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1. Introduction1. Introduction1. Introduction1. Introduction

In the present paper, we propose a new computational technique with the

Asymptotic Expansion (AE) approach to achieve variance reduction of the

Monte-Carlo integration appearing especially in finance. In order to compute

control variables, we utilize the analytic approximation based on the AE in

Takahashi (1999) and Kunitomo and Takahashi (2003a). We extend the

algorithm developed by Takahashi and Yoshida (2003) to the second order

asymptotics. This scheme gives us more precise estimate efficiently than the

second order AE when the precision of the AE is not satisfactory for practical

purpose. Moreover, we apply the AE to approximate time dependent

differentials of the target value in Newton (1994)’s scheme.

Through numerical experiments, we observe remarkable acceleration of

convergence, which implies broad applications of our techniques. Our

numerical examples include pricing of average and basket options when the

underlying state variables follow Constant Elasticity of Variance (CEV)

processes.

    The organization of this paper is as follows. In the next section, we review

the result of Takahashi and Yoshida (2005) and extend it to the higher order

asymptotics. Moreover, in order to demonstrate the broad usage of the AE, we

propose applying the AE to Newton (1994)’s scheme. In section 3, we review

the outline of the AE approach followed by deriving the pricing formulas of

average and basket options of which the underlying state variables are

described by CEV processes. In section 4, we present the result of numerical

experiments.

2. Variance reduction technique2. Variance reduction technique2. Variance reduction technique2. Variance reduction technique

2.1 The Extension of Takahashi and Yoshida (2005)

    Suppose that the dR valued processes ( ),uX s y  ( , ds u T y≤ ≤ ∈ R ) follow the
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stochastic integral equation1:

( ) ( ) ( ) ( )( ) ( ) ( )( )0, , , , ,
u u

u s s st t
X t y y V X t y ds V X t y dBε ε εε ε− −= + +� � ,       (1)

where ε ( )0 1ε< ≤  is a parameter.

    For a stochastic approximation of ( ) ( ) ( )( )0, 0,Tu y E f X yε� �≡
� �

, an estimator

by crude Mote Carlo simulations is expressed as

( ) ( )( )
1

1,
N

T
jj

G n N f X
N

ε

=

� �=
� �� .                        (2)

  Here, [ ] j
Z ( 1,...,j N= ) denote the realized value of the ith independent trial of

any random variable Z, and the discretized approximation of ( )X ε  based on

Euler-Maruyama scheme is given by2

( )
( )

( )( ) ( )
( )( )00 0

, ,
u u

u ss sX y V X ds V X dBε ε ε
η ηε ε= + +� � ,              (3)

where ( ) ns Ts
T n

η � �= � �
� �

.

    From the mathematical point of view, we should note that it is not a trivial

thing to justify this type of approximation based on the Monte Carlo method,

which has been often used in practice. In particular when ( )f ⋅  is not a smooth

function such as cash flow functions for options, we need a careful discussion

on its mathematical foundation. While Takahashi and Yoshida (2005) have

investigated this problem in some details, we shall focus on the practical

aspects of our method for financial applications throughout this paper.

  Definition 1  Definition 1  Definition 1  Definition 1

    A modified new estimator of ( )0,u y  is defined by

( ) ( ) ( )( ) ( )( ) ( )( )0 0*

1

1ˆ ˆ, , 0,
N

T T T
jj

G n N E f X y f X f X
N

εε
=

� � � �= + −
� � � �� .       (4)

  Here, we assume that ( ) ( )( )0ˆ 0,TE f X y� �
� �

 is calculated analytically. We call the

                                           
1 While we omit the description of some mathematical setting, we assume that all the

necessary mathematical conditions to modify the formula are satisfied.
2 [ x] indicates the largest integer that is not greater than x.
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Monte Carlo simulation which uses (4) hybrid (Monte Carlo) method hereafter.

    This estimate can be explained intuitively. When the difference between

( )( ) ( )0,T
j

f X u yε� � −
� �

 and ( )( ) ( ) ( )( )0 0ˆ ˆ 0,T T
j

f X E f X y� � � �−
� � � �

 is small for each

independent copy j, then we can expect that the error of ( )* , ,G n Nε  minus

true value ( )0,u y  can be small because errors of ( )( )T
j

f X ε� �
� �

and ( )( )0ˆ
T

j
f X� �

� �

can be cancelled out. Then we have

( ) ( )
( )( ) ( ) ( )( ){ } ( )( ) ( ) ( )( ){ }

*

0 0

1

, , 0,

1 ˆ ˆ0, 0, ,
N

T T T T
jj

G n N u y

f X E f X T f X E f X T
N

ε ε

ε

=

−

� �� � � �= − − −
� �� � � �� ��

 (5)

  and we denote ( )0
tX  as ( )

tX ε  by setting 0ε = , then we expect that the

correlation between ( )0
tX  and ( )

tX ε  is positively high. Hence the correlation

between ( )( )T
j

f X ε� �
� �

and ( )( )0ˆ
T

j
f X� �

� �
 becomes positively high. This type of

estimate in (4) could be similar to the control variate technique, which has

been known in the Monte Calro simulation.

    The advantage of the technique is due to the AE approach, because it is a

unified method in a sense that it is applicable to the broad class of processes.

We notice that it is difficult to find control variables whose expectation can not

be derived analytically. Furthermore, usual variance reduction techniques

may use control variables that could be applied to very narrow class of

processes.

    For example, the pricing algorithm for an European average call option

which extends Example two in Takahashi and Yoshida (2005) to the second

order asymptotics is as follows:

    Suppose that the reference asset price process follows

( ) ( ) ( )( ),t t t tdS rS dt S t dBε ε εεσ= + , ( )
0 0S Sε = .                  (6)

The underlying asset of an average option at time zero with maturity T is
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defined by

( ) ( )
0

1 T

T tA S dt
T

ε ε≡ � .                              (7)

    The price at t=0 of an option with maturity T and strike price K (>0) is

represented by

( ) ( )( )rT
A TC e A Kε ε +

−= − .                           (8)

  It is rewritten as

( ) ( )
2,

1rT
A T TC e X k

T
ε εε

+
− � �= +� �

� �
,                         (9)

               where ( )
( ) ( )0

1,
t t

t
S SX

ε
ε

ε
−≡ , ( )

( ) ( )( )0

2,

t t
t

t A A
X

ε
ε

ε

−
≡  and 

( )0
T

T
A Kk

ε
−≡ .

