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Abstract

This paper is concerned with the problem of estimating a matrix of means in
multivariate normal distributions with an unknown covariance matrix under the
quadratic loss function. It is first shown that the modified Efron-Morris estimator
is characterized as certain empirical Bayes estimator. This estimator modifies the
crude Efron-Morris estimator by adding a scalar shrinkage term. It is next shown
that the idea of this modification provides the general method for improvement of
estimators, which results in the further improvement of several minimax estimators
including the Stein, Dey and Haff estimators. As a new method for improvement,
a random combination of the modified Stein and the James-Stein estimators is also
proposed and is shown to be minimax. Through Monte Carlo studies for the risk
behaviors, it is numerically shown that the proposed, combined estimator inherits
the nice risk properties of both individual estimators and thus it has a very favorable
risk behavior in a small sample case.

Key words and phrases: Decision theory, empirical Bayes estimator, James-Stein estima-
tor, MANOVA model, minimaxity, multivariate linear regression model, shrinkage esti-
mation, simultaneous estimation.

1 Introduction

The estimation of a mean matrix of a multivariate normal distribution with a known
covariance matrix has received theoretical interest in the literature since the seminal
works of Efron and Morris (1972, 76) who extended the breakthrough of James and
Stein (1961) to the multivariate setup. Especially, Efron and Morris (1976) showed not
only that a matricial shrinkage estimator can be characterized as an empirical Bayes
estimator, but also that the matricial shrinkage estimator can be further improved on by
the modification of adding a scalar shrinkage term. Another important finding in their
paper is that the estimation of the mean matrix is connected to that of a covariance
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or precision matrix, which implies that the methods used for estimating the covariance
matrix produce the corresponding minimax estimators of the mean matrix. For the recent
development from the aspect of admissibility, one can refer to Berger, Strawderman and
Tang (2005). Although the results for the known covariance matrix are of theoretical
interest, their extensions to the case of an unknown covariance matrix are important from
the practical aspect, because the mean matrix corresponds to regression coefficients in a
multivariate linear regression model and small area means in a multivariate mixed linear
model. Using the technique of the unbiased estimate of risk, Bilodeau and Kariya (1989)
and Konno (1990, 1991, 1992) extended the above minimaxity results to the case of the
unknown covariance matrix. In this paper, we point out that the estimators given in the
previous studies have a room for the improvement, and construct new types of minimax
estimators with favorable risk behaviors.

To explain the subjects addressed in the paper, we begin with describing the model
and the estimation problem. Let X = (x1, . . . , xm)t be an m× p random matrix, where
the row vectors are mutually independent and the i-th row vector xi has a multivariate
normal distribution with mean vector θi and positive definite covariance matrix Σ. Also,
let S be a p× p random matrix having the Wishart distribution with degrees of freedom
n and mean nΣ. These are abbreviated to

X ∼ Nm×p(Θ, Im ⊗Σ) and S ∼ Wp(n,Σ), (1.1)

where Θ = (θ1, . . . , θm)t. It is assumed that Θ and Σ are unknown and that X and
S are mutually independent. This is a canonical form of a multivariate linear regression
model. Our aim is to construct an estimator of the mean matrix Θ on the basis of X
and S relative to the quadratic loss function

L(Θ, Θ̂) = tr (Θ̂−Θ)Σ−1(Θ̂−Θ)t. (1.2)

Every estimator is evaluated by the risk function R(Θ, Θ̂) = E[L(Θ, Θ̂)].

The maximum likelihood estimator of Θ is Θ̂ML = X, which is a minimax estima-
tor with the constant risk mp. One of estimators improving on X is the Efron-Morris
estimator

Θ̂EM =

{
X

{
Ip − α(X tX)−1S

}
if m ≥ p + 2,{

Im − α(X tS−1X)−1
}

X if p ≥ m + 2,
(1.3)

where α = {|m − p| − 1}/{n + (2m − p) ∧ p + 1} with a ∧ b = min(a, b). Konno (1991,

92) showed the minimaxity of Θ̂EM and obtained the further dominance result that Θ̂EM

can be improved on by the modified Efron-Morris estimator

Θ̂MEM = Θ̂EM − β

tr X tXS−1X (1.4)

for a nonnegative constant β. This procedure modifies the matricial shrinkage estimator
by adding the scalar shrinkage term −(β/tr X tXS−1)X, and this modification yields the
further improvement. The following queries are here raised:

(a) The modified Efron-Morris estimator Θ̂MEM consists of two kinds of shrinkage
terms: matricial shrinkage and scalar shrinkage. Can this modified Efron-Morris estimator
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be characterized as an empirical Bayes procedure ? If so, adding the scalar shrinkage term
may be considered as a natural modification.

(b) Can the modification rule of adding the scalar shrinkage term be established as
the general method for improving estimators ?

The first objective of this paper is to address the problems of resolving these queries.
Section 2 handles the query (a) in a Bayesian framework. As prior distributions, it is
assumed that Θ has a multivariate normal distribution and that Σ−1 has a multivariate
F -distribution in a setup similar to Kiefer and Schwartz (1965). It is shown that the
modified Efron-Morris estimator can be derived as an empirical Bayes estimator under
the setup.

Section 3 is concerned with the query (b). To explain the derived results, let F =
diag (f1, . . . , fm∧p) be a diagonal matrix based on the eigenvalues f1 ≥ · · · ≥ fm∧p ≥ 0
such that for an m×m orthogonal matrix R and a p× p nonsingular matrix Q,

{
QtSQ = Ip and QtX tXQ = F if m ≥ p,

XS−1X t = RFRt if m < p.

Then, we consider the general class of the shrinkage estimator

Θ̂(Ψ) =

{
X(Ip −QΨ(F )Q−1) if m ≥ p,

(Im −RΨ(F )Rt)X if m < p,
(1.5)

which is equivariant under a transformation group, where Ψ(F ) is a (m ∧ p) × (m ∧ p)
diagonal matrix whose elements are functions of F . Using the same idea as in the modified
Efron-Morris estimator Θ̂MEM , we consider to modify Θ̂(Ψ) as

Θ̂M = Θ̂(Ψ)− β

tr X tXS−1X.

In Section 3, we obtain the general conditions on β and Ψ for the estimator Θ̂M to dom-
inate Θ̂(Ψ). This provides a unified method for improving estimators. Two simple appli-

cations are the minimaxity of the James-Stein estimator Θ̂JS = X − (β/tr X tXS−1)X

and the domination of Θ̂MEM over Θ̂EM . Another interesting example is to modify the
Stein estimator Θ̂ST given by Konno (1991, 92) and it is shown that the modified Stein

estimator Θ̂MST = Θ̂ST−(β/tr X tXS−1)X dominates Θ̂ST under a condition on β. The
method can be also applied to get the improvements on the estimators motivated from
Haff (1980) and Dey (1987).

Section 4 handles the method of combining the James-Stein estimator Θ̂JS and the
modified Stein estimator Θ̂MST . The former estimator is known to give the significant
improvement near Θ = 0, while the latter is better than the former when Θ is far away
from zero. We want to choose the weighting function ε = ε(F ) such that the combined

estimator Θ̂CM = εΘ̂JS +(1−ε)Θ̂MST inherits these nice risk properties of the individual
estimators. For this aim, it is reasonable to take a test statistic for testing the null
hypothesis H0 : Θ = 0 against H1 : Θ 6= 0. Since the likelihood ratio statistic is of the
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form exp{−ntr F /2}, a good choice of ε may be ε = exp{−γtr F } for a positive constant

γ. Although it is very hard to establish the minimaxity of the combined estimator Θ̂CM ,
in Section 4, we succeed in deriving a condition for the minimaxity.

Monte Carlo simulation studies for comparing the estimators derived in this paper
are provided in Section 5 in the case of m > p. The competitors include the modified
shrinkage estimators given in Section 3, the combined estimator Θ̂CM given in Section
4 and an empirical Bayes estimator recommended by Shieh (1993). The Monte Carlo

studies report that the combined estimator Θ̂CM has an excellent risk behavior such that
Θ̂CM inherits the nice risk properties of both the estimators Θ̂JS and Θ̂MST .

Finally, it is noted that the proofs in this paper shall be done in the case of m ≥ p
since the proofs for m < p can be given by replacing (n,m, p) with (n + m − p, p, m) in
the proof for m ≥ p.

