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Abstract

We shall propose a new computational scheme for the evaluation of the op-
timal portfolio for investment. Our method is based on an extension of the
asymptotic expansion approach which has been recently developed for pric-
ing problems of the contingent claims’ analysis by Kunitomo-Takahashi(1992,
1995,1998,2001), Yoshida(1992), Takahashi(1995,1999), Takahashi and
Yoshida(2001). In particular, we will explicitly derive a formula of the opti-
mal portfolio associated with maximizing utility from terminal wealth in a
financial market with Markovian coefficients, and give a numerical example
for a power utility function.

(Forthcoming in “Statistical Inference for Stochastic Processes”.)

1



1 Introduction

We shall propose a new computational scheme for the evaluation of the
optimal portfolios for investment. Our method is based on the asymp-
totic expansion approach, a unified method of efficient computation jus-
tified by Malliavin-Watanabe(1987) theory, which has been recently devel-
oped for pricing problems of the contingent claims’ analysis by Kunitomo-
Takahashi(1992,1995,1998,2001,2003), Yoshida(1992), Takahashi(1995,1999),
Kunitomo and Kim(1999), Sorensen and Yoshida(1998), and Takahashi and
Yoshida(2001). They have developed the method through deriving formulas
for practical examples such as average options, basket options, and options
with stochastic volatility and with stochastic interest rates in a Markovian
setting, as well as bond options(swaptions), average options on interest rates,
and average options on foreign exchange rates with stochastic interest rates
in the Heath-Jarrow-Morton(1992) framework. In this paper, we extend
the method to portfolio problems. In particular, we will explicitly derive
the formula of the optimal portfolio associated with maximizing utility from
terminal wealth in a complete market, where the short term risk-free rate
and the market price of risk are described by some functions of a random
vector following a multi-dimensional Markov process. Moreover, we provide
numerical examples for power utility functions. In general, it is quite difficult
to compute an optimal portfolio explicitly when the investment oppotunity
is stochastic in a multiperiod setting. The stochastic control approach initi-
ated by Merton(1969,1971) gives a solution in terms of the derivatives of the
value function: While the solution can be evaluated numerically based on
the Hamilton-Jacobi-Bellman equation, the implementation is not easy espe-
cially for the case of multiple assets. In the martingale approach initiated by
Karatzas et al.(1987) and Cox and Huang(1989), Ocone and Karatzas(1991)
proposed the representation of optimal portfolios by utilizing the Clark for-
mula. Although their representation formulas were derived in general set-
ting, explicit evaluation was obtained only for logarithmic utility functions
or a financial market with deterministic coefficients, which were already
known without their formulas. Starting with the Clark formula, we will
present an explicit expression for the optimal portfolio in a concrete and
important setting where key variables such as the short term risk-free rate
and the market price of risk are some functions of a random vector whose
evolution is described by a multi-dimensional Markov process. Moreover,
our method can be easily extended to the optimal portfolios associated with
maximizing utility from both consumption and terminal wealth, and to the
hedging portfolios associated with contingent claims. Regarding the related
works, Detemple et al.(2000) utilizes Monte Carlo simulations to investigate
optimal portfolios for a power utility function in several Markovian exam-
ples. The organization of this paper is as follows. In section 2 we explain
the problem of the optimal portfolio for investment and restate the prob-
lem in a Markovian setting. In section 3 we briefly explain basic tools for an
asymptotic expansion approach. In section 4, we illustrate our method using
a power utility function, and derive the second order scheme explicitly. In
section 5 we also derive the second order scheme for general utility functions.
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In section 6 we give a numerical example. Finally, in appendix, we provide
proofs of lemmas, show the result of the third order scheme for power utility
functions, and discuss the validity of our method for the numerical example
considered in Section 6.

2 Representation of Optimal Portfolio

2.1 Representation of Optimal Portfolio for Investment

We will breifly describe the financial market and introduce the representa-
tion of the optimal portfolio for investment derived by Ocone and Karatzas(1991).

We start with basic setup of the financial market. Let (Ω,F , P ) proba-
bility space and T∈ (0,∞) denotes some fixed time horizon of the economy.
w(t) = (w1(t), · · · , wr(t))∗, 0 ≤ t ≤ T is Rr-valued Brownian motion defined
on (Ω,F , P ) and {Ft}, 0 ≤ t ≤ T stands for P-augmentation of the natural
filtration, Fw

t = σ(w(s); 0 ≤ s ≤ t). Here, we use the notation of x∗ as
the transpose of x. Si(t), i = 1, · · · , r and S0(t) denote the prices at time
t ∈ [0, T ] of the risky asset i and of the risless asset respectively. The prices
are assumed to follow the stochastic processes: For t ∈ [0, T ],

dSi = Si(t)[bi(t)dt+
r∑

j=1

σij(t)dwj(t)], Si(0) = si i = 1, · · · , r (1)

dS0 = r(t)S0(t)dt, S0(0) = 1,

where we suppose that r(t), bi(t) and σij(t), i, j = 1, · · · , r are bounded
and progressively measurable with respect to {Ft}. We also assume the
nondegeneracy condition; for the r × r matrix σ(t) ≡ {σij(t)}1≤i,j≤r there
exists a real number ε > 0 such that

ξ∗σ(t, ω)σ(t, ω)∗ξ ≥ ε|ξ|2; ∀ξ ∈ Rr, (t, ω) ∈ [0, T ]× Ω.

Then, the stochastic process of an investor’s wealth denoted by W (t) are
expressed as

dW (t) = [r(t)W (t)− c(t)]dt+ π(t)∗[(b(t)− r(t)1)dt+ σ(t)dw(t)] (2)

where W (0) = W > 0 is the initial capital, 1 denotes the vector in Rr

with all elements equal to 1, c(t) denotes the consumption rate, b(t) =
(b1(t), · · · , br(t))∗, and π(t) = {πi(t)}∗i=1,···,r denotes the portfolio. c(t) and
π(t) satisfy the integrability condition;∫ T

0
{|π(t)|2 + c(t)}dt < ∞ a.s.

Next, let A(W ) denote the set of stochastic processes (π, c) which generate
W (t) ≥ 0 for all t ∈ [0, T ] given W (0) = W . We call (π, c) is admissible for
W if (π, c) ∈ A(W ).

The problem of maximizing utility from terminal wealth is formulated as
follows: With c ≡ 0,

sup
(π,c)∈A(W )

E[U (W (T ))] (3)
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where E[·] denotes the expectation operator under P , and U denotes a utility
function such that

U : (0,∞)→ R, (4)
a strictly increasing, strictly concave function of class C2

with U(0+) ≡ lim
c↓0

U(c) ∈ [−∞,∞), U
′
(0+) ≡ lim

c↓0
U

′
(c) = ∞

and U
′
(∞) ≡ lim

c→∞U
′
(c) = 0.

Let the market price of risk θ(t) for t ∈ [0, T ] an Rr−valued progressively
measurable bounded process defined by

θ(t) = σ(t)−1[b(t)− r(t)1].

Then, the martingale measure denoted by P0 is defined as P0(A) = E[1AZ(T )]
for all A ∈ FT where

Z(t) = exp
(
−
∫ t

0
θ(s)∗dw(s)− 1

2

∫ t

0
|θ(s)|2ds

)
; 0 ≤ t ≤ T.

We note that w0(t) ≡ w(t)+
∫ t
0 θ(u)du for 0 ≤ t ≤ T is a standard Brownian

motion under P0.

Regarding the problem of maximizing utility from terminal wealth, it is
well known that the optimal wealth level of terminal wealth given byW (T ) =
I(Y(W )H0(T )) and that the value function V (W ) := sup(π,c)∈A(W ) E[U (W (T ))]
can be computed as V (W ) = G(Y(W )), whereG(y) := E[U (I(yH0(T )))]; 0 <
y < ∞. (See for instance Theorem 7.6 in Karatzas and Shreve(1998) pp.114.)
Here, a continuously differentiable function I : (0,∞) → (0,∞) (which is
expressed as I ∈ C1((0,∞); (0,∞))) denotes the inverse of U

′
(·),b and Y(·)

denotes the inverse of the continuous decreasing function:

X (y) = E0[β(T )I(yH0(T ))] = E[H0(T )I(yH0(T ))]; 0 < y < ∞
which we assume maps (0,∞) into (0,∞), where β(t) ≡ 1/S0(t), H0(t) ≡
β(t)Z(t) denotes the state price density at t and E0[·] denotes the expecta-
tion operator under P0.

Ocone and Karatzas(91) provides the following theorem by utilizing the
Clark formula regarding the problem of the optimal portfolio for investment
associated with maximizing utility from terminal wealth.

Theorem[Ocone and Karatzas(91)]

Suppose that a utility function satisfies the conditions (4) and that

I(y) + |I ′(y)| ≤ K(yα + y−β), 0 < y < ∞
holds for some real positive constants α, β and K. Then the optimal portfolio
admits the represenatation;

π∗(t)σ(t) = − 1
β(t)

{
θ∗(t)E0[β(T )Y(W )H0(T )I

′
(Y(W )H0(T ))|Ft] (5)
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+ E0

[
β(T )φ

′
(Y(W )H0(T ))

(∫ T

t
Dtr(u)du+

r∑
α=1

∫ T

t
{Dtθα(u)}dwα

0 (u)

)
|Ft

]}

where φ(y) ≡ yI(y), 0 < y < ∞, and Dtr(u) and Dtθα(u) for α = 1, 2, · · · , r
deonote the Malliavin derivatives of r(u) and θα(u).

