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Abstract 
 

In this paper, I first develop a new approach to estimating the return on the aggregate wealth portfolio 

that accounts for human capital and financial assets other than stocks.  Using the estimated return on 

the wealth portfolio and the quarterly U.S. aggregate data on consumption and asset returns from 1959 

to 2001, I then test the asset pricing and consumption implications of the Epstein and Zin (1991) and 

Weil (1990) model by employing the weak-identification robust tests of Stock and Wright’s (2000) in 

the context of continuous updating generalized method of moments.  In contrast with previous studies 

that ignored human capital and weak identification in evaluating this model, I find that its asset pricing 

implications cannot be rejected at conventional significance levels for reasonable parameter values.  

For example, the 95% confidence sets for unknown parameters include values of the relative risk 

aversion around 2 or lower, values of the elasticity of intertemporal substitution for consumption 

closely around 1, and the time discount factor around 0.987.  Some of these parameter value 

combinations are able to simultaneously match the average equity premium and the average riskfree 

rate in the data.  Furthermore, they imply that the dominant determinant of the equity premium is, 

surprisingly, the volatility of stock returns, the risk factor in the traditional capital asset pricing model.     
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1. Introduction 
 

The consensus view in the asset pricing literature on the Epstein and Zin (1991) and Weil 

(1990) non-expected utility model (henceforth the EZW model) is that it cannot resolve the equity 

premium puzzle (Mehra and Prescott (1985)) and the related risk-free rate puzzle.  See e.g. Weil 

(1989), Kocherlakota (1996), and Campbell (2003).2  The goal of this paper is to fully evaluate 

the EZW model to see if this consensus still holds.  A full evaluation that incorporates the major 

relevant developments in the asset pricing literature and the econometric literature should include 

the following three elements: to account for the presence in the wealth portfolio of human capital 

and financial assets that are usually ignored in an empirical analysis, such as private (i.e. 

noncorporate) equity, housing, and consumer durable goods; to account for weak identification in 

the estimation and testing; and to estimate all the parameters and test both the consumption and 

asset pricing implications of this model.  Viewed in this light, the previous studies of the EZW 

model all lack at least one of these three elements, although they are very useful in fleshing out 

the properties and implications of the model.  See, among others, Attanasio and Weber (1989), 

Weil (1989), Bufman and Leiderman (1990), Kocherlakota (1990a, 1996), Epstein and Zin 

(1991), Kandel and Stambaugh (1991), Cochrane and Hansen (1992), Cecchetti, Lam and Mark 

(1994), Campbell (1996), Koskievic (1999), Smith (1999), Stock and Wright (2000), Otrok, 

Ravikumar and Whiteman (2002), and Vissing-JØrgensen and Attanasio (2003).   

Epstein and Zin (1991), in tests of their own model, had to assume that a return on an 

aggregate stock index was adequate to proxy the return on the optimal portfolio of the 

representative agent. 3  However, the return on the optimal portfolio should theoretically contain 

                                                 
2  See also Cochrane (2001) and Constantinides (2002) for recent surveys and references therein for notable 

contributions to this literature.   
3 In equilibrium asset pricing models featuring a representative agent, the wealth portfolio, or market 

portfolio, is interpreted as the optimal portfolio of the representative agent in an empirical test.  So the three 

terms, wealth portfolio, market portfolio and optimal portfolio, are interchangeable in this context. 
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the returns on all assets, despite that some of them are not observable (Roll (1977)).  Epstein and 

Zin were, of course, aware of this problem.  They wrote: 

“… Roll (1977)’s critique of CAPM is relevant here.  If stochastic wages are a large factor in 
the wealth constraint of the typical agent, then, …, the return on the optimal portfolio of the 
agent should reflect the shadow return of the agent’s human capital.” 

 
Researchers have since then made important progress on accounting for human capital in 

empirically evaluating asset pricing models.  An influential approach pioneered by Campbell 

(1996) assumes that the conditional mean of (the logarithm of) the gross return on human capital 

is equal to the conditional mean of (the logarithm of) the gross return on financial assets.4  He 

used a version of the EZW model as a starting point to motivate a multifactor asset pricing model.  

Vissing-JØrgensen and Attanasio (2003) extended Campbell’s approach to allow the expected 

return on human capital to depend explicitly on the expected returns on bonds and stocks.5  

Another influential study by Jagannathan and Wang (1996) incorporated human capital by linking 

the return on human capital to the growth of labor income in evaluating the conditional capital 

asset pricing model (CAPM).  More recently, Palacios-Huerta (2003) expanded the determinants 

of human capital return to include work effort and a skill premium in testing the conditional 

CAPM.  Since available estimates indicate that human capital is the largest component of the U.S. 

wealth portfolio, accounting for it is the most important step in dealing with the Roll critique.  

But to account for other forms of financial assets such as real estate, private equity, and durable 

goods is also important in order to respond to Roll’s critique sufficiently.  Hence a full evaluation 

of the EZW model cannot ignore human capital and other assets that are usually ignored in an 

empirical analysis. 

                                                 
4 As noted by Campbell (1996), his approach includes as special cases the earlier methods of dealing with 

human capital in studying asset pricing, such as Fama and Schwert (1977), Shiller (1993) and Jagannathan 

and Wang (1996).  Other earlier efforts include Mayers (1972) and Williams (1978). 
5 Braun and Shioji (2003) extended the Campbell model to identify and measure the risk in Japanese equity 

market.   
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To account for weak identification is necessary because there is now considerable 

evidence that the nonlinear asset pricing models are unlikely to be well identified.  One major 

source of weak identification is the presence of weak instruments, i.e. instruments that are weakly 

correlated with the endogenous variables in a model.  A recent survey by Stock, Wright and Yogo 

(2002) emphasized that weak identification invalidates statistical inference based on the 

conventional generalized method of moments (GMM) asymptotic theory of Hansen (1982).  

Neely, Roy and Whiteman (2001) examined the standard expected utility consumption-CAPM 

(C-CAPM) in detail, and found that the curvature parameter capturing the relative risk aversion 

coefficient (RRA) or the elasticity of intertemporal substitution for consumption (EIS) was near 

non-identification due to the weakness of the usual instruments, the lagged consumption growth 

and asset returns.  To deal with the weak identification caused by weak instruments in testing 

nonlinear models, Stock and Wright (2000) developed an alternative asymptotic theory that is 

robust to the presence of weak instruments for the continuous updating GMM estimator of 

Hansen, Heaton and Yaron (1996).  They also provided evidence for weak identification in the 

major C-CAPM models including the EZW model.  An earlier paper by Smith (1999) also 

reported Monte Carlo evidence for poor identification in estimating the EZW model.     

The EZW model has testable implications for both consumption and asset pricing, and 

includes three major preference parameters that are important for many purposes: the time 

discount factor, the RRA, and the EIS.  A full evaluation of this model should naturally test both 

implications and estimate all the three parameters.  It is useful to test the consumption 

implication, even in an asset-pricing context, because the test result determines how the riskfree 

rate should be calculated in this model.  Suppose the Euler equation for the asset returns are not 

rejected by the data.  If the test result on the consumption Euler equation is positive, it is then 

reasonable to combine the consumption Euler equation and the Euler equation for the riskfree rate 

to solve the riskfree rate by using the joint lognormality assumption for consumption growth and 

asset returns.  See e.g. Campbell’s (2003) eq. (23) for such a solution.  But if the test result 
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on the consumption Euler equation is negative, it is necessary to calculate the riskfree rate from 

the second Euler equation alone, provided that the return on the optimal portfolio is known.  

Therefore, knowing if the consumption Euler equation holds will be helpful in assessing whether 

the EZW model can resolve the riskfree rate puzzle.6   

A full evaluation of this model should also estimate all the three parameters above.  Many 

authors have estimated them in various contexts, but so far few of them have estimated them 

altogether, and none of them have accounted for human capital and weak identification at the 

same time.  It is therefore of great interest to see how estimates of the three parameters above will 

be affected when these two important factors are both taken into account at the same time.  This 

may help to address issues created by puzzling empirical findings on preference parameters.  For 

example, most economists are more comfortable with a time discount factor smaller than 1 than a 

discount factor that is larger than 1, and there have been lots of empirical evidence for it.  But in 

the empirical asset pricing literature, estimates of discount factor larger than 1 are not rare (See 

e.g. Hansen and Singleton (1983) and Epstein and Zin (1991)).  Even though it is theoretically 

possible for the discount factor to be larger than 1 (Kocherlakota (1990b)), there is still the issue 

of how to bridge the gap between the empirical estimates in the asset pricing literature and those 

in other areas.  For another example, Jones, Manuelli and Siu (2000) found that the relevant EIS 

values emerging from calibrations of growth models to match macroeconomic facts are usually 

around 1.7  But the EIS estimates based on aggregate consumption data are usually close to zero 

(Hall (1988)).  Furthermore, the estimates based on microeconomic data and those based on 
                                                 
6 If all assets are tradable and the asset Euler equation cannot be rejected for any of their returns, the 

consumption Euler equation cannot be rejected, either, because it is just a linear combination of all the asset 

return Euler equations.  However, since not all assets are tradable and the returns for non-traded assets do 

not satisfy the asset Euler equations, the consumption Euler equation cannot really be written as a linear 

combination of all the asset return Euler equations.  Therefore, it is possible for the test results on the 

consumption Euler equation and the asset Euler equation to differ. 
7 Lucas (1990) pointed out that to understand the cross-country differences in interest rates and 

consumption growth rates, the EIS should at least be larger than 0.5. 
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aggregate data typically contradict each other.  Guvenen (2003a) addressed these EIS issues by 

appealing to limited participation in asset markets and the heterogeneity in EIS across individuals.   

My approach can be viewed as an alternative to his: i.e. I maintain the representative agent 

framework but account for elements that have been known to be important, to see if these issues 

can be addressed differently. 

In this paper, I first propose a new and simple approach to estimate the return on the 

optimal portfolio that incorporates human capital and other forms of financial assets 

aforementioned.  I start from the original (i.e. not log-linearized) dynamic budget constraint of the 

representative agent, and utilize Lettau and Ludvigson’s (2004) cay variable to estimate the 

consumption wealth ratio series and the wealth growth series in order to estimate the return on the 

optimal portfolio.  My approach produces with ease an explicit estimate for the return on the 

optimal portfolio that reflects the returns on human capital and the other financial assets than 

stocks and bonds.  This is useful because it allows for a direct comparison between my estimate 

and the usual proxy for the return on the optimal portfolio used in the previous papers.  For 

example, it will be easy to see how much the statistical properties of these two differ.  More 

importantly, it allows me to fully evaluate the EZW model without assuming lognormality of, and 

conditional homoskedasticity for, asset returns and consumption growth, and without having to 

use the log-linearized Euler equation. 8  It also allows me to avoid the assumptions that were 

necessary in Vissing-JØrgensen and Attanasio (2003) for identifying the EIS and other structural 

parameters, e.g. the assumption on the share of bonds in households’ financial assets.9  Last but 

not least, it will become straightforward to pin down the major determinant of the equity premium 

once such a measure of the return on the optimal portfolio and the model parameter estimates are 

available.  In other woods, it helps me to address a fundamental question in financial economics: 

                                                 
8 Using the log-linearized Euler equation means that the time discount factor cannot be identified. 
9 They assumed that bonds accounted for half of household financial assets. 
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what makes stocks risky, the comovement of stock returns with consumption, the volatility of 

stock prices, or something else?  

