψ  and/or +

iψ  ( **
iψ  and/or ++

iψ , respectively) occur. Hence, 

jω  has no information about which strategy player i  will play from the next period. 
Based on this observation, we can choose a best-response strategy whose action choices 
during the first mT  periods are history-independent. Hence, all we have to do is to show 
that ),,( j

m
i

m
j

m
j ssvv δ≥  and ),,( j

m
i

m
j

m
j ssvv δ≥  for all )(ˆ mSs jj ∈ . 

First, we will show that ),,( j
m
i

m
j

m
j ssvv δ≥  for all )(ˆ mSs jj ∈ . Fix },...,0{ mT∈τ  

arbitrarily, and consider any strategy )(ˆ mSs jj ∈  satisfying that 
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},{)(ˆ jjj dcta ∈  for all },...,0{ mT∈τ , and jj dta =)(ˆ  for τ  periods. 

In this case, )ˆ,,(* mT
j

m
i aTrf  and )ˆ,,(** mT

j
m

i aTrf  do not depend on the detail of 
mT

jâ  

except for the number τ̂ , and therefore, we can write ),,(* τm
i Trf  and ),,(** τm

i Trf  

instead of )ˆ,,(* mT
j

m
i aTrf  and )ˆ,,(** mT

j
m

i aTrf , respectively. Let )(ˆ
, mSs j

m
j ∈τ  denote the 

strategy according to which player j  chooses jd  during the first τ  periods and jc  

from period 1+τ  to period mT . Since ),()( jijj dcucu < , it follows 

),,(),,( , j
m
i

m
j

m
j

m
i

m
j ssvssv δδ τ ≥ . 

Hence, all we have to do is to prove that 
   ),,( ,

m
j

m
i

m
j

m
j ssvv τδ≥  for all },...,0{ mT∈τ . 

Define 
)(),()( cudcuB jjij −≡τ − ξi

m{ )/|( *
jii dcp ψ )}|( * cp ii ψ−  

)1,1,( ** −− τmm
ii TMf m

m

δ
γ
−1

( )v vj
m

j
m− , 

Lemma 2 in Matsushima (2001b) implies that ),,(* τm
i Trf  is single-peaked with respect 

to },...,0{ mT∈τ , and therefore, )(τB−  is single-peaked with respect to τ . Since the 
difference of the probabilities of player si'  playing m

is  from period 1+mT  between 
),( ,

m
j

m
i ss τ  and ),( 1,

m
j

m
i ss −′ τ  equals 

m
iξ )}|()/|({ ** cpdcp iijii ψψ − )1,1,( ** −− τmm

ii TMf , 

the payoff difference )},,(),,({
1

1
1,,

m
j

m
i

m
j

m
j

m
i

m
jm ssvssv −−

− ττ δδ
δ

 is equivalent to 

)}(),({)( 1 cudcu jjij
m −−τδ − ξi

m{ )/|( *
jii dcp ψ  

)}|( * cp ii ψ− )1,1,( ** −− τmm
ii TMf m

m

δ
γ
−1

( )v vj
m

j
m− . 

Equalities (A4) imply that for every large enough m , 1)( −τδ m  is approximated by 1, and 
therefore, this payoff difference is approximated by )(τB . Hence, from the single-peakedness 

of )(τB−  and ),,(),( m
j

m
i

m
j

mm
j ssvsv δδ = , it follows that whenever ),,( ,

m
j

m
i

m
j

m
j ssvv τδ<  

for some },...,0{ mT∈τ , then it must hold that ),,( 1,
m
j

m
i

m
j

m
j ssvv δ< . Hence, all we have to do 

is to prove that ),,( 1,
m
j

m
i

m
j

m
j ssvv δ≥ . Property (i) of Lemma 3 implies 

),,(),,(
mm T

j
mm

ii
T
j

mm
ii cTMFdTMF ++++ = , which, together with equalities (A1), implies 

1),,(lim =++

∞→

mT
j

mm
iim

dTMF . From the law of large numbers, inequality 

)|()/|( ** cpdcp iijii ψψ > , and equalities (A2), it follows 0),,(lim ** =
∞→

mT
j

mm
iim

dTMF . Hence, 
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it follows from equalities (A4) and (A5) that 

lim
( )m

m

m m i
m

T→∞ −
γ
δ

ξ
1

=
−→∞

lim
m

m

m i
mγ

γ
ξ

1 jj

jjij
m
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t
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m vcu
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−
=

∑
−
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∞→ )(
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1

0
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, 

and therefore, 

)},(),,({
1

1lim 1,
mm

j
m
j

m
i

m
jmm

svssv δδ
δ

−
−∞→

)(),( cudcu jjij −=  
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jjij
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−

−
−

)(
)(),(

)/|({ *
jii dcp ψ )}|( * cp ii ψ− )0,1,(lim ** −

∞→

mm
ii

m

m
TMfT . 

