
CIRJE Discussion Papers can be downloaded without charge from:

http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-270

Minimaxity in Estimation of Restricted Parameters

Tatsuya Kubokawa
The University of Tokyo

February 2004; Revised in May 2004



J. Japan Statist. Soc.
Vol. 34 No. 2 2004 1–19

MINIMAXITY IN ESTIMATION OF RESTRICTED

PARAMETERS

Tatsuya Kubokawa*

This paper is concerned with estimation of the restricted parameters in location
and/or scale families from a decision-theoretic point of view. A simple method is
provided to show the minimaxity of the best equivariant and unrestricted estimators.
This is based on a modification of the known method of Girshick and Savage (1951)
and can be applied to more complicated cases of restriction in the location-scale
family. Classes of minimax estimators are also constructed by using the IERD method
of Kubokawa (1994a,b): Especially, the paper succeeds in constructing such a class
for estimating a restricted mean in a normal distribution with an unknown variance.
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1. Introduction

The point estimation of restricted parameters has been studied from a decision-
theoretic point of view since Katz (1961), who showed that the generalized Bayes
estimator of a restricted mean is minimax and admissible in a normal distribution
with a known variance. Farrell (1964) established the minimaxity and admissi-
bility in the general location family. This classical problem was recently revisited
by Marchand and Strawderman (2004) who gave another proof for the minimax-
ity. However, the proof requires slightly complicated arguments, which inspired
me to consider another simple method for the proof.

In this paper, we shall treat the following location and scale families with
the parameters restricted to one-sided spaces: Let X = (X1, . . . , Xn) be a set of
random variables and x = (x1, . . . , xn) is an observation of X.

[1] Location family. The density function of X is given by f(x − µ) and
the location parameter µ is restricted to

A = {µ | µ > a0} for known real a0,(1.1)

where x − µ means (x1 − µ, . . . , xn − µ).
[2] Scale family. The density function of X is given by σ−1f(x/σ) and the

scale parameter σ is restricted to

B = {σ | σ > b0} for known real b0 > 0,(1.2)

where x/σ means (x1/σ, . . . , xn/σ).
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[3] Location-Scale family. The density function of X is given by σ−1f((x−
µ)/σ) and the location and scale parameters (µ, σ) are restricted to

C = {(µ, σ) |µ > c0σ + a0, σ > b0} for known real c0 > 0.(1.3)

When X is a random sample from a density p(x− µ), the joint density of X is
written by f(x−µ) = p(x1−µ)×· · ·×p(xn−µ). It is noted that the above setup
includes the dependent cases, that is, X1, . . . , Xn are not mutually independent.

In the unrestricted cases, it is well known that the best equivariant estimators
of the location and/or scale parameters are minimax relative to invariant loss
functions under the location and/or scale transformation groups. In the restricted
case (1.1), Marchand and Strawderman (2004) demonstrated that the minimaxity
property of the best location equivariant estimator still holds, but their proof
requires slightly complicated arguments. In Section 2, we provide a simple proof
for the minimaxity based on modification of the method of Girshick and Savage
(1951). This new method can be also applied to the restricted scale problem
(1.2). In Section 3, the method is used to establish the minimaxity in more
general setups of the restricted location-scale problem (1.3), which may be a new
result as long as I know.

We next address the problems of constructing classes of minimax estimators
which include the maximum likelihood estimators and the generalized Bayes esti-
mators against the uniform priors on the restricted parameter spaces. Marchand
and Strawderman (2004) constructed such a class in the location family (1.1) by
using the IERD method given by Kubokawa (1994a,b,98,99) and Kubokawa and
Saleh (1998). While the method can be easily applied to the scale family (1.2), it
is too hard to employ in the location-scale family (1.3). In Section 3.2, however,
we can obtain a class of minimax estimators of a restricted mean in a random
sample from a normal distribution whose canonical form is given by

X ∼ N (θ, σ2) and S ∼ σ2χ2
m

where χ2
m denotes the chi-square distribution with m degrees of freedom. As

seen in the proof of Theorem 3..2, it is not easy to establish the result even in
the distributional assumption of normality. The approach used there will be of
benefit to us when other issues of estimating restricted means with the unknown
variance are addressed in a future. Some dominance results in estimation of the
restricted variance are given in Section 3.3.

Although the one-sided restrictions of the parameter spaces (1.1), (1.2) and
(1.3) are handled in this paper, we can treat other types of one-sided restriction
cases and provide the corresponding results for minimaxity and dominance. As
shown in Casella and Strawderman (1981) and Marchand and Perron (2001), it
is noted that the best equivariant and unrestricted estimators are not minimax
in the case that the parameter spaces are restricted into bounded regions. This
suggests that the unboundedness of restricted parameter spaces may be necessary
for the minimaxity of the best equivariant and unrestricted estimators.
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2. Estimation of Location and Scale Families

2.1. Minimaxity in the location family
We first deal with the estimation of the location parameter µ of the family

f(x − µ) where the location is restricted to the one-sided space

A = {µ | µ > a0} for known real a0.

Estimator µ̂ of µ is evaluated by the risk function R(µ, µ̂) = E[L�(µ̂, µ)] relative
to the squared error loss

L�(µ̂, µ) = (µ̂− µ)2.

We begin with providing a simple proof for the minimaxity of the best
location-equivariant estimator of µ, given by

µ̂U =
∫ ∞

−∞
af(X − a)da

/∫ ∞

−∞
f(X − a)da.

This is called the Pitman estimator and is the generalized Bayes and unrestricted
estimator against the Lebesgue measure dµ on whole the real line. Although
Marchand and Strawderman (2004) proved the minimaxity of µ̂U , their argu-
ments seem slightly complicated. Girshick and Savage (1951) gave the nice proof
of the best equivariant estimator for the unrestricted location parameter. We
here provide a sophisticated proof by modifying the Girshick-Savage method to
handle the restricted case.

Theorem 2..1. The best equivariant and unrestricted estimator µ̂U is min-
imax in the estimation issue on the restricted parameter space A relative to the
L�-loss, and the minimax risk is given by R0 = R(µ, µ̂U).

Proof. Without any loss of generality, assume that a0 = 0. Let Ak =
{µ| 0 < µ < k} for k = 1, 2, . . . , and consider the sequence of prior distributions
given by

πk(µ) =

{
k−1 if µ ∈ Ak

0 otherwise,

which yields the Bayes estimators

µ̂πk = µ̂πk (X) =
∫
Ak

af(X − a)da
/∫

Ak

f(X − a)da

with the Bayes risk function

rk(πk, µ̂πk) =
1
k

∫
Ak

∫
{µ̂πk (x) − µ}2 f(x − µ)dxdµ.(2.1)
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Since rk(πk, µ̂πk ) ≤ rk(πk, µ̂U) = R0, it is sufficient to show that lim infk→∞ rk(πk, µ̂πk) ≥
R0. Making the transformations z = x − µ and t = a − µ with dz = dx and
dt = da gives that

µ̂πk (x) − µ =µ̂πk (z + µ) − µ

=
∫
Ak

(a− µ)f(z + µ− a)da
/∫

Ak

f(z + µ− a)da

=
∫
t+µ∈Ak

tf(z − t)dt
/∫

t+µ∈Ak

f(z − t)dt.(2.2)

Of importance in this proof is making the transformation ξ = (2/k)(µ − k/2)
with dξ = (2/k)dµ, which rewrites the condition 0 < µ < k as |ξ| < 1. Also
the condition that 0 < t+ µ < k is expressed by the inequality −(k/2)(ξ + 1) <
t < (k/2)(1 − ξ). Let A∗

k = {t| − (k/2)(ξ + 1) < t < (k/2)(1 − ξ)}. Then the
transformations are used in (2.2) and (2.1) to obtain that

µ̂πk (x) − µ =
∫
A∗

k

tf(z − t)dt
/∫

A∗
k

f(z − t)dt = µ̂∗k(z|ξ), (say)(2.3)

and

rk(πk, µ̂πk) =
1
2

∫
|ξ|<1

∫
{µ̂∗k(z|ξ)}2 f(z)dzdξ.