I then apply Stock and Wright’s (2000) weak-identification robust asymptotic theory to 

the testing of the asset pricing and consumption implications of the EZW model.  When 

parameters are weakly identified, it is usually impossible to obtain precise point estimates for 

them, although the estimates obtained by the conventional econometric methods ignoring weak 

identification may look precise.  A researcher can, however, construct confidence sets for these 

parameters that account for weak identification.  Stock and Wright’s (2000)  tests are 

developed for this purpose.  The use of their testing approach and my return estimates on the 

optimal portfolio produces remarkable results.  In sharp constrast with the empirical results in 

Epstein and Zin (1991) and Stock and Wright (2000), I find that the model cannot be rejected at 

conventional significance levels for reasonable parameter values.  For example, the 95% 

confidence sets for unknown parameters includes values of RRA around 2 or even lower, values 

of EIS closely around (but exclusive of) 1, and the time discount factor around 0.987.  Some of 

these parameter value combinations are able to match simultaneously the average equity premium 

and average riskfree rate in the data.  They also imply that the dominant determinant of the equity 

premium is, surprisingly, the volatility of stock returns, the risk factor in the traditional CAPM.  

The favorable results for the EZW model are obtained even though aggregate consumption data is 

used, and no market friction or incompleteness is introduced into the model.  Therefore the 

consensus view on the usefulness of the EZW model in understanding asset pricing puzzles no 

longer holds, once human capital and weak identification are accounted for.    

2χ

In addition to using a different approach to account for human capital in estimating the 

return on the optimal portfolio, the present paper differs from Campbell (1996) in several other 

aspects.  First, I directly estimate or test the entire EZW model, while Campbell (1996) mainly 

examined the usefulness of his multifactor pricing model when human capital was taken into 
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account.  Therefore he did not (need to) estimate and test the entire EZW model.  Indeed, the only 

parameter that matters in his pricing model is RRA.  In contrast, I estimate, or test hypotheses on, 

all the parameters of the EZW model.  Second, I account for weak identification of parameters 

caused by weak instruments.  And third, I test the original EZW model with consumption growth 

remaining in the stochastic discount factor (SDF), whereas in Campbell (1996) consumption is 

substituted out.  The first two points are also the distinctions between Vissing-JØrgensen and 

Attanasio (2003) and the present paper.  In Section 6.2, I compare my results with theirs and 

Campbell’s (1996) in greater detail.        

The rest of the paper is organized as follows.  In Section 2, I present my approach of 

addressing the Roll critique, and compare the optimal portfolio return constructed by this 

approach with the usual proxy used in the literature, the value-weighted return on New York 

Stock Exchange (NYSE) stocks.  In Section 3, I briefly review the EZW model.  I present the 

econometric methods used in this study in Section 4.  I then describe the instruments used in my 

econometric analysis along with the data in Section 5.  I report the estimation and test results in 

Section 6.  In Section 7, I discuss related papers and offer some suggestions for future research. 

 
 

2.  Estimating the Optimal Portfolio Return  
 

In this section, I show that the return on the optimal portfolio can be computed from the 

budget constraint once the ratio of optimal consumption to wealth and the growth of consumption 

for the representative agent are known.  Then I present a figure that compares and contrasts the 

estimated return on the optimal portfolio with the value-weighted return on NYSE stocks.  I also 

present a figure on the relationship between the estimated optimal portfolio return and the labor 

income growth to facilitate the discussion on the differences between my approach and those of 

others in accounting for human capital.     
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Consider the following constraint to the representative agent’s utility maximization 

problem: 

                                                               W ,                                                    (1) ( ) m
tttt RCW 11 ++ −=

where W  is the agent’s total wealth, including all financial assets and human wealth, at period t, 

 is his consumption for the same period, and  is the stochastic gross return on his 

portfolio from period t to .  Since W  includes human wealth,  is the weighted average 

of the return on financial assets and the return on human wealth.   

t

tC m
tR 1+

1+t t
m
tR 1+

It should be noted that whether human capital is tradable or not, and whether labor 

income is stochastic or not, (1) is the relevant budget constraint for the agent.  See Epstein (1988) 

and Epstein and Zin (1991, p. 267, footnote 3) for an explanation on why the constraint (1) 

accommodates non-tradable human capital and stochastic labor income.  To recapitulate, a 

shadow value can be calculated for human capital when it is not tradable and the shadow value 

can be included in W .  They also wrote, “The problem of stochastic labor income is, therefore, a 

problem in the measurement of the return on the wealth portfolio.”  On the other hand, Campbell 

(1996), Lettau and Ludvigson (2001, 2004), among others, assumed that human capital is tradable 

and used (1) as the budget constraint.  It should also be noted that the optimal consumption and 

portfolio choices of the representative agent, both of which affect wealth level, must satisfy this 

constraint.  For this reason, and with a little abuse of notation, I henceforth use  in the rest of 

the paper as the optimal consumption, and 

t

tC

tW  as the resulting wealth level from the 

representative agent’s optimal decisions.  Naturally,  from this point on should be 

interpreted as the return on his optimal portfolio.    

m
tR 1+

To understand why knowing the series tt WC  is adequate for calculating the series 

, first rewrite (1) as  m
tR 1+
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Since the first term on the right-hand side of (3), consumption growth, is readily available, I only 

need the series tt WC  to calculate the wealth growth series.  Using the tt W1+W  estimates along 

with the tt WC  series, I can then obtain the return series  using (2).  Under special 

assumptions, such as independently and identically distributed (I.I.D.) asset returns and 

nonstochastic labor income, some consumption/portfolio choice models (including the model 

examined below) imply that the optimal 

m
tR 1+

tt WC  is constant over time and therefore 

tttt CCWW 11 ++ =  in the equilibrium.  But the I.I.D. assumption does not hold in the data.  

With non-I.I.D. asset returns, the EZW model in general implies time varying tt WC  unless the 

EIS is 1.  See e.g. Giovannini and Weil (1989).  Therefore it is useful and important to consider 

time varying tt WC .        

       I now explain how to construct the tt WC  series from Lettau and Ludvigson (2004)’s 

cay variable.  For completeness I provide a brief introduction to their approach and use their 

notation here.  The reader may refer to Lettau and Ludvigson (2001, 2004) for more details.  The 

investor’s wealth W  is the sum of his financial and human wealth: W , where  

stands for financial assets and  stands for human wealth.  Suppose that the steady-state share 

of  in W  is v, a constant.  A loglinear approximation yields (ignoring a linearization constant)  

t ttt HA += tA

tH

tH t

            .                                        (4) ( ) ttt vhavw +−≈  1
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The lower-case variables here are the natural logarithms of the corresponding upper-case 

variables and henceforth, unless otherwise noted.  A key insight in Lettau and Ludvigson (2001, 

2004) is that the non-stationary component of  is captured by , the logarithm of labor 

income.  This motivates the following representation for  

th ty

th

                                                                  ttt zyh ++= κ  ,                                                        (5)  

where κ  is a constant and ) is a zero-mean stationary term.  In the 

expression for ,  denotes the conditional expectation based on information up to time t, 

(∑ −∆= ∞
= ++1j

j
h

h
jtjttt ryEz ρ

]

tz tE

[ ))( tyexp( th h−+= 11 Eρ ,  is the first difference operator, and r  is the logarithm of the 

gross return on human capital.  Substituting (4) and then (5) into c  yields   

∆ h
jt+

twt −

     ( ) ( ) ttttttttttt vzvcayvzvvyavcvhavcwc −−≡−−−−−=−−−≈− κκ 1 1 ,          (6) 

where  is defined to equal .  Now assume that r  is equal to labor 

income growth ( ∆ ) plus a constant (

tcay ( ) ttt vyavc −−−  1 h
jt+

jty + α ) and an additive zero-mean random disturbance 

( jt+ζ ).  Then  becomes a constant.  Denote it as z.  This assumption, which I call the human 

capital return assumption for the ease of exposition in the rest of this section, is different from the 

assumptions used in Campbell (1996), Palacios-Huerta (2003), and Vissing-JØrgensen and 

Attanasio (2003), who did not directly associate the return on human capital with labor income 

growth.  But it is somewhat similar to that of Jagannathan and Wang (1996) who employed labor 

income growth to capture the return on human capital.  However, since I do not need to assume 

that labor income growth is unforecastable as in Jagannathan and Wang (1996), my method is 

also different from theirs.  In addition, the human capital return assumption implies that labor 

income is a constant fraction of human capital over time, which can be seen when one moves  

tz

ty
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in (5) to the left-hand side.10  Therefore it can be argued that this assumption abstracts from other 

determinants of labor income such as effort.  As a result of this assumption, the consumption-

wealth ratio is approximately proportional to ( )tcayexp , i.e. 

( zv( −− κ

)

                                     ( ) ) ( tt
t

t caykcay
W
C exp)expexp ≡⋅≈ ,                                  (7) )

where k is defined to be exp( )( zv +− κ .  Hence the question now is how to pin down k, the 

constant of proportionality in (7).   

If the U.S. economy has been in a steady state, as many economists believe, tt WC  

should fluctuate around its steady-state value.  Since ( )(  WAACW = )C , the steady-state 

value of WC  can be obtained by plugging the steady-state values of the two constituent ratios.  

I assume that the steady state value of AC  is equal to the long-term average of tt AC .  Using 

the consumption and the household net worth data in Lettau and Ludvigson (2004), the average of 

tt AC  in annual terms is 0.1899 for the period of 1959 to 2001.  The household net worth is 

from the Flow of Funds Accounts of the United States compiled by the Federal Reserve System.  

It includes essentially all forms of financial assets: various forms of deposits, stocks, bonds, real 

estate, private equity, and durable goods.  According to Lettau and Ludvigson’s (2004) 

cointegration regression estimates, the steady state ratio of WA  is 1 .  Therefore I 

obtain the steady-state value of 

3022.0=− v

WC  as 0.1899 × 0.3022 = 0.05739 in annual terms, or 0.01436 

in quarterly terms.  Next I assume that the long-term average of the quarterly tWtC  series is 

equal to its steady state value 0.01436.  This means that the time average of the right-hand side of 

(7) is 0.01436.  Given the series  for the period mentioned above, k then can be solved as 

0.00697 for quarterly 

tcay

tt WC  series.      