    Considering the discussion of Takahashi (1999), we introduce

( )
2

ˆ 1
T

rT
A T T T xk

T

x xC x e k c f
T T

ε ε−
� �− <� �
� �

� �� �� �= + + +� �� �� �� �	 
� �	 
� �
.            (10)

  Here, cT, and fT are obtained by the AE. We shall discuss about these terms in

the next section briefly.
    By definition, we have

( ) ( ) ( )0 0 0
0

1, 1rt rt
t t

SS e S A e
t r

= = − .                     (11)

  ( )
1,tX ε  and ( )

2,tX ε  follow

( ) ( ) ( ) ( )( ) ( )0
1, 1, 1, 1,0, , 0t t t t tdX rX dt X S t dB Xε ε ε εσ ε= + + = ,              (12)

( ) ( ) ( )
2, 1, 2,0, 0t tdX X dt Xε ε ε= = .                           (13)

And also ( )0
1,tX  and ( )0

2,tX  follow

( ) ( ) ( )( ) ( )0 0 0 0
1, 1, 1,0, , 0t t t tdX rX dt S t dB Xσ= + = ,                 (14)

( ) ( ) ( )0 0 0
2, 2, 2,0, 0t tdX X dt X= = .                           (15)

  Then, we can introduce the modified estimator of ( )
AC ε as
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( )( ) ( ) ( )( ) ( )( )0 0
2, 2, 2,

1

1ˆ ˆ
N

A T A T A T
jj

E C X C X C X
N

ε ε

=

� � � �+ −
� � � �� .              (16)

  We notice that we can obtain ( )( )0
2,

ˆ
A TE C X� �

� �
 by the AE analytically. Here, ( )

2,tX ε

and ( )0
2,tX  denote the calculated value by the Euler-Maruyama scheme.

    Notice that calculating (14) does not require the evaluation of ( )( )0 ,tS tσ  path

by path while computing (12) requires. Therefore, the amount of calculation of

the present technique is as large as the crude Monte Carlo method.

    The algorithm shown above is based on the second order asymptotic value.

For other concrete applications using the first order asymptotic value, see

Takahashi and Yoshida (2005).

2.2 Newton (1994)’s estimator with AE

    Newton (1994) derives the following formula

( )( ) ( )( ) ( )( ) ( )( )
0

0, 0, , 0, , 0, . .
T

T T t t tf X y E f X y u t X y t X y dB a s
x

σ∂
� �= +� � ∂� ,  (17)

where ( )( ) ( ) ( )( )0, 0, , 0, . .T t tE f X y X y u t X y a s� � =� �  .

  and show that we can obtain the ideal estimator of ( )( )0,TE f X y� �� �

calculating

( )( ) ( )( ) ( )( )
0

0, , 0, , 0,
T

T t t tf X y u t X y t X y dB
x

σ∂−
∂� ,            (18)

  path by path.

    Since neither ( )( ), 0,tu t X y  nor ( )( ), 0,tu t X yx
∂

∂  is known, we approximate

( )( ), 0,tu t X y  by the AE and differentiate it with respect to x. That is to replace

( )( ), 0,tu t X yx
∂

∂  with the AE formula. We call the Monte Carlo simulation

which uses (18) Control Variate (Monte Carlo) method hereafter.

    Unfortunately, since we need compute ( )( ), 0,tu t X y  not only path by path

but also at each time step, this technique consumes the larger computation

resources.
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3. Examples3. Examples3. Examples3. Examples3

3.1 Average call option

    Let ( )
tS ε  be the reference asset. Then the underlying asset of an average

option at time zero with maturity T is defined by

( ) ( )
0

1 T

T tA S dt
T

ε ε≡ � .                            (19)

    We obtain

( ) ( ) ( )
2

1 20 2

0 0

1 1
2

T T

T T t tA A M dt M dt o
T T

ε εε ε= + + +� � ,            (20)

where

( ) ( )( )1 0

0
,

t r t s
t s sM e S s dBσ−= � ,

( ) ( )( )2 10

0
2 ,

t r t s
t s s sM e S s M dBσ−= ∂� .

  The first term of the right hand of (20) is a deterministic function.

  We introduce ( )
TX ε  as

( )
( ) ( )

( )
0

1 2T T
T T T

A AX g g o
ε

ε ε ε
ε
−≡ ≡ + + .                   (21)

  1
Tg  can be expressed as

( ) ( )( )
( ) ( )( )

( )
( )( )

1 1 0

0 0 0

0

0

0

0

1 1 ,

1 ,

1 1 , .

T T u r u s
T s s s

T T r u s
s ss

r T sT

s s

g M ds e S s dB du
T T

e S s dudB
T

e S s dB
T r

σ

σ

σ

−

−

−

= =

=

� �−= � �
� �

� � �

� �

�

             (22)

  Since 1
Tg  is an integral with respect to Brownian motion whose integrand is a

deterministic function, the distribution of ( )
TX ε  approaches normal as 0ε → .

Then, we obtain the following proposition.

                                           
3 For the general discussion of the application including basket and average options, see

Takahashi (1999). For the mathematical validity of AE, see Kunitomo and Takahashi

(2003a),
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  Proposition 2  Proposition 2  Proposition 2  Proposition 2

    The asymptotic expansion of ( ) ( )
tX

f xε , the distribution function of ( )
tX ε , is as

follows:

( ) ( ) [ ] ( ) [ ]{ } ( )
2 ;0,

;0,
t

t t t
tX

c x f n x
f x n x o

xε ε ε
−∂ + Σ

= Σ + +
∂

,           (23)

where

( )
( )( )

2
20

2 0

1 1 ,
r t st

t s
e S s ds

t r
σ

−� �−Σ = � �
� �

� ,                       (24)

( )
( )

( )( ) ( )( )
( )

( )
( )( )

0 0
2 3 0 0

20

0

1 1 1 , ,

1 , ,

r t st v r v s
t s s

t

r t us r s u
u

ec e S s S s
t r

ee S u dudsdv
r

σ σ

σ

−
−

−
−

� �−= ∂� �Σ � �

� �−
� �
� �

� �

�

      (25)

t t tf c= − Σ .                                             (26)

    See section 2.1 in Takahashi (1999) for the proof.

    We shall consider the situation that the underlying values of an average

option at time zero depends on the reference assets price process before zero4.