Here we suppose that θ and r satisfy the following conditions:

1. R-valued progressivlely measurable process r is bounded; for a.e. s ∈
[0, T ] r(s, ·) ∈ D1,1 where D1,1 denotes the Sobolev space Dp,s with
(p, s) = (1, 1), (s, ω) → Dr(s, ω) ∈ (L2([0, T ]))r admits progressivlely
measurable version, and

‖r‖a1,1 ≡ E


(∫ T

0
|r(s)|2ds

) 1
2

+

(∫ T

0
‖Dr(s)‖2ds

)1
2


 < ∞

where ‖·‖ denotes the L2([0, T ]) norm, and ‖Dr(s)‖2 ≡∑r
i=1 ‖Dir(s)‖2.

2. Rr-valued progressively measurable process θ is bounded; for a.e. s ∈
[0, T ] θ(s, ·) ∈ (D1,1)r, (s, ω) → Dθ(s, ω) ∈ (L2([0, T ]))r

2
admits a

progressively measurable version, and

‖θ‖a1,1 ≡ E


(∫ T

0
|θ(s)|2ds

) 1
2

+

(∫ T

0
‖Dθ(s)‖2ds

) 1
2


 < ∞

where ‖Dθ(s)‖2 ≡∑r
i,j=1 ‖Diθj(s)‖2.

3. For some p > 1 we have

E


(∫ T

0
‖Dr(s)‖2ds

) p
2


 < ∞, E


(∫ T

0
‖Dθ(s)‖2ds

) p
2


 < ∞.

Proof. See theorem 4.2 of Ocone and Karatzas(91).

More intuitive formula can be obtained under original measure P .

Theorem 1 Under the same conditions as in theorem [Ocone and Karatzas(91)],
the optimal portfolio has the representation under measure P ;

π∗σ(t) =
{
W (t) −E

[
H0(T )
H0(t)

φ
′
(Y(W )H0(T ))|Ft

]}
θ∗(t) (6)

−E
[
H0(T )
H0(t)

φ
′
(Y(W )H0(T ))×(∫ T

t
Dtr(u)du+

r∑
α=1

{∫ T

t
{Dtθα(u)}dwα(u) +

∫ T

t
{Dtθα(u)}θα(u)du

})
|Ft

]

where W (t) denotes the optimal wealth at time t, and is determined by

W (t) = E
[
H0(T )
H0(t)

I(Y(W )H0(T ))|Ft

]
. (7)
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Proof. The relation (7) is well known. (See theorem 7.6 of Karatzas and
Shreve(98) for instance.) Rewrite the equation (5) under P by using (7),
φ′(y) = I(y) + yI ′(y), and w0(t) = w(t) +

∫ t
0 θ(u)du to obtian the result.

In the optimal portfolio of the equation (6), the first term on the right hand
side represents the optimal portfolio in one-period setting that is sometimes
called mean-variance portfolio, while the second term is specific to multi-
period setting, which Merton(71) named hedging demand in a sense that
the term represents demand for hedging against randomness in the future;
specifically, the terms Dtr(u) and Dtθα(u) express the changes of interest
rate and market price of risk in the future respectively.

It is well known that the optimal portfolio π(t) is easily derived for two
simple cases: (See for instance chapter 3 in Karatzas and Shreve(1998).)
For the case of a log utility function U(x) = log x,

π∗(t) = θ∗(t)σ(t)−1W (t)

where θ(t) = σ(t)−1[b(t) − r(t)1], since φ ≡ 1 and hence φ
′ ≡ 0. This is

exactly same as mean-variance portfolio in one-period portfolio problem;
that is, the optimal portfolio per wealth is given by the vector of the excess
expected returns of risky assets over the riskless asset multiplied by variance
matrix. In this sense, an investor with a log utility is sometimes called a
myopic invetor. For the case of a power utility function defined by U(x) =
xδ

δ , δ < 1, δ �= 0 for x ∈ (0,∞), if r(·) and θ(·) are deterministic,

π∗(t) =
1

(1− δ)
θ∗(t)σ(t)−1W (t) (8)

because Dtr(u) ≡ 0 and Dtθα(u) ≡ 0. However, if r(·) and θ(·) are not
deterministic, it is not easy to evaluate π(t) explicitly for a power utility
function.

2.2 Optimal Portfolio for Investment in a Markovian Setting

In the spirit of Ocone and Karatzas (1991), we will consider more concrete
and important setting for practical purpose in the sequel.

From now on, we will consider a Wiener space on [t, T ] for some fixed t
∈ [0, T ] and assume that all random variables will be defined on it. Let X ε

u

be a d-dimensional diffusion process defined by the stochastic differential
equation:

dX ε
u = V0(X ε

u, ε)du+ V (X ε
u, ε)dwu, X ε

t = x (9)

for u ∈ [t, T ]. Here we suppose that ε ∈ (0, 1] denotes a parameter used
as the asymptotic expansion, V0 ∈ C∞

b (Rd × (0, 1];Rd) and V = (Vβ)rβ=1 ∈
C∞
b (Rd×(0, 1];Rd⊗Rr) where C∞

b (Rd×(0, 1];E) denotes a class of smooth
mappings f : Rd×(0, 1] → E whose derivatives ∂n

x∂
m
ε f(x, ε) are all bounded
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for n ∈ Zd
+ such that |n| ≥ 1 and m ∈ Z+. Note that time-dependent-

coefficient diffusion processes are included in the above equation if we en-
large the process to a higher-dimensional one. We also assume the bounded
processes r(u) and θ(u) to be r(u) = r(X ε

u) and θ(u) = θ(X ε
u) where

r ∈ C∞
b (Rd;R+) and θ ∈ C∞

b (Rd;Rr). We remark that our framework
includes a financial market with Markovian coefficients of return processes
as a special case, in which not only r(u) but also b(u) and σ(u) are some
functions of X ε

u.

Let Y ε
t,u be a unique solution of the d× d-matrix valued stochastic dif-

ferential equation:


dY ε
t,u =

∑r
α=0 ∂xVα(X

ε
u, ε)Y

ε
t,udw

α
u

Y ε
t,t = I

(10)

Then, we have the representation of the optimal portfolio π(t) in our Marko-
vian setting, which is stated as a corollary of theorem 1:

Corollary 1.1 The optimal portfolio under the Markovian setting (9) and
(10) is represented as follws.

π∗(t)σ(x) =
{
W −E

[
H0,t,Tφ

′
(YH0,t,T )

]}
θ∗(x) (11)

−E

[
H0,t,Tφ

′
(YH0,t,T )

(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]

where W is a given wealth at time t, H0,t,T is defined by

H0,t,T ≡ H0(T )
H0(t)

= exp

(
−
∫ T

t
θ(X ε

u)
∗dw(u)− 1

2

∫ T

t
|θ(X ε

u)|2du−
∫ T

t
r(X ε

u)du

)
,

and Y is determined by the equation:

W = E[H0,t,T I(YH0,t,T )]. (12)

Proof. It is well known that

DtX
ε
u = Y ε

t,uV (X ε
t , ε) = Y ε

t,uV (xt, ε), u ≥ t,

and that

Dtf(X ε
u) = ∂f(X ε

u)[DtX
ε
u] = ∂f(X ε

u)Y
ε
t,uV (xt, ε); u ≥ t,
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for f ∈ C∞
b (Rd;R). Apply those facts to the equation (6) with

f(·) ≡ r(·) or θ(·).

Our objective is to evaluate π(t) explicitly. It is possible to compute
π(t) based on a Monte Carlo simulation. However, it is path-dependent,
besides, the functions φ′ is often irregular, and the error bounds are not
yet fully investigated in such a situation, while Kohatsu and Yoshida(2001)
recently provided an error bound to the Euler-Maruyama scheme for path-
dependent functionals. Moreover, Monte-Carlo methods are not so use-
ful from a computational viewpoint when a family of stochastic differential
equations is treated;especially, the sensitivity analysis which controls the
underlying stochastic differential equations is the case.

In the present article, we will propose a practical and more effcient
scheme for computing the optimal portfolio by utilizing the asymptotic
expansion approach. On the asymptotic expansion approach, first-order
asymptotics was proposed in Kunitomo-Takahashi(1992) for geometric Brow-
nian motion. In order to obatin more precise approximation, the asymptotic
expansion method was introduced with the Malliavin calculus and investi-
gated for the evaluation of path-dependent contingent claims in Yoshida
(1992), Takahashi(1995,1999), Kunitomo and Takahashi(1995,1998,2001),
Kunitomo and Kim(1999), and Takahashi and Yoshida(2001).

3 An Asymptotic Expansion Scheme

We will introduce basic tools for an asymptotic expansion scheme. First,
we will derive the asymptotic expansions of X ε

u and Y ε
t,u in (9) and (10) re-

spectively which will provide the basis for the subsequent anaysis. We start
with a basic assumption, the deterministic limit condition:

[A1] V (·, 0)≡ 0.