                                                 
10 This assumption implies that the dividend yield on human capital is constant.  But the return on human 

capital, which includes capital gains on human capital, is not constant. 
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  With the tt WC  series available, the estimation of wealth growth using (3) is 

straightforward.  I then use (2) to estimate the return on the optimal portfolio.  It is important to 

note that the  series calculated by my approach has incorporated human capital, almost all 

financial assets, or their returns.  In other words, it is practically all-inclusive.  Although 

approximations have to be used in my approach, and hence the estimates cannot be expected to be 

perfectly accurate, they are nonetheless likely to be much more accurate than those obtained by 

using financial assets or their returns alone.  In this sense, the Roll critique has been adequately 

addressed in the present paper.   

m
tR 1+

  For a visual inspection of the estimated return on the optimal portfolio in comparison 

with the value-weighted real return on the NYSE stocks, refer to Figure 1.  The (quarterly) means 

of the two series are very close to each other: 1.986% for NYSE stocks, and 1.976% for the 

estimated .  What is striking is how much the volatilities of these two series differ.  The 

standard deviation of the real quarterly return on the NYSE stocks is almost ten times of that of 

: 7.976% v.s. 0.838%.  The small volatility of the estimated  should have implications 

for the estimation of the EZW model, because its SDF includes , and a consumption-based 

asset pricing model relies on sufficiently volatile SDF to be relevant.  But it does not necessarily 

imply that the EZW model is now more likely to be rejected by the data than when the usual 

proxy for  is used, as the reader will see in Section 6 of this paper.  One reason for the non-

rejection of the EZW model is that the volatility of the estimated  is still much larger than 

that of the consumption growth, and they are positively correlated, making the overall volatility 

of the SDF implied by the EZW model larger than the standard C-CAPM.

m
tR 1+

m
tR 1+

m
tR 1+

m
tR 1+

m
tR 1+

m
tR 1+

11  The major reason, 

                                                 
11 The real per person growth of the consumption measure used in this paper has a standard deviation of 

0.46% at the quarterly frequency.  See Section 5 for data description.  
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though, is that  is raised to a certain power in the SDF, and it is the overall volatility of this 

whole term that matters.  See Section 3 for more details.   

m
tR 1+

h
tR

  The substantial volatility difference between the estimated  and that of the value-

weighted return on NYSE stocks is due to the fact that the major component of the estimated 

 is the return on human capital, and the volatility of the latter is much smaller than that of the 

stock returns.  To understand this point, note that  

m
tR 1+

m
tR 1+

            ,                                             (8) ( ) h
tt

a
tt

m
t RvRvR 11111 1 +++++ +−=

where  and  are the gross returns on financial assets and human capital, respectively, 

and  is the share of human capital in the total wealth.  Since v is about 70% as mentioned 

earlier,  should fluctuate around it.  This gives the return on human capital a weight of about 

70%.  In addition, the human capital return assumption implies .  

So the volatility of , and hence the volatility of , depends on the volatility of the labor 

income growth (and that of 

a
tR 1+

1+

1+tv

1+

h
tR +

tv

( )111 exp +++ +∆+= tt
h
t yR ζα

1
m
tR 1+

tζ ).  For the sample period, the standard deviation of the real per 

person after-tax labor income growth is 0.865%, very close to that of for the estimated .  I 

present in Figure 2 the estimated  and the labor income growth.  It is clear that the two series 

move together most of the time and share the same pattern of fluctuations. 

m
tR 1+

m
tR 1+

 

3. The Epstein-Zin-Weil Model 
 

  In the EZW model, the representative agent is endowed with a recursive utility function 

that isolates his risk preference from his willingness to substitute consumption over time.  He 

chooses consumption and portfolio weights on N assets to maximize 
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subject to the budget constraint (1) and the constraint that the portfolio weights add up to 1.  One 

of the N assets is human capital, though it may not be tradable.  In this formulation, β  is the time 

discount factor for the deterministic consumption path, RRA1−=α , EIS1= 1−ρ  and 

0≠ρ .  Following Epstein and Zin (1991) and others, I define ραλ =  and EIS1=γ  to write 

the Euler equations for asset returns as follows 
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Here  is the gross return on asset j from period t to t + 1.  The consumption Euler equation 

is 

1 , +tjR
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1 =

















+

−

+







 λ
λγ

λβ m
t

t

t
t R

C
CE .                                                     (11) 

Clearly, the presence of  in the Euler equations (10) and (11) means that accounting for 

human capital and other financial assets than stocks in measuring the return on optimal portfolio 

is very important.  Given the substantial difference between the volatilities of the estimated  

and its proxy the aggregate returns on NYSE stocks, it is imperative that a test of the EZW model 

uses the correct measure of the optimal portfolio return.  This is because such a large difference 

should affect the 

m
tR 1+

m
tR 1+

λ  estimate substantially, which in turn influences the estimates of EIS and 

RRA.  The reason that the λ  estimate should be heavily affected is that a small volatility in  

requires a large 

m
tR 1+

λ  (in absolute terms) to make the SDF sufficiently volatile.  Since 

( ) ( )EIS1RRA1−= 1−λ , a combination of low RRA and EIS around 1 can produce a large λ  
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value.  This is essentially the major reason for the non-rejection of the EZW model for reasonable 

values of β  and RRA, and plausible values of EIS.   

E

s
m r ,

m
tR +

 The unconditional version of (10) can be log-linearized using the joint lognormality 

assumption for consumption growth and asset returns to show that the following decomposition 

holds for the average equity premium over the return on Treasury bill (T bill henceforth).  Both 

the stock and T bill returns below are in logarithmic terms: 

              ( ) ( )( ) (
bsb

m
s

m
sb

rcrcrrrr
rr

bs rr  , , , ,

22

1
2 ∆∆ −+−−+
−

=− σσλγσσλ
σσ

,                (12) )

where the subscript s and b denote stocks and T bills, respectively, a  denotes variance, a 2σ σ  

with double subscripts is for covariance, and  is for consumption growth.  As noted in 

Campbell (1996), the first term on the right-hand side of (12) is due to Jensen’s inequality.  The 

term 

c∆

rσ  captures the “market risk” of holding stocks, i.e. the covariation of (log) stock 

returns with the (log) return on the entire wealth portfolio, and 
src  ,∆σ  captures the consumption 

risk of holding stocks.    

In addition, the value of the real gross risk-free rate  when the  series and the 

values of the three parameters are known can be computed from (10) by setting  as 

follows 

fR m
tR 1+

R ftj R=+1,

  
( ) ( ) 



 −

+
−

+
1

11

1
λλγλβ m

ttt RCCE
=fR .                                              (13)      

In the next section, I discuss how to estimate or test the EZW model using (10) and (11) 

with the  series calculated from (2).  In Section 6, I use the sampling counterparts to (12) and 

(13) to help validate a confidence set of unknown parameters constructed using Stock and Wright 

(2000)’s method: given the estimates of the mean, variances, and covariances in (12) and a 

1
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reasonable estimate of the riskfree rate, is there any combination of reasonable λ  and γ  values 

(along with β for the riskfree rate) in a confidence set that is able to match the mean equity 

premium and the risk-free rate at the same time?  For this purpose, it is helpful to note that the 

sample variances and covariances in (12) are as follows:  

=
b

 , b
m r

6

927

  , , ,  52 10760.2ˆ −×rσ 32 10528.6ˆ −×=
srσ 4

 , 10979.3ˆ −×=
s

m rrσ

  , , .   610312.5ˆ −×=rσ 5
 , 10907.4ˆ −

∆ ×=
srcσ  , 10215.2ˆ −

∆ ×=
brcσ

Which of the two risks captured by the EZW model is more important in determining the 

equity premium obviously depends on the sizes of λ  and γ .  First, if 1=λ  the “market risk” 

does not matter, only the consumption risk does.  This, of course, is the major implication of the 

standard expected utility C-CAPM that has been studied extensively in the literature.  Second, if 

0=λ , only the “market risk” matters.  Under this condition, (12) becomes a version of the 

CAPM extended to incorporate the human capital and financial assets other than stocks.  Third, 

since the “market risk” 
s

m rr  ,σ  is one order of magnitude larger than the consumption risk 
src  ,∆σ  

as shown above, if the magnitudes of the two coefficients λ−1  and λγ  in (12) are close to each 

other, then the “market risk” dominates the consumption risk in determining the equity premium.  

Furthermore, the “market risk” itself can be decomposed into the following three components  

      , ( )( ) ( ) 2
 , , , 111

sosss
m rrrryrr vvv φσσφσσ −+−−+= ∆

where φ  is the share of financial wealth invested in stocks, and  stands for the return on other 

financial assets than stocks.  To understand what drives the “market risk,” it is useful to note that 

, and .  After taking into account the weights, the first 

component of the “market risk” in the last equation is still on the order of 10 , and the third 

component is on the order of 10  for possible values of 

or

510.1 ,ˆ −×∆ sryσ = 310528.62ˆ −×=
srσ

4−

5−

φ .  The second component of the 
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“market risk” is hard to pin down because no estimate for the return on other financial assets than 

stocks is available.  It is, however, possible to show that 
os rr  ,σ  can be of orders of magnitude 

from 10  to 10  for possible values of 4− 6− φ .12  Therefore, as long as the magnitudes of the two 

coefficients λ−1  and λγ  in (12) are close to each other, the volatility of stock returns ( ), 

and possibly, the covariation of stock returns with returns on other financial assets (

2
srσ

os rr  ,σ ), will 

be the driving force(s) of the “market risk.”  Since I have shown that under the same conditions 

on these coefficients, the “market risk” dwarfs the consumption risk in determining the size of the 

equity premium, this result implies that the volatility of stock returns alone can be the dominating 

determinant of the equity premium.   

1+
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4.  Econometric Methods 
 

        I now substitute the estimated  as described in Section 2 into (10).  This yields the 

following Euler equations for asset returns: 

m
tR

               ( ) 0)exp(1
exp

,

1
1

1)
1 =⋅−

−










 +
−





+
j

t
tt

t
t

t Rk
cay λ

,       j =1, …, N.            (14) 

Recall .  Now define )γβ  ,=µ , and denote the true value of µ  by µ .  Let 

, +tjε  be the bracketed term in (14), and , where  

is the number of assets used in a test.  Let the p-vector  be a subset of the representative 

( )′= + )(..., )( 1 ,  µµ tmεε+1εt

 
12 For example, given , for 410979.3ˆ −×

r
σ %5.12=φ , 15%, or 20%, the second component of the 

market risk is 1 , , or − , respectively.  All the three 410− 510872 −× 610844 −× φ  ratios used here 

have been observed in the data.    
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agent’s information set up to time t.  Define , where  is the Kronecker 

product.  Then  are the 

( ) ( ) ttt Zµεµφ ⊗++ = 11 ⊗

( ) 0µφ =+ )0(1tE pm ×  orthogonality conditions that can be employed in 

estimating and testing asset pricing implications of the model.  Let ( ) ( ) ( )∑ =
T
t tT 1 1 µφµφ = .  