For a small ε > 0, the integral of a positive function h(ξ) with respect to ξ is
evaluated by∫

|ξ|<1
h(ξ)dξ =

∫
|ξ|<1−ε

h(ξ)dξ +
∫

1−ε<|ξ|<1
h(ξ)dξ ≥

∫
|ξ|<1−ε

h(ξ)dξ,

which is used to get that

rk(πk, µ̂πk) ≥
1
2

∫
|ξ|<1−ε

∫
{µ̂∗k(z|ξ)}2 f(z)dzdξ.

The range of t in the integrals in µ̂∗k(z|ξ) given by (2.3) is A∗
k = {t|−(k/2)(ξ+1)<

t < (k/2)(1 − ξ)}. Since |ξ| < 1 − ε, it is noted that 1 − ξ > 1 − (1 − ε) = ε > 0
and 1 + ξ > 1 + (−1 + ε) = ε > 0, which imply that the end points (k/2)(1 − ξ)
and −(k/2)(1 +ξ) tend to infinity and minus infinity as k → ∞ and then µ̂∗k(z|ξ)
converges µ̂U (z). Using the Fatou lemma, we obtain that

lim inf
k→∞

rk(πk, µ̂πk) ≥ lim inf
k→∞

1
2

∫
|ξ|<1−ε

∫
{µ̂∗k(z|ξ)}2 f(z)dzdξ

≥1
2

∫
|ξ|<1−ε

∫ {
lim inf
k→∞

µ̂∗k(z|ξ)
}2

f(z)dzdξ

=
1
2

∫
|ξ|<1−ε

dξ
∫ {

µ̂U (z)
}2
f(z)dz

=(1 − ε)R(µ, µ̂U) = (1 − ε)R0

From the arbitrariness of ε > 0, it follows that lim infk→∞ rk(πk, µ̂πk) ≥ R0,
completing the proof of Theorem 2..1.
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2.2. A class of minimax estimators
The shortcoming of the crude minimax estimator µ̂U is that it takes values

outside the parameter space A with a positive probability. A simple modification
is to truncate µ̂U at the boundary of A as

µ̂TR = max{µ̂U , a0}.

It is easily seen that the truncated estimator µ̂TR may dominate µ̂U . However,
it leaves the undesirable property that it is not analytical or smooth. We shall
construct classes of minimax estimators improving on µ̂U which include the gen-
eralized Bayes and smooth estimators.

We first note that the minimax estimator µ̂U is expressed as

µ̂U =X1 − c(Y ), Y = (0, Y2, . . . , Yn), Yi = Xi −X1,

c(Y ) =
∫ ∞

−∞
uf(Y + u)du

/∫ ∞

−∞
f(Y + u)du,

which suggests to consider the following form as estimators dominating µ̂U :

µ̂φ = µ̂φ(X1,Y ) = X1 − φ(X1 − a0,Y ),

where φ(X1,Y ) is an absolutely continuous function. Marchand and Strawder-
man (2004) derived the conditions for the minimaxity of µ̂φ, which is restated
here with the proof, for the proof given here is done instructively and will be on
the basis of the dominance results in the following sections.

Theorem 2..2. Assume that φ(x, y) satisfies the following conditions:
(a) φ(x, y) is nondecreasing in x,
(b) limx→∞ φ(x, y) = c(y),
(c) φ(x, y) ≥ φm(x, y), where

φm(x, y) =
∫ x

−∞
uf(y + u)du

/∫ x

−∞
f(y + u)du.(2.4)

Then µ̂φ is a minimax estimator improving on µ̂U relative to the L�-loss.

Proof. The IERD method provided by Kubokawa (1994a,b, 98, 99) is useful
for the proof. The risk difference of the two estimators µ̂U and µ̂φ is written by

∆ =R(µ, µ̂U) − R(µ, µ̂φ)

=E
[{X1 − c(Y ) − µ}2 − {X1 − φ(X1 − a0,Y )− µ}2

]
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which is, from the condition (b), expressed as

E
[
{X1 − φ(X1 − a0 + t,Y ) − µ}2

∣∣∣∞
t=0

]
= E

[∫ ∞

0

d
dt

{X1 − φ(X1 − a0 + t,Y ) − µ}2 dt
]

=
∫ ∫ ∞

0

d
dt

{x1 − φ(x1 − a0 + t,y)− µ}2 f(x − µ)dtdx

= −2
∫ ∫ ∫ ∞

−a0
{x1 − φ(x1 + t,y)− µ}φ′(x1 + t,y)f(y + x1 − µ)dtdx1dy,

where φ′(t, y) = (∂/∂t)φ(t, y). Making the transformations z = x1 − µ + t and
u = z − t in turn with dz = dx1 and du = dt, we can rewrite ∆ as

∆ = − 2
∫ ∫ ∫ ∞

−a0
{z − t− φ(z + µ,y)}φ′(z + µ,y)f(y + z − t)dtdzdy

= − 2
∫ ∫ ∫ z+a0

−∞
{u − φ(z + µ,y)}φ′(z + µ,y)f(y + u)dudzdy.

Since φ′(z + µ,y) ≥ 0, it is sufficient to show that

φ(z + µ,y) ≥
∫ z+a0

−∞
uf(y + u)du

/∫ z+a0

−∞
f(y + u)du.(2.5)

The condition (a) implies that

φ(z + µ,y) ≥ φ(z + a0, y) for µ > a0,

so that (2.5) is guaranteed by the condition (c). Therefore, the proof of Theorem
2..2 is complete.

It is interesting to note that the class derived in Theorem 2..2 includes the
generalized Bayes estimator against the uniform prior on A, given by

µ̂m =
∫
A

af(X − a,Y )da
/∫

A

f(X − a,Y )da

=X1 − φm(X1 − a0,Y )

for φm(x, y) is defined by (2.4). In fact, it is easy to check that φm(x, y) satisfies
the conditions (a), (b) and (c) of Theorem 2..2. It is noted that these conditions
can be satisfied without any other assumptions for the density f(x − µ).