We introduce ,tAδ  with a positive constant, δ ,

,
1 t

t uA S du
tδ δδ −

=
+ � .                            (27)

  Here, δ represents elapsed time since contract date until time zero. And we
assume that r is constant.

  We can modify the payoff of the option at time zero with maturity T as

                                           
4We can use this equation for the evaluation of the current value of the standing

contracts.
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( ) ( )

( )( )( )
( )( )

, ,

0

0

0

0

1

1

1 1 .

rT
A T

TrT
u

TrT
u u

TrT
u u

C T E e A K

E e S du K
T

E e S du K T S du
T

T E e S du K T s du
T T T

δ δ

δ

δ

δ

δ

δ
δ

δ
δ

+−

+
−

−

+
−

−

+
−

−

� �= −� �� �

� �� �= −� �	 
+� �� �� �

� �
= − + −� �+ � �

� �� �= − + −� �	 
+ � �� �� �

�

� �

� �

    (28)

  We rewrite the above formula with

( )( )0

, ,
1

T K uK T S du
Tδ δ

κ δ
−

= + −� .                    (29)

  Assuming that r is constant, we obtain

( )( )0

0

, ,0

1 1

1 .

TrT
u u

TrT
u T K

E e S du K T s du
T T

e E S du
T

δ

δ

δ

κ

+
−

−

+
−

� �� �− + −� �� �
	 
� �� �

� �� �= −� �� �
	 
� �� �

� �

�

               (30)

  We only need to replace strike price with , ,T Kδκ  so that we can forget the

dependency of the underlying value on the reference asset before time zero.

    Let ( ) ( ), ,AC T xε
δ  be the price of an European average option at time zero with

maturity T, elapsed time δ and ( )
0S xε = . ( ) ( ), ,AC T xε

δ  is expressed with the strike

price K as follows:

( ) ( ) ( )( )
( )

( )( )

, ,
, , ,,

,

T T KrT rT
A T T K

rT
T T

AT TC T x E e A e E
T T

T e E X k
T

ε
ε ε δ
δ δ

ε

κ
κ ε

δ δ ε

ε
δ

+
+

− −

+
−

� �� �−� � � �= − = � �� � � �� �	 
+ + � �	 


� �= +
� �	 
+

  (31)

where

      
( )0

, ,T T K
T

A
k δκ

ε
−

= .

  Then, we obtain the following theorem.

Theorem 3Theorem 3Theorem 3Theorem 3

    When , , 0T Kδκ > , the asymptotic expansion of the price of the average option
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with consideration of elapsed time, ( ) ( ),AC Tε
δ , is as follows:

( ) ( )

[ ] [ ] ( )

, , ,0

2 2

1

;0, ;0, .

TrT
A u T K

rT T
T T T T T T T T

T

TC T e E S du
T T

kT e n k k N f k n k o
T

ε
δ δκ

δ

ε ε ε
δ

+
−

−

� �� �= −� �� �+ 	 
� �� �


 �� �� �� �
� �= Σ Σ + + Σ +� �� �� �� �+ Σ� �	 
	 
� �

�
 (32)

  When , , 0T Kδκ ≤ , the price is trivial, which is as follows:

( ), , ,0

, ,0

0 , ,

1

1

1 1 .

TrT
A u T K

TrT
u T K

rT
rT

T K

TC T e E S du
T T

T e E S du
T T

ee S T
T r

δ δ

δ

δ

κ
δ

κ
δ

κ
δ

+
−

−

−

� �� �= −� �� �+ 	 
� �� �

� �� �= −� �� �� �+ 	 


� �� �−= −� �� �+ 	 
	 


�

�                 (33)

    Some of the derivation has been already discussed above. For the option

pricing formula by the AE, see section 2.1 and 3.2 in Takahashi (1999).

3.2 Basket call option

    The price of a European basket call option can be derived similarly. First, we

define a basket by

( ) ,
1

n

i i t
i

I t Sα
=

≡� ,   ( ) ,0
1

0
n

i i
i

I S xα
=

= =� .                   (34)

  Here, ,i tS  denotes the ith asset price at time t and iα is the amount of the ith

asset in the basket. The payoff of a basket call option can be expressed as

( ) ( ) ( )( ), rT
BC T x E e I T Kε +−� �= −� �� �

.                       (35)

  We assume that the price processes of risky assets can be described with d

(n≥d) independent Brownian Motions as

( ) ( ) ( )( ), , , ,
1

,
d

i t i t ij i t j t
j

dS rS t S dBε ε εε σ
=

= + � ,   ( )
,0i iS xε = ,   

1

n

i i
i

x xα
=

=� .        (36)

  Since the value of the basket is the linear combination of risky assets, we

obtain the AE of the basket.
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( ) ( ) ( )
2

1 20 2
, , ,

1 1 12

n n n

t i i t i i t i i t
i i i

I S M M oε εα ε α ε α ε
= = =

= + + +� � � .              (37)

  To avoid lousy formula, we define that5

( ) ( ) ( )( ) ( )( ) ( )( )0 0 0 0
1 , 2 , ,

1 1 1
, , , ,..., ,

n n n

I i i i t i i i t i id i t
i i i

t S t S t S tσ α σ α σ α σ
= = =

′� �≡ � �
� �
� � � ,        (38)

( ) ( ) ( )( ) ( )( ) ( )( )( )0 0 0 0
1 , 2 , ,, , , ,..., ,i i i t i i t id i tt S t S t S tσ σ σ σ ′

≡ ,              (39)

and ( ) ( ) ( )( ) ( )( ) ( )( )( )0 0 0 0
1 , 2 , ,, , , ,..., ,i i i t i i t id i tt S t S t S tσ σ σ σ ′

∂ ≡ ∂ ∂ ∂ .         (40)

  We introduce ( )
tX ε  as follows:

( )
( ) ( )

( )
0

1 2t t
t t t

I IX g g o
ε

ε ε ε
ε
−= = + + .                    (41)

  Then, we obtain the next proposition.