The GMM criterion function is a quadratic form in ( )µφ , 

( ) ( ) ( )µφµWµφ   µ; TT ′≡

( )µ

µ

( 0µφ

2

  ( )µTS ,                                       

where T is the sample size.  The efficient weighting matrix is written as WT  to accommodate 

the case in which it continuously updates with µ  in estimation.  The minimizer µ  obtained with 

such a weighting matrix is known as the continuous updating GMM estimator.  See Hansen, 

Heaton, and Yaron (1996).  The conventional two-step GMM estimator, on the other hand, uses 

weighting matrices that do not update with 

ˆ

.  There is no reason to think that conditional 

homoskedasticity holds for .  So I will use a heteroskedasticity-robust weighting matrix.        )

  It is well known that the small sample properties of the conventional two-step GMM 

estimator and the associated test statistics are not satisfactory when they are used to test C-CAPM 

models.13  For example, the minimum  test (i.e. Hansen’s J test) tends to over-reject in testing 

the time- and state- separable C-CAPM.  On the other hand, Hansen et al. (1996) showed that the 

minimum  test based on the continuous updating GMM estimator has smaller size distortions 

in the finite sample than those based on the two-step and iterative GMM estimators.  Stock and 

Wright (2000) developed an alternative asymptotic theory for the continuous updating GMM 

estimator that is robust to the presence of weak instruments, i.e. instruments that are weakly 

correlated with the bracketed term in (10).  Weak instruments cause at least some parameters to 

be weakly identified.  Stock and Wright (2000) documented that models of the C-CAPM are 

χ

2χ

                                                 
13 See e.g. Ferson and Foerster (1994). 
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usually weakly identified.  Since I am not aware of any other paper in asset pricing that uses their 

approach, I provide a brief, non-technical, introduction to it here.   

  They propose two methods to test jointly the model specification and the null hypothesis 

 via the construction of a confidence set for the unknown parameters.  The first method 

uses the following property of the criterion function of the continuous updating GMM (i.e. 

Theorem 2 in their paper):  

0µµ =

( ) 2
00   ; pmT

d
S ×→ χµµ , 

where pm ×  is the degree of freedom of the  distribution.  This result holds without any 

additional assumption on instrument validity except that .  This is how the test 

above can accommodate weak instruments and therefore weakly identified models.  The set of 

parameter values  that do no generate a large  relative to the 

2χ

TS

( ) 0µφ =)( 0E

)00µ ( 0;µµ %α  critical value of 

the  distribution is called the 2
pm ×χ )%1( α−  joint S set for all the parameters in Stock and 

Wright (2000). 

  On the other hand, it is possible that some parameters in the model are well identified 

while others are not.  In such a case, a different confidence set for the weakly identified model 

parameters can be constructed according to Theorem 3 in Stock and Wright (2000).  The 

construction of this confidence set involves two steps.  First, estimate the well-identified 

parameters for various values of the weakly identified parameters using the continuous updating 

GMM.  Second, evaluate the continuous updating GMM criterion function using various values 

of the weakly identified parameters and the corresponding estimates for the well-identified 

parameters.  The continuous updating GMM criterion function so evaluated converges in 

distribution to a  statistic, where w is the number of well-identified parameters.  The 

collection of values of the weakly identified parameters that enable a model to pass the  

2
wpm −×χ

2
wpm −×χ
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test at the significance level %α  is called a )%1( α−

p×

 concentrated S set, because the well-

identified parameters are concentrated out in constructing the S set in this case.  This result relies 

on stronger assumptions than those for the  test above, and I refer the reader to Stock and 

Wright (2000) for technical details.  Importantly, the size distortion of their  tests of model 

validity described above is much smaller than that of the conventional GMM asymptotics in 

Hansen (1982). 

2
mχ

2χ

1

  If a model is correctly specified, when it is run through the entire parameter space at a 

certain significance level α , the ( )%α−  joint S set, or a )%1( α−  concentrated S set should 

not be null.  A null S set indicates the rejection of the over-identifying restrictions and therefore 

the rejection of the model being tested.  A small S set causes some ambiguity: it could indicate 

that the model is not rejected, and the parameters are precisely estimated, or that the data is too 

weak to reject the model completely.  How to formally handle the ambiguity associated with a 

small S set seems to be a gap in the literature.  But intuitively speaking, it may be sufficient to use 

the sampling counterparts to (12) and (13) to validate an S set as explained at the end of Section 

3.  The idea is that if no single element of a small S set can nearly produce the average equity 

premium and the risk-free rate (as approximated by the T bill rate) observed in the U.S. data, this 

S set is considered invalid.  Another measure that I adopt is to check if the S set elements can pass 

the boundary conditions for the EZW model.  See Section 6.1.C below. 

  Stock and Wright (2000) described symptoms of weak identification in GMM estimation.  

These include, but are not limited to, the following: the parameter estimates from asymptotically 

equivalent GMM estimators are very different from each other, the estimates are not robust to the 

addition of instruments, inferences on model specification are sensitive to the particular GMM 

estimator used, and a confidence set for the 2-step GMM estimates has substantial areas of 

disagreement with a comparable S set.  For the purpose of determining the existence of weak 
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identification, and for comparing the test results associated with different GMM estimators, I will 

report estimation and test results based on 2-step GMM, continuous updating GMM using the 

conventional Hansen (1982) asymptotics, and results using Stock and Wright’s (2000) weak-

identification robust asymptotic theory.  I will start with the Euler equations for asset returns, i.e. 

eqs. (10) or (13), and then move to estimate and test the consumption Euler equation (11).   

 

5.  Instruments and Data 
 

Since the goal of this paper is to investigate if the EZW model can solve the equity 

premium puzzle and the risk-free rate puzzle, I use two quarterly returns to test the asset return 

Euler equations (10): the value-weighted real return on NYSE stocks (rvwrq henceforth) and the 

real return on U.S. Treasury bills (rtbillq henceforth).14  The consumption measure that I use is 

real per person nondurable goods and services expenditure excluding clothing and shoes, 

seasonally adjusted and in 1996 chain-weighted dollars.15  Other measures of consumption are not 

used because the cay estimates are based on this particular definition of consumption in Lettau 

and Ludvigson (2004).  The real after-tax labor income per person, used as an instrument, is also 

the same as in their paper.  The rvwrq and rtbillq, along with the real dividend yield (rdivq 

henceforth) and the bond default premium used below as instruments, are compounded from 

monthly counterparts.  They are taken from Ibbotson Associates (2002).  The term premium is the 

                                                 
14 Epstein and Zin (1991) cautioned that when the return on the optimal portfolio is proxied by rvwrq, it is 

usually not adequate to use just these two returns to test their model.  This is not a problem here because I 

do not use this proxy for the return on the optimal portfolio. 
15 The use of this measure of consumption means that the wealth portfolio in Section 2, W, should include 

the stock of clothing and shoes, which are not included in the household net worth measure reported by the 

Fed.  This is not problematic because their share in A, and therefore W, is very small.  For example, let’s 

assume that the stock of clothing and shoes per person were $5,000 by the end of 2001.  It would be about 

4.15% of A by then.  Since A is only 30% of W, the stock of clothing and shoes would only be 1.25% of W. 
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difference between the rates of return on U.S. Treasury bonds and bills.  The sample period is 

from the first quarter of 1959 to the fourth quarter of 2001. 

I use four sets of instruments in testing the asset return Euler equations.  Set 1 consists of 

four instruments: a constant and the first lags of real quarterly consumption growth, rdivq, and the 

term premium.  The real dividend yield and the term premium have been used in other studies as 

instruments of stock returns; see e.g. Stock and Wright (2000).  Instruments set 1 is very close to 

the two sets of instruments used in their paper, which used monthly data.  The only difference is 

that here I have dropped their first-lagged “MR” (return on stock market portfolio) because at 

quarterly frequency the first order serial correlation of rvwrq is too weak for it to be a relevant 

instrument.  The second set of instruments consists of Set 1, and the first lags of rtbillq and the 

quarterly after-tax per capita labor income growth in real terms.  The first order serial correlation 

coefficient for the rtbillq series is somewhat high (0.35), and it could therefore be a valid 

instrument for the T bill return.  In addition, I find that the labor income growth forecasts stock 

returns with a large coefficient at the 5% level of significance.  This is why labor income growth 

is included in Set 2.  The third set of instruments includes seven instruments: those in the second 

set and the bond default premium.  This premium is very close to being significant at 10% level 

in explaining rvwrq in a multiple regression, and it is significant at 10% level in explaining .  

These seven instruments, except the (lagged) consumption growth, are also significant in 

forecasting the estimated  at the 10% level.  So they also serve as the instruments for  

in my tests.   

m
tR 1+

m
tR 1+

m
tR 1+

The fourth set of instruments is the third set augmented by Lettau and Ludvigson’s 

(2004) cay.  I include cay because it has been demonstrated to predict stock returns by Lettau and 

Ludvigson (2001), and it has been used as an instrument in a few papers.  I am, however, 

somewhat skeptical about its use as an instrument in testing the conditional version of the Euler 

equations (10).  This is because in such a test, the instruments should be the variables that are 
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included in the information set of the representative agent up to period t, i.e. information that is 

publicly available up to t.  Despite the predictive power of , it seems very difficult to argue 

that it has actually been in the information set of a typical investor.  It had not at least before 

Lettau and Ludvigson’s study on this issue was published.  Investors might have already used 

components of cay, i.e. consumption, household net worth, and after-tax labor income to forecast 

stock returns.  But they certainly did not know of the particular way of organizing these data that 

Lettau and Ludvigson uncovered, i.e. the cointegrating regression of c on a and y.  Even if some 

of them did, it is still difficult to argue that the “representative” agent’s information set included 

this knowledge.  However, using instrument set 4 as described above in my empirical analysis 

facilitates the comparison between my results and those in the literature that used cay.   

tcay

In estimating or testing the consumption Euler equation of the EZW model, eq. (11), I use 

the following eight instruments: those in instrument set 3 and the second lag of real consumption 

growth.  They are called instrument set 5.  Among these instruments, the first lag of consumption 

growth is to instrument the consumption growth in (11), and the other seven are to instrument 

.  The selection of these seven instruments is based on regressions of  estimates on 

various variables.  Lastly, following the standard practice in the literature in dealing with possible 

time aggregation bias, I also lag each set of instruments by one more quarter in testing.  

m
tR 1+

m
tR 1+

 

6.  Test Results 

   I report the estimation and test results for Euler equations (10) for asset returns in the first 

subsection below.  Then I compare my results with those in the literature in the second 

subsection.  I present the empirical results for the consumption Euler equation (11) in the third 

part of this section. 
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6.1. Results for Euler Equations for Asset Returns 
 
6.1.A.  Estimation by Conventional GMM and Evidence on Weak Identification 
 
       Table 1 collects the estimation and test results for the asset return Euler equations 

produced by two conventional GMM approaches for the four sets of instruments and their lags 

defined in Section 5.  Comparing the 2-step GMM results with those of the continuous updating 

GMM in this table, I find that two patterns emerge and they are consistent with the findings in 

Hansen et al. (1996) and Stock and Wright (2000).  First, the estimates of λ  vary substantially 

across the two GMM estimators employed and across different instrument sets in the continuous 

updating GMM.  For example, in panel 1, the λ  estimates are –33.19 and –100.6 for the 2-step 

and continuous updating estimators, respectively.  On the other hand, the λ  estimate produced by 

the continuous updating GMM changes from –100.6 in panel 1 to –59.94 in panel 2 when two 

additional instruments, lagged labor income growth and lagged rtbillq, are added to instrument set 