It follows from [A1] that the limit process (X0
u)u∈[t,T ] is a unique determin-

istic solution of the ordinary differential equation:

X0
u = x+

∫ u

t
V0(X0

s , 0)ds. (13)

We further assume σ(X0
u) is non-singular for all u ∈ [t, T ]. Next, put Yt,s :=

Y 0
t,s and then clearly, Yt,s is a unique deterministic solution of the ordinary

differential equation:

dYt,s = ∂xV0(X0
s , 0)Yt,sds s ∈ [t, T ] (14)

Yt,t = I

where Yt,s ∈ GL(d, R). Next, let D(t; u) = ∂Xε
u

∂ε |ε=0, E(t; u) = ∂2Xε
u

∂ε2
|ε=0 and

Y
[1]
t,u =

∂Y ε
t,u

∂ε |ε=0. Then D(t; u), E(t, u) and Y
[1]
t,u (u ∈ [t, T ]) are determined

by the following stochastic differential equations:{
dD(t; u) = ∂xV0(X0

u, 0)D(t; u)du+
∑r

α=0 ∂εVα(X
0
u, 0)dwα

D(t; t) = 0,
(15)
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


dE(t; u) = ∂xV0(X0
u, 0)E(t; u)du+ ∂2

xV0(X0
u, 0)[D(t; u), D(t; u)]du

+2
∑r

α=0 ∂x∂εVα(X
0
u, 0)D(t; u)dwα

+
∑r

α=0 ∂
2
εVα(X

0
u, 0)dw

α

E(t; t) = 0

(16)

and 


dY
[1]
t,s = ∂xV0(X0

s , 0)Y
[1]
t,s ds + ∂2

xV0(X0
s , 0)[D(t; s)]Yt,sds

+
∑r

α=0 ∂ε∂xVα(X
0
s , 0)Yt,sdw

α
s

Y
[1]
t,t = 0.

(17)

Here we used the fact that ∂xVα(·, 0) = 0 for α = 1, ..., r. Moreover, we used
conventions dw0 = du, ∂x = gradx, ∂ε = ∂/∂ε, and notations;

∂2
xV0(X0

u, 0)[D(t; u), D(t; u)] =
d∑
i=1

d∑
j=1

∂xi∂xjV0(X0
u, 0)D

(i)(t; u)D(j)(t; u),

and

∂2
xV0(X0

s , 0)[D(t; s)]Yt,sds =
d∑
i=1

d∑
j=1

∂xi∂xjV0(X0
s , 0)D

(j)(t; s)(Yt,s)(i,·)ds.

where D(i)(t; s) denotes the i-th element of D(t; s) and (Yt,s)(i,·) denotes the
i-th row of Yt,s. Further, we will use the following abbreviations:

Xu = X0
u, Yu = Y 0

u , Vαu = V [0]
αu = Vα(Xu, 0), α = 0, 1, · · · , r

∂ = ∂x, ∂i = ∂xi .

Then, we obtain the asymptotic expansions of X ε
u and Y ε

t,u upto the order
explictly used in the later sections.

Lemma 1 The asymptotic expansions of X ε
u and Y ε

t,u are obtained as fol-
lows;

X ε
u = Xu + εD(t; u) +

ε2

2
E(t; u) + o(ε2)

and
Y ε
t,u = Yt,u + εY

[1]
t,u + o(ε),

where


D(t; u) = Yt,u
∫ u
t Y −1

t,s

∑r
α=0 ∂εVαsdw

α
s

E(t; u) = Yt,u
∫ u
t Y −1

t,s {∂2V0s[D(t; s), D(t; s)]ds

+2
∑r

α=0 ∂∂εVαsD(t; s)dwα +
∑r

α=0 ∂
2
εVαsdw

α}

Y
[1]
t,u = Yt,u

∫ u
t (Yt,s)

−1
[
∂2V0s[D(t; s)]Yt,sds+

∑r
α=0 ∂ε∂VαsYt,sdw

α
s

]
.
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Proof. See appendix.

Next, we will consider the asymptotic expansion of the following func-
tional which will appear frequently in the sequel. Define

ζεt,u := exp
(∫ u

t
a0(X ε

s)ds+
∫ u

t
a(X ε

s)dws

)
, (18)

where a0 ∈ C∞
↑ (Rd;R) and a ∈ C∞

↑ (Rd;Rr). Here, C∞
↑ (Rd;R)(C∞

↑ (Rd;Rr))
denotes a class of smooth functions f : Rd → R (f : Rd → Rr) whose
derivatives are of polynomial growth orders. In addition, we assume the
following integrability condition for ζεt,T :

[A2] For any p ∈ (1,∞), supε∈(0,1]

∥∥∥ζεt,T∥∥∥p < ∞.

Then, we easily obtain the next lemma.

Lemma 2 Under Condition [A2], ζεt,T has an asymptotic expansion:

ζεt,T ∼ ζ0
t,T + εζ

[1]
t,T +

ε2

2
ζ
[2]
t,T + · · · (19)

in Lp for every p > 1 (or in D∞) as ε ↓ 0. The first three coefficients are
given by


ζ0
t,T = exp

(∫ T
t a0(Xs)ds+

∫ T
t a(Xs)dws

)
,

ζ
[1]
t,T = ζ0

t,T

(∫ T
t ∂xa0(Xs)D(t; s)ds+

∫ T
t ∂xa(Xs)D(t; s)dws

)

ζ
[2]
t,T = ζ0

t,T

{(∫ T
t ∂xa0(Xs)D(t; s)ds+

∫ T
t ∂xa(Xs)D(t; s)dws

)2

+
∫ T
t ∂xa0(Xs)E(t; s)ds+

∫ T
t ∂xa(Xs)E(t; s)dws

+
∫ T
t ∂2

xa0(Xs)[D(t; s), D(t; s)]ds+
∫ T
t ∂2

xa(Xs)[D(t; s), D(t; s)]dws

}
.

Proof. Taylor expansion under the integrability condition [A2] gives the
result.

Finally in this section, we will derive an expansion of the following func-
tional which will be frequently used in the subsequent analysis:

gα,ε =
∫ T

t
∂f(X ε

u)Y
ε
t,uV (xt, ε)dwα

u, α = 0, 1, · · · , r. (20)

where f ∈ C∞
↑ (Rd;R).
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Lemma 3 The asymptotic expansion of gα,ε is given by

gα,ε ∼ εgα,[1] +
ε2

2
gα,[2] + · · ·

in Lp for every p > 1 (or in D∞(Rd)) as ε ↓ 0. Here, gα,[j], i = j = 1, 2
denote the first derivative gα,[1] ≡ ∂gα,ε

∂ε |ε=0 and the second derivative gα,[2] ≡
∂2gα,ε

∂ε2
|ε=0 of gα,ε respectively, and they are expressed as follows;




gα,[1] =
∫ T
t ∂xf(Xu)[Yt,u∂εV (xt, 0)]dwα

u

gα,[2] = 2
∫ T
t

∑d
i=1

∑d
j=1 ∂i∂jf(Xu)D(j)(t; u)Y (i,·)

t,u ∂εV (xt, 0)dwα
u

+2
∫ T
t

∑d
i=1 ∂if(Xu)Y

[1],(i,·)
t,u ∂εV (xt, 0)dwα

u

+
∫ T
t

∑d
i=1 ∂if(Xu)Y

(i,·)
t,u ∂2

εV (xt, 0)dwα
u.

(21)

Proof. See appendix.

4 The Scheme for Power Utility Functions

4.1 Power Utility Functions

In this secton, we will illustrate our approach through an asymptotic expan-
sion of the optimal portfolio for power utility functions. We firt assume that
a utility function in (4) is specified as so called a power function; that is

U(x) =
xδ

δ
, x ∈ (0,∞), δ < 1, δ �= 0. (22)

Then, I(y) and φ(y) are given by I(y) = y
−1

(1−δ) , φ(y) = y
−δ

(1−δ) and φ′(y) =
−δ

(1−δ)I(y).

Hence, in this case the optmal portfolio given in the equation(11) is expressed
as follows;

π∗(t)σ(x) =
1

(1− δ)
Wθ(x)∗ +

δ

(1− δ)
(Y)(

−1
1−δ

)E
[
(H0,t,T )

( −δ
1−δ

)× (23)(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]

where
W = (Y)(

−1
1−δ

)E
[
(H0,t,T )

( −δ
1−δ

)
]
.

Here, we use the abbreviations r(u) = r(X ε
u) and θα(u) = θα(X ε

u). We also
notice that (Y)(

−1
1−δ

) is expressed explicitly in terms of the current wealth

11



W at time t. Then, alternatively, the optimal proportions of risky assets in
wealth denoted by π∗(t)/W are given as follows:

π∗(t)/W =
1

(1− δ)
θ(x)∗σ−1(x) +

δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
] × (24)

E

[
(H0,t,T )

( −δ
1−δ

)

(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]
σ−1(x).

We remark that the equation (8) which represents the optimal portfolio
when r(·) and θ(·) are not random does not have the second term on the
right hand side of the equation (24), because in that case,

∂r(u) = ∂θα(u) ≡ 0.

Hereafter, our objective is to derive an asymptotic expansion of the equation
(24); Because the first term on the right hand side of the equation (24) is
already obtained explicitly by the current information at time t, we will
derive an asymptotic expansion of the second term applying the technique
prepared in the previous section. More spcecifically, we will consider the
term E defined as follows;

E ≡ 1

E
[
(H0,t,T )

( −δ
1−δ

)
]E
[
(H0,t,T )

( −δ
1−δ

)

(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]
. (25)

4.2 Preparations

First, we notice that we can directly apply the expression (19) in lemma 2 to
(H0,t,T )

( −δ
1−δ

) in the equation (24) if we set ζεt,u ≡ (H0,t,T )
( −δ
1−δ

), and specify
a0(X ε

s) and a(X ε
s) as

a0(X ε
s) = (

δ

1− δ
)r(X ε

s) +
δ

2(1− δ)
|θ(X ε

s)|2

and

a(X ε
s) = (

δ

1− δ
)θ∗(X ε

s).

Here, we note that [A2] is satisfied in this case because of the boundedness
assumptions of r(·) and θ(·).