2 Empirical Bayes methods

We consider an empirical Bayes estimation of the normal mean matrix in the model (1.1)
and show that the resulting empirical Bayes estimators correspond to the Efron-Morris
and its modified estimators.

2.1 Case of m ≥ p

We first treat the case of m ≥ p. Assume that the prior distribution of Θ is distributed
as

Θ ∼ Nm×p(0, Im ⊗A),

where A is an unknown p× p matrix. Also assume that Σ has a prior distribution, which
will be specified later. Then, given Σ, the posterior distribution of Θ and the marginal
distribution of X are, respectively, given by

Θ|X,Σ ∼ Nm×p(X(Ip −Ξ), Im ⊗ (Σ−1 + A−1)−1),
X|Σ ∼ Nm×p(0, Im ⊗ (Σ + A)),

where Ξ = (Σ + A)−1Σ. The Bayes estimator is the posterior mean Θ̂B = X(Ip − Ξ).
Since the ratio of covariance matrices Ξ is unknown, it may be estimated from the marginal
distributions of S and W = X tX, respectively, given by

S|Σ ∼ Wp(n,Σ) and W |Σ ∼ Wp(m,Σ2), (2.1)

for Σ2 = Σ+ A. It is noted that the parameter space is restricted by Σ2 > Σ or Ξ < Ip.

When Ξ is estimated by a function of S and W , denoted by Ξ̂, substituting Ξ̂ into Θ̂B

results in an empirical Bayes estimator of the form Θ̂EB = X(Ip − Ξ̂).

The expected risk of the empirical Bayes estimator Θ̂EB = X(Ip − Ξ̂) is written as

EΘ,Σ[R(Θ, Θ̂EB)] = EΘ,Σ[EX,S|Θ,Σ[tr (Θ̂EB −Θ)Σ−1(Θ̂EB −Θ)t]]

= EX,S,Σ[EΘ|X,S,Σ[tr (Θ̂EB − Θ̂B)Σ−1(Θ̂EB − Θ̂B)t]]

+ EX,S,Σ[EΘ|X,S,Σ[tr (Θ̂B −Θ)Σ−1(Θ̂B −Θ)t]],
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each term of which can be evaluated as

EX,S,Σ[EΘ|X,S,Σ[tr (Θ̂B −Θ)Σ−1(Θ̂B −Θ)t]] = EΣ[mtr (Ip −Ξ)]

and

EX,S,Σ[EΘ|X,S,Σ[tr (Θ̂EB − Θ̂B)Σ−1(Θ̂EB − Θ̂B)t]]

= EX,S,Σ[tr X tX(Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t].

Since Ξ̂ is a function of S and W = X tX, we observe that

EX,S,Σ[tr X tX(Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t] = EΣ[EW ,S|Σ[tr W (Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t]].

Thus, the expected risk is expressed by

EΘ,Σ[R(Θ, Θ̂EB)] = EΣ

[
mtr (Ip −Ξ) + EW ,S|Σ[tr W (Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t]

]
.

Since (S,W ) is a complete statistic for (Σ,Ξ), the same argument as in Efron and Morris
(1976) can be used to get the expression

R(Θ, Θ̂EB) = mtr (Ip −Ξ) + EW ,S|Σ[tr W (Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t] (2.2)

and the expected risk

EΘ,Σ[R(Θ, Θ̂EB)] = EΘ,Σ

[
mtr (Ip −Ξ) + EW ,S|Σ[tr W (Ξ̂−Ξ)Σ−1(Ξ̂−Ξ)t]

]
.

This implies that the problem of estimating the mean matrix Θ by using an estimator
Θ̂EB = X(Ip−Ξ̂) is reduced to that of estimating Ξ relative to the loss function tr W (Ξ̂−
Ξ)Σ−1(Ξ̂−Ξ)t for Ξ = Σ−1

2 Σ under the model (2.1). This estimation problem is similar
to that considered by Loh (1988, 1991).

It is reasonable to estimate Ξ by an estimator of the form αW−1S for a positive
constant α. Then the best α in terms of minimizing the risk R(Θ, X(I − α(X tX)−1S))
is given by α = (m−p−1)/(n+p+1). Replacing Ξ with the estimator {(m−p−1)/(n+
p + 1)}(X tX)−1S, we obtain the empirical Bayes estimator

Θ̂EM = X
{

Ip − m− p− 1

n + p + 1
(X tX)−1S

}
,

which is called the Efron-Morris estimator. Konno (1992) showed that the Efron-Morris

estimator Θ̂EM is better than Θ̂ML = X relative to the loss (1.2), that is, Θ̂EM is
minimax.

It is interesting to show that the modified Efron-Morris estimator Θ̂MEM given by
(1.4) can be derived as an empirical Bayes estimator. For the purpose, we begin with the
model (2.1) and use the prior distribution similar to Kiefer and Schwartz (1965). Assume
that

Σ−1
2 = λΣ−1 + C,
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where λ is a scalar and C is a p × p positive definite matrix. Then the joint density of
(W , S) is proportional to

p(W , S|Σ−1) ∝ |W |(m−p−1)/2|S|(n−p−1)/2|λΣ−1 + C|m/2|Σ−1|n/2

× exp
{−tr (λW + S)Σ−1/2− tr WC/2

}
.

Assume that the prior distribution of Σ−1 has a multivariate F -distribution whose density
has the form

p(Σ−1) ∝ |Σ−1|d/2|λΣ−1 + C|−m/2

for d > −2 and m > d + 2p. Then the posterior distribution of Σ−1 can be expressed as

p(Σ−1|W ,S) ∝ |Σ−1|(n+d)/2 exp
{−tr (λW + S)Σ−1/2

}
,

that is, the Wishart distribution Wp(n + d + p + 1, (λW + S)−1). Since the posterior
distribution Σ is the inverse Wishart distribution W−1

p (n + d + 2p + 2, λW + S), the

posterior mean of Ξ = Σ−1
2 Σ is

E[Σ−1
2 Σ|W ,S, λ, C] = λIp + CE[Σ|W , S] = λIp + a0C(λW + S),

where a0 = 1/(n + d). We need to derive estimators of the hyperparameters λ and C
from the marginal distribution of (W ,S), given by

p(W ,S|λ,C) ∝ λp(d+p+1)/2|C|m/2−(d+p+1)/2

× |W |(m−p−1)/2|S|(n−p−1)/2|λW + S|−(n+d+p+1)/2 exp(−tr WC/2).

From the marginal distribution, the covariance matrix C may be estimated by a1W
−1

for a constant a1. Using the first order approximation of the marginal likelihood function
as used in Haff (1980, page 589), we may estimate λ by the form λ̂ = a2/tr WS−1 for a
constant a2. Thus, Ξ = Σ−1

2 Σ can be estimated by

Ξ̂EB =λ̂Ip + a0Ĉ(λ̂W + S)

=αW−1S +
β

tr WS−1Ip

for positive constants α and β. The resulting empirical Bayes estimator of Θ is

Θ̂ = X

{
Ip − α(X tX)−1S − β

tr X tXS−1Ip

}
.

The best α in terms of minimizing the risk function is given by α = (m−p−1)/(n+p+1).
Then, the empirical Bayes estimator of Θ is

Θ̂MEM(β) = Θ̂EM − β

tr X tXS−1X,

which is the modified Efron-Morris estimator.
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2.2 Case of m < p

We next handle the case of m < p. Assume that the prior distribution of Θ is

Θ ∼ Nm×p(0, B ⊗Σ),

where B is an m×m unknown positive definite matrix. Then, the posterior distribution
of Θ and the marginal distribution of X are, respectively, given as

Θ|X ∼ Nm×p((Im −Ξ)X, (Im −Ξ)⊗Σ),
X ∼ Nm×p(0,Ξ−1 ⊗Σ),

where Ξ = (Im + B)−1. The Bayes estimator is thus given by Θ̂B = (Im − Ξ)X. Since
Ξ is unknown, we need to estimate it. For the purpose, we concentrate our attention
on the distribution of V = (XS−1X t)−1. It is noted that X and S are marginally
distributed as X ∼ Np(0,Ξ−1 ⊗ Σ) and S ∼ Wp(n,Σ). Combining Theorems 4.2.1,
5.3.22, 5.3.6, and the equation (1.3.5) of Gupta and Nagar (1999), we can see that the
density of V = (XS−1X t)−1 is written by

p(V |Ξ) ∝ |Ξ|p/2|Ξ + V |−(n+m)/2|V |(n−p−1)/2.