Since 

)0,1,( ** −mm
ii TMf ),,()}|(1){1( **1*

*
mTmm

iiim

m
i cTMfcp

T
M −−−= ψ , 

it follows from equalities (A2) and (A3) that 

−∞=−
−∞→

)},(),,({
1

1lim 1,
mm

j
m
j

m
i

m
jmm

svssv δδ
δ

. 

Hence, we have proved ),,( 1,
m
j

m
i

m
j

m
j ssvv δ≥ . 

Consider any strategy )(ˆ mSs jj ∈  satisfying that },{)(ˆ jjj dcta ∉  for τ  periods 

during the first mT  periods. By replacing ∞
=1

* )( m
m

iM  with ∞
=

+
1)( m

m
iM , we can prove in the 

same way as above that there exists )(ˆ mSs ij ∈′  such that },{)(ˆ jjj dcta ∈  for all 

},...,0{ mT∈τ , and ),,(),,( j
m
i

m
jj

m
i

m
j ssvssv δδ ≥′ . 

Next, we will show that ),,( j
m
i

m
j

m
j ssvv δ≥  for all )(ˆ mSs jj ∈ . Fix },...,0{ mT∈τ  

arbitrarily, and consider any strategy )(ˆ mSs jj ∈  satisfying that },{)(ˆ jjj dcta ∈  for all 

},...,0{ mT∈τ , and jj dta =)(ˆ  for τ  periods. Note from property (i) of Lemma 3 that 

   ),,()ˆ,,(
mm T

j
mm

ii
T
j

mm
ii cTMFaTMF ++++++++ = . 

Note also that 
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i
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>
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−
≡
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q
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ψ
ψ

. 

Hence, it follows from equalities (A6) that 
)/,( 1,

m
j

mm
j ssv −τδ )/,( ,

m
j
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j ssv τδ−  
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1
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−
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γ
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δ
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1

)1( ** mm
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m
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m
T TTfqq

m

ξ
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−
−+ − )( m

j
m
j vv − . 

Given that m  is sufficiently large, we can assume 
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1
1

< <
δ m q . 

Note that 

0)}(),(){
1

)1(( <−
−

− dudcu jjijm

mm

γ
γδ , and 

),,0(
1

)1( ** mm
i

m
im

m

TTfq ξ
γ

γ
−

− 0)( >− m
j

m
j vv . 

Hence, it follows that )/,( ,
m
j

mm
j ssv τδ−  is single-peaked with respect to },...,0{ mT∈τ . This, 

together with )/,( 0,
m
j

mm
j ssv δ )/,(

,
m

Tj
mm

j mssv δ= , implies 

),( mm
j sv δ )/,( ,

m
j

mm
j ssv τδ≥  for all τ ∈{ ,..., }1 T m . 

Consider any strategy )(ˆ mSs jj ∈  satisfying that },{)(ˆ jjj dcta ∉  for τ  periods 

during the first mT  periods. In the same way, we can prove that there exists )(ˆ mSs ij ∈′  

such that },{)(ˆ jjj dcta ∈  for all },...,0{ mT∈τ , and ),,(),,( j
m
i

m
jj

m
i

m
j ssvssv δδ ≥′ . 

From these observations, we have proved that s m , sm , s sm
j
m/ , and s sm

j
m/  are Nash 

equilibria for every large enough m . Since we can choose iv  as close to ),(max jiia
dau

i

 as 

possible for each }2,1{∈i  and the set of sustainable payoff vectors is convex, we have 
completed the proof of Theorem 2. 
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Appendix B: Proof of Theorem 1 
 

Let )
1

1,0(
1

21]1[

y
xyz

+
++

≡  and )0,
1

1(
2

12]2[

y
xyz

+
++

≡ . The set of individually rational 

payoff vectors equals the convex hull of the set {( , ), ( , ), , }[ ] [ ]11 0 0 1 2z z . Note that the set of 
sustainable payoff vectors is convex, and we can prove as a corollary of Theorem 2 that (1,1) 
and (0,0) are sustainable. Hence, all we have to do is to prove that z [ ]1  and z [ ]2  are 
sustainable. 