From the proof of Theorem 2..2, we notice that for the generalized Bayes
estimator µ̂m,

R(a0, µ̂
m) = R(a0, µ̂

U) = R0 at µ = a0,(2.6)
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that is, µ̂m and µ̂U have the same risk at µ = a0. Since µ̂m − µ is written by

µ̂m − µ =
∫ ∞

a0

(a− µ)f(x − a)da
/∫ ∞

a0

f(x− a)da,

the risk function of µ̂m is expressed by

R(µ, µ̂m) =
∫ {∫ ∞

a0
(a− µ)f(x − a)da∫ ∞
a0
f(x − a)da

}2

f(x − µ)dx

=
∫ {∫ ∞

a0−µ tf(z − t)dt∫ ∞
a0−µ f(z − t)dt

}2

f(z)dz,

where the transformations z = x − µ and t = a − µ have been made. This
expression provides the limiting value of the risk as

lim
µ→∞R(µ, µ̂m) =

∫ {
µ̂U (z)

}2
f(z)dz = R0.

Together with (2.6), we can get the following property of the risk.

Proposition 2..1. The risk function of the generallized Bayes estimator
µ̂m attains the minimax value R0 at µ = a0 and when µ tending to infinity.

Differentiating R(µ, µ̂m) with respect to µ gives that

d
dµ
R(µ, µ̂m) = − 2

∫ ∫ ∞
a0−µ tf(z − t)dtf(z + µ)

(
∫ ∞
a0−µ f(z − t)dt)3

∫ ∞

a0−µ
(t+ µ)f(z − t)dtf(z)dz

= − 2
∫ ∫ ∞

a0
(a− µ)f(x − a)daf(x)

(
∫ ∞
a0
f(x − a)da)3

∫ ∞

a0

af(x − a)daf(x − µ)dx

=2
∫ {

µ−
∫ ∞
a0
af(x − a)da∫ ∞

a0
f(x − a)da

} ∫ ∞
a0
af(x − a)da

(
∫ ∞
a0
f(x − a)da)2

f(x)f(x − µ)dx,(2.7)

which demonstrates that the derivative is negative at µ = a0 and positive for
larger µ. This may suggest that there exists a point µ0 such that the derivative
(d/dµ)R(µ, µ̂m) has one sign change at µ0, in other words, the risk function of
µ̂m is decreasing in µ for a0 ≤ µ < µ0 and increasing for µ0 < µ < ∞. This
risk property can be verified for the normal distribution as given in the following
example.

Example 2..1. Let X1, . . . , Xn be a random sample from the normal dis-
tribution N (µ, σ2

0) for known variance σ2
0. Let X =

∑n
i=1(Xi− a0)/(σ0

√
n), and

X has N (θ, 1) for θ = (µ−a0)/σ0, so that the problem is reduced to the estima-
tion of θ based on X under the squared loss (θ̂ − θ)2 where θ is restricted to the
space

θ > 0.
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Then, the generalized Bayes estimator of θ against the Lebesgue measure dθI(θ >
0) is expressed by

θ̂m = θ̂m(X) =
∫ ∞

0
θe−(X−θ)2/2dθ

/∫ ∞

0
e−(X−θ)2/2dθ.

Using the integration by parts, we note that∫ ∞

0
te−t

2/2+xtdt = −
∫ ∞

0
(−t+ x)e−t

2/2+xtdt+ x

∫ ∞

0
e−t

2/2+xtdt

= −
[
e−t

2/2+xt
]∞
t=0

+ x

∫ ∞

0
e−t

2/2+xtdt

=1 + x

∫ ∞

0
e−t

2/2+xtdt,(2.8)

which is used to rewrite θ̂m as

θ̂m = X + g(X), g(x) =
[∫ ∞

0

e−t
2/2+xtdt

]−1

.

Then the derivative (2.7) is rewritten by

d
dθ
R(θ, θ̂m) =2E [{θ − {X + g(X)}}{X + g(X)}g(X)]

= − 2E [(X − θ){X + g(X)}g(X)]− 2E
[{g(X)}2{X + g(X)}] .(2.9)

We shall show below that the derivative (2.9) has one sign change. From the
equation (2.8), we first note that the derivative g′(x) = dg(x)/dx is written as

g′(x) = −
∫ ∞
0 te−t2/2+xtdt

(
∫ ∞
0 e−t2/2+xtdt)2

= −1 + x
∫ ∞
0 e−t2/2+xtdt

(
∫ ∞
0 e−t2/2+xtdt)2

= − {g(x)}2 − xg(x) = −g(x){x+ g(x)}.(2.10)

The Stein identity applies to the first term of the r.h.s. of (2.9) to rewrite it as

E [(X − θ){X + g(X)}g(X)] =E
[

d
dX

{(X + g(X))g(X)}
]

=E
[
g(X) + g(X)g′(X) + {X + g(X)}g ′(X)

]
=E

[
g(X)− {g(X)}2{X + g(X)}− g(X){X + g(X)}2

]
,

which is substituted into (2.9), and we get the expression

d
dθ
R(θ, θ̂m) =2E

[{
(X + g(X))2 − 1

}
g(X)

]
=2E

[{
(θ̂m(X))2 − 1

}
g(X)

]
.(2.11)
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From Proposition 2..1, there exists a point θ0 such that

d
dθ
R(θ, θ̂m)

∣∣
θ=θ0

= 2
∫ {

(θ̂m(x))2 − 1
}
g(x)f (x− θ0)dx = 0,

for the normal density f(x− θ). For any θ > θ0, we observe that∫ {
(θ̂m(x))2 − 1

}
g(x)f (x− θ)dx

=
∫ {

(θ̂m(x))2 − 1
}
g(x)f (x− θ0)

f(x− θ)
f(x− θ0)

dx.

It is here noted that θ̂m is increasing in X , since the derivative of θ̂m, given by

d
dX

θ̂m =

∫ ∞
0 θ2e−(X−θ)2/2dθ

∫ ∞
0 e−(X−θ)2/2dθ − (

∫ ∞
0 θe−(X−θ)2/2dθ)2

(
∫ ∞
0 e−(X−θ)2/2dθ)2

,

is nonnegative from Shwarz’s inequality. Then from the monotonicity of θ̂m(x),
it is noted that {(θ̂m(x))2 − 1}g(x) has one sign change at some point x0 from
negative to positive. Since f(x− θ)/f (x− θ0) is increasing in x, we can show the
inequality that∫ {

(θ̂m(x))2 − 1
}
g(x)f (x− θ0)

f(x− θ)
f(x− θ0)

dx

>

∫ {
(θ̂m(x))2 − 1

}
g(x)f (x− θ0)dx

f(x0 − θ)
f(x0 − θ0)

,(2.12)

which is zero (see Lemma 2.1 of Kubokawa (1994b)). This argument demon-
strates that once the derivative (d/dθ)R(θ, θ̂m) becomes zero at θ0, it holds
positive for all θ > θ0. In other words, the point θ0 is uniquely determined.
Hence, the risk function of θ̂m is decreasing in θ for 0 ≤ θ < θ0 and increasing
for θ0 < θ <∞.

2.3. Minimaxity in the scale family
The same arguments as in the previous subsections allow us to extend the

results of the minimaxity to the scale family (1.2) of the density σ−nf(x/σ) for
scale parameter σ > 0. It is supposed that the scale σ is estimated by estimator
σ̂ relative to the entropy loss function

Ls(σ̂/σ) = σ̂/σ − log σ̂/σ − 1,(2.13)

referred to as the Stein loss as well. The best scale-equivariant estimator σ̂U is
given by

σ̂U = σ̂U(X) =
∫ ∞

0
σ−n−1f(X/σ)dσ

/∫ ∞

0
σ−n−2f(X/σ)dσ,
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where X/σ means (X1/σ, . . . , Xn/σ). This is the unrestricted generalized Bayes
estimator against the measure σ−1dσ on whole the positive real line R+. Assume
that the scale σ is restricted to the space

B = {σ|σ > b0}.