From Theorem 5.3.20 of Gupta and Nagar (1999), it follows that E[V ] = (n−p+m)Ξ/(p−
m− 1). Hence, an empirical Bayes estimator of Θ is

Θ̂EM(α) =
{
Im − α(XS−1X t)−1

}
X,

where α is a constant. The best α is α0 = (p − m − 1)/(n + 2m − p + 1), and we call

Θ̂EM = Θ̂EM(α0) the Efron-Morris estimator.

It is more interesting to characterize the modified Efron-Morris estimator through the
empirical method for m < p. Let

Ξ = λIm + C,

where λ is a scalar and C is an m × m positive definite matrix. Then, the marginal
density of V is

p(V |λ, C) ∝ |λIm + C|p/2|λIm + C + V |−(n+m)/2|V |(n−p−1)/2.

Assuming that the prior distribution of C has the density

p(C|λ) ∝ λm(p−m−1−b0)/2|C|b0/2|λIm + C|−p/2

for a constant b0, we have the posterior distribution of C as

p(C|λ, V ) ∝ |C|b0/2|λIm + C + V |−(n+m)/2,

and the posterior mean of Ξ as

E[Ξ|λ, V ] = λIm + E[C|V , λ] = (1 + b1)λIm + b1V
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for b1 = (b0 +m+1)/(n−m− 2− b0). Since the marginal distribution of V is written by

p(V |λ) ∝ λm(p−m−1−b0)/2|V |(n−p−1)/2|λIm + V |−(n−b0−1)/2,

using the arguments as in Haff (1980) provides a reasonable estimator of λ, given by
λ̂ = b2/tr V −1 for a constant b2. Thus, Ξ can be estimated by

Ξ̂ =(b2(1 + b1)/tr V −1)Im + b1V

=α(XS−1X t)−1 +
β

tr XS−1X t Im

for constants α and β. The resulting empirical Bayes estimator of Θ is

Θ̂ =
{

Im − α(XS−1X t)−1 − β

tr XS−1X t Im

}
X.

Since the best α is given by α = (p −m − 1)/(n + 2m − p + 1), we have the empirical
Bayes estimator

Θ̂MEM(β) = Θ̂EM − β

tr XS−1X t X,

which is the modified Efron-Morris estimator.

3 A unified method for the improvement

3.1 Improvement by a scalar shrinkage

In the previous section, the modified Efron-Morris estimator has been characterized as
an empirical Bayes estimator, which modifies the crude Efron-Morris estimator Θ̂EM by
adding the scalar shrinkage term −(β/tr X tXS−1)X for a positive constant β. As proved
by Konno (1991, 1992), this modification yields the further improvement. In this section,
we investigate whether the idea of this modification can be established as the general
method for improving estimators.

Consider the general class of estimators of the form

Θ̂(Ψ) =

{
X(Ip −QΨ(F )Q−1) if m ≥ p,

(Im −RΨ(F )Rt)X if m < p,
(3.1)

where Ψ = diag (ψ1, . . . , ψm∧p) for m ∧ p = min(m, p). It is noted that this class of
estimators is equivariant under the group of transformations X → OXP and S → P tSP
where O is an m×m orthogonal matrix and P is a p× p nonsingular matrix. It is also
noted that the class (3.1) includes several shrinkage estimators proposed in Bilodeau and
Kariya (1989) and Konno (1991, 1992), but the empirical Bayes estimators given by Ghosh
and Shieh (1991, 92) and Shieh (1993) do not belong to the class. Employing the same

idea as appeared in Θ̂MEM , we shall modify Θ̂(Ψ) as

Θ̂M = Θ̂(Ψ)− (β/tr X tXS−1)X, (3.2)
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which is rewritten by

Θ̂M =

{
X(Ip −QΨMQ−1) if m ≥ p,

(Im −RΨMRt)X if m < p,

where ΨM = diag (ψM
1 , . . . , ψM

m∧p) with ψM
i = ψi + β/tr F . The following lemma which

will be proved in the next subsection provides the conditions on Ψ and β for Θ̂M to
dominate Θ̂(Ψ). For the convenience, define H(F ,Ψ) by

H(F ,Ψ) ={n + (2m− p) ∧ p− 3}tr FΨ

tr F
+ 2

tr F 2Ψ

(tr F )2

− 2

tr F

m∧p∑
i=1

{
f 2

i

∂ψi

∂fi

+
∑
j>i

f 2
i ψi − f 2

j ψj

fi − fj

}
. (3.3)

Lemma 3.1 Assume that Ψ, β and a constant c satisfy the following conditions for
c < mp− 2:

(a) H(F ,Ψ) ≤ c/tr F ,
(b) 0 < β ≤ 2(mp− 2− c)/(n− p + 3).

Then, the modified shrinkage estimator Θ̂M improves on the crude one Θ̂(Ψ) relative to
the loss (1.2)

This lemma is very useful for deriving improved estimators. A simple application of
the lemma is the improvement of Θ̂ML = X, which corresponds to the case of Ψ =
0. Lemma 3.1 for c = 0 implies that X is dominated by the James-Stein estimator
Θ̂JS(β) = (1 − β/tr F )X for 0 < β ≤ 2(mp − 2)/(n − p + 3). Another simple example

is the application to the Efron-Morris estimator Θ̂EM given by (1.3). Since Ψ = αF−1,
H(F ,Ψ) is written as

H(F , αF−1) ={n + (2m− p) ∧ p− 3}αm ∧ p

tr F
+

2α

tr F
− 2

tr F

m∧p∑
i=1

{
−α +

∑
j>i

α

}

=
α{(n + (2m− p) ∧ p−m ∧ p)(m ∧ p) + 2}

tr F
.

Applying Lemma 3.1 for c = {n+(2m−p)∧p−m∧p}(m∧p)α+2α, we can see that the

Efron-Morris estimator Θ̂EM(α) is dominated by the modified one Θ̂MEM(β) = Θ̂EM(α)−
(β/tr F )X if β satisfies the condition 0 < β ≤ 2[mp− 2−{n+(2m− p)∧ p−m∧ p}(m∧
p)α−2α]/(n−p+3). Since the best α is given by α = (|m−p|−1)/{n+(2m−p)∧p+1},
this condition can be rewritten by

0 < β ≤ 2
(m ∧ p− 1)(m ∧ p + 2)(n + m)

{n + (2m− p) ∧ p + 1}(n− p + 3)
,

which was derived by Konno (1992).

A nice application of Lemma 3.1 is obtained for the Stein estimator Θ̂ST given by

Θ̂ST =

{
X(Ip −QDF−1Q−1) if m ≥ p + 2,

(Im −RDF−1Rt)X if p ≥ m + 2,
(3.4)
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where D = diag (d1, . . . , dm∧p) with di = (m + p− 2i− 1)/(n− p + 2i + 1). Consider the
modified Stein estimator

Θ̂MST = Θ̂ST − β

tr X tXS−1X = Θ̂ST − β

tr F
X,

and we obtain the following dominance result:

Theorem 3.1 The Stein estimator Θ̂ST is dominated by the modified Stein estimator
Θ̂MST relative to the loss (1.2) if β satisfies the condition

0 < β ≤ 4(m ∧ p− 1 +
∑m∧p

i=2 di)

n− p + 3
.

Proof. Letting Ψ = DF−1, we can see that H(F ,Ψ) for m ≥ p is written as

H(F ,Ψ) = (n + p− 1)
tr D

tr F
+ 2

tr FD

(tr F )2
− 2

tr F

p∑
i=1

∑
j>i

fidi − fjdj

fi − fj

.