1.  The high sensitivity of parameter estimates to the GMM estimator used and to the addition of 

instruments is a sign of weak identification.  Second, the minimum  tests associated with the 

two GMM estimators portray different pictures about the overall fit of the EZW model at the 5% 

significance level in four of the eight cases considered, even though these two estimators are 

asymptotically equivalent.  For example, in panel 1, the  statistic from the 2-step GMM 

suggests that the model is rejected at the 5% level.  But the same statistic from the continuous 

updating GMM, with a p-value of 11.1%, indicates that the model is not rejected at conventional 

significance levels.  Such disagreement also occurs in panels 2, 3 and 8.  Even at the 10% 

significance level, there are still disagreements in test results in three cases (See panels 1, 3, and 

8).  This is another symptom of weak identification I alluded to in Section 4.  In addition, the 

2χ

2χ

γ  

estimates also vary a lot overall, though in the top four panels they seem to be around 0.96.16  See 

                                                 
16 These estimates are centered on 1, suggesting that the EIS could just be 1.  It is, however, difficult to test 

the restriction 1=γ , because an assumption underlying the Euler equations (8) is that 1≠γ  (so that 
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e.g. the γ  estimate of 0.52, 0.59, and 0.68 at the bottom two panels.  Moreover, given that γ  is a 

part of the exponent of consumption growth in the SDF, and the variation in consumption growth 

is small, it seems difficult to see why it can be well identified.  It is therefore more appropriate to 

treat γ  as weakly identified, along with λ .  Stock and Wright (2000), however, treated β  and 

λ  as well identified, and γ  as weakly identified.  The difference between their treatment and my 

treatment of these parameters, given that we use similar instruments, can be attributed to the fact 

that my estimate of  is much less volatile than the value-weighted return on NYSE stocks that 

they used.  In other words, the small variability in  makes the identification of 

mR

mR λ  difficult in 

my context, since λ  is the exponent of  in the Euler equations.  The large volatility of the 

aggregate stock return used as the proxy for the optimal portfolio return in their paper, on the 

other hand, may have made 

mR

λ  well identified in their context. 

λ

                                                                                                                                                 
≠ 0ρ 1=γ

  The discussions above on results in Table 1 suggest that the conventional GMM 

asymptotics are not adequate for assessing if the EZW model fits data well due to the weak 

identification problem.  To further verify this point, I follow Stock and Wright (2000) to compare 

the confidence ellipses for the 2-step GMM estimates with the S sets to see if there are substantial 

areas of disagreement.  To implement their approach, I need to run the model through the entire 

parameter space to search out the combinations of parameter values that are not rejected by the 

data.  Table 2 presents the parameter ranges and increments used in this search.  Note that 1=  

).  Imposing  changes the Euler equation to a form that includes an unknown function of the 

state of the economy.  See Giovannini and Weil (1989).  They also showed that with a Markovian and 

lognormal return on optimal portfolio, it is possible to derive the explicit Euler equation for the case of 

unitary EIS.  But even in that case, the RRA cannot be identified without very strong assumptions.  

Furthermore, the Markovian assumption is not satisfied for my estimates of the  series.  An AR(4) 

regression for this series indicates that only the third lag of  is significant (at 5% level); the first lag has 

a slope coefficient of 0.056 with a t statistic of 0.78.   

mR

mR
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is included in the search to test for an alternative to the EZW model, the expected utility C-

CAPM.   

  I now present in Figure 3 more definitive evidence on weak identification.  This figure 

plots for different sets of instruments the 95% confidence ellipses for the 2-step GMM estimates 

of λ  and γ  and the 95% concentrated S sets for these two parameters.17   See the explanations at 

the end of Fig. 3.  There is not a graph for the case of instrument set 4 because the corresponding 

95% concentrated S set is empty.  For two of these seven cases, i.e. parts (c) and (g), there is no 

overlap between confidence region and S set.  For each of the remaining five cases, there is 

substantial area of disagreement between confidence region and S set.  Non-overlapping and 

substantial area of disagreement are both important signs of weak identification that Stock and 

Wright (2000) emphasized.  Therefore it is necessary that weak identification be taken into 

account in the empirical analysis.   

 

6.1.B.  Results of S Set Analysis 

  I summarize the results of S set analysis based on instrument sets 1, 2, and 4 in Table 3.  

The results based on instrument set 3 are similar to those based on instrument sets 2 and 1, and 

are not reported to conserve space.18  I will, however, present some results for each of the four 

instrument sets in Table 4.   

 In Table 3, the reader can see that when instrument sets 1 and 2 or their first lags are 

used, the S set analysis overall presents favorable evidence for the EZW model at the 5% level of 

significance.  Out of twelve S sets, only one is null.  This is the concentrated S set for λ  for 

instrument set 2.  It is obtained by assuming that β  and γ  are both well identified.  But as 

mentioned in Section 6.1.A., the relatively large variation in γ  estimates in Table 2 indicated that 

                                                 
17 The result of the comparison between the non-empty 90% S sets and the 90% confidence ellipses is very 

similar. 
18 These results and other results not reported to preserve space are available upon request. 
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it is difficult to treat γ  as well identified.  Therefore the nullity of this S set is more likely to 

indicate the inappropriateness of the assumption that γ  is well identified than to indicate the 

rejection of the EZW model.  Such a conjecture is consistent with the fact that the range of γ  is 

much wider than the range of β  in the 95% joint S sets for ( β , λ ,γ ) reported in the upper panel 

of Table 3.  While β  values are very tightly around 0.986 and therefore very close to the 

estimates of β  in Table 2, γ  values change from 0.4 to slightly larger than 1 when instrument 

sets 1 and 2 are used.  The range of λ  values in the 95% joint S sets is even wider than that of γ , 

mirroring the wide range of γ  estimates in Table 1.  These large variations reflect the weak 

identification of these two parameters.  Due to the wide ranges of λ  and γ , RRA values in all 

the S sets reported in this table also swing widely because ( )γλ −−1= 1RRA  in the EZW 

model.  Some of the RRA values are far away from a typical economist’s prior.  For example, 

several S sets include RRA values as low as 0.0025.  Such values will be examined using (12) and 

(13) later in this subsection: if they, along with the corresponding γ  values, cannot produce 

reasonable equity premia and risk-free rate, they should have been rejected by the S set testing in 

the first place.  What is more important here, though, is the fact that these ranges all include 

values that imply what economists believe to be the reasonable values of RRA and EIS.  They 

indicate that the EZW model is not rejected for these values of RRA and EIS (along with 

reasonable values of β ).  See the two columns labeled “RRA” and “EIS” in each panel of Table 

3.  The EIS values in this table are higher than many estimates in the literature that are smaller 

than 1. 19, 20  But it should be noted that estimates larger than 1 are not at all unusual.  See e.g. 

                                                 
19 See Hall (1988), Campbell and Mankiw (1989), Patterson and Pesaran (1992), Atkeson and Ogaki 

(1996), Ogaki and Reinhart (1998), Evans (2000), Basu and Kimball (2002), Vissing-JØrgensen (2002), 

Yogo (2004), among others, for estimates of EIS smaller than 1.  Vissing-JØrgensen (2002) also had some 

EIS estimates larger than 1.  Attanasio and Weber (1993) reported EIS estimates based on cohort data that 

were larger than 0.7 and statistically not different from 1. 
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Vissing-JØrgensen and Attanasio (2003), Koskievic (1999), Beaudry and van Wincoop (1996), 

Bufman and Leiderman (1990), and Attanasio and Weber (1989) for EIS estimates that are much 

larger than 1, or even multiples of 1.  The smaller EIS estimates that the other authors found 

could be due to two reasons.  First, they usually assume conditional homoskedasticity of 

consumption growth.  Bansal and Yaron (forthcoming) and Guvenen (2003a) showed that such 

an assumption leads to a serious downward bias in the EIS estimates.  Bansal and Yaron 

also demonstrated that an EIS value of 1.5 (and a RRA value of 10) in their model helps 

to explain several asset pricing puzzles.  Second, these other authors usually avoid the use of 

and hence use log-linearized Euler equations.  For example, Yogo (2004) also accounted for 

weak identification in estimating the EIS and found small estimates, but he used the log-

linearized version of (10).   

mR

β

  The S set analysis using the fourth set of instruments and its lag, however, delivers mixed 

results.  First, the 95% S sets, concentrated or not, are all empty when the fourth set of 

instruments is used.  See the two rows labeled “Set 4” in Table 3.  This is evidence that the EZW 

model is rejected at the 5% level of significance.  Second, when the fourth set of instruments is 

lagged one more quarter, the S sets are not null any more.  Two of them, the joint S set for 

( , λ ,γ ) and the concentrated S set for ( λ ,γ ), imply similar values of RRA and EIS to those in 

S sets based on instrument set 1, 2, and 3.  They are favorable evidence for the EZW model.  The 

concentrated S set when β  and γ  are both treated as well identified is not null and the implied 

RRA values are all above 26.  However, our discussions above indicate that γ  should not be 

treated as well identified.  So this S set does not carry much weight either way.   

                                                                                                                                                 
20 The relevant EIS values for resolving the equity premium puzzle and the riskfree rate puzzle are around 

1.  See Table 4 below.  
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  So far the results that I have reported are for the 5% significance level.  At the 10% level, 

when the instrument sets 1 to 4 are used, the 90% joint S sets for ( β , λ ,γ ) for instrument sets 1 

and 3 and the 90% concentrated S set for ( λ ,γ ) for instrument set 1 remain non-empty.  But the 

joint S set for ( β , λ ,γ ) for instrument set 2 and the concentrated S sets for ( λ ,γ ) for 

instrument sets 2 and 3 become empty.  When the instrument sets 1 to 4 are lagged one more 

quarter, the joint S sets for ( β , λ ,γ ) and the concentrated S sets for ( λ ,γ ) are all non-empty.  

To summarize, there is strong evidence for the EZW model even at the 10% level.    

 

6.1.C.  The Resolution of the Two Puzzles and the Major Determinant of Equity Premium  

  All the non-empty S sets include reasonable values for β  and combinations of λ  and γ  

values that imply RRA values around 2 or smaller, and EIS value around 1.  See Table 4.21  

(Similar combinations can be found in 90% S sets obtained with twice-lagged instruments and are 

not reported to conserve space.)  For example, the joint S set for ( β , λ ,γ ) for instrument set 1 in 

panel 1 of this table includes λ  and γ  combinations that imply RRA values of 0.95 and 1.98 for 

EIS values of 0.999 and 1.019, respectively.  The corresponding β  values imply reasonable time 

discount rates around 5.2% in annual terms.  The last two columns of this table report the 

quarterly equity premium implied by the λ  and γ  values of each row using the sampling 

counterpart to (12), and, for the joint S sets in the upper panel, the quarterly riskfree rate 

calculated using the sampling counterpart to (13) by plugging the β , λ , and γ  values of each 

row.  For the 1959-2001 period, the average quarterly equity premium is 1.5%, and the average 

quarterly T bill rate is 0.46%.  It is clear that in five of the six S sets, the combinations of λ  and 

γ  values reported in this table are able to match the exact average equity premium in the data.  