Theorem 2..3. The best equivariant and unrestricted estimator σ̂U of σ is
minimax under the entropy loss (2.13) in the estimation issue on the restricted
parameter space B.

Proof. Without any loss of generality, assume that b0 = 1. Let Bk =
{σ| 1 < σ < k} for k = 2, 3, . . . , and consider the sequence of prior distributions
given by

πk(σ)dσ =

{
(log k)−1σ−1dσ if σ ∈ Bk

0 otherwise,

which yields the Bayes estimators

σ̂πk = σ̂πk (X) =
∫
Bk

b−n−1f(X/b)db
/∫

Bk

b−n−2f(X/b)db

with the Bayes risk function

rk(πk, σ̂πk ) =
1

log k

∫
Bk

∫
Ls(σ̂πk (x)/σ)

1
σn+1

f(x/σ)dxdσ

=
1

log k

∫
Bk

∫
Ls(σ̂πk (σu)/σ)f(u)du

1
σ

dσ,

where u = x/σ. Let η = (2/ logk) log σ − 1 and dη = (2/ logk)dσ/σ. Then the
condition that σ ∈ Bk is expressed by |η| < 1, and σ̂πk (σu)/σ is written as

σ̂πk (σu)/σ =
∫

1<σs<k

s−n−1f(u/s)ds
/∫

1<σs<k

s−n−2f(u/s)ds

=
∫
B∗

k

s−n−1f(u/s)ds
/∫

B∗
k

s−n−2f(u/s)ds = σ̂∗k(u|η), (say),

where B∗
k is the range of s in the integrals, given by

B∗
k =

{
s
∣∣∣ − 1 + η

2
log k < log s <

1 − η

2
log k

}
.

Hence, the Bayes risk is rewritten by

rk(πk, σ̂πk ) =
1
2

∫
|η|<1

∫
Ls(σ̂k(u|η))f (u)dudη

≥1
2

∫
|η|<1−ε

∫
Ls(σ̂k(u|η))f (u)dudη.(2.14)
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Since |η| < 1 − ε, it is noted that 1 − η > ε and 1 + η > ε, which imply that
the end points (log k)(1 − η)/2 and −(log k)(1 + η)/2 tend to infinity and minus
infinity as k → ∞. Therefore, the minimaxity of the estimator σ̂U can be proved
by using the same arguments as in the proof of Theorem 2..1.

We next construct a class of minimax estimators of the form

σ̂φ = σ̂φ(|X1|,Z) = |X1|φ(|X1|/b0,Z), Z = X/|X1|(2.15)

where φ(y, z) is an absolutely continuous function. This class includes the mini-
max estimator σ̂U as the form

σ̂U =|X1|c(Z),

c(Z) =
∫ ∞

0
vn−1f(vZ)dv

/∫ ∞

0
vnf(vZ)dv.

Theorem 2..4. Assume that φ(y, z) satisfies the following conditions:
(a) φ(y, z) is nonincreasing in y,
(b) limy→∞ φ(y, z) = c(z),
(c) φ(y, z) ≤ φm(y, z), where

φm(y, z) =
∫ y

0
vn−1f(vz)dv

/∫ y

0
vnf(vz)dv.(2.16)

Then σ̂φ is a minimax estimator improving on σ̂U relative to the Ls-loss (2.13).

Proof. The same arguments as in the proof of Theorem 2..2 are used for
the proof of this theorem, an outline of which is given here. The risk difference
of the two estimators σ̂U and σ̂φ is written by

∆ =R(σ, σ̂U) −R(σ, σ̂φ)

=E
[∫ ∞

1

d
dt
Ls(|X1|σ−1φ(t|X1|/b0,Z))dt

]
=

∫ ∫ ∞

1/b0

{|x1|/σ − 1/φ(t|x1|, z)} |x1|φ′(t|x1|, z)σ−nf(x/σ)dtdx

=
∫ ∫ ∫ ∞

1/b0

{|x1|/σ − 1/φ(t|x1|, z)}φ′(t|x1|, z)σ−n|x1|nf(σ−1|x1|z)dtdx1dz

where φ′(y, z) = (∂/∂y)φ(y, z). Making the transformations σy = |x1|t and
v = y/t, we can rewrite ∆ as

∆ =
∫ ∫ ∫ ∞

1/b0

{y/t− 1/φ(σy, z)}φ′(σy, z)(y/t)nf((y/t)z)(σ/t)dtdydz

=
∫ ∫ ∫ b0y

0
{v − 1/φ(σy, z)}φ′(σy, z)vn−1f(vz)σdvdydz,
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which means that ∆ ≥ 0 if φ′(σy, z) ≤ 0, and if

φ(σy, z) ≤
∫ b0y

0
vn−1f(vz)dv

/∫ b0y

0
vnf(vz)dv for σ > b0.

These requirements are satisfied by the conditions in Theorem 2..4.

The class described in Theorem 2..4 includes the generalized Bayes estimator
against the uniform prior dσ/σ on A, given by

σ̂m =
∫ ∞

b0

b−n−1f(X/b)db
/∫ ∞

b0

b−n−2f(X/b)db

=|X1|φm(|X1|/b0,Z)

for φm(y, z) is defined by (2.16). In fact, it is easy to check that φm(y, z) satisfies
the conditions (a), (b) and (c) of Theorem 2..4.

3. Estimation in the Location-Scale Family

3.1. Minimaxity of the best equivariant estimators
In this section, we treat the estimation of the restricted parameters in the

location-scale family, which is more complicated than the location or scale fami-
lies. Let random variable X = (X1, . . . , Xn) have the joint density

X ∼ 1
σn
f

(
x − µ

σ

)
,

and assume that the parameters (µ, σ) is restricted to the space

C = {(µ, σ)|µ > c0σ + a0, σ > b0},(3.1)

where a0, b0 and c0 are constants such that c0 ≥ 0, b0 ≥ 0 and −∞ ≤ a0 < ∞.
The unrestricted case is described by b0 = c0 = 0 and a0 = −∞.

We treat the estimation of the location µ under the loss function

L�s(µ, σ; µ̂) = (µ̂− µ)2/σ2.

The best location-scale equivariant estimator of µ is given by

µ̂U =
∫ ∞

0

∫ ∞

−∞
µ

1
σn+3

f

(
X − µ

σ

)
dµdσ

/∫ ∞

0

∫ ∞

−∞

1
σn+3

f

(
X − µ

σ

)
dµdσ,

which is the generalized Bayes estimator against the right-invariant Haar mea-
sure dµdσ/σ with respect to the location-scale group (see Lehmann and Casella
(1998)). .