It is noted that
p∑

i=1

∑
j>i

fidi − fjdj

fi − fj

=

p∑
i=1

∑
j>i

{
di +

fj(di − dj)

fi − fj

}

=

p∑
i=1

(p− i)di +

p∑
i=1

∑
j>i

fj(di − dj)

fi − fj

≥
p∑

i=1

(p− i)di,

tr FD

(tr F )2
≤ d1

tr F
=

tr D

tr F
−

∑p
i=2 di

tr F
,

which give that

H(F ,Ψ) ≤ 1

tr F

p∑
i=1

(n− p + 2i + 1)di − 2

∑p
i=2 di

tr F
=

mp− 2p− 2
∑p

i=2 di

tr F
,

since
∑p

i=1(n − p + 2i + 1)di =
∑p

i=1(m + p − 2i − 1) = p(m − 2). Then Lemma 3.1 is
applied to complete the proof. The result for m < p can be similarly verified.

The risk expression (2.2) means that the estimation of the mean matrix is related to
that of ratio of covariance matrices. This suggests that the estimators proposed for a
covariance matrix or a ratio of covariance matrices can be employed for our problem. It
is clear that the Efron-Morris and the Stein estimators Θ̂EM and Θ̂ST can be interpreted
through the same idea. We here handle the other estimators induced from the estimators
given by Dey (1987) and Haff (1980) for the covariance matrix. These estimators have
the forms

Θ̂DY = X
{

Ip − α

tr F 2S−1X tX
}

=
{

Im − α

tr F 2XS−1X t
}

X,

Θ̂HF =

{
X{Ip − αQ(F + δIp/tr F−1)−1Q−1} if m ≥ p,

{Im − αR(F + δIm/tr F−1)−1Rt}X if m < p,

10



where α and δ are positive constants. The estimators Θ̂DY and Θ̂HF are respectively
called the Dey and Haff estimators in this paper. It is noted that the Dey estimator can
be expressed by

Θ̂DY = X
{

Ip − α

tr F 2QFQ−1
}

=
{

Im − α

tr F 2RFRt
}

X,

which means that Θ̂DY is the same for both m ≥ p and m < p. The minimaxities of
the Dey and Haff estimators relative to the loss (1.2) can be guaranteed by the following
lemma, whose proof will be given in the next subsection.

Lemma 3.2
(1) The Dey estimator Θ̂DY is minimax if 0 < α ≤ 2(m + p− 3)/(n− p + 3).

(2) The Haff estimator Θ̂HF is minimax if m ≥ p + 2 and 0 < α ≤ 2(m− p− 1)/(n +
p + 1) or if p ≥ m + 2 and 0 < α ≤ 2(p−m− 1)/(n + 2m− p + 1).

It is interesting to show that these estimators Θ̂DY and Θ̂HF can be further improved
on by their modified estimators, respectively,

Θ̂MDY = Θ̂DY − (β/tr X tXS−1)X = Θ̂DY − (β/tr F )X,

Θ̂MHF = Θ̂HF − (β/tr X tXS−1)X = Θ̂HF − (β/tr F )X.

Theorem 3.2
(1) If 0 < β ≤ 2{mp − 2 − α(n − p + 3)}/(n − p + 3) then Θ̂MDY dominates Θ̂DY

relative to the loss (1.2).
(2) If m ≥ p + 2 and 0 < β ≤ 2{mp− 2− p(n + p + 1)α}/(n− p + 3) or if p ≥ m + 2

and 0 < β ≤ 2{mp− 2−m(n + 2m− p + 1)α}/(n− p + 3), then Θ̂MHF dominates Θ̂HF

relative to the loss (1.2).

Proof. The proof in the case of m ≥ p is stated here. For the proof of (1), note that
∂ψi/∂fi = α/tr F 2 − 2αf 2

i /(tr F 2)2 for ψi = αfi/tr F 2. Then, H(F ,Ψ) given by (3.3) is
equal to

H(F ,Ψ) =
(n + p− 5)α

tr F
+

2αtr F 3

tr F 2(tr F )2
+

4αtr F 4

tr F (tr F 2)2
− 2α

tr F tr F 2

p∑
i=1

∑
j>i

f 3
i − f 3

j

fi − fj

.

It is noted that tr F 3 ≤ tr F tr F 2, tr F 4 ≤ (tr F 2)2 and

p∑
i=1

∑
j>i

f 3
i − f 3

j

fi − fj

= (p− 1)tr F 2 +

p∑
i=1

∑
j>i

fifj ≥ (p− 1)tr F 2.

Using the inequalities given above, we get that H(F ,Ψ) ≤ (n − p + 3)α/tr F , so that
Lemma 3.1 can be applied to obtain the requested result.

For the proof of (2), ψi is written by ψi = α/`i for `i = fi + δ/tr F−1. The partial
derivative can be evaluated as

∂ψi

∂fi

= − α

`2
i

{
1 +

δ

f 2
i (tr F−1)2

}
≥ − α

`2
i

{
1 +

δ

fitr F−1

}
= − α

fi`i

.

11



It is noted that fi/`i ≤ 1 and

f 2
i

`i

− f 2
j

`j

=
1

`i`j

{
fifj(fi − fj) +

δ

tr F−1 (f 2
i − f 2

j )
}
≥ 0

for j > i. Then, H(F ,Ψ) can be written by

H(F ,Ψ) =

p∑
i=1

{
(n + p− 3)

αfi

`itr F
+

2αf 2
i

`i(tr F )2
− 2f 2

i

tr F

∂

∂fi

α

`i

}

− 2α

tr F

p∑
i=1

∑
j>i

f 2
i /`i − f 2

j /`j

fi − fj

,

which is less than or equal to p(n + p + 1)α/tr F . Hence from Lemma 3.1, we obtain the
result (2) of Theorem 3.2.

Remark 3.1 As other modification rules of the estimator Θ̂(Ψ) given by (3.1), we can

consider the procedures Θ̂(Ψ)−(β/trΨ−1)X and Θ̂(Ψ)−(β/tr F 2)XS−1X tX although
the details are omitted.

3.2 Proofs of Lemmas

All the results in this paper can be proved based on the following lemma which provides
the unbiased estimate of the risk function of the estimator (1.5) or (3.1). For the proof,
see Konno (1992).

Lemma 3.3 The unbiased risk estimate of the estimator (1.5) or (3.1) is given by

R̂(Θ, Θ̂) = mp +

m∧p∑
i=1

{
(n + (2m− p) ∧ p− 3)fiψ

2
i − 4f 2

i ψi
∂ψi

∂fi

− 2
∑
j>i

f 2
i ψ2

i − f 2
j ψ2

j

fi − fj

−2(m ∨ p−m ∧ p + 1)ψi − 4fi
∂ψi

∂fi

− 4
∑
j>i

fiψi − fjψj

fi − fj

}

for a ∨ b = max(a, b) and a ∧ b = min(a, b).

From Lemma 3.3, the unbiased risk estimate of the ML estimator Θ̂ML = X is mp,
which is the minimax risk. This means that an estimator whose unbiased risk estimate
R̂(Θ, Θ̂) is smaller than mp is minimax. Through the paper, we shall provide the proofs
in the case of m ≥ p and omit the proofs for m < p since they can be similarly done with
replacing (n,m, p) with (n + m− p, p, m).
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Proof of Lemma 3.1. Using Lemma 3.3 for m ≥ p, we can write the difference of
R̂(Θ, Θ̂M) and R̂(Θ, Θ̂(Ψ)) as

∆̂ = R̂(Θ, Θ̂M)− R̂(Θ, Θ̂(Ψ))

=

p∑
i=1

{
(n + p− 3)fi

(2ψiβ

tr F
+

β2

(tr F )2

)
− 4f 2

i ψi
∂

∂fi

β

tr F
− 4f 2

i β

tr F

∂

∂fi

(
ψi +

β

tr F

)

− 4β

tr F

∑
j>i

f 2
i ψi − f 2

j ψj

fi − fj

− 2β2

(tr F )2

∑
j>i

f 2
i − f 2

j

fi − fj

− 2(m− p + 1)
β

tr F

− 4fi
∂

∂fi

β

tr F
− 4β

tr F

∑
j>i

fi − fj

fi − fj

}
.

It is noted that (∂/∂fi)(β/tr F ) = −β/(tr F )2,
∑p

i=1

∑
j>i(fi− fj)/(fi− fj) = p(p− 1)/2

and
p∑

i=1

∑
j>i

f 2
i − f 2

j

fi − fj

= (p− 1)

p∑
i=1

fi = (p− 1)tr F ,

which imply that

∆̂ = (n− p− 1)
β2

tr F
+ 2β(n + p− 3)

tr FΨ

tr F
+ 4β

tr F 2Ψ

(tr F )2
+ 4β2 tr F 2

(tr F )3

− 4β

tr F

p∑
i=1

f 2
i

∂ψi

∂fi

− 4β

tr F

p∑
i=1

∑
j>i

f 2
i ψi − f 2

j ψj

fi − fj

− 2(mp− 2)
β

tr F
.