These five S sets are the joint S sets for ( β , λ ,γ ) for instrument set 1 and 3, and the 

                                                 
21 For this table, to further pin down the values of β , RRA and EIS, I use smaller increments of 10  for 4−

β  to rerun the S set analysis throughout the parameter space specified by the S sets presented in Table 3.   
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concentrated S sets for ( λ ,γ ) for instrument sets 1, 2, and 3.  For instance, in the joint S set for 

instrument set 1, a combination of 5.51−=λ  and 981.0=γ  generates the right size of the 

equity premium.  The remaining one of the six S sets, the joint S set for ( β , λ ,γ ) obtained with 

instrument set 2, has parameter value combinations that produce quarterly equity premia around 

1.4%.  In terms of matching the riskfree rate, all the three joint S sets contain parameter value 

combinations that produce the right size of the rate at the same time that they match (or almost 

match, in the case of using instrument set 2) the average equity premium.  On the other hand, the 

RRA value 0.0025 and the like usually produce negative, or positive and very small (relative to 

0.46%), riskfree rates (not reported in Table 4), although they show up in a couple of S sets in 

Table 3 as mentioned earlier.  For example, in the concentrated S set for ( γλ  , ) for instrument set 

3, the RRA of 0.0025 corresponds to a riskfree rate of –2%.  Hence these RRA values should not 

have been part of an S set.   

δ

RRA+ M

  Furthermore, as yet another check on the validity of these results, I also examine if the 

parameter value combinations in the upper panel of Table 4 can satisfy the two boundary 

conditions in Smith (1996) for the consumption and portfolio choice model in Svensson (1989) 

that features the EZW preferences.  The solutions in Svensson (1989) require a constant riskfree 

rate and still hold with deterministic labor income and tradable human wealth.  The Euler 

equatoins (10) in the present paper can accommodate these three variations.  Therefore, I can take 

the parameter values in the joint S sets reported in Table 4, if they are interpreted as the evidence 

for this particular version of (10), to the boundary conditions in Smith (1996) and see if the two 

conditions hold.  It will be reassuring if they hold.  Let  denote the time preference rate.  Let M 

denote 21  times the square of the Sharpe ratio.  The feasibility condition says that the 

consumption-wealth ratio must be positive, i.e. ( )( )[ ] 0EIS11EIS >− rf−δ .  The 

transversality condition is ( ) ( ) 0RRA1EIS <−+ MEISEIS1 ++ rf−δ .  This restriction 
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ensures that the value function implied by the EZW utility function converges.  The results of this 

exercise are in Table 5.  Fortunately, the parameter value combinations that produce the right 

equity premium and riskfree rate satisfy both the feasibility and the transversality conditions. 

  Therefore, once the role of human capital and financial assets other than stocks is 

appropriately accounted for, and the impact of weak identification is correctly reflected in 

statistical inference, the EZW model can resolve the twin puzzles at the same time.  The 

parameter-value combinations reported in Table 4 demonstrate that in this model, not only the 

equity premium of 6% per year can be consistent with the low RRA’s, but also the low risk-free 

rate in the data does not require the time discount factor β  to be larger than 1.  As is well known, 

in the standard expected utility C-CAPM with the power utility function, a very high RRA is 

necessary to explain the six percent equity premium and, at the same time, a discount factor larger 

than 1 is needed to accommodate a low riskfree rate in the equilibrium.  The RRA estimate based 

on evidence on many observed economic decisions is, however, around 2.  It is also hard, 

intuitively speaking, to accept a time discount factor larger than 1.  These tensions were exactly 

what gave rise to the twin puzzles of equity premium (Mehra and Prescott (1985)) and risk-free 

rate (Weil (1989)).  Since none of the S sets above contain 1=λ , which is required by the 

standard expected utility C-CAPM, the S set analysis unequivocally rejects the standard expected 

utility model and favors the EZW non-expected utility model. 

  So what explains the size of the equity premium in this model?  Recall that in (12) the 

second covariance term for consumption risk is one order of magnitude smaller than the first for 

“market risk.”  Since the λ  and γ  values reported in Table 4 imply that the absolute values of 

λ−1  and λγ  are close to each other, the major determinant of the equity premium is the 

“market risk.”  This in turn implies that the dominating determinant of the equity premium is the 

volatility of stock returns (and possibly, the covariance of stock returns and the returns on other 

financial assets) as I explained at the end of Section 3.  Therefore, the success of the EZW model 
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in resolving the equity premium puzzle is ultimately linked to the risk factor that the traditional 

CAPM emphasizes.22  Of course, if the traditional CAPM were true, 0=λ  must hold in (12).  

But none of the S sets reported in Table 3 contains 0=λ .  Therefore the traditional CAPM is 

still formally rejected.   

β  I also bring to the reader’s attention that the  estimates are all smaller than 1 in 

statistically significant terms in Table 1.  Remarkably, it still holds in S set analysis, as can be 

seen in Tables 4 and 5.  This could be due to the incorporation of the human capital return in my 

estimates of the optimal portfolio return.  

 

6.2.  Comparison with the Related Empirical Results in the Literature 

  The empirical analysis in Epstein and Zin (1991), which assumed away the return on 

human capital and was conducted before weak-identification in the sense of Stock and Wright 

(2000) was recognized as a problem, rejected their own model for the most part.  Because of the 

volatile proxy that they used for , their m
tR 1+ λ  estimates fall between –0.412 and 0.141, and their 

EIS estimates were always somewhat below 1.  As a result, the RRA estimates in their paper were 

centered on 1.  Their results can be compared with those in Table 1 of the present paper for us to 

understand the impact of accounting for human capital but not weak identification.  For example, 

thirteen of the sixteen RRA estimates 1  implied by the results reported in Table 1 are 

larger than 1.  These higher RRA estimates are consistent with the finding in Campbell (1996) 

that incorporating human capital raises RRA estimates in the conventional GMM framework.  

The EIS estimates 

(1− )γλ ˆˆ−

γ̂1  are larger than 1 except in three cases, though it is difficult to judge if 

they are statistically different from 1 as explained in Footnote 16 in Section 6.1.A.  But in terms 

                                                 
22 This finding is similar in spirit to the result in Campbell (1996) that the cross-sectional variation in asset 

returns is mainly explained by the market risk, though the market risk in his model is the covariance 

between the return of a portfolio and the aggregate stock return. 
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of statistical inference on model specification, the results in Table 1 are largely the same as those 

in Epstein and Zin (1991).  The results in Epstein and Zin (1991) can also be compared with those 

in Tables 3 and 4 of the present paper for the purpose of understanding the overall impact of 

accounting for both human capital and weak identification. 

  Vissing-JØrgensen and Attanasio (2003) accounted for human wealth in a different way 

in testing the EZW model by extending Campbell’s (1996) approach.  Therefore, it is interesting 

to compare my results with those in these two papers.  Campbell (1996) substituted out 

consumption in his model.  His estimate of RRA was 5.5 in annual data, and 23 in monthly data 

when the share of human capital in total wealth was assumed to be 32  (which is close to the 

0.698 mentioned in Section 2 of this paper).  See Table 6 in his paper.  Under the same 

assumption on human capital share, Vissing-JØrgensen and Attanasio’s (2003) RRA estimates 

were 10.2 and 6.3 for all the stockholders in their Consumer Expenditure Survey sample when 

consumption is not substituted out, and 11.6 when consumption is substituted out; their EIS 

estimate is 1.17.  See Tables 1 (case 3) and 2 (cases 3 and 4 of panel A) of their paper.  These 

RRA and EIS estimates imply λ  estimates of –60.00, –37.06 and –68.24, respectively, for their 

three RRA estimates above.  These estimates, especially the EIS estimate, and what I have 

reported in this paper are somewhat close to each other.23  But my results are obtained using 

aggregate data on consumption and asset returns.  It is usually more difficult to obtain small RRA 

estimates and at the same time to find the model not rejected in the aggregate data.  I have 

estimated or tested the full EZW model, while Vissing-JØrgensen and Attanasio (2003) focused 

on the estimation of two parameters of this model.  Campbell’s (1996) results can be viewed as an 

indirect test of the EZW model and inform us of the size of the RRA needed to explain the asset 

returns in the cross section when the human capital return is modeled in his particular way.  

                                                 
23 It should be noted that the comparison here is between their point estimates and the values of RRA and 

EIS implied by my S sets, because S set analysis does not provide point estimates of unknown parameters.      
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Neither of these two papers tested the full specification of the EZW model.24  I also account for 

weak-identification, but they did (or could) not.  It will be interesting to see how their results will 

change when the weak identification of model parameters is taken into account in their respective 

contexts. 

  Stock and Wright’s (2000) conventional GMM estimates of λ  are between 0 and 1.  

When they accounted for weak identification (but not human capital) in testing the EZW model, 

their joint S set for ( β , λ ,γ ) and their concentrated S set for ( λ ,γ ) produced with twice-lagged 

instruments contain 1=λ , implying that the standard C-CAPM based on the expected utility 

preferences cannot be rejected.  Furthermore, when using instruments that are lagged only once, 

they obtained empty S sets for the EZW model for both sets of instruments that they considered, 

thereby rejecting it.  My results as described in Section 6.1 are in sharp contrast with theirs.  The 

difference between their results and mine attest to the importance of accounting for human capital 

and financial assets other than stocks in evaluating models that involve the return on market 

portfolio and wealth growth.       

 

6.3. Results for the Consumption Euler Equation 

  In estimating the consumption Euler equation using the conventional GMM, both the 2-

step and the continuous updating GMM estimates of the unknown parameters are very sensitive 

to the initial parameter values used.  So are the results for model specification testing associated 

with the continuous updating estimator (not reported to conserve space).  These sensitivities 

suggest that the conventional estimation and testing methods are especially not appropriate for 

estimating this equation when  incorporates human capital and has very low volatility.  

Therefore, it is natural to use the weak-identification robust asymptotic theory of Stock and 

Wright (2000) to conduct the tests of the consumption Euler equation. 

m
tR 1+

                                                 
24 Vissing-JØrgensen and Attanasio (2003) only tested the consumption Euler equation. 
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  I present the results of S set analysis for the consumption Euler equation (11) in Table 6.  

There are both similarities and differences between this set of results and those in Table 3.  The 

similarities are that all the six 95% S sets contain parameter values that imply RRA around 2 that 

correspond to values of EIS closely around 1 and β  values around 0.987, and β  values are all 

smaller than 1.  However, there are three major differences between the two sets of the results.  

First, four of the six S sets in Table 5 contain 1=λ  for reasonable values of β  and RRA, a sign 

that the Euler equation of the standard expected utility C-CAPM cannot be rejected at 5% level.  