Theorem 3..1. The best location-scale equivariant and unrestricted esti-
mator µ̂U is minimax in the estimation issue of µ on the restricted parameter
space C relative to the L�s-loss.
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Proof. Without any loss of generality, let a0 = 0 and b0 = 1. Then C is
given by A = {(µ, σ)|µ > c0σ, σ > 1}. Let Ck = {(µ, σ)|c0σ < µ < k, 1 < σ < k}
where k satisfies the condition that log k ≥ c0. Consider the sequence of prior
distributions given by

πk(µ, σ)d(µ, σ) =

{
{k(log k − c0) + c0}−1σ−1dµdσ if (µ, σ) ∈ Ck

0 otherwise,

where d(µ, σ) means dµdσ. Then the Bayes estimators are given by

µ̂πk = µ̂πk (X) =
∫
Ck

ab−n−3f((X − a)/b)d(a, b)
/∫

Ck

b−n−3f((X − a)/b)d(a, b)

with the Bayes risk function

rk(πk, µ̂πk) =
1

k(log k − c0) + c0

∫
Ck

∫ (
µ̂πk (x) − µ

σ

)2 1
σn+1

f

(
x − µ

σ

)
dxd(µ, σ)

=
1

k(log k − c0) + c0

∫
Ck

∫ (
µ̂πk (σz + µ) − µ

σ

)2

f (z) dz
1
σ

d(µ, σ)(3.2)

where z = (x − µ)/σ. Letting t = (a− µ)/σ and s = b/σ, we see that

µ̂π(σz + µ) − µ

σ
=

∫
Ck

[(a − µ)/σ](σ/b)n+3f([z − (a− µ)/σ]σ/b)d(a, b)∫
Ck

(σ/b)n+3f([z − (a− µ)/σ]σ/b)d(a, b)

=

∫
C∗

k
ts−n−3f((z − t)s)d(t, s)∫

C∗
k
s−n−3f((z − t)s)d(t, s)

,(3.3)

where C∗
k = {(t, s)

∣∣∣c0σs < σt + µ < k, 1 < σs < k}. Let ξ = (2/k)µ − 1 and
η = (2/ logk) logσ − 1. Then, C∗

k is rewritten as

C∗
k =

{
(t, s)|c0s− 1

2
k(1−η)/2(1 + ξ) < t <

1
2
k(1−η)/2(1 − ξ),

−1 + η

2
log k < log s <

1 − η

2
log k

}
(3.4)

and we denote the quantity (3.3) by µ̂∗(z|ξ, η). Since the condition that (µ, σ) ∈
Ck is equivalently expressed by

(ξ, η) ∈
{
2c0k−(1−η)/2 − 1 < ξ < 1, |η| < 1

}
,

the Bayes risk (3.2) is rewritten as

rk(πk, µ̂πk) =
(k/4) logk

k(log k − c0) + c0

∫
2c0k(η−1)/2−1<ξ<1, |η|<1

∫
{µ̂∗(z|ξ, η)}2 f(z)dzd(ξ, η)

≥ (k/4) logk
k(log k − c0) + c0

∫
2c0k(η−1)/2+ε−1<ξ<1−ε, |η|<1−ε

∫
{µ̂∗(z|ξ, η)}2 f(z)dzd(ξ, η).
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Noting that 1 − η > ε, 1 + η > ε, 1 − ξ > ε and 1 + ξ > 2c0k(η−1)/2 + ε, we see
that the set C∗

k given in (3.4) contains the subset

(t, s) ∈
{
c0s − a0 − 1

2
εkε/2 < t <

1
2
εkε/2, −ε

2
log k < log s <

ε

2
log k

}
,

which implies that all the end points of t and log s go to infinity or minus infinity
as k tends to infinity, so that

lim
k→∞

µ̂∗(z|ξ, η) = µ̂U .

Hence, Fatou’s lemma is used to evaluate the Bayes risk as

lim inf
k→∞

rk(πk, µ̂πk) ≥
1
4

∫
|ξ|<1−ε,|η|<1−ε

d(ξ, η)
∫
{µ̂U (z)}2f(z)dz

=(1− ε)2
∫
{µ̂U (z)}2f(z)dz.

Therefore, the minimaxity of the estimator µ̂U can be proved by using the same
arguments as in the proof of Theorem 2..1.

3.2. Improved minimax estimators
Since the estimator µ̂U is outside the parameter space with a positive prob-

ability, it may be modified by the truncation at the boundary of C. For an
estimator µ̂ = µ̂(X) of µ, consider the truncation rule

[µ̂(X)]TR = max{µ̂(X), a0 + b0c0},(3.5)

since µ > c0σ + a0 > b0c0 + a0 for (µ, σ) ∈ C.

Proposition 3..1. The estimator µ̂(X) is improved on by the truncated
one [µ̂(X)]TR.

Proof. The risk difference of the two estimators is written as

∆ =R(µ, σ; µ̂) −R(µ, σ; [µ̂]TR)

=
1
σ2
E

[{
(µ̂− µ)2 − ((a0 + b0c0) − µ)2

}
I(µ̂ < a0 + b0c0)

]
=

1
σ2
E [{µ̂− (a0 + b0c0)} {µ̂+ (a0 + b0c0)− 2µ} I(µ̂ < a0 + b0c0)]

≥ 1
σ2
E [{µ̂− (a0 + b0c0)} {µ̂+ (a0 + b0c0)− 2(a0 + b0c0)} I(µ̂ < a0 + b0c0)] ,

which is nonnegative, and the proposition is verified.

Using the truncation rule (3.5), we get the truncated estimator

µ̂TR = max{µ̂U , a0 + b0c0},
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improving on µ̂U . We want to make a class of minimax estimators including µ̂TR

and the generalized Bayes estimators, though it may be too difficult in the general
setup. We thus consider the specific underlying distribution and restriction which
allows us to construct such a class.

We here assume that (X1, . . . , Xn) is a random sample from a normal dis-
tribution N (µ, σ2) where µ is restricted to the space µ > a0, which corresponds
to the case that b0 = c0 = 0 in (3.1). Let X =

∑n
i=1(Xi − a0)/

√
n and

S =
∑n

i=1(Xi −
∑n

j=1Xj/n)2, which are independently distributed as

X ∼ N (θ, σ2) and S ∼ σ2χ2
m(3.6)

for θ =
√
n(µ− a0) and m = n− 1. Then the parameters are restricted to

θ > 0, 0 < σ2 <∞,(3.7)

and we consider the estimation of the mean θ under the restriction (3.7) relative
to the loss L�s(θ, σ2; θ̂) = (θ̂ − θ)2/σ2. The minimaxity of X follows from Theo-
rem 3..1. To construct a class of minimax estimators improving on X , consider
estimators of the form

θ̂φ = X −
√
Sφ

(
X/

√
S
)
,(3.8)

for an absolutely continuous function φ.

Theorem 3..2. Assume that φ(w) satisfies the following conditions:
(a) φ(w) is nondecreasing in w,
(b) limw→∞ φ(w) = 0,
(c) φ(w) ≥ φm(w), where

φm(w) =
∫ ∞

0

∫ w

−∞
ye−v(1+y

2)/2dyv(m+1)/2dv
/∫ ∞

0

∫ w

−∞
e−v(1+y

2)/2dyv(m+1)/2dv

= − 1
m+ 1

(1 + w2)−(m+1)/2∫ w
−∞(1 + x2)−(m+1)/2−1dx

.(3.9)

Then θ̂φ is a minimax estimator improving on X relative to the L�s-loss.