Since tr F 2/(tr F )3 ≤ 1/tr F , the difference ∆̂ is evaluated as

∆̂ ≤ (n− p + 3)
β2

tr F
− 2(mp− 2)

β

tr F
+ 2β(n + p− 3)

tr FΨ

tr F

+ 4β
tr F 2Ψ

(tr F )2
− 4β

tr F

p∑
i=1

f 2
i

∂ψi

∂fi

− 4β

tr F

p∑
i=1

∑
j>i

f 2
i ψi − f 2

j ψj

fi − fj

.

From the assumption (3.3), we get the inequality

∆̂ ≤ (n− p + 3)
β2

tr F
− 2(mp− 2− c)

β

tr F
,

which is not positive if 0 < β ≤ 2(mp− 2− c)/(n− p + 3). Hence the proof is complete
in the case of m ≥ p.

Proof of Lemma 3.2. For the proof of (1), note the proof of Theorem 3.2 (1). Then
from Lemma 3.3, the unbiased estimate of the risk difference is written by

∆̂DY = R̂(Θ, Θ̂DY )−mp

=
α2

(tr F 2)2

{
(n + p− 7)tr F 3 + 8

tr F 5

tr F 2 − 2

p∑
i=1

∑
j>i

f 4
i − f 4

j

fi − fj

}

− 2α

tr F 2

{
(m− p + 3)tr F − 4

tr F 3

tr F 2 + 2

p∑
i=1

∑
j>i

f 2
i − f 2

j

fi − fj

}
.
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It is observed that

p∑
i=1

∑
j>i

f 4
i − f 4

j

fi − fj

=(p− 1)tr F 3 +

p∑
i=1

∑
j>i

(f 2
i fj + fif

2
j ) ≥ (p− 1)tr F 3,

p∑
i=1

∑
j>i

f 2
i − f 2

j

fi − fj

=(p− 1)tr F , (3.5)

which can be used to get that

∆̂DY ≤ αtr F

tr F 2

{
(n− p− 5)α

tr F 3

tr F tr F 2 +
8αtr F 5

(tr F 2)2tr F
− 2(m + p + 1) +

8tr F 3

tr F tr F 2

}
.

Since tr F 3 ≤ tr F tr F 2 and tr F 5 ≤ tr F (tr F 2)2, ∆̂DY can be evaluated as

∆̂DY ≤ αtr F

tr F 2

[
(n− p + 3)α− 2(m + p− 3)

]
,

which proves the result (1) of Lemma 3.2 for m ≥ p.

For the proof of (2), recall the notation and techniques used in the proof of Theorem
3.2 (2). Then from Lemma 3.3, we can see that

∆̂HF = R̂(Θ, Θ̂HF )−mp
p∑

i=1

{
(n + p− 3)

fiα
2

`2
i

+
4α2fi

`3
i

(
fi +

δ/fi

(tr F−1)2

)
+

4α

`2
i

(
fi +

δ/fi

(tr F−1)2

)

− 2(m− p + 1)
α

`i

− 2α2

p∑
i=1

∑
j>i

f 2
i /`2

i − f 2
j /`2

j

fi − fj

− 4α

p∑
i=1

∑
j>i

fi/`i − fj/`j

fi − fj

}
.

The following inequalities are useful for evaluating the risk difference:

fi +
δ/fi

(tr F−1)2
≤ fi +

δ

tr F−1 = `i,

fi

`i

− fj

`j

=
δ(fi − fj)

`i`jtr F−1 ≥ 0,

f 2
i

`2
i

− f 2
j

`2
j

=
(fi

`i

+
fj

`j

)(fi

`i

− fj

`j

)
≥ 0

for j > i. Then, we obtain that

∆̂HF ≤
p∑

i=1

{
(n + p + 1)

fiα
2

`2
i

− 2(m− p− 1)
α

`i

}

≤
p∑

i=1

α

`i

{
(n + p + 1)α− 2(m− p− 1)

}
,

which proves the result (2) of Lemma 3.2 for m ≥ p.
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4 Improvement by a combined method

There are many minimax estimators and their risk behaviors have various characteristics.
Of these, in this section, we look into the James-Stein estimator

Θ̂JS = (1− β0/tr X tXS−1)X for β0 =
mp− 2

n− p + 3

and the modified Stein estimator

Θ̂MST = Θ̂ST − β1

tr X tXS−1X for β1 =
2(m ∧ p− 1 +

∑m∧p
i=2 di)

n− p + 3
.

The James-Stein estimator Θ̂JS is known to give the significant improvement near Θ = 0,
while the modified Stein estimator Θ̂MST is much better than Θ̂JS when Θ is far away
from zero. In this section, we want to construct a combined estimator of Θ̂JS and Θ̂MST

such that its risk behavior inherits the nice risk properties of both Θ̂JS and Θ̂MST .

A simple combination with the form (1−ε0)Θ̂
MST +ε0Θ̂

JS for a constant ε0 ∈ [0, 1] is
minimax from the convexity of the loss function. However, such a simple combined esti-
mator may be the second best. We thus consider a random combination of the estimators
given by

Θ̂CM = (1− ε)Θ̂MST + εΘ̂JS,

where ε = ε(F ) is a function of F satisfying 0 ≤ ε(F ) ≤ 1. We want to choose the

weighting function ε = ε(F ) such that the combined estimator Θ̂CM inherits the nice risk

properties of both Θ̂JS and Θ̂MST . For this aim, it is reasonable to take a test statistic
for testing the null hypothesis H0 : Θ = 0 against H1 : Θ 6= 0. Since the likelihood ratio
statistic is of the form exp{−ntr F /2}, a good choice of ε may be ε = exp{−γtr F } for

a positive constant γ. It is noted that ε(F ) may be small, that is, Θ̂CM may be close to

Θ̂JS if each element of the mean matrix Θ is near zero.

We now provide the condition for the minimaxity of the combined estimator Θ̂CM .
For m ≥ p, let

gp(ε) = c0 + c1ε + c2ε
2, (4.1)

where

c0 = −p2(m− p− 1)dp − β2
1(n− p + 3)

+ (4/e)
{

(β0 − β1)(1 + d1 + β1)−
p∑

i=1

di −
p∑

i=1

d2
i − β1dp

}
,

c1 = −2(n− p + 3)β1(β0 − β1)

+ (4/e)
{

(β0 − β1)
2 − (β0 − β1)(d1 + dp) +

p∑
i=1

d2
i

}
,

c2 = p2(m− p− 1)dp + 2(mp− 2)β1 − β2
1(n− p + 3)− (mp− 2)β0.

Also, for m < p, define gm(ε) as gp(ε) with replacing (n,m, p) with (n − p + m, p, m).
Then we get the following result:
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Theorem 4.1 The combined estimator Θ̂CM is minimax relative to the loss (1.2) if the
function gm∧p(ε) satisfies the condition

sup
0<ε<1

gm∧p(ε) ≤ 0. (4.2)

For a value of the constant γ, we recommend the use of γ = (n− p− 1)/mp from the
numerical investigation given in the next section.

Remark 4.1 Since gm∧p(ε) is a quadratic function of ε ∈ [0, 1], for example, the condition
(4.2) is satisfied if gm∧p(0) ≤ 0, gm∧p(1) ≤ 0 and g′m∧p(0) ≤ 0. That is, the condition
(4.2) holds if (a) c0 ≤ 0, (b) c1 ≤ 0 and (c) c0 + c1 + c2 ≤ 0. Checking these conditions
numerically, we can reveal that they may be satisfied when m > p + 1 for m ≥ p or
p > m+1 for m < p. In fact, the numerical values of the coefficients (c0, c1, c2) for several
cases of (p,m, n) are reported in Tables 1, 2 and 3, which show that the coefficients c0,
c1 and c2 are negative for all the cases investigated here. This means that the condition
(4.2) holds for the cases.