This result is robust to variations in instruments.  For example, dropping the default premium, the 

term premium, and the household net worth growth from the instruments list in the testing still 

yields 1=λ  for reasonable values of β  and RRA.  In one particular sense, these results are not 

surprising, nor are they puzzling.  This is because when (11) holds, it should be difficult to reject 

the standard expected utility C-CAPM, as explained by Epstein and Zin (1991) and Kocherlakota 

(1990a).  However, when using a 10% critical value in the test, the hypothesis 1=λ  can be 

rejected for both sets of instruments that do not lag an additional quarter.  Therefore some of the 

evidence for the standard expected utility C-CAPM disappears at the 10% level of significance.  

Second, the range of λ  is now the whole range tested, from –100 to 2.  This is a sign that the 

empirical results here for the consumption Euler equation may not be as informative as those 

based on (10) about the validity of the EZW model.  Therefore the results for the consumption 

part of the model should be interpreted with more caution. 

  To summarize, the test results based on Stock and Wright’s (2000) weak-identification 

robust asymptotic theory for three of the four sets of instruments do not reject at conventional 

significant levels the asset pricing implications of the EZW model for reasonable values of β , 

RRA, and EIS when the human capital return is taken into account.  The fourth instrument set 

includes a variable that was not publicly available, and the test results based on this set of 

instruments may therefore be invalid.  The non-empty S sets obtained with these instrument sets 
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contain combinations of parameter values that produce the right equity premia and riskfree rates 

that match the observed averages of these two quantities in the data.  These parameter values also 

satisfy the feasibility and transversality conditions for one version of the EZW model.  However, 

there seems to be more uncertainty about the consumption Euler equation of the model, because 

to test it is difficult in both the conventional GMM framework and the Stock and Wright (2000) 

framework when the volatility of  is very small.  In addition, the fact that the Euler equation 

of the standard expected utility model cannot be rejected at 5% level also clouds the interpretation 

of the test results on the consumption Euler equation. 

m
tR 1+

   

7.  Discussions and Conclusions 
 
  In this paper, I propose a new and simple approach that accounts for the return on human 

capital (whether it is tradable or non-tradable) and other financial assets than stocks in 

constructing the return on the market portfolio.  My approach produces an explicit estimate of the 

return on the market portfolio that is much less volatile than the usual proxy used in the literature.  

Since there are signs of weak identification for at least two parameters in the model, I proceed to 

apply Stock and Wright’s (2000) weak-identification robust asymptotic theory for the continuous 

updating GMM to the testing of the model by forming S sets, the confidence space of unknown 

parameters.  The overall estimation and test results that I obtain are much different from those in 

the literature.  I find that for three sets of instruments, the asset pricing implication of the EZW 

non-expected utility model cannot be rejected for values of the RRA coefficient around 2 or 

lower, values of the time discount factor around 0.987, and values of the EIS closely around 1.  I 

further demonstrate that some of these parameter value combinations can simultaneously match 

the average equity premium and the average riskfree rate in the real world.  Therefore the use of 

the correctly measured return on the optimal portfolio, along with the proper econometric method 

to take into account weak identification, is indeed very important in testing models of this nature.  
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  The empirical results in this paper are based on U.S. aggregate data that do not 

differentiate between stockholders and non-stockholders.  However, my results on RRA and EIS 

are both consistent with those based on micro data.  My RRA values are in line with the estimates 

obtained from U.K. household level data in a model that stresses limited participation in asset 

markets in Attanasio, Banks, and Tanner (2002).  The EIS values in my paper are consistent with 

the estimates obtained in cohort and household level data, such as Attanasio and Weber (1993) 

and Vissing-Jorgenson and Attanasio (2003).  In addition, these EIS values closely around 1 in 

my results are notable for three other reasons.  First, they are consistent with the finding in Jones, 

Manuelli and Siu (2000) that I alluded to in the introduction that was based on U.S. data.  Second, 

they imply that if Guvenen’s (2003a) conjecture holds (i.e. the EIS estimation based on aggregate 

consumption data mainly reflects the EIS’s of the low-income individuals), then the low-income 

individuals’ EIS’s should be very close to 1, or the EIS’s for the rich should be around 5 given 

their consumption share of 20%.  Otherwise, my EIS results do not support his conjecture.  Third, 

previous high EIS estimates were obtained either with household or U.S. state level data, or with 

aggregate data from economies that have more volatile consumption than the U.S.  

  Several other recent papers have also stressed the role of limited participation in stock 

market in solving the two asset pricing puzzles studied in this paper, see e.g. Brav, 

Constantinides, and Geczy (2002) and Guvenen (2003b), following the lead of Mankiw and 

Zeldes (1991).  My results, however, suggest that both puzzles can be resolved without appealing 

to limited participation or other market frictions when human capital is taken into account.25     

  The finding that the volatility of the stock returns drives the equity premium in the EZW 

model is a surprising one, because as shown in Friend and Blume (1975), this is an implication of 

the traditional CAPM of Sharpe (1964) and Lintner (1965).  It is an implication that the 

proponents of the intertemporal CAPM, especially the C-CAPM, have strongly questioned.  Since 

                                                 
25 Heaton and Lucas (1996) showed that transaction cost cannot explain the size of the actual equity 

premium.   
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my empirical results are obtained in a model that defines the risk of stocks as the covariance 

between stock returns and the marginal utility of investors that Merton (1973) and others have 

stressed, they are strong evidence that the risk factor implied by the traditional CAPM is more 

relevant and more powerful than the C-CAPM in explaining the tradeoff between risk and return 

of financial assets.  They are also consistent with the finding in Mankiw and Shapiro (1989) that 

the traditional CAPM explains portfolio returns much better than the C-CAPM.  However, it 

should be noted that although my results corroborate Friend and Blume’s (1975) finding of RRA 

estimates around 2 obtained in the context of static CAPM, and the CAPM implication that the 

risk of investing in stocks is the uncertainty of stock returns, there are two differences between 

my results and theirs.  First, in Friend and Blume (1975), the market price of risk is just the 

aggregate RRA of all the investors.  This is no longer the case in (12), although quantitatively 

they are still somewhat close to each other.  Second, in Friend and Blume’s (1975) version of the 

CAPM, the only risk that matters in determining stock returns is the volatility of stock returns.  

But in the EZW model, the covariance between the stock returns and the returns on other 

financial assets may also be a significant risk, as explained at the end of Section 3. 

The results in this paper contradict the conclusion in Weil (1989) that disentangling risk 

aversion from the aversion to intertemporal substitution of consumption cannot explain the equity 

premium puzzle and the risk-free rate puzzle at the same time.  It also contradicts the claim in 

Kocherlakota (1996) that the EZW model cannot resolve the equity premium puzzle.  Their views 

are echoed in Campbell (2003).  Weil (1989) reached a negative conclusion on the EZW model 

because he did not take into account human capital.  The reasons that Kocherlakota (1996) 

reached a negative conclusion are two-fold.  First, in his own formulation of the Euler equations 

for asset returns, human capital and the EIS do not play any role.  As a result, his implied Euler 

equation for the equity premium is exactly the same as that for the standard C-CAPM with the 

power utility function.  This in turn implies that a high RRA is still needed to explain the equity 

premium in the data.  Second, he conjectured that when human capital return is taken into account 
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in Epstein and Zin’s (1991) formulation of Euler equations, the covariability of the representative 

agent’s marginal rate of substitution with asset returns would decrease by so much that the RRA 

would have to be high in order to explain the equity premium.  My results show that this does not 

have to be the case, because an EIS value close to 1, through increasing the (absolute) value of 

λ , is sufficient to keep this covariability high and the RRA low.  Campbell’s (2003) reasoning 

assumed that the EIS was low, though he did mention that the EIS estimates may become higher 

under some conditions.  He also assumed that using other measures of optimal portfolio return 

than that implied by an aggregate stock index would lower the volatility of the SDF of the EZW 

model so much that a rejection would be hard to avoid.  Again, this does not have to happen once 

the EIS is in the neighborhood of 1.   

 Two ideas suggest themselves for future research.  Given that the values of EIS in the S 

sets and GMM estimation are often around 1, it is of great interest to find how the hypothesis of 

unitary EIS can be tested, and how the RRA and the time discount factor estimates will change 

with the imposition of unitary EIS.  The first step towards solving this problem is to spell out 

testable Euler equations that are empirically relevant.  Another idea that is also of great interest is 

to study if the EZW model coupled with the return on the optimal portfolio estimated in this 

paper can explain other puzzles in asset pricing.       
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TABLE 1 
             RESULTS OF TWO-STEP AND CONTINUOUS UPDATING  
          GMM ESTIMATION OF EULER EQUATIONS FOR STOCK AND  
            T BILL RETURNS USING CONVENTIONAL ASYMPTOTICS 
 

Instruments Method    β        λ     γ         2χ
                     Set 1       2-step          0.9861      -33.19       0.96         11.85 
                 (0.0010)       (8.92)     (0.18)       (0.037) 
       continuous     0.9863      -100.6       0.90           8.94 
           updating   (0.0012)       (17.9)     (0.20)       (0.111) 
 

           Set 2              2-step          0.9859       -26.50      0.91          14.96 
                                                            (0.0009)       (4.51)     (0.17)       (0.092) 
       continuous     0.9859       -59.94      0.95          19.07 
                     updating   (0.0009)       (8.49)     (0.18)       (0.025) 
 

                     Set 3      2-step          0.9863       -25.95      1.00          15.54 
                                                            (0.0008)       (4.47)     (0.16)       (0.159)  

       continuous    0.9862       -60.15      1.00          20.08  
                            updating   (0.0009)       (8.52)     (0.17)       (0.044)  
    

                     Set 4            2-step          0.9861       -24.48       1.01         28.43 
                                                            (0.0008)       (3.92)     (0.14)       (0.008) 
       continuous     0.9858      -98.03       0.96          27.96 
                     updating   (0.0008)      (11.66)    (0.16)       (0.009)     
       
                     Set 1            2-step           0.9864      -45.14       0.97         10.46 
                       Lagged                         (0.0016)      (18.16)    (0.27)       (0.063)   
                                       continuous     0.9860      -56.45       0.88          10.02 
           updating   (0.0016)      (19.41)    (0.27)       (0.075) 
 

           Set 2            2-step           0.9857      -37.31   0.84      12.79 
   Lagged     (0.0014)      (14.62)    (0.25)       (0.172) 
       continuous     0.9856      -60.55  0.80         11.97  
           updating   (0.0014)      (18.79)    (0.23)       (0.215) 
         

                Set 3        2-step           0.9843       -29.11       0.59      15.51  
                                    Lagged                                    (0.0013)       (9.90)      (0.23)      (0.160) 
                                       continuous     0.9850      -77.49       0.68         13.83 
                                                                 updating    (0.0013)      (19.92)     (0.19)      (0.243) 
 

           Set 4      2-step  0.9847      -27.82       0.68          26.37  
             Lagged    (0.0009)      (4.84)      (0.17)     (0.015) 
       continuous     0.9842      -131.5       0.52         17.57 
           updating   (0.0009)      (16.9)      (0.16)       (0.175) 
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(continued from Table 1 on the last page) 

 
 Note.-Set 1 includes four instruments: 1, and first lags of consumption growth, 

term premium, and real dividend yield.  Set 2 includes Set 1 and the first lags of 
real T Bill rate and labor income growth.  Set 3 is Set 2 and the first lag of the 
default premium.  Set 4 is Set 3 and Lettau and Ludvigson (2004)’s cay.  Standard 
errors are in parentheses, except for the last column, which reports the minimum 

 test of over-identifying restrictions and the corresponding p-values in 

parentheses.  The degree of freedom for the  test is the number of orthogonality 
conditions (i.e. the number of instruments×2) subtracted by 3, the number of 
parameters estimated. 