Proof. The same arguments as in the proof of Theorem 2..2 are used to
rewrite the risk difference of the two estimators X and θ̂φ as

∆ =R(θ, σ;X)−R(θ, σ; θ̂φ)

=E

[∫ ∞

0

d
dt

{
X − θ −

√
Sφ

(
X√
S

+ t

)}2

/σ2dt

]

= − 2E

[∫ ∞

0

{
X − θ −

√
Sφ

(
X√
S

+ t

)} √
S

σ2
φ′

(
X√
S

+ t

)
dt

]
.
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Let U = (X−θ)/√S and V = S/σ2. The joint density of (U, V ) is c1v(m+1)/2−1e−v(1+u2)/2

for the normalizing constant c1. Then ∆ is expressed by

∆ = −2
∫ ∫ ∫ ∞

0

{
u− φ(u+ λ/

√
v + t)

}
φ′(u+λ/

√
v+t)c1v(m+1)/2e−v(1+u

2)/2dtdudv

where λ = θ/σ > 0. Making the transformations w = u+λ/
√
v+t and y = −t+w

with dw = du and dy = dt, we can rewrite ∆ as

∆ = −2
∫ ∫ ∫ ∞

0

{
w − λ/

√
v − t− φ(w)

}
φ′(w)c1v(m+1)/2e−v{1+(w−λ/√v−t)2}/2dtdwdv

= −2
∫ ∫ ∫ w

−∞

{
y − λ/

√
v − φ(w)

}
φ′(w)c1v(m+1)/2e−v{1+(y−λ/√v)2}/2dydvdw.

Hence, it is seen that ∆ ≥ 0 if φ′(w) ≥ 0 and if

φ(w) ≥
∫ ∫ w

−∞(y − λ/
√
v)v(m+1)/2e−v{1+(y−λ/√v)2}/2dydv∫ ∫ w

−∞ v(m+1)/2e−v{1+(y−λ/√v)2}/2dydv
≡ φλ(w).

By using the integration by parts, φλ(w) is expressed by

φλ(w) = −
∫
v(m−1)/2e−v(1+w2)/2+

√
vwλdv∫ ∫ w

−∞ v(m+1)/2e−v(1+x2)/2+
√
vxλdxdv

= − (1 + w2)−(m+1)/2
∫
z(m−1)/2e−z/2e(w/

√
1+w2)

√
zλdz∫ w

−∞(1 + x2)−(m+1)/2−1
∫
z(m+1)/2e−z/2e(x/

√
1+x2)

√
zλdzdx

= − (1 + w2)−(m+1)/2E[e(w/
√

1+w2)
√
Zλ]∫ w

−∞(1 + x2)−(m+1)/2−1E[Ze(x/
√

1+x2)
√
Zλ]dx

,

where Z is a random variable having χ2
m+1. To complete the proof, we need to

show the inequality that

φλ(w) ≤ lim
λ→0

φλ(w) ≡ φm(w).(3.10)

We first show the inequality (3.10) in the case that w < 0. The inequality
(3.10) is written by

(1 + w2)−(m+1)/2E[e(w/
√

1+w2)
√
Zλ]∫ w

−∞(1 + x2)−(m+1)/2−1E[Ze(x/
√

1+x2)
√
Zλ]dx

≥ (1 + w2)−(m+1)/2∫ w
−∞(1 + x2)−(m+1)/2−1E[Z]dx

,

equivalently, ∫ w

−∞
(1 + x2)−(m+1)/2−1E[Z]dxE[e(w/

√
1+w2)

√
Zλ]

≥
∫ w

−∞
(1 + x2)−(m+1)/2−1E[Ze(x/

√
1+x2)

√
Zλ]dx.(3.11)
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Since x < w < 0, the function e(x/
√

1+x2)
√
Zλ is decreasing in Z, so that we get

the inequality

E
[
Ze(x/

√
1+x2)

√
Zλ

]
≤ E[Z]E

[
e(x/

√
1+x2)

√
Zλ

]
.

Noting that for x < w,

x/
√

1 + x2 ≤ w/
√

1 + w2,

we can see that the inequality (3.11) holds for w < 0.

We next treat the case that w > 0. It is noted that the function e(x/
√

1+x2)
√
Zλ

can be expanded as

e(x/
√

1+x2)
√
Zλ =

∞∑
j=0

λj

j!
wj

(1 +w2)j/2
Zj/2,

and that E[Zj/2] = Γ((m + j + 1)/2)2j/2/Γ((m + 1)/2). Taking these notes
into account, we can see that the required inequality (3.11) is expressed by
I−∞,w(w) ≥ 0, where the notation Ia,b(w) is defined by

Ia,b(w) =
∞∑
j=0

λj

j!

(
w2

1 + w2

)j/2

Γ
(
m+ j + 1

2

)
2j/2

∫ b

a

1
(1 + x2)(m+1)/2+1

dx

− 2
m+ 1

∞∑
j=0

λj

j!
Γ

(
m+ j + 1

2
+ 1

)
2j/2

∫ b

a

xj

(1 + x2)(m+j+1)/2+1
dx.

The integrals in I−∞,w(w) are decomposed as∫ w

−∞

1
(1 + x2)(m+1)/2+1

dx =
∫ −w

−∞

1
(1 + x2)(m+1)/2+1

dx+
∫ w

−w

1
(1 + x2)(m+1)/2+1

dx,∫ w

−∞
xj

(1 + x2)(m+j+1)/2+1
dx =

∫ −w

−∞
xj

(1 + x2)(m+j+1)/2+1
dx +

∫ w

−w
xj

(1 + x2)(m+j+1)/2+1
dx,

and it is seen that∫ w

−w

xj

(1 + x2)(m+j+1)/2+1
dx =

{
0 for odd j,
2

∫ w
0

xj

(1+x2)(m+j+1)/2+1 dx for even j,

Hence, I−∞,w(w) is decomposed as I−∞,w(w) = I−∞,−w(w) + I−w,w(w), and
I−w,w(w) is expressed by

I−w,w(w) =2
∞∑
j=0

λj

j!

(
w2

1 +w2

)j/2

Γ
(
m+ j + 1

2

)
2j/2

∫ w

0

1
(1 + x2)(m+1)/2+1

dx

− 4
m+ 1

∞∑
k=0

λ2k

(2k)!
Γ

(
m+ 1

2
+ k + 1

)
2k

∫ w

0

x2k

(1 + x2)(m+1)/2+k+1
dx.(3.12)
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Since w < 0, from the arguments around (3.11), it follows that I−∞,−w(w) ≥ 0,
so that our final step is to show that I−w,w(w) ≥ 0. Making the transformations
t = x2 and u = t/(1 + t) in turn with dx = dt/(2

√
t) and dt = du/(1 − u)2, we

demonstrate that∫ w

0

x2k

(1 + x2)(m+1)/2+k+1
dx =

1
2

∫ w2

0

tk−1/2

(1 + t)(m+1)/2+k+1
dt

=
1
2

∫ A

0
u1/2+k−1(1 − u)m/2du,

where A = w2/(1 +w2), which is used to rewrite (3.12) as

I−w,w(w) =
∞∑
j=0

λj

j!
Aj/2Γ

(
m+ j + 1

2

)
2j/2

∫ A

0

u1/2−1(1 − u)m/2du

− 2
m+ 1

∞∑
k=0

λ2k

(2k)!
Γ

(
m+ 1

2
+ k + 1

)
2k

∫ A

0
u1/2+k−1(1 − u)m/2du

=
∞∑
k=0

λ2k+1

(2k + 1)!
A1/2+kΓ

(m
2

+ k + 1
)

21/2+k

∫ A

0
u1/2−1(1 − u)m/2du

+
∞∑
k=0

λ2k

(2k)!
Jk(w),

where

Jk(w) =AkΓ
(
m+ 1

2
+ k

)
2k

∫ A

0
u1/2−1(1 − u)m/2du

− 2
m+ 1

Γ
(
m+ 1

2
+ k + 1

)
2k

∫ A

0
u1/2+k−1(1 − u)m/2du.