12



Next, we will show the following expansions;


gεr ≡ ∫ T
t ∂r(u)Y ε

t,uV (x, ε)du

gα,εθ ≡ ∫ T
t ∂θα(u)Y ε

t,uV (x, ε)dwα(u)

gα,ε
θ2

≡ ∫ T
t θα(u)∂θα(u)Y ε

t,uV (x, ε)du,

(26)

which appear in the second term of the equation (24).

Lemma 4 The asymptotic expansion of gεr, g
α,ε
θ , and g

α,ε
θ2 defined in (26)

upto the ε2-order are obtained as follows:


gεr = εg
[1]
r + ε2

2 g
[2]
r + o(ε2)

g
α,ε
θ = εg

α,[1]
θ + ε2

2 g
α,[2]
θ + o(ε2)

gα,εθ2 = εg
α,[1]
θ2 + ε2

2 g
α,[2]
θ2 + o(ε2)

(27)

where the coefficients of ε-order that is, g[1]
r , g

α,[1]
θ , and g

α,[1]
θ2

are given by


g
[1]
r =

∫ T
t ∂r[0](u)Yt,u∂εV (x, 0)du

g
α,[1]
θ =

∫ T
t ∂θ

[0]
α (u)Yt,u∂εV (x, 0)dwα(u)

g
α,[1]
θ2 =

∫ T
t θ

[0]
α (u)∂θ[0]

α (u)Yt,u∂εV (x, 0)du,

(28)

and the coefficients of ε2-order that is, g[2]
r , g

α,[2]
θ , and g

α,[2]
θ2 are given by



g
[2]
r = 2

(∫ T
t ∂2r[0](u)[D(t; u)]Yt,udu+

∫ T
t ∂r[0](u)Y [1]

t,udu
)
∂εV (x, 0)

+
(∫ T

t ∂r[0](u)Yt,udu
)
∂2
ε V (x, 0)

g
α,[2]
θ = 2

(∫ T
t ∂2θ

[0]
α (u)[D(t; u)]Yt,udwα(u) +

∫ T
t ∂θ

[0]
α (u)Y [1]

t,udw
α(u)

)
∂εV (x, 0)

+
(∫ T

t ∂θ
[0]
α (u)Yt,udwα(u)

)
∂2
εV (x, 0)

g
α,[2]
θ2 = 2

(∫ T
t

{
(∂θ[0]

α (u))2 + θ
[0]
α (u)∂2θ

[0]
α (u)

}
[D(t; u)]Yt,udu+

∫ T
t θ

[0]
α (u)∂θ[0]

α (u)Y [1]
t,udu

)
∂εV (x, 0)

+
(∫ T

t θ
[0]
α (u)∂θ[0]

α (u)Yt,udu
)
∂2
ε V (x, 0).

(29)

We use the following notations in (29) above;

(∂θ[0]
α (u))2[D(t; u)]Yt,u ≡

d∑
i=1

d∑
j=1

(∂iθ[0]
α (u))(∂jθ[0]

α (u)){D(j)(t; u)}Y (i,·)
t,u

and

∂2θ[0]
α (u)[D(t; u)]Yt,u ≡

d∑
i=1

d∑
j=1

∂i∂jθ
[0]
α (u){D(j)(t; u)}Y (i,·)

t,u .

Proof. See appendix.
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4.3 The Second Order Scheme

Finally, we will explicitly derive an asymptotic expansion of the optimal
portfolio upto the ε-order. We will also show the third order scheme, that
is an asymptotic expansion formula upto the ε2-order in appendix.

We first define E(1) as

E(1) ≡ E
[
(H0,t,T )

( −δ
1−δ

) ×(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]
.

Then, we have the following lemma.

Lemma 5 E(1)’s expansion upto the ε-order is given by

E(1) = e( δ
1−δ

)
∫ T

t
r[0](u)due

δ
2(1−δ)2

∫ T

t
|θ[0](u)|2du × (30)

ε

(∫ T

t
∂r[0](u)Yt,udu+

1
(1− δ)

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0) + o(ε).

Proof. See appendix.

Then, using this result, we have the asymptotic expansion upto the ε-order
of E defined by the equation (25).

Lemma 6 E’s expansion upto the ε-order is given by

E = ε

(∫ T

t
∂r[0](u)Yt,udu+

1
(1− δ)

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0) + o(ε).

(31)

Proof. See appendix.

Finally, we have the following asymptotic expansion scheme of optimal
portfoios for power utilities:

Theorem 2 Under assumptions [A1] and [A2], an asymptotic expansion
upto ε-order of the optimal portfolio for the power utility function (22) is
given by

π∗(t)/W =
1

(1− δ)
θ∗(x)σ−1(x) + (32)

δ

(1− δ)
ε

(∫ T

t
∂r[0](u)Yt,udu+

1
(1− δ)

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)σ−1(x) + o(ε).
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Proof. Applying lemma 6 to the equation (24) yields the result.

Comparing to the equation (24) which represents the optimal portfolio for
power utility functions, we easily see the second term on the right hand side
in (32) provides an approximation of the hedging demand that is specific to
multiperiod setting, and that appears on the second term on the right hand
side in the equation (24).

5 General Case

In this section, we will derive an approximation formula for more general
class of utility functions where the Malliavin calculus will be applied. That
is, we will consider an asymptotic expansion scheme of the equation (11).
First, we remark that the similar argument can be applied as in the power
utility functions when T ≡ φ′ is smooth and

|T(n)(y)| ≤ Kn(yαn + y−βn); 0 < y < ∞,

where T(n)(y) ≡ ∂nT/∂yn, and Kn, αn and βn are positive constants.

Thus, in this section we will concentrate on an asymptotic expansion
scheme when T ≡ φ′ is nonsmooth. We also notice that in practical com-
putation of optimal portfolios for the smooth case we can directly apply the
formula (48) in theorem 3 which will be developped for the nonsmooth case.
We first consider the functional ζεt,u defined in (18) which is equivalent to
H0,t,u in the equation (11); That is,

ζεt,u ≡ H0,t,u

where

a0(X ε
u) ≡ −1

2
|θ(X ε

u)|2 − r(X ε
u)

a(X ε
u) ≡ −θ(X ε

u)
∗.

We put the following nondegeneracy condition on a:

[A3] For some s ∈ [t, T ], a(X0
s ) �= 0.

Then the Malliavin covariance of ζεt,T is given by the formula:

σζε
t,T

= (ζεt,T )
2
∫ T

t
|ηε(u)|2ds,

where the r-dimensional process ηε is expressed in:

ηε(u) = a(X ε
u) +

r∑
α=0

∫ T

u
∂xaα(X ε

s)Y
ε
t,s(Y

ε
t,u)

−1V (X ε
u, ε)dw

α
s

with a = (aα)rα=1. Take a smooth function ϕ : R → [0, 1] such that ϕ(x) = 1
if |x| ≤ 1/2 and that ϕ(x) = 0 if |x| ≥ 1. Define ξε by

ξε = 4|ζεt,T/ζ0
t,T − 1|2 + 4

(∫ T

t
|a(X0

u)|2du
)−1 ∫ T

t
|ηε(u) − a(X0

u)|2du

15



and let ψε = ϕ(ξε). Obviously, ψε ∈ D∞. The exponent of ζ0
t,T is a Gaussian

random variable, therefore [A3] yields the nondegeneracy of ζ0
t,T :

σ−1
ζ0t,T

∈ ∩p>1L
p.

By using this fact and [A1], it is not difficult to show that

sup
ε∈(0,1]

∥∥∥∥ψεσ−p
ζε
t,T

∥∥∥∥
1

< ∞

for any p > 1, and that

lim sup
ε↓0

ε−nP [ψε < 1] < ∞

for any n ∈ N. In fact, the first inequality is trivial by the definition of ηε.
The second inequality follows from the Lp-estimate ‖ supu∈[t,T ] |X ε

u−X0
u|‖p =

O(ε) and [A2] with Taylor’s formula.

We will in the sequel assume the boundedness of aα (α = 0, 1, ..., r). It
will be sufficient for our use. Clearly, Condition [A2] is satisfied, in fact,
(ζεt,T )

s is integrable for any s ∈ R. We will consider the pull-back of ζεt,T by
a function T. Under non-degeneracy of ζεt,T the composition T(ζεt,T ) with
a (roughly speaking) locally integrable function T is well defined in D̃−∞

(under truncation, if necessary), and the stochastic expansion of T(ζεt,T ) is
valid. However, for practical purpose, we need to extend the class of func-
tions T below. It would be more natural to consider Schwartz distributions
on (0,∞) but we will not pursue it here. It requires global modification of
the theory since it is necessary to replace spaces of T and to prepare another
smoothing operator A−1 and estimates. The modification in our discussion
is like the finite part of x−λ

+ (λ > 1) in the sense that it removes the difficulty
of the lack of the local integrability around zero.

Let

T is a measurable function such that (33)
|T (y)| ≤ K(yα + y−β) for some K > 0, α > 0 and β ∈ (0, 1).