Proposition 4Proposition 4Proposition 4Proposition 4

    The asymptotic expansion of ( ) ( )
tX

f xε , the distribution function of ( )
tX ε , is as

follows:

( ) ( ) [ ] ( ) [ ]{ } ( )
2 ;0,

;0,
t

t t t
tX

c x f n x
f x n x o

xε ε ε
−∂ + Σ

= Σ + +
∂

,          (42)

where

( ) ( ) ( ) ( ) ( )2 0 0

0

t r t s
t I Ie s s dsσ σ− ′Σ = � ,                           (43)

,
1

n

t i i t
i

c cα
=

=� ,                                           (44)

,
1

n

t i i t
i

f fα
=

=� ,                                           (45)

, ,i t i t tf c= − Σ ,                                           (46)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 03 2
, 2 0 0

1 t srt ru rs
i t I i I i

t

c e e u u du e s s dsσ σ σ σ− −� �′ ′= ∂
� �� �Σ � � .  (47)

                                           
5 Dash represents transpose.
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    See section 3.1 in Takahashi (1999) for the proof.

    Replacing ( )0
TA  with ( )0

TI  in (5), we have
( )0
T

T
I Kk

ε
−≡ .                             (48)

  Then, calculating ( )( )rT
T TE e X kεε

+
−� �+� �� �

 with proposition 5, we obtain the next

theorem. This is similar to the derivation of theorem 3.

  Theorem 5Theorem 5Theorem 5Theorem 5

    The asymptotic expansion of the price of a European basket call option is as

follows:

( ) ( ) [ ] [ ] ( )2 2, ;0, ;0, .rT T
B T T T T T T T T

T

kC T x e n k k N f k n k oε ε ε ε−
� �� �� �� �

� �= Σ Σ + + Σ +� �� 	� �� �Σ� �
 �
 �� 


 (49)

4. Numerical Experiments4. Numerical Experiments4. Numerical Experiments4. Numerical Experiments

    We shall show the result of numerical experiments. In this section, we

assume all the necessary coefficients which define the underlying process.

4.1 European average call option under CEV process

    Suppose that St follows

0,t t t tdS rS dt S dB S xγσ= + = .                      (50)

  We shall represent this by the AE. ( )
tS ε  is expressed with some positive

constant b as

( ) ( ) ( )( ) ( )
0,t t t tdS rS dt b S dB S x

γε ε ε εε= + = .              (51)

  Then, we obtain

( )
( )

( ) ( ) ( )( )( )( )
( )( )

2
22

2 0

22 2

3 2

1 1

1 2 1 2 3 1
,

2 1 2 1

r T sT rs
T

rT rT rT

e b xe ds
T r

b e x x e e

r T

γ

γ γ γ γ γ

γ γ γ

−� �−Σ = � �
� �

− − − − + +
=

− −

�
         (52)
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( ) ( ) ( )( )( )( )
( ) ( ) ( )

( )( )

( ) ( )( )

( ) ( ) ( )( ) ( ) ( )

222 2

1 4
223 3 4

2

22

2 2 24 2 2

1

2 2 1 3 2 1 2 1

7 10
1 2 2 2 1 2

3 16 16

2 2 2 1 2

2 1 1 4 3 4 2 1 2 3 4 4 1 6 8

T
rT rT rT

rT
rT rT
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(53)

    We set the simulation conditions as ( )1
0100, 0.05, 0.3x r S γσ −= = = . For the

Monte Carlo simulation, we divide one year into 250 time steps. Table 1

expresses the price of the option with 0.6γ = . Column A is the true value that

is computed by the crude Monte Carlo method with 25 million trials. Column B

and column C are the prices by the AE with the first order6 and the second

order approximation respectively. Column D and column E are the rate of

errors of the column B and C respectively, which are defined by ((the price by

the AE)-(true value))/(true value). The price of the AE with the second order

approximation is nearer to the true value than that with the first order. As for

the second order approximation, the rate of errors are sufficiently small except

40% OTM cases. In these cases, the prices are very small and the differences

between the prices by the AE and true values are 0.01559029 (1 year maturity)

and 0.01221904 (2 years maturity), which are also very small. Overall, except

far out of the money cases, utilizing the second order AE method, we can

satisfy almost all the practical requirements of calculation speed and accuracy.

    Table 2 expresses the price of the option with 0.9γ = . We can derive the

similar implication to Table 1.

     Two tables of Table 3 express the performance of the simulation algorithms

with 0.6γ = . For each parameter and simulation algorithm, (1) we generate

5,000 paths (trials), compute the prices and take the average, (2) we repeat

                                           
6 See Takahashi (1999) for the pricing formulae of the first order approximation.
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taking the average 100 times (cases), (3) we extract result of the simulation.

For the upper table, each column (column A, B and C) has two sub-columns:

rmse and worst stand for relative mean square error and the biggest error

among 100 cases respectively. Column A, B and C express the results of the

crude Monte Carlo, the hybrid Monte Carlo and the control variate Monte

Carlo method respectively. The standard variance is shown in the lower table.

The true value is the same as table 1. The ratio of the upper table is that

between rmses. While both the hybrid and the control variate method Monte

Carlo reduce “rmse”, “worst” and “std variance,” the effect of the former is

remarkabe. Using the ratio of the standard variances, we can say that the

convergence speed of the hybrid Monte Carlo method is 40~2800 times faster

than the crude Monte Carlo method. We notice that comparing column E of

Table 1 with column B of Table 3 the hybrid Monte Carlo method gives us

more precise estimate than the second order AE.

    Table 4 expresses the performance of the simulation algorithms with 0.9γ = .

We can derive the similar implication to Table 3. We notice that comparing

column E of Table 2 with column B of Table 4 the hybrid Monte Carlo method

improves accuracy especially in the cases of out of the money.

    Table 5 gives one of the most interesting features. This expresses the actual

calculation time (seconds). We stress the importance of the fact that (B)/(A) is

nearly equal to one. This implies that the hybrid Monte Carlo method does

require only 10% of extra computation resources. Considering the results of

Table 3 and 4, this means that we can reduce calculation time dramatically

utilizing the hybrid Monte Carlo method. Of course, even in the control variate

Monte Carlo method’s case, overall performance of the calculation is improved.

This shows that the AE can be utilized broadly.



