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Abstract

We consider goodness-of-fit tests of symmetric stable distributions based on weighted integrals of
the squared distance between the empirical characteristic function of the standardized data and the
characteristic function of the standard symmetric stable distribution with the characteristic exponent
α estimated from the data. We treat α as an unknown parameter, but for theoretical simplicity we
also consider the case that α is fixed. For estimation of parameters and the standardization of data
we use maximum likelihood estimator (MLE) and an equivariant integrated squared error estimator
(EISE) which minimizes the weighted integral. We derive the asymptotic covariance function of the
characteristic function process with parameters estimated by MLE and EISE. For the case of MLE,
the eigenvalues of the covariance function are numerically evaluated and asymptotic distribution of the
test statistic is obtained using complex integration. Simulation studies show that the asymptotic dis-
tribution of the test statistics is very accurate. We also present a formula of the asymptotic covariance
function of the characteristic function process with parameters estimated by an efficient estimator for
general distributions.

1 Introduction.

The family of stable distributions is one of the most important classes of distributions in probability
theory. The general central limit theorem asserts that if a suitably normalized sum of independently and
identically distributed (i.i.d.) random variables has a limit distribution, only possible limits are the stable
distributions (Chapter 6 of Feller (1971)). Concerning statistical inference, because of their attractive
properties such as heavy tails, many models based on stable distributions have been considered in both
social and natural sciences (Samorodnitsky and Taqqu (1994), Uchaikin and Zolotarev (1999), Rachev and
Mittnik (2000)). Therefore it is important to consider goodness-of-fit tests of stable distributions. However
few researches on goodness-of-fit tests of stable distributions have been conducted due to the difficulty in
expressing their density functions explicitly. The purpose of this paper is to propose goodness-of-fit tests
based on the empirical characteristic function, since the characteristic functions of stable distributions are
explicitly given. For past researches on goodness-of-fit tests of heavy-tailed distributions using empirical
characteristic function approach, see Gürtler and Henze (2000) and Matsui and Takemura (2005). Both
papers treat Cauchy (α = 1) distribution which is one of the stable distributions.

Let f(x; µ, σ, α) denote the symmetric stable density with the characteristic function

Φ(t) = exp(iµt − |σt|α),
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where the parameter space is

Ω = {−∞ < µ < ∞, σ > 0, 0 < α ≤ 2}.

Here α is the characteristic exponent, µ is the location parameter and σ is the scale parameter. For the
standard case (µ, σ) = (0, 1) we simply write the characteristic function as Φ(t; α) = exp(−|t|α) and the
density function as f(x; α). In this parameterization stable distributions form a location-scale family for
each value of α, i.e.,

f(x; µ, σ, α) =
1
σ

f(
x − µ

σ
; α).

In order to cope with more general situation or for notational convenience we also write the parameters
as

θ = (θ1, θ2, θ3) = (µ, σ, α)

and write corresponding density, distribution or characteristic function as

f(x; µ, σ, α) = f(x; θ), F (x; µ, σ, α) = F (x; θ), Φ(x; µ, σ, α) = Φ(x; θ).

Here we note that θ is a vector.
In this paper we often differentiate functions of the parameter θ and the data x with respect to x, µ, σ

and α. Since we will consider affine invariant (location-scale invariant) tests, it is often sufficient to
evaluate the derivatives at the standard case (µ, σ) = (0, 1). For example we use the notation

fµ(x; α) =
∂

∂µ
f(x; µ, σ, α)|(µ,σ)=(0,1) or f ′(x;α) =

∂

∂x
f(x;µ, σ, α)|(µ,σ)=(0,1).

Concerning the characteristic function we also use ∇θΦ(t; θ) = (Φµ(t; θ), Φσ(t; θ), Φα(t; θ)) where, for
example,

Φµ(t; θ) =
∂

∂µ
Φ(t; µ, σ, α).

For standard case (µ, σ) = (0, 1) we write

Φµ(t; α) =
∂

∂µ
Φ(t; µ, σ, α)|(µ,σ)=(0,1).

Given a random sample x1, . . . , xn from an unknown distribution F , we want to test the null hypothesis
H1 that F belongs to the family of stable distributions f(x;µ, σ, α) and the null hypothesis H2 that F
belongs to the family of stable distributions f(x;µ, σ, α) with α = α0 fixed. Note that H1 ⊃ H2. Here we
explain our proposed procedure for testing H1, because for H2 we can simply replace α̂ by α0.