We can thus complete the proof by showing the inequality that Jk(w) ≥ 0. For
the purpose, note that∫ A

0 u1/2+k−1(1 − u)m/2du∫ A
0 u1/2−1(1 − u)m/2du

≤
∫ A
0 u1/2+k−1du∫ A
0 u1/2−1du

=
1

1 + 2k
Ak.

Then Jk(w) can be evaluated as

Jk(w) ≥ AkΓ
(
m+ 1

2
+ k

)
2k

∫ A

0
u1/2−1(1 − u)m/2du

{
1 − m+ 1 + 2k

(m+ 1)(1 + 2k)

}
,

which is nonnegative. This shows that I−w,w(w) ≥ 0, and the proof of Theorem
3..2 is complete.

The generalized Bayes estimator of θ against the prior distribution dθdσ2/σ2

on θ > 0 and σ2 > 0 is given by

θ̂m =

∫ ∞
0

∫ ∞
0 θ(σ2)−(m+1)/2−2e−{(X−θ)2+S}/2σ2

dθdσ2∫ ∞
0

∫ ∞
0 (σ2)−(m+1)/2−2e−{(X−θ)2+S}/2σ2dθdσ2

=X −
√
Sφm(X/

√
S),
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where the function φm(w) is defined by (3.9). It can be seen that φm(w) satisfies
all the conditions of Theorem 3..2, and the gneralized Bayes estimator θ̂m is
minimax.

3.3. Minimax estimation of the scale
We next look at the estimation of the scale σ under the restriction (3.1)

relative to the loss Ls(σ̂/σ) given in (2.13). The best location-scale equivariant
estimator of σ is given by

σ̂U =
∫ ∞

0

∫ ∞

−∞
σ−n−1f

(
X − µ

σ

)
dµdσ

/∫ ∞

0

∫ ∞

−∞
σ−n−2f

(
X − µ

σ

)
dµdσ

=
∫ ∞

0
σ−n

∫ ∞

−∞
f

(
X

σ
− t

)
dtdσ

/∫ ∞

0
σ−n−1

∫ ∞

−∞
f

(
X

σ
− t

)
dtdσ.

Using the same arguments as in the proofs of Theorems 2..3 and 3..1, we can
verify the minimaxity of σ̂U .

Theorem 3..3. The best location-scale equivariant and unrestricted esti-
mator σ̂U is minimax in the estimation issue of σ on the restricted parameter
space C relative to the Ls-loss.

Since the estimator σ̂U can take values outside the parameter space C, it
should be truncated at the boundary of C. For an estimator σ̂ = σ̂(X) of σ,
consider the truncation rule

[σ̂(X)]TR = max{σ̂(X), b0}.(3.13)

Proposition 3..2. The estimator σ̂(X) is improved on by the truncated
one [σ̂(X)]TR relative to the Ls-loss.

Proof. The risk difference of the two estimators is written as

∆ =R(µ, σ; σ̂) −R(µ, σ; [σ̂]TR)

=E
[{(

σ̂

σ
− log σ̂

)
−

(
b0
σ

− log b0

)}
I(σ̂ < b0)

]
=E

[{(
σ̂

b0
− 1

)
b0
σ

− log
σ̂

b0

}
I(σ̂ < b0)

]
≥E

[(
σ̂

b0
− log

σ̂

b0
− 1

)
I(σ̂ < b0)

]
,

which is nonnegative, and the proposition is verified.

Using the truncation rule (3.13), we get the truncated estimator

σ̂TR = max{σ̂U , b0},
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improving on σ̂U . To proceed further study on the minimax estimation, we shall
specify the underlying distribution as

X ∼ N (θ, σ2) and S ∼ σ2χ2
m,

given by (3.6).

When we consider the estimation of the variance σ2 in the normal model,
it is known that the unbiased estimator σ̂2U = S/m is dominated by using the
information contained in X , that is, Stein (1964) showed that

σ̂2ST = min
{
S

m
,
S +X2

m+ 1

}
(3.14)

dominates σ̂2U relative to the Ls-loss. It is noted that σ̂2ST is expressed by
σ̂2ST = SψST(X2/S) for

ψST (w) =
{

1
m
,

1 +w

m+ 1

}
.(3.15)

Kubokawa (1994a, 99) extended the result to the class of the estimators

σ̂2
ψ = Sψ(X2/S)

and derived conditions on ψ for the dominance over σ̂2U .

Proposition 3..3. Assume that ψ(w) satisfies the following conditions:
(a) ψ(w) is nondecreasing in w.
(b) limw→∞ ψ(w) = 1/m.
(c) ψ(w) ≥ ψm(w), where

ψm(w) =
1

m+ 1

∫ w

0

u1/2−1

(1 + u)(m+1)/2
du

/∫ w

0

u1/2−1

(1 + u)(m+1)/2+1
du.

Then σ̂2
ψ is a minimax estimator improving on σ̂2U = S/m relative to the Ls-loss.

Now we assume that the parameters are restricted to the space

σ2 > 1, −∞ < µ <∞.(3.16)

and under this restriction, we want to consider to construct a class of estima-
tors improving on the estimator σ̂2

ψ given in Proposition 3..3. For the purpose,
consider estimators of the form

σ̂2
φ,ψ = Sψ(X2/S)φ(S),

and we get the dominance result.
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Theorem 3..4. Assume that the functions ψ(w) and φ(s) satisfy the fol-
lowing conditions:

(a) ψ(w) ≤ 1/m.
(b) φ(s) is nonincreasing in s.
(c) lims→∞ φ(s) = 1.
(d) φ(s) ≤ φmU (s), where

φmU (s) = m

∫ s

0
vm/2−1e−v/2dv

/∫ s

0
vm/2e−v/2dv.

Then σ̂2
ψ,φ = Sψ(X2/S)φ(S) dominates σ̂2

ψ = Sψ(X2/S) relative to the Ls-loss
under the restriction (3.16).