15

(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 12.49935416 12.71707769 12.51212379 1.7419% 0.1022%
ATM 1yr 6.73428441 6.74813443 6.74813443 0.2057% 0.2057%
20%OTM 1yr 3.15072673 2.96296259 3.16791649 -5.9594% 0.5456%
30%OTM 1yr 1.28206878 1.04351219 1.29243429 -18.6072% 0.8085%
40%OTM 1yr 0.14403973 0.06074728 0.12844944 -57.8260% -10.8236%
20%ITM 2yrs 14.50204118 14.84184228 14.53528053 2.3431% 0.2292%
ATM 2yrs 9.29054199 9.32109049 9.32109049 0.3288% 0.3288%
20%OTM 2yrs 5.59585027 5.32558408 5.63214584 -4.8298% 0.6486%
30%OTM 2yrs 3.17763067 2.73707722 3.21513521 -13.8642% 1.1803%
40%OTM 2yrs 0.87235868 0.50676043 0.86013964 -41.9092% -1.4007%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 1
(A) (B) (C) (D) (E)

K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff
20%ITM 1yr 12.40891668 12.73864061 12.42928304 2.6572% 0.1641%
ATM 1yr 6.74971348 6.77358186 6.77358186 0.3536% 0.3536%
20%OTM 1yr 3.26788639 2.98452551 3.29388308 -8.6711% 0.7955%
30%OTM 1yr 1.42747034 1.05663114 1.43376246 -25.9788% 0.4408%
40%OTM 1yr 0.21342712 0.06254478 0.16666380 -70.6950% -21.9107%
20%ITM 2yrs 14.39446223 14.90694606 14.44190901 3.5603% 0.3296%
ATM 2yrs 9.34353313 9.39178041 9.39178041 0.5164% 0.5164%
20%OTM 2yrs 5.80130055 5.39068786 5.85572491 -7.0779% 0.9381%
30%OTM 2yrs 3.47136478 2.78793444 3.51583295 -19.6877% 1.2810%
40%OTM 2yrs 1.14296844 0.52569883 1.07185137 -54.0058% -6.2221%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 2
(A) (B) (C)
crude Monte Hybrid CntlVar

K T rmse worst rmse worst rmse worst (A)/(B) (A)/(C)

20%ITM 1yr 1.69317% 4.31945% 0.02724% 0.07183% 0.20104% 0.31511% 62.155 8.422
ATM 1yr 1.97610% 5.01059% 0.07054% 0.17683% 0.44260% 0.74814% 28.013 4.465
20%OTM 1yr 3.58571% 10.12856% 0.12399% 0.32688% 0.67818% 1.21087% 28.918 5.287
30%OTM 1yr 4.46133% 11.47246% 0.23399% 0.67431% 1.16765% 2.34854% 19.067 3.821
40%OTM 1yr 15.15842% 48.81630% 0.21522% 0.52056% 2.45432% 6.82826% 70.433 6.176
20%ITM 2yrs 1.81773% 4.90331% 0.05200% 0.16108% 0.13640% 0.31729% 34.957 13.327
ATM 2yrs 2.63279% 7.54903% 0.07350% 0.20970% 0.21642% 0.54405% 35.823 12.165
20%OTM 2yrs 3.19567% 8.32458% 0.11394% 0.31197% 0.34159% 0.78243% 28.047 9.355
30%OTM 2yrs 4.19172% 14.36365% 0.16266% 0.45048% 0.50975% 1.30455% 25.770 8.223
40%OTM 2yrs 7.52163% 19.34298% 0.50170% 1.24380% 1.21223% 3.49212% 14.992 6.205

5,000 trials, 100 cases for each parameter.

(A) (B) (C) ratio bet.
crude Monte Hybrid CntlVar std vars

K T std variance std variance std variance (A)/(B) (A)/(C)

20%ITM 1yr 1.1884 0.0004 0.0014 2,818.632 835.841
ATM 1yr 2.4616 0.0013 0.0059 1,908.292 416.409
20%OTM 1yr 5.4863 0.0040 0.0248 1,363.974 221.532
30%OTM 1yr 13.1978 0.0158 0.1066 832.926 123.853
40%OTM 1yr 103.5923 2.3962 1.7743 43.231 58.384
20%ITM 2yrs 1.5489 0.0011 0.0027 1,423.393 579.373
ATM 2yrs 2.6239 0.0025 0.0061 1,051.780 433.182
20%OTM 2yrs 4.5195 0.0053 0.0161 855.146 281.369
30%OTM 2yrs 8.0590 0.0115 0.0460 702.940 175.262
40%OTM 2yrs 27.9386 0.1267 0.3684 220.455 75.838

Table 3
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(A) (B) (C)
crude Monte Hybrid CntlVar

K T rmse worst rmse worst rmse worst (A)/(B) (A)/(C)

20%ITM 1yr 1.44463% 4.41825% 0.10057% 0.21532% 0.24850% 0.37131% 14.364 5.813
ATM 1yr 2.31410% 7.34999% 0.17781% 0.34180% 0.52911% 0.81597% 13.015 4.374
20%OTM 1yr 3.70666% 11.24126% 0.32092% 0.72156% 0.89547% 1.54219% 11.550 4.139
30%OTM 1yr 5.70582% 16.27347% 0.56203% 1.22544% 1.38500% 2.62893% 10.152 4.120
40%OTM 1yr 14.04384% 37.37138% 3.26302% 8.25889% 3.34409% 8.52676% 4.304 4.200
20%ITM 2yrs 1.88159% 6.46842% 0.11671% 0.29809% 0.21346% 0.40181% 16.123 8.815
ATM 2yrs 2.55599% 7.27398% 0.19272% 0.43598% 0.32756% 0.64067% 13.263 7.803
20%OTM 2yrs 2.91609% 7.14232% 0.24243% 0.59779% 0.47983% 1.03366% 12.029 6.077
30%OTM 2yrs 4.37348% 11.22706% 0.39518% 1.09299% 0.73480% 1.74208% 11.067 5.952
40%OTM 2yrs 6.86312% 19.99852% 0.30195% 1.09889% 1.32158% 3.00296% 22.729 5.193

5,000 trials, 100 cases for each parameter.