We will consider utility functions of which φ′ belong to class of T. The
function T may not be a Schwartz distribution but the composite function
T(ζεt,T ) is of course well defined in D̃−∞:

ψεT(ζεt,T ) in D̃−∞. (34)

It should be noted that (ζεt,T ) is non-degenerate under truncation by ψε. Let
ĝα,ε be a family of Wiener functionals admitting a stochastic expansion:

ĝα,ε ∼
∞∑
j=0

εj

j!
ĝα,[j]
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in D∞ as ε ↓ 0. Then one obtains the stochastic expansion:

ĝα,εψεT (ζεt,T ) ∼
∞∑
j=0

εjΦ̃α
j [ĝ] (35)

in D̃−∞ as ε ↓ 0. Here the coefficients Φ̃α
j [ĝ] ∈ D̃−∞ are determined by the

formal Taylor expansion of the left-hand side after removing ψε. Expectation
of (35) yeilds the ordinary asymptotic expansion:

< ĝα,εψεT (ζεt,T ), 1 > ∼
∞∑
j=0

εj < Φ̃α
j [ĝ], 1 >

∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)pj(z; ĝ)dz, (36)

where < ·, · > denotes the generalized expectation, and pj(z; ĝ) are inte-
grable smooth functions, which can be described as the transform of the
derivatives of the density of ζ0

t,T multiplied by the conditional expectation
of certain smooth functionals given ζ0

t,T . On the other hand, if T ∈ S(R),
that is T belongs to the Schwartz space of rapidly decreasing C∞ functions
on R, then with no problem we obtain

ĝα,εψεT(ζεt,T ) ∼
∞∑
j=0

εjΦα
j [ĝ] (37)

and hence

< ĝα,εψεT(ζεt,T ), 1 > ∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)p̃j(z; ĝ)dz (38)

for some smooth functions p̃j(z; ĝ). Clearly, the expansion (36) coincides
with the expansion (38) for T ∈ S(R), and hence pj(z; ĝ) = p̃j(z; ĝ).

Summarizing,

< ĝα,εψεT(ζεt,T ), 1 > ∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)pj(z; ĝ)dz (39)

as ε ↓ 0, for measurable functions T admitting the representation T(y) =
T̃ (yγ), where pj(z; ĝ) are determined as follows. By the formal Taylor ex-
pansion 

 ∞∑
j=0

εj

j!
ĝα,[j]


T(ζ0

t,T +
∞∑
j=1

εj

j!
ζ
[j]
t,T ) =

∞∑
j=0

εjΦα
j [ĝ],

one has an expression of Φα
j [ĝ]:

Φα
j [ĝ] =

j∑
k=0

Jk∂
kT(ζ0

t,T ),
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for some functionals Jk, k = 0, · · · , j. Then pj(z; ĝ) is given by

pj(z; ĝ) =
j∑

k=0

(−∂z)k
{
E[Jk|ζ0

t,T = z]pζ
0
t,T (z)

}
,

where pζ
0
t,T (z) denotes the density function of ζ0

t,T .

Next, we will explicitly derive the asymptotic expansion for the general
case based on the previous validity argument. We first note that we are
able to express Y in terms of W and x through a function Y = Y(W, x)
because W = E[H0,t,T I(YH0,t,T )] and I(·) is strictly decreasing. Hereafter,
Y is regarded as a constant since we will derive a general formula given
W , x and a function Y(·, ·). Once a concrete utility function is determined,
Y(W, x) can be also evaluated by an asymptotic expansion even if explicit
evaluation is difficult. See an example of a power utility function in the
previous section.

We need to evaluate the following terms in the equation (11):

E(2) ≡ E
[
H0,t,Tφ

′
(YH0,t,T )

]
(40)

E(3) ≡ E

[
H0,t,Tφ

′
(YH0,t,T )

(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)]
(41)

We note that the validity of the expansions for E(2) and E(3) are guaranteed
by the discussions on T(ζεt,T )ĝ

α,ε if we suppose that φ′ belongs to class of
T. Moreover, we remark that E(2) exhibits the part to be evaluated in the
mean-variance component, and E(3) represents the hedging demand.

We start with the stochastic expansion of H0,t,T around ε = 0:

Lemma 7 The asymptotic expansion of H0,t,T upto ε2-order is given by

H0,t,T = H
[0]
0,t,T [1 + εH

[1]
0,t,T +

ε2

2
H

[2]
0,t,T ] + o(ε2),

where


H
[0]
0,t,T = exp

(
− ∫ Tt θ[0](u)∗dw(u)− 1

2

∫ T
t |θ[0](u)|2du− ∫ Tt r[0](u)du

)

H
[1]
0,t,T = R1 +Θ21 +Θ1

H
[2]
0,t,T = (H [1]

0,t,T )
2 +R2 +Θ22 +Θ2.
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Here we define R1, Θ21, Θ1, R2, Θ22 and Θ2 as follows.


R1 ≡ − ∫ Tt ∂r[0](u)D(t; u)du

Θ21 ≡ −∑r
α=1

∫ T
t θ

[0]
α (u)∂θ[0]

α (u)D(t; u)du

Θ1 ≡ −∑r
α=1

∫ T
t ∂θ

[0]
α (u)D(t; u)dwα(u)

R2 ≡ − ∫ Tt {∂2r[0](u)[D(t; u), D(t;u)] + ∂r[0](u)E(t; u)}du

Θ22 ≡ −∑α
r=1

∫ T
t {∂θα(u)D(t; u)}2du−∑α

r=1

∫ T
t θ

[0]
α (u){∂2θ

[0]
α (u)[D(t; u), D(t; u)] + ∂θα(u)E(t; u)}du

Θ2 ≡ − ∫ Tt {∂2θ[0](u)[D(t; u), D(t;u)] + ∂θ[0](u)E(t; u)}du
Proof. Set ζεt,u ≡ H0,t,T , and apply (19) in lemma 2.

Next, we will explicitly derive the expansions of E(2) and E(3) upto the
ε-order. We provide the following lemma for the expansion of E(2).

Lemma 8 The asymptotic expansion of E(2) defined by (40) upto the ε-
order is given by

E(2) = e−
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)p(z)dz

)
(42)

+εe−
∫ T

t
r[0](u)du

[(∫ ∞

−∞
(c12z

2 + c11z + c10)φ′(ξ(1)
t,T,Ye

z)p(z)dz
)

−Ye−
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(2)

t,T,Ye
z)∂z{(c22z

2 + c21z + c20)p(z)}dz
)]

+ o(ε),

where 
 ξ

(1)
t,T,Y ≡ Ye−

∫ T

t
r[0](u)due

1
2

∫ T

t
|θ[0](u)|2du,

ξ
(2)
t,T,Y ≡ Ye−

∫ T

t
r[0](u)due

3
2

∫ T

t
|θ[0](u)|2du,

(43)

and

p(z) ≡ 1√
2πΣz

e−
z2

2Σz , Σz ≡
∫ T

t
|θ[0](u)|2du. (44)

Moreover, ci0, ci1 and ci2 for i = 1, 2 are defined as follows;


ci0 ≡ i
∑r

α=1

∫ T
t θ

[0]
α ∂θ

[0]
α D̃i(t; u)du− ∫ Tt ∂r[0](u)D̃i(t; u)du−∑r

α=1

∫ T
t θ

[0]
α ∂θ

[0]
α D̃i(t; u)du

+ 1
Σz

{∑r
α=1

∫ T
t θα(u)∂θα(u)Yt,u

(∫ u
t Y −1

t,u

∑r
α=1 ∂εVsθ

[0](s)ds
)
du
}

ci1 ≡ 1
Σz

∑r
α=1

∫ T
t θ

[0]
α ∂θ

[0]
α Yt,u

∫ u
t Y −1

t,s ∂εV0sdsdu+ 1
Σz

∫ T
t ∂r[0](u)Yt,u

∫ u
t Y −1

t,s ∂εVsθ
[0](s)dsdu

+ 1
Σz

∑r
α=1

∫ T
t θ

[0]
α ∂θ

[0]
α Yt,u

∫ u
t Y −1

t,s ∂εVsθ
[0](s)dsdu

ci2 ≡ − 1
Σ2

z

{∑r
α=1

∫ T
t θα(u)∂θα(u)Yt,u

(∫ u
t Y −1

t,u

∑r
α=1 ∂εVsθ

[0](s)ds
)
du
}
,

(45)
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where

D̃i(t; u) ≡ Yt,u

∫ u

t
Y −1
t,s ∂εV0sds− iYt,u

∫ u

t
Y −1
t,s ∂εVsθ

[0](s)ds. (46)

Proof. See appendix.

In the similar manner, we obatain the expansion of E(3).

Lemma 9 The asymptotic expansion of E(3) defined by (41) upto the ε-
order is given by

E(3) = εe−
∫ T

t
r[0](u)du

[(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)p(z)dz

)
×(∫ T

t
∂r[0](u)Yt,udu+

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)

+
(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)(c31z + c30)p(z)dz

)]
∂εV (x, 0) + o(ε),

where c30 and c31 are constants which are defined as follows;{
c30 ≡ −∑r

α=1

∫ T
t θ

[0]
α (u)∂θ[0]

α (u)Yt,udu
c31 ≡ 1

Σz
c30.

(47)

Proof. See appendix.

Finally, we obtain the following theorem:

Theorem 3 Suppose that a utility function satisfies the conditions (4) and
that φ′ belongs to class of (33). Then, under [A1], [A2] and [A3] the asymp-
totic expansion of the optimal portfolio for investment is given by

π∗(t)σ(x) =
[{

W − e−
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)p(z)dz

)}
(48)

−εe−
∫ T

t
r[0](u)du

{(∫ ∞

−∞
(c12z

2 + c11z + c10)φ′(ξ(1)
t,T,Ye

z)p(z)dz
)

−Ye−
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(2)

t,T,Ye
z)∂z{(c22z

2 + c21z + c20)p(z)}dz
)}]

θ∗(x)

−εe−
∫ u

t
r[0](u)du

[(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)p(z)dz

)
×(∫ T

t
∂r[0](u)Yt,udu+

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)

+
(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)(c31z + c30)p(z)dz

)]
∂εV (x, 0) + o(ε),

where ξ
(i)
t,T,Y , i = 1, 2 are defined by (43), p(z) is defined by (44), ci0, ci1 and

ci2 for i = 1, 2 are defined by (45) and by (46), and c30 and c31 are defined
by (47).
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Proof. Applying lemmas 8 and 9, we obtain the result.