Proof. The same arguments as in the proof of Theorem 2..2 are used for
the proof of this theorem. The risk difference of the two estimators σ̂2

φ and σ̂2
φ,ψ

is written by

∆ =R(µ, σ; σ̂2
ψ)− R(µ, σ; σ̂2

ψ,φ)

=E
[∫ ∞

1

d
dt
Ls

(
S

σ2
ψ(X2/S)φ(tS)

)
dt

]
=E

[∫ ∫ ∞

1

{
S

σ2
ψ(X2/S)− 1

φ(tS)

}
Sφ′(tS)dt

]
=

∫ ∫ ∫ ∞

1

{
vψ(u/v)− 1

φ(σ2tv)

}
vφ′(σ2tv)dtfm(v)f1(u; λ)dvdu,

where fm(v) is the density of the chi-squared distribution with m degrees of
freedom and f1(u; λ) denotes the density of the noncentral chi-square distribution
with one degree of freedom and the noncentrality parameter λ = θ2/σ2. Making
the transformations s = tv and y = s/t in turn with ds = tdv and dy = (s/t2)dt,
we can rewrite ∆ as

∆ =
∫ ∫ ∫ ∞

1

{
(s/t)ψ(tu/s)− 1/φ(σ2s)

}
φ′(σ2s)(s/t2)fm(s/t)f1(u; λ)dtduds

=
∫ ∫ ∫ s

0

{
yψ(u/y)− 1/φ(σ2s)

}
φ′(σ2s)fm(y)f1(u; λ)dyduds.

Since φ′(s) ≤ 0, it is seen that ∆ ≥ 0 if

φ(σ2s) ≤
∫ s
0

∫
fm(y)f1(u; λ)dudy∫ s

0

∫
yφ(u/y)fm(y)f1(u; λ)dudy

=

∫ s
0 fm(y)dy∫ s

0

∫
yφ(u/y)fm(y)f1(u; λ)dudy

.(3.17)

From the condition (b) and the assumption that σ2 > 1, we see that φ(σ2s) ≤
φ(s). Hence from the condition (a), it is sufficient to show that

φ(s) ≤
∫ s
0 fm(y)dy∫ s

0

∫
y(1/m)fm(y)f1(u; λ)dudy

= m

∫ s
0 fm(y)dy∫ s

0 yfm(y)dy
,
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which is guaranteed by the condition (d), and the proof is complete.

Letting φTRU (s) = max(1, m/s) and considering φmU (s), we see that φTRU (s)
and φmU (s) satisfy the conditions (b), (c) and (d) of Theorem 3..4, so that we get
improved procedures

Sψ(X2/S)× φTRU (S) and Sψ(X2/S)× φmU (S).

For instance, the Stein estimator σ̂2ST , given by (3.14), is dominated by the
truncated estimator

min
{
S

m
,
S +X2

m+ 1

}
× max

{
1,
m

S

}
,

which is, from (3.13), further dominated by

max
[
min

{
S

m
,
S +X2

m+ 1

}
× max

{
1,
m

S

}
, 1

]
.

When the parameters are restricted to the space

σ2 < 1, −∞ < µ <∞,(3.18)

consider the estimators of the form

σ̂2TR
φ = Smin

{
φ(S, X2/S), ψST (X2/S)

}
,

where ψST (w) is defined by (3.15). Then we derive a condition for σ̂2
φ to dominate

the Stein estimator σ̂2ST given by (3.14).

Theorem 3..5. Assume that the functions φ(s, w) satisfy the following con-
ditions:

(a) φ(s, w) is nonincreasing in s.
(b) lims→0 φ(s, w) ≥ ψST (w).
(c) φ(s, w) ≥ φmL (s, w), where

φmL (s, w) =
∫ ∞

s
y(m+1)/2−1e−y(1+w)/2dy

/∫ ∞

s
y(m+1)/2e−y(1+w)/2dy.(3.19)

Then σ̂2TR
φ = Smin{φ(S, X2/S), ψST(X2/S)} dominates the Stein estimator

σ̂2ST , given by (3.14), relative to the Ls-loss under the restriction (3.18).

Proof. The same arguments as in the proof of Theorem 3..4 are used
for the proof of this theorem. Let Φ(s, w) = min

{
φ(s, w), ψST (w)

}
. Since
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lims→0 Φ(s, w) = ψST (w), the risk difference of the two estimators σ̂2ST and
σ̂2TR
φ is written by

∆ =R(µ, σ; σ̂2ST) − R(µ, σ; σ̂2TR
φ )

= − E

[∫ 1

0

d
dt
Ls

(
S

σ2
Φ(tS, X2/S)

)
dt

]
= − E

[∫ ∫ 1

0

{
S

σ2
− 1

Φ(tS, X2/S)

}
SΦ′(tS, X2/S)dt

]
= −

∫ ∫ ∫ 1

0

{
v − 1

Φ(σ2tv, u/v)

}
vΦ′(σ2tv, u/v)dtfm(v)f1(u; λ)dvdu,

where Φ′(s, w) = (d/ds)Φ(s, w). By the same arguments as in the proof of
Theorem 3..4, ∆ is rewritten as

∆ = −
∫ ∫ ∫ ∞

s

{
y − 1/Φ(σ2s, u/y)

}
Φ′(σ2s, u/y)fm(y)f1(u; λ)dyduds

= −
∫ ∫ ∫ ∞

s

{
y − 1/Φ(σ2s, w)

}
yΦ′(σ2s, w)fm(y)f1(wy; λ)dydsdw.

It is sufficient to show that ∆ ≥ 0 in the case that Φ′(s, w) < 0, that is, φ(s, w) <
ψST (w). Hereafter, we thus consider the case that Φ(s, w) = φ(s, w). Since
φ′(s, w) < 0, it is seen that ∆ ≥ 0 if

φ(σ2s, w) ≥
∫ ∞

s
yfm(y)f1(wy; λ)dy

/∫ ∞

s
y2fm(y)f1(wy; λ)dy.

Let f1(u) = f1(u; 0) for λ = 0. Also let E∗[·] stand for the expectation with
respect to the density yfm(y)f1(wy)dy/

∫∞
s yfm(y)f1(wy)dy. From the fact that

f1(u; λ)/f1(u) is increasing in u, it follows that

E∗
[
f1(wY ; λ)
f1(wY )

]
× E∗[Y ] ≤ E∗

[
f1(wY ; λ)
f1(wY )

Y

]
,

which rewritten as∫ ∞
s yfm(y)f1(wy; λ)dy∫ ∞
s y2fm(y)f1(wy; λ)dy

≤
∫ ∞
s yfm(y)f1(wy)dy∫ ∞
s y2fm(y)f1(wy)dy

.

From the condition (a) and the assumption that σ2 < 1, we see that φ(σ2s, w) ≥
φ(s, w). Hence, it is sufficient to show that

φ(s) ≥
∫ ∞

s
yfm(y)f1(wy)dy

/∫ ∞

s
y2fm(y)f1(wy)dy,

for s ∈ {s |φ(s, w) < φST (w)}, which is guaranteed by the condition (c), and the
proof is complete.
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It can be seen that the function φmL (s, w) given in (3.19) satisfies the condi-
tions (a), (b) and (c) of Theorem 3..5. Hence we get the estimator

Smin
{
φmL (S, X2/S), ψST (X2/S)

}
= min

{
SφmL (S, X2/S), σ̂2ST

}
,

improving on the Stein estimator σ̂2ST . Since φmL (S, X2/S) ≤ 1/S, another
simple improved estimator is given by min

{
1, σ̂2ST

}
.
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