(A) (B) (C) ratio bet.
crude Monte Hybrid CntlVar std vars

K T std variance std variance std variance (A)/(B) (A)/(C)

20%ITM 1yr 1.2790 0.0014 0.0019 932.294 677.968
ATM 1yr 2.6676 0.0044 0.0075 610.397 357.986
20%OTM 1yr 5.8316 0.0135 0.0327 430.860 178.120
30%OTM 1yr 13.3960 0.0504 0.1475 265.913 90.851
40%OTM 1yr 85.7051 4.5613 2.1226 18.790 40.377
20%ITM 2yrs 1.7507 0.0046 0.0040 381.312 432.585
ATM 2yrs 2.9456 0.0108 0.0093 272.050 316.286
20%OTM 2yrs 5.0198 0.0228 0.0255 219.750 196.848
30%OTM 2yrs 8.6865 0.0512 0.0746 169.710 116.421
40%OTM 2yrs 26.8724 0.4035 0.5448 66.594 49.328

Table 4
(A) (B) (C)

# of trials Crude Monte Hybrid CtrlVar (B)/(A) (C)/(A)

1,000 0.2813 0.3125 1.6875 1.111 6.000
10,000 2.4844 2.6719 14.8786 1.075 5.989
20,000 4.9063 5.4531 29.8923 1.111 6.093

100,000 24.5781 27.3750 154.6323 1.114 6.291

Table 5

4.2 European basket call option with n assets under CEV process7

    Let tS  and Bt be nR  valued stochastic process and independent n

dimensional Brownian Motion respectively. Suppose the price of the asset, tS

follows

( )( ), 0, ,i n
t t i t tdS rS dt I S dB S x

γ σ= + = ∈ R ,               (54)

where
  r ∈ R and σ ∈ R  are constant,

and ( )
1

i

n

y O
I y

O y

� �
� �= � �
� �
� �

� .

  Then, we represent ( )
tS ε  using some positive constant b∈ nR  as

                                           
7 The concrete representations of tΣ , ,i tc  are available upon the request.
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( ) ( ) ( )( )( ) ( )
, 0

ˆ ,
i

t t i i t tdS rS dt I b S dB S x
γε ε ε εε λ= + = .          (55)

  Assuming that the n n×  matrix λ̂  has Cholesky decomposition, let the lower

triangular matrix be λ, and we can modify (55) to

( ) ( ) ( )( )( ) ( )
, 0,

i

t t i i t tdS rS dt I b S dB S x
γε ε ε εε λ= + = .           (56)

  Then, we have

( ) ( ) ( ) ( ) ( )2 0 0

0
,

t r t s
t I Ie s s dsσ σ− ′Σ = �                      (57)

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0 0 03 2
, 2 0 0

1 .
t srt ru rs

i t I i I i
t

c e e u u du e s s dsσ σ σ σ− −� �′ ′= ∂
� �� �Σ � �       (58)

         where

( ) ( ) ( )0 0

1

n

I i i
i

sσ α σ
=

≡� ,

( ) ( ) ( )( )( )0
,transpose of th row of i

i i i ts i I b S
γ

σ λ≡ ,

 ( ) ( )
( ) ( )

( )
( ) ( )0

0

i i

i
i

i S S

s
s

S ε

ε

ε

σ
σ

=

∂
∂ ≡

∂
.

4.2.1 European basket call option with two assets

    We suppose St follows

( ) ( )
2

0
1

, 1, 2
i

i i ij i j i i
t t t t

j
dS rS dt S dB S x i

γ
σ

=

= + = =� .              (59)

  We set the simulation conditions as ( )( )1

0 0100 , 0.05, 0.3 ,
i

i ij iS r S
γ

σ
−

= = = (i=1,2).

We also suppose each asset takes 50% of the basket. And for the Monte Carlo

simulation, we divide one year into 250 time steps. Table 6 expresses the price

of the option with 0.6γ =  and ˆ
dIλ = . Comparing this result with that of the

average option case, the accuracy of the approximation is slightly better, but

we observe that the characteristics are very similar to each other. Overall,

except far out of the money cases, utilizing the second order AE method, we

can satisfy almost all the practical requirements of calculation speed and

accuracy.

    Table 7 expresses the price of the option with 0.9γ =  and ˆ
dIλ = .  We can
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derive the similar implication to Table 6.

    Table 8 expresses the price of the option with 0.6γ =  and 
1 0.5ˆ

0.5 1
λ � �

= � �
� �

.

We can derive the similar implication to Table 6 and Table 7.
     Table 9, 10, 11 express the performances of the simulation algorithms with

0.6γ =  an d ˆ
dIλ = ,  0.9γ =  an d  ˆ

dIλ = ,  an d  0.6γ =  and  
1 0.5ˆ

0.5 1
λ � �

= � �
� �

  respectively. The improvement by utilizing the hyprid Monte Carlo is

remarkably. From the ratio of the standard variances, we can say that the

convergence speed of the hybrid Monte Carlo method is 10~650 times faster

than the crude one. We also notice that the hybrid Monte Carlo method

improves the accuracy when the precision of the second order AE is not

satisfactory.

    Table 12 expresses the actual calculation time (seconds). As in the case of the

average option, we can find the fact that (B)/(A) is nearly equal to one.

(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 21.58449592 21.91484983 21.59537753 1.5305% 0.0504%
ATM 1yr 8.37264248 8.37891636 8.37891636 0.0749% 0.0749%
20%OTM 1yr 2.22354692 1.91484982 2.23432211 -13.8831% 0.4846%
30%OTM 1yr 0.99673734 0.72325016 0.99513944 -27.4382% -0.1603%
40%OTM 1yr 0.40980386 0.22946927 0.39343213 -44.0051% -3.9950%
20%ITM 2yrs 23.75393902 24.34591519 23.78727415 2.4921% 0.1403%
ATM 2yrs 11.72064834 11.73284501 11.73284501 0.1041% 0.1041%
20%OTM 2yrs 4.87965526 4.34591515 4.90455619 -10.9381% 0.5103%
30%OTM 2yrs 2.96608739 2.35809561 2.98571581 -20.4981% 0.6618%
40%OTM 2yrs 1.73796428 1.17677381 1.73511233 -32.2901% -0.1641%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 6
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(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 21.49460357 21.95490132 21.46884396 2.1415% -0.1198%
ATM 1yr 8.48940761 8.44173067 8.44173067 -0.5616% -0.5616%
20%OTM 1yr 2.48084201 1.95490131 2.44095867 -21.2001% -1.6077%
30%OTM 1yr 1.21974229 0.74607045 1.16322375 -38.8338% -4.6336%
40%OTM 1yr 0.56959162 0.23985193 0.49439313 -57.8905% -13.2022%
20%ITM 2yrs 23.69764633 24.48592433 23.62962071 3.3264% -0.2871%
ATM 2yrs 12.03942987 11.90867567 11.90867567 -1.0860% -1.0860%
20%OTM 2yrs 5.45615965 4.48592429 5.34222790 -17.7824% -2.0881%
30%OTM 2yrs 3.55487043 2.46340958 3.43363195 -30.7033% -3.4105%
40%OTM 2yrs 2.27687312 1.24746280 2.12088287 -45.2116% -6.8511%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 7