For large n, it is easily checked that the condition (4.2) holds for m ≥ p+2 in the case
of m ≥ p. In fact, assuming that limn→∞ ε1 = A, a constant in [0, 1], we can see that

lim
n→∞

n× gp(ε1) =− p2(m− p− 1)− 4(p− 1)2

− 4p(p− 1)(m− 2)A− p2(p− 1)(2m− p− 3)A2.

Remark 4.2 Another reasonable choice of the weighting function ε = ε(F ) is given by
ε∗ = γ{(m∧p)|F |1/(m∧p)/tr F }δ for constants γ and δ. In the model (2.1) of the mariginal
distribution of S and W , we consider testing the null hypothesis H0 : Σ1/2Σ−1

2 Σ1/2 = λIp

against H1 : Σ1/2Σ−1
2 Σ1/2 6= λIp. Under H0, the parameter λ may be estimated by

λ̂ = β/tr WS−1, which yields the James-Stein estimator Θ̂JS. For H1, on the other

hand, Σ−1
2 Σ is estimated by αW−1S, which gives the Efron-Morris estimator Θ̂EM . Since

the weighting function ε∗ corresponds to the likelihood ratio test statistic for testing the
sphericity hypothesis H0, so that it may be quite reasonable to consider the combined
estimator

Θ̂∗ = (1− ε∗)Θ̂EM + ε∗Θ̂JS.

Based on ε∗, various combined estimators including (1− ε∗)Θ̂MST + ε∗Θ̂JS are provided,
and we can show the minimaxity of some combined estimators although the details are
omitted here.

We shall prove Theorem 4.1, which is relatively hard to show. For the purpose, we
need the inequalities in Lemma 4.1.

Lemma 4.1 Let F = diag (f1, . . . , fp) with fi > 0 for i = 1, . . . , p. Then the following
inequalities hold:
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Table 1: Values of (c0, c1, c2) in gp(ε) for p = 2.

n m = 3 m = 4 m = 5 m = 7
10 (−0.31,−0.68,−0.36) (−0.63,−1.39,−1.04) (−1.56,−2.16,−1.71) (−5.25,−3.89,−3.08)
30 (−0.12,−0.25,−0.13) (−0.25,−0.51,−0.38) (−0.61,−0.77,−0.63) (−2.07,−1.33,−1.13)
50 (−0.08,−0.15,−0.08) (−0.15,−0.31,−0.23) (−0.38,−0.47,−0.39) (−1.29,−0.80,−0.69)
70 (−0.06,−0.11,−0.06) (−0.11,−0.22,−0.17) (−0.28,−0.34,−0.28) (−0.93,−0.57,−0.50)

100 (−0.04,−0.08,−0.04) (−0.08,−0.16,−0.12) (−0.19,−0.24,−0.20) (−0.66,−0.40,−0.35)
500 (−0.01,−0.02,−0.01) (−0.02,−0.03,−0.02) (−0.04,−0.05,−0.04) (−0.14,−0.08,−0.07)

Table 2: Values of (c0, c1, c2) in gp(ε) for p = 5.

n m = 6 m = 7 m = 8
10 (−7.40,−39.06,−39.82) (−8.66,−50.50,−60.12) (−12.95,−62.62,−82.05)
30 (−2.32,−11.43,−13.21) (−3.03,−14.52,−19.86) (−5.13,−17.71,−26.73)
50 (−1.35,−6.67,−7.95) (−1.81,−8.43,−11.94) (−3.16,−10.22,−16.01)
70 (−0.95,−4.71,−5.69) (−1.29,−5.93,−8.54) (−2.28,−7.18,−11.43)

100 (−0.66,−3.27,−3.99) (−0.90,−4.11,−5.98) (−1.61,−4.96,−8.00)
500 (−0.13,−0.64,−0.80) (−0.18,−0.80,−1.20) (−0.33,−0.97,−1.60)

Table 3: Values of (c0, c1, c2) in gp(ε) for p = 10.

m = 11 m = 15 m = 20
30 (−14.98,−151.33,−314.60) (−53.57,−231.07,−616.90) (−211.08,−341.37,−1059.39)
50 (−8.04,−79.15,−176.36) (−34.34,−118.89,−341.29) (−140.91,−172.50,−571.28)
70 (−5.43,−53.37,−122.72) (−25.25,−79.44,−236.00) (−105.57,−114.04,−389.99)

100 (−3.63,−35.79,−84.32) (−18.09,−52.85,−161.35) (−76.70,−75.18,−263.81)
500 (−0.66,−6.61,−16.32) (−3.80,−9.59,−30.92) (−16.52,−13.37,−49.42)
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(i) tr F /p ≥ |F |1/p ≥ p/tr F−1,

(ii) tr F tr F−1 ≥ p2,

(iii) tr F 2 ≤ (tr F )2 ≤ ptr F 2,

where the equalities hold when f1 = · · · = fp.

Proof. From the concavity of the log-function , we can show that log(
∑p

i=1 fi/p) −
(1/p)

∑p
i=1 log fi ≥ 0 and log(

∑p
i=1 f−1

i /p) − (1/p)
∑p

i=1 log f−1
i ≥ 0, which proves (i).

The inequality in (ii) follows from (i). For (iii), it is trivial to obtain the lower bound of
(tr F )2. Noting that

(tr F )2 = tr F 2 + 2
∑
i<j

fifj = ptr F 2 − (p− 1)tr F 2 + 2
∑
i<j

fifj

= ptr F 2 −
∑
i<j

(f 2
i + f 2

j ) + 2
∑
i<j

fifj = ptr F 2 −
∑
i<j

(fi − fj)
2,

we can get the upper bound of (tr F )2.

Proof of Theorem 4.1. Let φi = di/fi + β1/tr F . Then for m ≥ p, we can

express the combined estimator Θ̂CM as Θ̂CM = X(Ip − QΨCMQ−1) where ΨCM =
diag (ψCM

1 , . . . , ψCM
p ) with ψCM

i = (1 − ε)φi + εβ0/tr F . Thus, using Lemma 3.3 and

expanding (ψCM
i )2, we can write the unbiased estimate of the risk difference of Θ̂CM and

Θ̂ML and decompose it as

∆̂CM = R̂(Θ, Θ̂CM)−mp = ∆̂1 + ∆̂2 + ∆̂3 + ∆̂4,

where ∆̂1, ∆̂2, ∆̂3 and ∆̂4, respectively, correspond to the risk of Θ̂MST , the risk of Θ̂JS,
the cross product terms independent of ∂ε/∂fi and the cross product terms involving
∂ε/∂fi, given by

∆̂1 =

p∑
i=1

[
(n + p− 3)(1− ε)2fiφ

2
i − 2(m− p + 1)(1− ε)φi − 4(1− ε)2f 2

i φi
∂φi

∂fi

− 4(1− ε)fi
∂φi

∂fi

− 4(1− ε)
∑
j>i

fiφi − fjφj

fi − fj

− 2(1− ε)2
∑
j>i

f 2
i φ2

i − f 2
j φ2

j

fi − fj

]
,

∆̂2 =

p∑
i=1

[
(n + p− 3)fiε

2 β2
0

(tr F )2
− 4ε2f 2

i

β0

tr F

∂

∂fi

β0

tr F
− 2ε2 β2

0

(tr F )2

∑
j>i

f 2
i − f 2

j

fi − fj

− 2(m− p + 1)ε
β0

tr F
− 4εfi

∂

∂fi

β0

tr F
− 4ε

β0

tr F

∑
j>i

fi − fj

fi − fj

]
,

∆̂3 = 2
β0(1− ε)ε

tr F

p∑
i=1

[
(n + p− 3)fiφi + 2

f 2
i φi

tr F
− 2f 2

i

∂φi

∂fi

− 2
∑
j>i

f 2
i φi − f 2

j φj

fi − fj

]
,

∆̂4 = 4

p∑
i=1

{
1 + fiφi(1− ε) +

β0εfi

tr F

}{
fiφi − β0fi

tr F

} ∂ε

∂fi

.
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We first evaluate ∆̂1. Expanding φ2
i = (di/fi + β1/tr F )2 gives that

∆̂1 = ∆̂1·1 + ∆̂1·2 + ∆̂1·3,

where

∆̂1·1 =

p∑
i=1

[
(n + p + 1)(1− ε)2d2

i

fi

− 2(m− p− 1)(1− ε)
di

fi

− 4(1− ε)
∑
j>i

di − dj

fi − fj

− 2(1− ε)2
∑
j>i

d2
i − d2

j

fi − fj

]
,

∆̂1·2 =
1

tr F

{
(n− p− 1)β2

1(1− ε)2 − 2(mp− 2)β1(1− ε)
}

+
4β2

1(1− ε)2tr F 2

(tr F )3
,

∆̂1·3 = 2
β1(1− ε)2

tr F

{
(n + p− 1)tr D + 2

tr FD

tr F
− 2

p∑
i=1

∑
j>i

fidi − fjdj

fi − fj

}
.