2χ
2χ
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TABLE 2 
PARAMETER VALUE RANGES AND INCREMENTS  

IN S SET ANALYSIS 
 
 

 β  λ  γ  
Range   [0.983, 1.01]   [-150, 2] [0.401, 2.521] 
Increment 0.001 0.25 0.02 

 
      Note.-The range of β  only affects the joint S set for all the three  
       parameters.      
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TABLE 3 
RESULTS OF S SET ANALYSIS OF THE EULER EQUATIONS (10) FOR  

STOCK AND TREASURY BILL RETURNS 
  

Instruments 95% Joint S Set for ( β , λ ,γ ) 
                 β                              λ                              γ                              RRA                           EIS                

Set 1 
Set 1 Lagged 

        [0.984, 0.988]           [-150, -17.25]             [0.401, 1.041]              [0.0025, 90.85]               [0.961, 2.494] 
        [0.983, 0.987]           [-150, -10.25]             [0.401, 1.081]              [0.0025, 90.85]               [0.925, 2.494] 

Set 2         [0.985, 0.986]           [-87.25, -37.5]              [0.73, 1.01]                  [0.17, 19.94]                    [0.99, 1.37]   
Set 2 Lagged         [0.983, 0.988]             [-150, -3.75]               [0.401, 1.221]               [0.002, 74.5]                    [0.819, 2.49] 

Set 4 Null 
Set 4 Lagged         [0.983, 0.987]            [-150, -46.25]             [0.401, 1.001]                 [0.85, 90.85]                  [0.999, 2.49] 

95% Concentrated S Set for ( λ ,γ ) 95% Concentrated S Set for λ   
          λ           γ                   RRA                     EIS            λ                       RRA                   EIS 

Set 1 
Set 1 Lagged 

[-150, -26.25] [0.401, 1.021]  [0.0025, 90.85]    [0.979, 2.494] 
[-150, -15.75] [0.401, 1.041]  [0.0025, 90.85]    [0.961, 2.494] 

   [-107.75, -48]     [4.18, 13.66]    [1.067, 1.13]  
    [-110.5, -48]      [6.28, 27.83]     [1.123, 1.32]

Set 2 
Set 2 Lagged 

 [-74, -47.25]  [0.841, 1.001]     [0.93, 11.8]       [0.999, 1.189]     
   [-150, -15]   [0.401, 1.061]  [0.0025, 84.86]    [0.943, 2.494] 

Null 
  [-150, -20.25]     [1.68, 77.28]     [1.035, 2.43] 

Set 4 
Set 4 Lagged 

                                               Null 
[-150, -52.25] [0.401, 1.001]      [0.85, 91]         [0.999, 2.494]  

Null 
  [-150, -58.75]      [26.2, 74.5]       [1.75, 1.96] 

    
Note.―This table presents the ranges of each parameter in a 95% S set and the ranges of implied RRA and EIS values.  These ranges are, however, 
not the 95% confidence intervals for individual parameters.  The results when instrument set 3 is used are similar to those for instrument set 2 and 
are not reported to conserve space. 
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TABLE 4 
    SELECTED ELEMENTS OF 95% S SETS, IMPLIED VALUES OF RRA AND   

   EIS, QUARTERLY EQUITY PREMIUM, AND RISKFREE RATE 
 

    β         λ          γ  RRA      EIS   E.P.              fr
       Joint S Set for ( β , λ , γ ), Instrument Set 1 

               0.9866         -51.25           0.981           1.974            1.019           0.0149           0.0045 
               0.9867         -51.25           1.001           0.949            0.999           0.0149           0.0044 
               0.9866         -51.50           0.981           1.979            1.019           0.0150           0.0047 
               0.9868         -51.75           1.001           0.948            0.999           0.0150           0.0046 

 
      Joint S Set for ( β , λ , γ ), Instrument Set 2 

               0.9865         -48.75           0.971           2.414            1.030           0.0141           0.0046 
               0.9866         -48.75           0.991           1.439            1.009           0.0140           0.0045 
               0.9865         -49.00           0.971           2.421            1.030           0.0142           0.0042 
               0.9866         -49.00           0.991           1.441            1.009           0.0141           0.0041 
 

      Joint S Set for ( β , λ , γ ), Instrument Set 3  
               0.9867         -51.50           1.001           0.949            0.999           0.0149           0.0045 
               0.9866         -51.50           0.981           1.979            1.019           0.0150           0.0047 
               0.9868         -51.75           1.001           0.948            0.999           0.0150           0.0046 
               0.9867         -52.00           0.981           1.988            1.019           0.0152           0.0043 
 

       Concentrated S Set for ( λ ,γ ), Instrument Set 1 
                 ─                -51.25          0.981           1.978            1.019           0.0149             ─  
                 ─                -51.50          0.981           1.979            1.019           0.0150             ─ 
                 ─                -51.75          0.981           1.983            1.019           0.0151             ─ 
 

        Concentrated S Set for ( λ ,γ ), Instrument Set 2 
                 ─                -51.50          1.001           0.949            0.999           0.0149             ─ 
                 ─                -51.50          0.981           2.002            1.019           0.0150             ─ 
                 ─                -51.75          0.981           1.983            1.019           0.0151             ─ 

 
       Concentrated S Set for ( λ ,γ ), Instrument Set 3 

                 ─                -51.50          0.981           1.979            1.019            0.0150            ─ 
                 ─                -51.75          0.981           1.983            1.019            0.0151            ─ 
                 ─                -51.75          1.001           0.948            0.999            0.0150            ─ 

     

 
Note.─The first three columns report selected elements in the 95% joint S sets or concentrated S 
sets.  The next two columns present the implied RRA and EIS values implied by the λ  and γ  
values of each row.  The column labeled “E.P.” shows the unconditional quarterly equity premium 
implied by the values of RRA and EIS in each row under the assumption of lognormality for 
consumption growth and asset returns.  The last column reports the quarterly risk-free rate implied 
by the values of β , λ , γ  of each row in the upper panel.  
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                                                              TABLE 5 
FEASIBILITY CONDITION AND TRANSVERSALITY CONDITION 
 
   β       δ               EIS     RRA Feasibility Transversality 
                       Joint S Set for ( β , λ , γ ), Instrument Set 1 
 0.9866         0.01358         1.019         1.974          0.0137             -0.0225 
 0.9866         0.01358         1.019         1.979          0.0137             -0.0226 
 0.9867         0.01348         0.999         0.949          0.0135             -0.0224 
 0.9868         0.01338         0.999         0.948          0.0134             -0.0222 
 
                       Joint S Set for ( β , λ , γ ), Instrument Set 2   
 0.9865         0.01368         1.030         2.414          0.0139             -0.0228 
 0.9865         0.01368         1.030         2.421          0.0139             -0.0228 
 0.9866         0.01358         1.009         1.439          0.0137             -0.0225 
 0.9866         0.01358         1.009         1.441          0.0137             -0.0225 
 
                       Joint S Set for ( β , λ , γ ), Instrument Set 3   
 0.9866         0.01358         1.019         1.979          0.0137             -0.0226 
 0.9867         0.01348         0.999         0.949          0.0135             -0.0224 
 0.9867         0.01348         1.019         1.988          0.0136             -0.0224 

    0.9868         0.01338         0.999         0.948          0.0134             -0.0221 
      

 
Note.─This table demonstrates that the joint S set elements in Table 4 that simultaneously 
match the equity premium and the riskfree rate satisfy the feasibility condition and the 
transversality condition in Smith (1996) for the EZW model. 
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TABLE 6 
RESULTS OF S SET ANALYSIS OF THE CONSUMPTION EULER EQUATION  

  
Instruments 95% Joint S Set for ( β , λ ,γ ) 

                 β                              λ                              γ                             RRA                            EIS          
Set 5         [0.983, 0.988]                 [-100, 2]                 [0.401, 1.541]               [0.0018, 60.9]                [0.649, 2.494] 

Set 5 Lagged         [0.983, 0.992]                 [-100, 2]                 [0.401, 2.261]               [0.0018, 60.9]                [0.442, 2.494] 
95% Concentrated S Set for ( λ ,γ ) 95% Concentrated S Set for λ   

 λ                  γ                      RRA                  EIS             λ                      RRA                    EIS 
Set 5 

Set 5 Lagged 
[-100, 2]    [0.401, 1.361]    [0.0018, 60.9]    [0.735, 2.494]  
[-100, 2]    [0.401, 2.101]    [0.0018, 60.9]    [0.476, 2.494]

-86.0 and –93.0  1.812 and 6.738  1.009 and 1.072 
          0.75                  0.972                   1.039 

    
Note.―The instrument set 5 includes 1, the first and second lags of real consumption growth, the first lag of household net worth growth, and 
the first lags of the real after-tax labor income growth, the term premium, the real dividend yield, and the default premium. 

 

51 



0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

19
59

.2

19
60

.3

19
61

.4

19
63

.1

19
64

.2

19
65

.3

19
66

.4

19
68

.1

19
69

.2

19
70

.3

19
71

.4

19
73

.1

19
74

.2

19
75

.3

19
76

.4

19
78

.1

19
79

.2

19
80

.3

19
81

.4

19
83

.1

19
84

.2

19
85

.3

19
86

.4

19
88

.1

19
89

.2

19
90

.3

19
91

.4

19
93

.1

19
94

.2

19
95

.3

19
96

.4

19
98

.1

19
99

.2

20
00

.3

20
01

.4

Year.Quarter

G
ro

ss
 R

et
ur

n

 

   Fig. 1.—The real value-weighted return of NYSE stocks (dashed line) and , the real return on optimal portfolio incorporating human capital (solid line).  
Both are quarterly rates.
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        Fig. 2.—The real return on optimal portfolio incorporating human capital  (dashed line) and the growth of real after-tax labor income  (solid line).  

Both are in quarterly terms 
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                 (a) 

 
                                                  (c) 

                                            (b) 

 
                                                      (d) 
 
                                                     (Fig. 3 to be continued)    
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             (Fig. 3 continued from last page)    
  

                                               (e)          

 
                                                  (g) 
 
 

 
 

 
                                                              (f) 
  
 
 
 
 
 
 
Fig. 3. —The 95% Concentrated S Set (Shaded) for λ  and γ  and the 95% 
Confidence Ellipse for the 2-Step GMM Estimates of λ  and γ  Based on 
(a). Instrument Set 1;  (b). Instrument Set 1 Lagged;  (c). Instrument Set 2; 
(d). Instrument Set 2 Lagged;  (e). Instrument Set 3;  (f). Instrument Set 3  
Lagged; and (g). Instrument Set 4 Lagged.  
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