(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 22.71735009 23.21655438 22.76144673 2.1975% 0.1941%
ATM 1yr 10.22349407 10.26203483 10.26203483 0.3770% 0.3770%
20%OTM 1yr 3.63176073 3.21655437 3.67166201 -11.4326% 1.0987%
30%OTM 1yr 1.98872558 1.54585901 2.01372033 -22.2689% 1.2568%
40%OTM 1yr 1.03346054 0.66421283 1.03177629 -35.7293% -0.1630%
20%ITM 2yrs 25.68231230 26.52967739 25.79066387 3.2994% 0.4219%
ATM 2yrs 14.28003136 14.36974176 14.36974176 0.6282% 0.6282%
20%OTM 2yrs 7.16647093 6.52967735 7.26869087 -8.8857% 1.4264%
30%OTM 2yrs 4.90100198 4.08450289 4.99874001 -16.6598% 1.9942%
40%OTM 2yrs 3.28003520 2.42073748 3.35150000 -26.1978% 2.1788%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 8
(A) (B)
crude Monte Hybrid ratio of

K T rmse worst rmse worst (A)/(B) std vars

20%ITM 1yr 0.57247% 2.11432% 0.05469% 0.18375% 10.468 116.217
ATM 1yr 1.06549% 2.89570% 0.10752% 0.30802% 9.910 89.762
20%OTM 1yr 2.47095% 6.18395% 0.28494% 0.85038% 8.672 63.805

30%OTM 1yr 3.42828% 9.48989% 0.41288% 1.31510% 8.303 52.091

40%OTM 1yr 5.81575% 18.25744% 0.77309% 2.29925% 7.523 37.912
20%ITM 2yrs 0.80623% 2.47425% 0.11267% 0.31136% 7.156 56.552
ATM 2yrs 1.11634% 2.48094% 0.18546% 0.46768% 6.019 46.446
20%OTM 2yrs 1.75587% 4.45897% 0.27797% 0.61263% 6.317 37.584
30%OTM 2yrs 2.42987% 6.81598% 0.37658% 1.10531% 6.452 32.875
40%OTM 2yrs 3.11685% 14.66067% 0.56497% 1.34763% 5.517 28.813

20,000 trials, 100 cases for each parameter.

Table 9
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(A) (B)
crude Monte Hybrid ratio of

K T rmse worst rmse worst (A)/(B) std vars

20%ITM 1yr 0.69977% 2.03948% 0.08510% 0.22680% 8.223 49.380
ATM 1yr 1.06798% 3.33770% 0.19102% 0.45967% 5.591 35.852
20%OTM 1yr 2.49303% 6.12488% 0.42960% 1.27127% 5.803 23.736

30%OTM 1yr 3.40935% 8.18267% 0.75750% 2.22337% 4.501 18.693

40%OTM 1yr 4.42942% 12.17258% 1.24398% 3.07976% 3.561 13.328
20%ITM 2yrs 0.73714% 1.93463% 0.16848% 0.44136% 4.375 23.556
ATM 2yrs 0.99079% 2.61396% 0.27867% 0.71735% 3.555 18.028
20%OTM 2yrs 2.07158% 5.05733% 0.23390% 0.59402% 8.857 13.645
30%OTM 2yrs 2.27417% 7.10532% 0.66713% 2.31033% 3.409 11.725
40%OTM 2yrs 2.96570% 8.25342% 0.92505% 2.32947% 3.206 10.116

20,000 trials, 100 cases for each parameter.

Table 10
(A) (B)
crude Monte Hybrid ratio of

K T rmse worst rmse worst (A)/(B) std vars

20%ITM 1yr 0.60834% 1.47800% 0.05008% 0.10602% 12.148 650.503
ATM 1yr 1.17193% 2.95817% 0.08413% 0.23467% 13.930 502.013
20%OTM 1yr 1.91457% 4.50384% 0.11110% 0.34603% 17.233 418.228

30%OTM 1yr 2.42859% 7.58760% 0.14537% 0.38379% 16.706 369.648

40%OTM 1yr 3.74073% 11.40472% 0.22285% 0.52894% 16.786 256.348
20%ITM 2yrs 0.80736% 2.35756% 0.05331% 0.14069% 15.146 317.170
ATM 2yrs 1.12164% 2.90605% 0.07760% 0.18374% 14.455 255.993
20%OTM 2yrs 1.70795% 4.38880% 0.10273% 0.25005% 16.626 231.451
30%OTM 2yrs 2.11188% 6.75970% 0.13440% 0.35935% 15.713 222.585
40%OTM 2yrs 2.31228% 5.88210% 0.17853% 0.42656% 12.952 203.666

20,000 trials, 100 cases for each parameter.

Table 11
(A) (B)

# of trials Crude Monte Hybrid (B)/(A)

1,000 0.0469 0.0625 1.333
10,000 0.4844 0.5938 1.226
20,000 4.6875 5.0469 1.077

100,000 9.5000 10.3125 1.086

Table 12

4.2.2 European basket call option with five assets

    We suppose St follows

( ) ( )
5

0
1

, 1,2,...,5
i

i i ij i j i i
t t t t

j
dS rS dt S dB S x i

γ
σ

=

= + = =� .          (60)

  We set the simulation conditions as ( )( )1

0 0100 , 0.05, 0.3 ,
i

i ij iS r S
γ

σ
−

= = =

(i=1,2, ...5). We also suppose each asset takes 20% of the basket. And for the

Monte Carlo simulation, we divide one year into 250 time steps. Table 13 and

Table 14 express the prices of the option with 0.6γ =  and ˆ
dIλ = , and 0.9γ =
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and ˆ
dIλ = , respectively. Comparing this result with that of the two assets

case, the accuracy of the approximation is slightly worse, but we observe that

the characteristics are very similar to each other. Overall, except out of the

money cases, utilizing the second order AE method, we can satisfy almost all

the practical requirements of calculation speed and accuracy. Moreover, we

notice that it is very difficult that calculating the price of options of which

underlying asset has complicated structure. We obtain it in a twinkling of an

eye.