Since f1 > · · · > fp and d1 > · · · > dp, we observe that

4(1− ε)

p∑
i=1

∑
j>i

di − dj

fi − fj

+ 2(1− ε)2

p∑
i=1

∑
j>i

d2
i − d2

j

fi − fj

≥ 4(1− ε)

p∑
i=1

∑
j>i

di − dj

fi

+ 2(1− ε)2

p∑
i=1

∑
j>i

d2
i − d2

j

fi

=

p∑
i=1

1

fi

[
4(1− ε)(p− i)di + 2(1− ε)2(p− i)d2

i −
∑
j>i

{
4(1− ε)dj + 2(1− ε)2d2

j

}]
,

which implies that ∆̂1·1 ≤
∑p

i=1 f−1
i ∆̂1·1(i), where

∆̂1·1(i) =(n− p + 2i + 1)(1− ε)2d2
i − 2(m + p− 2i− 1)(1− ε)di

+
∑
j>i

{
4(1− ε)dj + 2(1− ε)2d2

j

}
.

Denote h(x) = (n − p + 2i + 1)x2 − 2(m + p − 2i − 1)x. Since h(x) is minimized at
x = (m + p− 2i− 1)/(n− p + 2i + 1) = di, we can see that

h(di) ≤ h((1− ε)di) ≤ h((1− ε)di+1).

Then for each i,

∆̂1·1(i) ≤ (n− p + 2i + 1)(1− ε)2d2
i+1 − 2(m + p− 2i− 1)(1− ε)di+1

+ 4(1− ε)di+1 + 2(1− ε)2d2
i+1 +

∑
j>i+1

{
4(1− ε)dj + 2(1− ε)2d2

j

}

= (n− p + 2(i + 1) + 1)(1− ε)2d2
i+1 − 2(m + p− 2(i + 1)− 1)(1− ε)di+1

+
∑

j>i+1

{
4(1− ε)dj + 2(1− ε)2d2

j

}
.
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Repeating this argument yields the inequality

∆̂1·1(i) ≤ (n + p + 1)(1− ε)2d2
p − 2(m− p− 1)(1− ε)dp,

which gives that

∆̂1·1 ≤
p∑

i=1

f−1
i

[
(n + p + 1)(1− ε)2d2

p − 2(m− p− 1)(1− ε)dp

]

= tr F−1
[
(m− p− 1)(1− ε)2dp − 2(m− p− 1)(1− ε)dp

]
.

Since the last rhs of the above inequality is negative, it holds from Lemma 4.1 (ii) that

∆̂1·1 ≤ 1

tr F

[
p2(m− p− 1)(1− ε)2dp − 2p2(m− p− 1)(1− ε)dp

]
. (4.3)

For ∆̂1·2, it follows from the inequality tr F 2 ≤ (tr F )2 that

∆̂1·2 ≤ 1

tr F

{
(n− p + 3)β2

1(1− ε)2 − 2(mp− 2)β1(1− ε)
}

. (4.4)

The same arguments as in the proof of Theorem 3.1 can be used to get that

∆̂1·3 ≤ 2
β1(1− ε)2

tr F

{
mp− 2p− 2

p∑
i=2

di

}
. (4.5)

From the definition of β1, note that 2(p− 1 +
∑p

i=2 di) = (n− p + 3)β1. Thus, combining
(4.3), (4.4) and (4.5) gives that

∆̂1 ≤ (tr F )−1
{
p2(m− p− 1)(1− ε)2dp − 2p2(m− p− 1)(1− ε)dp

}

+ (tr F )−1
{
(n− p + 3)β2

1(1− ε)2 − 2(mp− 2)β1(1− ε)
}

+ 2
β1(1− ε)2

tr F

{
mp− 2p− 2

p∑
i=2

di

}

= (tr F )−1
[− p2(m− p− 1)dp − β2

1(n− p + 3)

+ 2ε{β2
1(n− p + 3)− (mp− 2)β1}

+ ε2{p2(m− p− 1)dp + 2(mp− 2)β1 − β2
1(n− p + 3)}]. (4.6)

Using the fact that tr F 2 ≤ (tr F )2, we can evaluate ∆̂2 as

∆̂2 = (tr F )−1
{
(n− p− 1)β2

0ε
2 − 2(mp− 2)β0ε

}
+

4β2
0ε

2tr F 2

(tr F )3

≤ (tr F )−1
{
(n− p + 3)β2

0ε
2 − 2(mp− 2)β0ε

}

= (tr F )−1
{
(mp− 2)β0ε

2 − 2(mp− 2)β0ε
}
. (4.7)
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By the same manner as in the proof of Theorem 3.1, ∆̂3 can be evaluated as

∆̂3 = 2
β0(1− ε)ε

tr F

{
(n + p− 1)tr D + 2

tr FD

tr F
− 2

p∑
i=1

∑
j>i

fidi − fjdj

fi − fj

}

+ 2
β0(1− ε)ε

tr F

{
(n− p− 1)β1 + 4β1

tr F 2

(tr F )2

]

≤ 2
β0(1− ε)ε

tr F

[
mp− 2p− 2

p∑
i=2

di + (n− p + 3)β1

}

= 2(mp− 2)
β0(1− ε)ε

tr F
. (4.8)

Combining (4.6), (4.7) and (4.8) gives that

∆̂1 + ∆̂2 + ∆̂3 = (tr F )−1 × hp(ε),

where hp(ε) is a quadratic function of ε ∈ [0, 1] defined by

hp(ε) =− p2(m− p− 1)dp − β2
1(n− p + 3) + ε

{
2β2

1(n− p + 3)− 2(mp− 2)β1

}

+ ε2
{
p2(m− p− 1)dp + 2(mp− 2)β1 − β2

1(n− p + 3)− (mp− 2)β0

}
. (4.9)

Noting that β0 − β1 > 0, we observe that hp(0) < 0, hp(1) < 0 and h′p(0) < 0 for
h′p(ε) = (d/dε)hp(ε). These facts imply that

sup
0<ε<1

hp(ε) < 0. (4.10)

It is noted that ∆̂1 + ∆̂2 + ∆̂3 ≤ 0 irrespective of the specific form of the function
ε = ε(F ). The function ε affects the term ∆̂4. Since ∂ε(F )/∂fi = −γ × ε(F ), ∆̂4 is
rewritten by

∆̂4 = 4γε

p∑
i=1

{
1 + (1− ε)

(
di +

β1fi

tr F

)
+ ε

β0fi

tr F

}
×

{
(β0 − β1)

fi

tr F
− di

}
,

which can be expressed by

∆̂4 = 4γε
[
β0 − β1 −

p∑
i=1

di

+ (1− ε)
{

(β0 − β1)
tr FD

tr F
−

p∑
i=1

d2
i + β1(β0 − β1)

tr F 2

(tr F )2
− β1

tr FD

tr F

}

+ ε
{

β0(β0 − β1)
tr F 2

(tr F )2
− β0

tr FD

tr F

}]
.
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Since β0 − β1 ≥ 0, tr F 2/(tr F )2 ≤ 1 and dp ≤ tr FD/tr F ≤ d1, we can show that

∆̂4 ≤ 4γε
[
β0 − β1 −

p∑
i=1

di + (1− ε)
{

(β0 − β1)d1 −
p∑

i=1

d2
i − β1dp + β1(β0 − β1)

}

+ ε
{

β0(β0 − β1)− β0dp

}]

= 4γε×K(ε),

where K(ε) = (β0 − β1)(1 + d1 + β1)−
∑p

i=1 di −
∑p

i=1 d2
i − β1dp + ε{(β0 − β1)