Consider z [ ]1 . Fix an infinite sequence of positive integers ∞
=1)( m

mT  arbitrarily, where 
+∞=

∞→

m

m
Tlim . In the same way as in Lemma A1, we choose an infinite sequence of positive 

integers ∞
=1

**
2 )( m
mM  satisfying that 

},...,0{**
2

mm TM ∈  for all 1≥m , 1),,(lim 1
**

2
**

2 =
∞→

mTmm

m
cTMF , 

=
∞→ m

m

m T
M **

2lim )/|( 1
**

22 cdp ω , and ∞=
∞→

),,(lim 1
**

2
**

2

mTmmm

m
cTMfT . 

We choose a positive real number b > 0  arbitrarily, which is less than but close to 1
1 1+ y

. Let 

)1,1)(1()1,(~
21 bxybv −++−≡ , 

which approximates z [ ]1  and 0~ ]1[
11 => zv . Choose an infinite sequence ∞

=1),,( m
mmm ssδ  

satisfying that ms , ),( 21
mm ss , ),( 21

mm ss , and ms  are Nash equilibria in )( mδΓ , 

bm

m
−=

∞→
1lim γ  where 

mTmm )(δγ ≡ , 

   )(),(lim cusu m

m
=

∞→
δ , and )(),(lim dusu m

m
=

∞→
δ . 

We specify an infinite sequence of strategy profiles ∞
=1)ˆ( m

ms  by 
),()(ˆ 21

1
2 dchs tm =−  if mTt ≤≤1 , 

m

h

m ss mT 11
1

|ˆ =  for all 11 Hh
mT ∈ , 

for every 22 Hh
mT ∈ , 

m

h

m ss mT 22
2

|ˆ =  if there exist at most **
2M  periods such that **

22 )( ωω =t , 

and 
m

h

m ss mT 22
2

|ˆ =  otherwise. 

According to mŝ , players choose ),( 21 dc  during the first mT  periods. From period 1+mT , 
player 1 will certainly play s m1 , whereas player 2 will play s m2  ( sm2 ) if player 1 passes the 
review of player 2 (fails the review, respectively). Note that 

)ˆ,(1
mm sv δ ))(1( 1y

m −−= γ ),(),,([ 1
**

2
**

2
mmmmmm svTTMF δγ+  
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)],,()},,(1{ 211
**

2
**

2
mmmmmm ssvTTMF δ−+ , 

=)ˆ,(2
mm sv δ )1)(1( 2x

m +− γ ),(2
mmm sv δγ+ , 

and therefore, 
)1,()ˆ,(lim 21 xybsv mm

m
+−=

∞→
δ vb ~)1,1)(1( =−+ . 

We will omit the proof that mŝ  is a Nash equilibrium, because it can be done in the way that is 
based on the law of large numbers and is the same as or even simpler than Theorem 2. Since we 
can choose v~  as close to ]1[z  as possible, we have proved that ]1[z  is sustainable. Similarly 
we can prove that ]2[z  is sustainable. 
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Appendix C: Proof of Lemma 3 
 

Fix }2,1{∈i  arbitrarily. Since }),(|),|({ 000 Ξ×∈⋅ jji Aaaq θθ  is linearly 

independent for all },{ iii dca ∈ , there exist *
iψ , +

iψ , **
iψ , and ++

iψ  such that for 
every },{ jjj dca ∉ , 

),|(),|()|( ***
jiiijiiiii acpdcpcp ψψψ ≤< , 

),|(),|()|( jiiijiiiii acpdcpcp +++ <= ψψψ , 

),|()|(),|( ******
jiiiiijiii adpdpcdp ψψψ ≤< , 

),|()|(),|( jiiiiijiii adpdpcdp ++++++ <= ψψψ , 
for every 00 ),( Ξ×∈ jj Aa θ , 

),|(),,|( *
0

*
jiiijiii acpacp ψθψ = , 

),|(),,|( 0 jiiijiii acpacp ++ = ψθψ , 

),|(),,|( **
0

**
jiiijiii adpadp ψθψ = , and 

),|(),,|( 0 jiiijiii adpadp ++++ = ψθψ . 
Note that these random events satisfy property (i). Since ),|( 0θaq ⋅  is conditionally 
independent, it follows that 

∑

∑

Ξ∈

Ξ∈=

00

00

)|(),|(

)|(),|(),|(
),|(

00

0022011

θ

θ

θθω

θθωθω
ωω

afaq

afaqaq
ap

jj
jii , 
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Since ),|(),,|( *
0

*
jiiijiii acpacp ψθψ = , it follows that  

),|(),,|( **
jiiijjiii acpacp ψωψ = . 

Similarly, we can show that 
),|(),,|( jiiijjiii acpacp ++ = ψωψ , 

),|(),,|( ****
jiiijjiii adpadp ψωψ = , and 

),|(),,|( jiiijjiii adpadp ++++ = ψωψ . 
These equalities imply property (ii). 
 