We notice that the term multiplied by θ∗(x) approximates the mean-
variance component of the optimal portfolio while the term multiplied by
∂εV (x, 0) provides an approximation of the hedging demand.

Remark 1 In the above theorems, we used the boundedness assumption of
θ. On the other hand, it is possible to relax such a boundedness condition
due to the following localizing arguments. Let us consider the computation
of the expectation E[ĝα,εT(ζεt,T )] discussed before. We start with θ which
is smooth but not necessarily bounded. Given a large number M such that
supt∈[0,T ] |X0

t | < M , we choose smooth modifications θ̃ so that θ̃ is bounded,
and that θ̃ = θ over the region {x : |x| < M}. We also define ζ̃εt,T with
those modifications. Condition [A3] for the modified functions is the same
as that for the original functions. So under [A3] for the original functions,
we already have the asymptotic expansion of E[ĝα,εT(ζ̃εt,T )]. On the other
hand, ∣∣∣E [ĝα,εT(ζ̃εt,T )

]
− E

[
ĝα,εT(ζεt,T )

]∣∣∣
= E

[
|ĝα,ε|

∣∣∣T(ζ̃εt,T )− T(ζεt,T )
∣∣∣ 1{supt∈[0,T ] |Xε

t |>M}
]

≤ sup
ε

‖ĝα,ε‖p1 supε
{∥∥∥T(ζ̃εt,T )

∥∥∥
p2

+
∥∥∥T(ζεt,T )

∥∥∥
p3

}
P

[
sup
t∈[0,T ]

|X ε
t | > M

]1/p3

,

where p1, p2, p3 ∈ (1,∞) (p−1
1 + p−1

2 + p−1
3 = 1). Thus, under the finiteness

of the second factor on the right-hand side, we will obtain an asymptotic
expansion of E[ĝα,εT(ζεt,T )].

6 A Numerical Example

In this section, we will illustrate our method through a numerical example.
In particular, following theorem 2, we will provide analytic approximations
of optimal portfolios for an example investigated by Detemple et al.(2000)
who relies on naive Monte Carlo simulations as numerical technique. First,
we divide the optimal portfolio for a power utility function in the equation
(24) into the mean variance, the interest rate hedge(IR-hedge) and the market
price of risk hedge(MPR-hedge) components defined as follows:

mean variance ≡ 1
(1− δ)

θ(x)∗σ−1(x)

IR-hedge ≡ δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
]E
[
(H0,t,T )

( −δ
1−δ

)
∫ T

t
∂r(X ε

u)Y
ε
t,udu

]
V (x, ε)σ−1(x)

MPR-hedge ≡ δ

(1− δ)
1

E
[
(H0,t,T )

( −δ
1−δ

)
]E
[
(H0,t,T )

( −δ
1−δ

)

(
r∑

α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,udw

α(u)
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+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,udu

)]
V (x, ε)σ−1(x).

We remark that hedging demand is further divided into IR-hedge and MPR-
hedge components above. Next, the corresponding components for the asymp-
totic expansion in theorem 2 are given as follows:

mean variance ≡ 1
(1− δ)

θ∗(x)σ−1(x)

IR-hedge ≡ ε
δ

(1− δ)

(∫ T

t
∂r[0](u)Yt,udu

)
∂εV (x, 0)σ−1(x)

MPR-hedge ≡ ε
δ

(1− δ)2

(
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)σ−1(x).

In this example, we suppose that d = 2, that is X ε
u = (X ε(1)

u , X
ε(2)
u )∗ and

that they satisfy the following stochastic differential equations:



dX
ε(1)
u = κ1(X̄ ε(1) −X

ε(1)
u )du − ε(Xε(1)

u )
1
2dwu; X

ε(1)
0 = r0

dX
ε(2)
u = κ2(X̄ ε(2) −X

ε(2)
u )du + εσ2dwu; X

ε(2)
0 = θ0

where w denotes one dimensional Brownian motion(r = 1). 1 We also
suppose that there exist one risky asset and a locally riskless asset, and that
θu = X

ε(2)
u and ru is a smooth modification of min{X ε(1)

u ,M} where M is a
positive large number. Then, the dynamics of both assets are described by




dSε
u = Sε

u(X
ε(1)
u + σX

ε(2)
u )du + Sε

uσdwu, Sε(0) = s

dSε
0u = Sε

0ur(X
ε(1)
u )du, Sε

0(0) = 1.

In Appendix, we will discuss the validity of the asymptotic expansions for
this setting in detail. Further, we set the values of the parameters for X ε

u fol-
lowing Detemple et al.(2000), which were obtained by statistcal estimation;
κ1 = 0.0824, r0 = X̄ ε(1) = 0.06, ε = 0.03637, κ2 = 0.6950, X̄ ε(2) = 0.0871,
σ2 = 0.21/0.03637, θ0 = 0.1, σ = 0.2.

For comparison we also compute each component of the optimal port-
folios by using Monte Carlo simulations based on the Euler-Maruyama ap-
proximation; the discretized time step ∆t is 1/365 and the number of trials
is 100,000 in each Monte Carlo simulation.

The percentage-shares in total wealth of Mean variance, MPR-hedge com-
ponent, IR-hedge component, and the total demand which are sum of those

1 The volatility function of Xε(1) is not smooth at the origin and we need to use a
smoothed version of the square root process at the origin. However, we can show that the
smoothing does not make significant differences and the effects are negligible in the small
disturbance asymptotic theory.
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three components are listed in table 1-4; the results for the asymptotic ex-
pansion are listed in tables 1 and 2 while the results for the Monte Carlo
simulation are listed in tables 3 and 4. In addition, tables 1 and 3 show
the results for investment horizons T = 1, 2, 3, 4, 5 when the Arrow-Pratt
measure of relative risk aversion R(≡ 1− δ) is fixed at 2, and tables 2 and
4 show the results for R = 0.5, 1, 1.5, 4, 5 when T = 1. We remark that total
demand means the demand for the risky asset and hence it may not be 100%
because the remaining shares(100%-total demand) are invested into the risk-
less asset. We also note that it may exceeds 100% since selling(borrowing)
riskless asset is admitted. We can observe that the results of asymptotic ex-
pansion and of Monte carlo simulation are so close for IR-hedge while there
is some difference for MPR-hedge, but the difference is small relative to the
total demand. We also notice that the second order scheme gives substan-
tial improvement comparing with the first order scheme which is equivalent
to the case that we ignore the hedging components. (Note that O(1) for
MPR-hedge and IR-hedge components are zero.) Thus, we have confirmed
that our method is not only computational efficient, but also gives sufficient
approximations to the evaluation of the optimal portfolios.
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7 Appendix

7.1 Proofs of Lemmas

(Proof of lemma 1)

Using (13), (14) and solutions of the set of stochastic differential equations
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(15), (16) and (17), we obtain the result.

(Proof of lemma 3)

We first see that

gα,0 = 0 (α = 0, 1, ..., r) (49)

since V (x, 0) ≡ 0 from [A1]. Then, we compute explicitly gα,[j], j = 1, 2, and
by tedius routine work, we obtain the result.

(Proof of lemma 4)

Replacing f(·) in the equation (20) by r(·), θα(·), 1
2θ

2
α(·) and applying the

result in lemma 3, we obtain the expansions of gεr, g
α,ε
θ , and gα,εθ2 .

(Proof of lemma 5)

Applying the expansions (27), (28), and (29) in lemma 4 directly, we obtain(∫ T

t
∂r(X ε

u)Y
ε
t,uV (x, ε)du+

r∑
α=1

∫ T

t
∂θα(X ε

u)Y
ε
t,uV (x, ε)dwα(u)

+
r∑

α=1

∫ T

t
θα(X ε

u)∂θα(X
ε
u)Y

ε
t,uV (x, ε)du

)

= ε(g[1]
r +

r∑
α=1

g
α,[1]
θ +

r∑
α=1

g
α,[1]
θ2

) + o(ε)

= ε

(∫ T

t
∂r[0](u)Yt,udu+

r∑
α=1

∫ T

t
∂θ[0]

α (u)Yt,udwα(u) +
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0)

+o(ε).

Moreover, applying the expansion (19) in lemma 2, we can obtain

ζεt,u ≡ (H0,t,T )
( −δ
1−δ

) =

e( δ
1−δ

)
∫ T

t
r[0](u)due

δ
2(1−δ)2

∫ T

t
|θ[0](u)|2du ×

e−
1
2
( δ
1−δ

)2
∫ T

t
|θ[0](u)|2du+( δ

1−δ
)
∫ T

t
θ[0](u)dw(u) ×(

1 + ε(
δ

1− δ
)
∫ T

t
∂r[0](u)D(t; u)du+ ε(

δ

1− δ
)

r∑
α=1

∫ T

t
∂θ[0]

α (u)D(t; u)dwα(u)

+ ε(
δ

1− δ
)

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D(t; u)du

)
+ o(ε).

Then, by change of the measure technique with

P̂ (A) ≡ E

[
1A exp

(
−1
2
(

δ

1− δ
)2
∫ T

t
|θ[0](u)|2du+ (

δ

1− δ
)
∫ T

t
θ[0](u)dw(u)

)]
; A ∈ FT
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simple caclulation yields the result.