    Table 15 and 16 express the performances of the simulation algorithms with

0.6γ =  and ˆ
dIλ = , and 0.9γ =  and ˆ

dIλ =  respectively. The effect of utilizing

the hyprid Monte Carlo is very well. From the ratio of the standard variances,

we can say that the convergence speed of the hybrid Monte Carlo method is

4~76 times faster than the crude Monte Carlo method. We also notice that the

hybrid Monte Carlo method improves the accuracy when the precision of the

second order AE is not satisfactory

    Table 17 expresses the actual calculation time (seconds). As in the case of the

average option, we can find the fact that (B)/(A) is nearly equal to one. In the

case of 1,000 trials, (B)/(A) is not near to one, because of the complexity of the

option, we need so much pre-processing calculation especially for the five

assets case. But the pre-processing is done only once for one simulation so that

the greater number of the trials the smaller number of the (B)/(A). From

computational point of view, this feature is very important. The fact that

(B)/(A) is nearly equal to one for the large number trials even in the cases of

very complicated options enables us to parallelize the computation without

serious problems8.

    We remain the consideration under parallel processing for the next research.

                                           
8 As in the case of both the Intel processors and the fastest super computing processors,

the trend of the improvement of the computation power is due to parallerization.

Therefore, from practical point of view, we need to pay attention to the scalability of the

parallerization of our algorithms.
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(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 20.28929581 20.38431153 20.28195784 0.4683% -0.0362%
ATM 1yr 5.30743951 5.29929201 5.29929201 -0.1535% -0.1535%
20%OTM 1yr 0.49060990 0.38431151 0.48666520 -21.6666% -0.8040%
30%OTM 1yr 0.09816019 0.05488990 0.09211739 -44.0813% -6.1561%
40%OTM 1yr 0.01502470 0.00487760 0.01170632 -67.5361% -22.0862%
20%ITM 2yrs 21.10433339 21.34007865 21.09031468 1.1170% -0.0664%
ATM 2yrs 7.44457320 7.42050274 7.42050274 -0.3233% -0.3233%
20%OTM 2yrs 1.60036248 1.34007861 1.58984258 -16.2641% -0.6573%
30%OTM 2yrs 0.61576331 0.41936737 0.60125496 -31.8947% -2.3562%
40%OTM 2yrs 0.21084724 0.10454405 0.19272944 -50.4172% -8.5929%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 13

(A) (B) (C) (D) (E)
K T crude Monte AE 1st Order AE 2nd Order rate of diff rate of diff

20%ITM 1yr 20.26498684 20.39720862 20.23990541 0.6525% -0.1238%
ATM 1yr 5.40146269 5.33901927 5.33901927 -1.1560% -1.1560%
20%OTM 1yr 0.59238501 0.39720861 0.55451182 -32.9476% -6.3933%
30%OTM 1yr 0.14435017 0.05805043 0.11647844 -59.7850% -19.3084%
40%OTM 1yr 0.02971169 0.00531893 0.01635639 -82.0982% -44.9496%
20%ITM 2yrs 21.09423163 21.40299771 21.01623877 1.4637% -0.3697%
ATM 2yrs 7.70372804 7.53170781 7.53170781 -2.2329% -2.2329%
20%OTM 2yrs 1.92213506 1.40299767 1.78975661 -27.0084% -6.8871%
30%OTM 2yrs 0.85089405 0.45024321 0.73792492 -47.0859% -13.2765%
40%OTM 2yrs 0.35294523 0.11594175 0.25961763 -67.1502% -26.4425%

(D)={(B)-(A)}/(A),  (E)={(C)-(A)}/(A),
crude Monte : 25,000,000 trials

Table 14
(A) (B)
crude Monte Hybrid ratio of

K T rmse worst rmse worst (A)/(B) std vars

20%ITM 1yr 0.42014% 1.08677% 0.05475% 0.16829% 7.673 76.837
ATM 1yr 1.13766% 3.99027% 0.13812% 0.47988% 8.237 56.511
20%OTM 1yr 3.66004% 8.54030% 0.61195% 2.05561% 5.981 29.999

30%OTM 1yr 7.17961% 17.86614% 1.83090% 5.59845% 3.921 19.404

40%OTM 1yr 17.55049% 46.53202% 6.32235% 16.14387% 2.776 9.159
20%ITM 2yrs 0.55322% 1.40204% 0.09114% 0.26925% 6.070 37.690
ATM 2yrs 1.16860% 3.19490% 0.20595% 0.63206% 5.674 29.246
20%OTM 2yrs 2.52678% 10.35230% 0.51600% 1.47408% 4.897 19.600
30%OTM 2yrs 3.66453% 9.02592% 0.94991% 2.66898% 3.858 15.481
40%OTM 2yrs 5.88319% 13.95806% 1.85550% 5.40032% 3.171 11.378

20,000 trials, 100 cases for each parameter.

Table 15
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(A) (B)
crude Monte Hybrid ratio of

K T rmse worst rmse worst (A)/(B) std vars

20%ITM 1yr 0.50538% 1.28845% 0.08247% 0.25874% 6.128 33.661
ATM 1yr 1.22147% 3.34248% 0.22857% 0.62241% 5.344 23.414
20%OTM 1yr 3.49785% 8.86552% 0.92710% 2.42557% 3.773 11.832

30%OTM 1yr 6.22005% 17.09113% 2.20000% 7.85495% 2.827 7.476

40%OTM 1yr 14.51955% 40.32392% 6.98003% 17.55973% 2.080 3.728
20%ITM 2yrs 0.59881% 1.55055% 0.14306% 0.37638% 4.186 16.301
ATM 2yrs 1.11286% 3.34611% 0.31742% 0.78337% 3.506 11.846
20%OTM 2yrs 2.22898% 6.49894% 0.22784% 0.56676% 9.783 7.603
30%OTM 2yrs 3.60794% 11.19228% 1.48275% 4.12166% 2.433 5.927
40%OTM 2yrs 5.06255% 14.67636% 2.33434% 6.03359% 2.169 4.438

20,000 trials, 100 cases for each parameter.

Table 16
(A) (B)

# of trials Crude Monte Hybrid (B)/(A)

1,000 0.1250 0.8594 6.875
10,000 1.3125 1.8750 1.429
20,000 12.0938 17.2344 1.425

100,000 24.5469 35.0469 1.428

Table 17
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