 33

References 
 
Abreu, D., D. Pearce, and E. Stacchetti (1986): “Optimal Cartel Monitoring with 

Imperfect Information,” Journal of Economic Theory 39, 251-269. 
Aoyagi, M. (2002): “Collusion in Dynamic Bertrand Oligopoly with Correlated Private 

Signals and Communication,” Journal of Economic Theory 102, 229-248. 
Bhaskar, V. (1999): “The Prisoner’s Dilemma with Private Monitoring,” mimeo. 
Bhaskar, V. and I. Obara (2002): “Belief-Based Equilibria in the Repeated Prisoners’ 

Dilemma with Private Monitoring,” Journal of Economic Theory 102, 229-248. 
Compte, O. (1998): “Communication in Repeated Games with Imperfect Monitoring,” 

Econometrica 66, 597-626. 
Ely, J. and J. Välimäki (2000): “Non-Vanishing Notes,” mimeo. 
Ely, J. and J. Välimäki (2002): “A Robust Folk Theorem for the Prisoner’s Dilemma,” 

Journal of Economic Theory 102, 84-105. 
Fudenberg, D. and D. Levine (1991): “Approximate Equilibria in Repeated Games with 

Imperfect Private Information,” Journal of Economic Theory 54, 26-47. 
Fudenberg, D., D. Levine, and E. Maskin (1994): “The Folk Theorem with Imperfect 

Public Information,” Econometrica 62, 997-1040. 
Green, E. and R. Porter (1984): “Noncooperative Collusion under Imperfect Price 

Information,” Econometrica 52, 87-100. 
Kandori, M. (2002): “Introduction to Repeated Games with Private Monitoring,” 

Journal of Economic Theory 102, 1-15. 
Kandori, M. and H. Matsushima (1998): “Private Observation, Communication and 

Collusion,” Econometrica 66, 627-652. 
Kandori, M. and I. Obara (2000): “Efficiency in Repeated Games Revisited: the Role of 

Private Strategies,” mimeo. 
Lehrer, E. (1989): “Lower Equilibrium Payoffs in Two-Player Repeated Games with 

Non-Observable Actions,” International Journal of Game Theory 18, 57-89. 
Mailath, G. and S. Morris (2002): “Repeated Games with Almost Public Monitoring: 

Notes,” Journal of Economic Theory 102, 189-228. 
Matsushima, H. (1990a): “On the Theory of Repeated Games with Private Information: 

Part I,” Economics Letters 35, 253-256. 
Matsushima, H. (1990b): “On the Theory of Repeated Games with Private Information: 

Part II,” Economics Letters 35, 257-261. 
Matsushima, H. (2000): “The Folk Theorem with Private Monitoring and Uniform 

Sustainability,” Discussion Paper CIRJE-F-84, University of Tokyo. 
Matsushima, H. (2001a): “The Folk Theorem with Private Monitoring,” Discussion 

Paper CIRJE-F-123, University of Tokyo. 
Matsushima, H. (2001b): “Multimarket Contact, Imperfect Monitoring, and Implicit 

Collusion,” Journal of Economic Theory 98, 158-178. 
Matsushima, H. (2002): “Repeated Games with Correlated Private Monitoring and 

Secret Price Cuts,” Discussion Paper CIRJE-F-154, University of Tokyo. 
Obara, I. (1999): “Private Strategy and Efficiency: Repeated Partnership Games 

Revisited,” mimeo. 
Pearce, D. (1992): “Repeated Games: Cooperation and Rationality,” in Advances in 

Economic Theory: Sixth World Congress, ed. by J.-J. Laffont, Cambridge 
University Press. 



 34

Piccione, M. (2002): “The Repeated Prisoners’ Dilemma with Imperfect Private 
Monitoring,” Journal of Economic Theory 102, 70-83. 

Radner, R. (1985): “Repeated Principal Agent Games with Discounting,” Econometrica 
53, 1173-1198. 

Radner, R. (1986): “Repeated Partnership Games with Imperfect Monitoring and No 
Discounting,” Review of Economic Studies 53, 43-47. 

Rotemberg, J. and G. Saloner (1986): “A Supergame-Theoretic Model of Price Wars 
during Booms,” American Economic Review 76, 390-407. 

Sekiguchi, T. (1997): “Efficiency in Repeated Prisoners’ Dilemma with Private 
Monitoring,” Journal of Economic Theory 76, 345-361. 

Stigler, G. (1964): “A Theory of Oligopoly,” Journal of Political Economy 72, 44-61. 
 