(Proof of lemma 6)

Using (19) again, we can obtain the expansion:

E
[
(H0,t,T )

( −δ
1−δ

)
]
= e( δ

1−δ
)
∫ T

t
r[0](u)due

δ
2(1−δ)2

∫ T

t
|θ[0](u)|2du × (50)(

1 + ε(
δ

1− δ
)
∫ T

t
∂r[0](u)D̂1(t; u)du+ ε

δ

(1− δ)2

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

)
+ o(ε).

where

D̂1(t; u) ≡ Yt,u

∫ u

t
Y −1
t,s {∂εV [0]

0 (s)ds+ (
δ

1− δ
)∂εV [0](s)θ[0](s)ds}.

Then, gathering (30) in lemma 5 and (50), we obtain the result.

(Proof of lemma 8)

Note first that the asymptotic expansion of E(2) is expressed as

E(2) = E[H [0]
0,t,Tφ

′(YH
[0]
0,t,T )] (51)

+ εE[H [0]
0,t,TH

[1]
0,t,Tφ

′(YH
[0]
0,t,T )]

+ εYE[(H [0]
0,t,T )

2H
[1]
0,t,T ∂φ

′(YH
[0]
0,t,T )] + o(ε).

Then, by using lemma 7, we can easily obtain the expression for the first
term of (51).

E[H [0]
0,t,Tφ

′(YH
[0]
0,t,T )] = e−

∫ T

t
r[0](u)duE(1)[φ′(ξ(1)

t,T,Ye
−
∫ T

t
θ[0](u)dw1(u))]

= e−
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(1)

t,T,Ye
z)p(z)dz

)

where

ξ
(1)
t,T,Y = Ye−

∫ T

t
r[0](u)due

1
2

∫ T

t
|θ[0](u)|2du,

z = −
∫ T

t
θ[0](u)dw1(u),

p(z) =
1√
2πΣz

e−
z2

2Σz , Σz ≡
∫ T

t
|θ[0](u)|2du.

Moreover, E(1)[·] denotes the expectation operator under

P1(A) ≡ E

[
1A exp

(
−
∫ T

t
θ[0](u)∗dw(u)− 1

2

∫ T

t
|θ[0](u)|2du

)]
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for all A ∈ FT , and w1(u) = w(u)+
∫ u
t θ[0](s)ds denotes the standard Brow-

nian motion under P1.

We can also obtain expressions for the second and third terms of (51)
after tedious calculation with lemma 7 as follows:

εE[H [0]
0,t,TH

[1]
0,t,Tφ

′(YH
[0]
0,t,T )]

= εe−
∫ T

t
r[0](u)duE(1)[(R1 + Θ21 + Θ1)φ′(YH

[0]
0,t,T )]

= εe−
∫ T

t
r[0](u)duE(1)

[
φ′(YH

[0]
0,t,T )E

(1)

[
(R1 + Θ21 + Θ1)|z = −

∫ T

t
θ[0](u)dw1(u)

]]

= εe−
∫ T

t
r[0](u)du

(∫ ∞

−∞
(c12z

2 + c11z + c10)φ′(ξ(1)
t,T,Ye

z)p(z)dz
)

εYE[(H [0]
0,t,T )

2H
[1]
0,t,T∂φ

′(YH
[0]
0,t,T )]

= εYe−2
∫ T

t
r[0](u)duE(2)[(R1 +Θ21 + Θ1)∂φ′(YH

[0]
0,t,T )]

= εYe−2
∫ T

t
r[0](u)duE(2)

[
∂φ′(YH

[0]
0,t,T )E

(2)

[
(R1 +Θ21 +Θ1)|z = −

∫ T

t
θ[0](u)dw2(u)

]]

= −εYe−2
∫ T

t
r[0](u)du

(∫ ∞

−∞
φ′(ξ(2)

t,T,Ye
z)∂z{(c22z

2 + c21z + c20)p(z)}dz
)
,

where ci2, ci1, ci0 for i = 1, 2 are some constants which are explicitly given
later. Moreover, we use the notations;

ξ
(2)
t,T,Y = Ye−

∫ T

t
r[0](u)due

3
2

∫ T

t
|θ[0](u)|2du

z = −
∫ T

t
θ[0](u)dw2(u)

p(z) =
1√
2πΣz

e−
z2

2Σz , Σz ≡
∫ T

t
|θ[0](u)|2du.

Furhter, E(2)[·] denotes the expectation operator under

P2(A) ≡ E

[
1A exp

(
−2
∫ T

t
θ[0](u)∗dw(u)− 2

∫ T

t
|θ[0](u)|2du

)]

for all A ∈ FT , and w2(u) = w(u) + 2
∫ u
t θ[0](s)ds denotes the standard

Brownian motion under P2.

Finally, in order to obtain ci,j for i = 1, 2 and j = 0, 1, 2 explicitly, we
will evaluate E(i)

[
(R1 +Θ21 + Θ1)|z = − ∫ Tt θ[0](u)dwi(u)

]
for i = 1, 2:

E(i)

[
Θ1|z = −

∫ T

t
θ[0](u)dwi(u)

]
= i

r∑
α=1

∫ T

t
θ[0]
α ∂θ[0]

α D̃i(t; u)du

−
(

1
Σ2
z

z2 − 1
Σz

){ r∑
α=1

∫ T

t
θα(u)∂θα(u)Yt,u

(∫ u

t
Y −1
t,u

r∑
α=1

∂εVsθ
[0](s)ds

)
du

}
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+
1
Σz

z
r∑

α=1

∫ T

t
θ[0]
α ∂θ[0]

α Yt,u

∫ u

t
Y −1
t,s ∂εV0sdsdu

E(i)

[
R1|z = −

∫ T

t
θ[0](u)dwi(u)

]
=

−
∫ T

t
∂r[0](u)D̃i(t; u)du+

1
Σz

z

∫ T

t
∂r[0](u)Yt,u

∫ u

t
Y −1
t,s ∂εVsθ

[0](s)dsdu

E(i)

[
Θ21|z = −

∫ T

t
θ[0](u)dwi(u)

]
=

−
r∑

α=1

∫ T

t
θ[0]
α ∂θ[0]

α D̃i(t; u)du+
1
Σz

z
r∑

α=1

∫ T

t
θ[0]
α ∂θ[0]

α Yt,u

∫ u

t
Y −1
t,s ∂εVsθ

[0](s)dsdu

where

D̃i(t; u) ≡ Yt,u

∫ u

t
Y −1
t,s ∂εV0sds− iYt,u

∫ u

t
Y −1
t,s ∂εVsθ

[0](s)ds.

Hence, we obtain the expressions of ci2, ci1, ci0 for i = 1, 2 by (45) and (46).

(Proof of lemma 9)

Using the assumption [A1]:V (·, 0)≡ 0, and evaluation of conditional expec-
tation of a Gaussian random variable;

E(1)

[
r∑

α=1

∫ T

t
∂θ[0]

α (u)Yt,udwα(u)|z = −
∫ T

t
θ[0](u)dw1(u)

]
= c31z + c30,

we obtain the result.

7.2 The Third Order Scheme for a Power Utility Function

We show the result of the third order scheme, the asymptotic expansion
upto to the ε2-order of the optimal portofolio for a power utility function.

[The third order scheme]

π∗(t) =
W

(1− δ)
[θ∗(x) + δ{εA+ ε2B − ε2AC}]σ−1(x) + o(ε2)

where

A ≡
(∫ T

t
∂r[0](u)Yt,udu+

1
(1− δ)

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂εV (x, 0),

C ≡ (
δ

1− δ
)
∫ T

t
∂r[0](u)D̂1(t; u)du+

δ

(1− δ)2

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du,

and B is the sum of the following terms:
1.

(
δ

1− δ
)

{∫ T

t
∂r[0](u)D̂1(t; u)du

}{∫ T

t
∂r[0](u)Yt,udu

}
∂εV (x, 0)
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2.

(
δ

1− δ
)2
{∫ T

t
∂r[0](u)D̂1(t; u)du

}{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

+(
δ

1− δ
)

{
r∑

α=1

∫ T

t
∂θ[0]

α (u)Yt,u

(∫ T

u
∂r[0](s)Yt,sds

)
Y −1
t,u ∂εV

[0],(·,α)
u du

}
∂εV (x, 0)

3.

(
δ

1− δ
)

{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

{∫ T

t
∂r[0](u)D̂1(t; u)du

}

4.

(
δ

1− δ
)

{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}{∫ T

t
∂r[0](u)Yt,udu

}
∂εV (x, 0)

5.

(
δ

1− δ
)2
{

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

+(
δ

1− δ
)

r∑
α=1



∫ T

t


 r∑
α
′
=1

∫ T

u
θ
[0]

α′ (s)∂θ
[0]

α′ (s)ds


Y −1

t,u ∂εV
[0],(·,α)
u ∂θ[0]

α (u)Yt,udu


∂εV (x, 0)

6.

(
δ

1− δ
)

{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}

7.

(
δ

1− δ
)2
{

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}{∫ T

t
∂r[0](u)Yt,udu

}
∂εV (x, 0)

8.

(
δ

1− δ
)2
{

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

9.