2 − (β0 −
β1)(d1 + dp) +

∑p
i=1 d2

i }. If K(ε) is negative, then from (4.10), it follows that ∆̂CM ≤ 0.
If K(ε) is non-negative, from the fact that e−x ≤ e−1x−1 for x > 0, we observe that

∆̂4 ≤ (4/e)

tr F
×K(ε). (4.11)

Combining (4.9) and (4.11), we can see that

∆̂CM ≤ (tr F )−1 [hp(ε) + (4/e)K(ε)] = (tr F )−1 × gp(ε),

where

gp(ε) =− p2(m− p− 1)dp − β2
1(n− p + 3)

+ (4/e)
{

(β0 − β1)(1 + d1 + β1)−
p∑

i=1

di −
p∑

i=1

d2
i − β1dp

}

+ ε
[
2β2

1(n− p + 3)− 2(mp− 2)β1

+ (4/e)
{

(β0 − β1)
2 − (β0 − β1)(d1 + dp) +

p∑
i=1

d2
i

}]

+ ε2
{
p2(m− p− 1)dp + 2(mp− 2)β1 − β2

1(n− p + 3)− (mp− 2)β0

}
,

which is rewritten by the expression (4.1). Therefore, if

sup
0<ε<1

gp(ε) < 0

for a pair of (n,m, p), then the estimator Θ̂CM is minimax.

5 Monte Carlo studies

We now investigate the risk performances of several minimax estimators derived in the
previous sections. The values of the risks are estimated through a Monte-Carlo simulation
for m ≥ p.

The estimators we shall investigate are
[1] the James-Stein estimator Θ̂JS = (1− β0/tr F )X for β0 = (mp− 2)/(n− p + 3),

[2] the modified Efron-Morris estimator Θ̂MEM = Θ̂EM − (β′0/tr X tXS−1)X
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for β′0 = (p− 1)(p + 2)(m + n)/{(n + p + 1)(n− p + 3)},
[3] the modified Stein estimator Θ̂MST = Θ̂ST − (β1/tr X tXS−1)X

for β1 = 2(p− 1 +
∑p

i=2 di)/(n− p + 3),

[4] the modified Dey estimator Θ̂MDY = X(Ip − α1QFQ−1/tr F 2)− (β2/tr F )X
for α1 = (m + p− 3)/(n− p + 3) and β2 = (m− 1)(p− 1)/(n− p + 3),

[5] the modified Haff estimator Θ̂MHF = X(Ip−α0Q(F +δ/tr F−1)−1Q−1)−(β3/tr F )X
for α0 = (m− p− 1)/(n + p + 1), β3 = (p− 1)(p + 2)/(n− p + 3) and δ = 0.01,

[6] the combined estimator Θ̂CM = (1− ε)Θ̂MST + εΘ̂JS

for ε = exp(−γtr F ) and γ = (n− p− 1)/mp, and
[7] the empirical Bayes estimator recommended by Shieh (1993):

Θ̂SH = X{Ip − T (X tX)−1S/(n + p + 1)},
T = (1− α2)

{
(m− p− 1)Ip +

p− 1

tr X tX
X tX

}
+ α2

mp− 2

tr X tX
X tX,

for α2 = (m− p− 1)/{m2(p− 1)}.
The simulation experiments are done based on 50,000 independent replications gener-

ated from (1.1). The risk functions are estimated by the average of the simulated values
of the risks, and their estimated risks are reported by Table 4 for m = 4, 8, 12 and p = 2,
and by Table 5 for m = 6, 12, 18 and p = 4, where n = 5m. Since the risk functions of the
above estimators are functions of ΘtΘΣ−1, we look into the two cases of eigenvalues of
ΘtΘΣ−1, namely, we choose (0, 0) and (100, 1) for p = 2 and (0, 0, 0, 0) and (100, 10, 1, 0)
for p = 4 as the eigenvalues.

The risk behaviors of the five estimators Θ̂ML, Θ̂MEM , Θ̂MST , Θ̂JS, Θ̂CM are drawn
in Figure 1 for (n,m, p) = (10, 8, 4), where the eigenvalues of ΘtΘΣ−1 take the values
of (4c, 2c, 1, 0) for 0 ≤ c ≤ 5. In the tables and the figure, Ch(ΘtΘΣ−1) denotes the

eigenvalues of ΘtΘΣ−1, and for the simplicity the estimators Θ̂MEM , Θ̂MDY , Θ̂MHF

Θ̂MST , Θ̂JS, Θ̂CM and Θ̂SH are denoted by MEM, MDY, MHF, MST, JS, CM and SH,
respectively. Also Θ̂ML = X is denoted by ML.

It is noted that the values of (n,m, p) in the above studies satisfy the minimaxity of
the estimators. Especially the condition of Theorem 4.1 is satisfied and the minimaxity
of the combined estimator Θ̂CM is guaranteed.

The numerical results given in Tables 4 and 5 and Figure 1 illustrate several important
observations.

(1) When the eigenvalues of ΘtΘΣ−1 are zeros, Θ̂JS, Θ̂MDY and Θ̂CM are more
favorable than the others. When the eigenvalues of ΘtΘΣ−1 are dispersed, on the other
hand, Θ̂MEM , Θ̂MST , Θ̂CM and Θ̂SH are better.

(2) The risk behavior of Θ̂MDY and Θ̂MHF are similar to that of Θ̂JS. The risk of

Θ̂SH is not favorable than the others when the eigenvalues of ΘtΘΣ−1 are zeros.
(3) Θ̂CM is superior to either Θ̂JS or Θ̂MST .
(4) On the whole, for a fixed p, the savings in risk increase with m (and n = 5m).

(5) Figure 1 indicates that for small sample size n, Θ̂MST is better than Θ̂MEM . Also,

Θ̂CM has a smaller risk than both Θ̂JS and Θ̂MST when the eigenvalues of ΘtΘΣ−1 are
close together.
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Through the Monte Carlo simulation studies, we come to the conclusions that the
combined estimator Θ̂CM has an excellent risk behavior such that Θ̂CM inherits the nice
risk properties of both the estimators Θ̂JS and Θ̂MST . Of course, there is no estimator
which has the best risk behavior over the whole parameter space.

Remark 5.1 For small sample case, we also carried out Monte Calro studies when
(n,m, p) = (10, 6, 4), (8, 6, 4) and (6, 4, 2), and others. In such cases, we observed that

Θ̂CM has smaller risks than both Θ̂JS and Θ̂MST .

Table 4: Simulated risks in estimation of mean matrix (p = 2 and n = 5m).

Ch (ΘtΘΣ−1) (0, 0) (100, 1)

(m, p) (4, 2) (8, 2) (12, 2) (4, 2) (8, 2) (12, 2)

ML 7.96 16.01 23.99 7.96 16.01 23.99

MEM 3.45 5.32 5.93 7.16 11.52 15.15

MDY 2.57 2.80 2.92 7.78 15.03 21.58

MHF 3.05 7.83 12.93 7.64 14.33 20.57

MST 3.24 4.60 5.13 7.23 11.59 15.22

JS 2.41 2.45 2.44 7.65 14.37 20.12

CM 2.48 2.67 2.76 7.23 11.57 15.18

SH 4.84 5.75 6.13 7.24 11.59 15.21

Table 5: Simulated risks in estimation of mean matrix (p = 4 and n = 5m).

Ch(ΘtΘΣ−1) (0, 0, 0, 0) (100, 10, 1, 0)

(m, p) (6, 4) (12, 4) (18, 4) (6, 4) (12, 4) (18, 4)

ML 23.99 47.95 71.93 23.99 47.95 71.93

MEM 5.50 13.63 16.82 19.76 29.29 36.44

MDY 3.35 3.35 3.41 21.45 37.93 50.86

MHF 3.79 15.66 30.15 20.47 36.35 51.77

MST 6.29 11.65 13.91 18.28 28.00 35.13

JS 2.84 2.65 2.58 20.50 34.65 45.00

CM 3.23 3.87 4.19 18.23 27.18 33.75

SH 16.41 19.66 20.96 21.55 31.06 38.06
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Figure 1: Simulated risks in estimation of mean matrix where (n, m, p) = (10, 8, 4) and
the eigenvalues of Σ−1ΘtΘ are (4c, 2c, 1, 0) for 0 ≤ c ≤ 5.
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