(
δ

1− δ
)3
{

r∑
α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)D̂1(t; u)du

}{
r∑

α=1

∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

}
∂εV (x, 0)

+(
δ

1− δ
)

{
r∑

α=1

∫ T

t
∂θ[0]

α (u)D̂1(t; u)∂θ[0]
α (u)Yt,udu

}
∂εV (x, 0)

+(
δ

1− δ
)2



r∑
α=1

∫ T

t


 r∑
α′=1

∫ T

u
θ
[0]

α
′ (s)∂θ

[0]

α
′ (s)ds


Y −1

t,u ∂εV
[0],(·,α)
u du


 ∂εV (x, 0)
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10.
r∑

α=1

(∫ T

t
(∂θ[0]

α (u))2[D̂1(t; u)]Yt,udu

)
∂εV (x, 0)

+
r∑

α=1

(
1

1− δ
)

(∫ T

t
θ[0]
α (u)∂2θ[0]

α (u)[D̂1(t; u)]Yt,udu+
∫ T

t
θ[0]
α (u)∂θ[0]

α (u)[Ŷ [1]
t,u ]du

)
∂εV (x, 0)

+
r∑

α=1

(
1

1− δ
)

(∫ T

t
θ[0]
α (u)∂θ[0]

α (u)Yt,udu

)
∂2
εV (x, 0)

where

Ŷ
[1]
t,u ≡

∫ u

t
Yt,uY

−1
t,s {∂2

xV0s[D̂1(t; s)]Yt,sds+ ∂ε∂xV0sYt,sds+ (
δ

1− δ
)

r∑
α=1

θα(s)∂ε∂xVαsYt,sds}

11. (∫ T

t
∂2r[0](u)[D̂1(t; u)]Yt,udu+

∫ T

t
∂r[0](u)Ŷ [1]

t,udu

)
∂εV (x, 0)

+

(∫ T

t
∂r[0](u)Yt,udu

)
∂2
ε V (x, 0)

7.3 The Validity of the Asymptotic Expansions in Section 6

We start with the following more or less well known lemma.

Lemma 10 Let θ, λ ∈ R−{0}. Suppose that (ξθt )t∈[0,T ] is a linear diffusion
process satisfying the stochastic differential equation:

dξθt = θξθt dt+ dwt, ξθ0 = x.

Let α = (θ2 − λ2)/2.

(1) If x = 0 and if

(θ − λ)

[
e2λT − 1

2λ

]
< 1, (52)

then

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
= exp

(
−θ − λ

2
T

)(
1− (θ − λ)

[
e2λT − 1

2λ

])− 1
2

= exp
(
−θ − λ

2
T

)[
2λ

(λ − θ)(e2λT − 1) + 2λ

]1/2
.

(2) Let x be arbitrary.

(2− i) If θ < 0, then for any λ ∈ (θ,−θ),

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
≤ exp

(
λ− θ

2
(x2 + T )

)
.
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(2− ii) If θ > 0, then for any λ ∈ (−θ, θ), and if

(θ − λ)

[
e2λT − 1

2λ

]
<

1
2
, (53)

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
≤ exp

(
−θ − λ

2
(x2 + T ) + (θ − λ)(xeλT )2

)

·
[

λ

(λ− θ)(e2λT − 1) + λ

]1/2
.

Proof. Let θ, λ ∈ R (any real numbers). Denote by µξθ and µξλ the measures
corresponding to the processes ξθt and ξλt :

dξθt = θξθt dt + dwt, ξθ0 = x

dξλt = λξλt dt + dwt, ξλ0 = x

the measures µξθ and µξλ are equivalent and

dµξθ

dµξλ

(ξλt ) = exp

{
(θ − λ)

∫ T

0
ξλt dξ

λ
t − θ2 − λ2

2

∫ T

0
(ξλt )

2dt

}
.

Put C = C([0, T ]). Then

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
=

∫
C
exp

(
α

∫ T

0
(xt)2dt

)
µξθ (dx)

=
∫
C
exp

(
α

∫ T

0
(xt)2dt

)
dµξθ

dµξλ

(x)µξλ(dx)

= E
[
exp

(
α

∫ T

0
(ξλt )

2dt

)
exp
{
(θ − λ)

∫ T

0
ξλt dξ

λ
t

−θ2 − λ2

2

∫ T

0
(ξλt )

2dt
}]

.

Let us take

α =
θ2 − λ2

2.
(54)

(In particular, if α ≥ 0, then |θ| ≥ |λ|. ) Then

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
= E

[
exp

{
(θ − λ)

∫ T

0
ξλt dξ

λ
t

}]
.

Using Itô’s formula

(ξλT )
2 = (ξλ0 )

2 + 2
∫ T

0
ξλt dξ

λ
t + T,
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we after all obtain

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
= exp

(
−θ − λ

2
(x2 + T )

)

·E
[
exp

{
θ − λ

2
(ξλT )

2
}]

(55)

Noting that2 ξλT is Gaussian:

ξλT ∼ N

(
xeλT ,

e2λT − 1
2λ

)
.

(1) The case x = 0. We have

(ξλT )
2

[
e2λT − 1

2λ

]−1

∼ χ2
1,

where χ2
1 is the chi-square distribution of degree one. It is known that

E[etχ
2
1] = (1− 2t)−

1
2 (t <

1
2
).

Thus, if

θ − λ

2

[
e2λT − 1

2λ

]
<

1
2
, (56)

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
= exp

(
−θ − λ

2
T

)(
1− 2

θ − λ

2

[
e2λT − 1

2λ

])− 1
2

= exp
(
−θ − λ

2
T

)[
2λ

(λ − θ)(e2λT − 1) + 2λ

]1/2
,

where α, θ and λ must satisfy (54) and (56). The most simple case may be
the one where λ = 0, α = θ2/2 for given θ < 0. In that case, (56) becomes
θT < 1, which is automatically satisfied for θ < 0.

(2) The case arbitrary x ∈ R. 3

(2-i) θ < 0: It follows from (55) that

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
≤ exp

(
λ− θ

2
(x2 + T )

)

for λ ∈ (θ,−θ).

(2-ii) θ > 0: From (55), we have

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
≤ exp

(
−θ − λ

2
(x2 + T ) + (θ − λ)(xeλT )2

)

·E
[
exp

{
(θ − λ)(ξλT − xeλT )2

}]
2 λ may still be positive or negative. If λ = 0, then the variance is T .
3 When x �= 0, ξλ

T has the non-central χ2 distribution with degree one. It is possible to
express the moment generating function, but it is not clever for the present purpose.
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for λ ∈ (−θ, θ). Moreover, if (53) then

E

[
exp

(
α

∫ T

0
(ξθt )

2dt

)]
≤ exp

(
−θ − λ

2
(x2 + T ) + (θ − λ)(xeλT )2

)

·
(
1− 2(θ − λ)

[
e2λT − 1

2λ

])− 1
2

= exp
(
−θ − λ

2
(x2 + T ) + (θ − λ)(xeλT )2

)

·
[

λ

(λ− θ)(e2λT − 1) + λ

]1/2
.

Let us return to the example in Section 6 and verify the uniform Lp

integrabiblity of ζεt,T . Since rεu is bounded, it suffices for the validity of the
asymptotic expansion (See the last paragraph of Section 4.) to show that
the uniform (in ε) Lp-integrability of the functional

Z = exp

(
a

∫ T

0
X ε(2)
u dwu+ b

∫ T

0
(X ε(2)

u )2du

)
,

where a, b are constants. Let p, q ∈ (1,∞) and let q′ = q/(q − 1). Taking
c = q(ap)2/2 and using Hölder’s inequality, we see that

E[Zp] ≤ E

[
exp

(
qap

∫ T

0
X ε(2)
u dwu − qc

∫ T

0
(X ε(2)

u )2du

)]1/q

·E
[
exp

(
q′(c + bp)

∫ T

0
(X ε(2)

u )2du

)]1/q′

.

Since qc = (qap)2/2, the first factor on the right-hand side is not larger than
one, hence it is sufficient to show that for any L > 0, there exists a constant
ε(L) > 0 such that

sup
ε∈(0,ε(L)]

E

[
exp

(
L

∫ T

0
(X ε(2)

u )2du

)]
< ∞. (57)

If we put xt = (εσ2)−1(X ε(2)
t − X̄ (2)), then (xt) satisfies the stochastic

differential equation

dxt = −κ2xtdt+ dwt,

x0 = ε−1c0,

where c0 = (σ2)−1(X ε(2)
0 − X̄ (2)). Therefore, in order to obtain (57), it

suffices to show that for any L > 0, there exists a constant ε(L) > 0 such
that

sup
ε∈(0,ε(L)]

E

[
exp

(
Lε2

∫ T

0
(xu)2du

)]
< ∞. (58)

Here xu depends on ε. Applying Lemma 10 (2-i) to the case that θ = −κ2,
x = c0ε

−1 and λ = −(κ2 − 2Lε2)1/2, we obtain (58).
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T(Investment horizon) 1 2 3 4 5
Total demand 25.31 26.41 27.80 29.26 30.70
Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.11 5.92 7.59 9.13
MPR-hedge -1.83 -2.70 -3.12 -3.33 -3.43

Table 1: Asymptotic Expansion(%, R = 2.0)

R(≡ 1− δ) 0.5 1 1.5 4 5
Total demand 110.37 50 33.13 14.34 12.25
Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge -4.28 0 1.43 3.21 3.42
MPR-hedge 14.65 0 -1.63 -1.37 -1.17

Table 2: Asymptotic Expansion(%, T = 1.0)

T(Investment horizon) 1 2 3 4 5
Total demand 25.37 26.49 27.79 29.10 30.41
Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.12 5.95 7.63 9.19
MPR-hedge -1.77 -2.63 -3.16 -3.53 -3.78

Table 3: Monte Carlo Simulation(%, R = 2.0)

R(≡ 1− δ) 0.5 1 1.5 4 5
Total demand 113.07 50.00 33.18 14.35 12.22
Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge -4.26 0.00 1.43 3.22 3.43
MPR-hedge 17.33 0.00 -1.58 -1.37 -1.22

Table 4: Monte Carlo Simulation(%, T = 1.0)
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