As remarked above stable distributions form a location scale family and we consider affine invariant
tests. The proposed tests are based on the difference between the empirical characteristic function

(1.1) Φn(t) = Φn(t; µ̂, σ̂) =
1
n

n∑

j=1

exp(ityj), yj =
xj − µ̂

σ̂
,

of the standardized data yj and the characteristic function with α estimated from the data

Φ(t) = Φ(t; α̂) = e−|t|α̂ .
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Here µ̂ = µ̂n = µ̂n(x1, . . . , xn), σ̂ = σ̂n = σ̂n(x1, . . . , xn) and α̂ = α̂n = α̂n(x1, . . . , xn) are affine
equivariant estimators of µ, σ, α satisfying

µ̂n(a + bx1, . . . , a + bxn) = a + bµ̂n(x1, . . . , xn),
σ̂n(a + bx1, . . . , a + bxn) = bσ̂n(x1, . . . , xn),
α̂n(a + bx1, . . . , a + bxn) = α̂n(x1, . . . , xn),

for all −∞ < a < ∞ and b > 0.
As equivariant estimators we consider maximum likelihood estimator (MLE) and an equivariant in-

tegrated squared error estimator (EISE) defined in (2.6) below. The reason for considering MLE is its
asymptotic efficiency and the reason for EISE is that its definition is similar to our proposed test statistic.

Following Gürtler and Henze (2000) and Matsui and Takemura (2005) we propose the following test
statistic

(1.2) Dn,κ := n

∫ ∞

−∞

∣∣Φn(t) − e−|t|α̂∣∣2w(t)dt, w(t) = e−κ|t|, κ > 0.

Dn,κ is the weighted L2-distance between Φn(t) and the characteristic function e−|t|α̂ of f(x; α̂) with
respect to the weight function w(t) = e−κ|t|, κ > 0. This weight function is chosen for convenience, so
that we can evaluate the asymptotic covariance function of the empirical characteristic function process
under H1.

The test statistic Dn,κ has an alternative representation, which is useful for obtaining its asymptotic
distribution.

(1.3) Dn,κ =
∫ ∞

−∞
|Ẑn(t)|2σ̂nw(σ̂nt)dt,

where

(1.4) Ẑn(t) =
1√
n

n∑

j=1

{
cos(txj) + i sin(txj) − e−|σ̂nt|α̂n (

cos(tµ̂n) + i sin(tµ̂n)
)}

.

Ẑn(t) corresponds to the empirical characteristic function process.
Our test statistic Dn,κ is a quadratic form of the empirical characteristic function process. Although

we derive an explicit form of the asymptotic covariance function of the empirical characteristic function
process, it is not trivial to derive the asymptotic distribution of Dn,κ under H1 and H2 from the covariance
function, especially when the parameters are estimated. See chapter 7 of Durbin (1973a) and Durbin
(1973b) for tests based on empirical distribution functions with estimated parameters and see Gürtler
and Henze (2000) and Matsui and Takemura (2005) for tests based on empirical characteristic functions.
As in Matsui and Takemura (2005) we evaluate the asymptotic distribution of Dn,κ for the case MLE
by numerically approximating the eigenvalues of the asymptotic covariance function. By numerically
evaluating the asymptotic distribution we can also check the convergence of the finite sample distributions
which we obtain by Monte Carlo simulations.

Concerning EISE, as shown below, the asymptotic covariance function of the empirical characteristic
function process is very complicated. Furthermore we found that Monte Carlo simulation involving EISE
is very time consuming. Therefore in this paper we show theoretical results on our proposed test statistic
involving EISE and leave numerical studies to our subsequent works.

3



This paper is organized as follows. In Section 2.1 we first define and summarize properties of MLE
and EISE. Then in Section 2.2 we state theoretical results on asymptotic distribution of Dn,κ under H1

in Theorem 2.3 and Theorem 2.5 and results under H2 as the corollaries of these theorems. Numerical
evaluations of asymptotic critical values of Dn,κ under H1 and H2 for MLE are discussed in Section 3.
Simulation studies of MLE and corresponding test statistic Dn,κ are given in Section 4, including the
study of finite sample power behavior in Section 4.3.

2 Main results

2.1 Estimators and their asymptotic properties

For our purposes we need asymptotic covariance matrices and “asymptotically linear representations” (AL
representations) of the estimators. We describe asymptotic properties of maximum likelihood estimator
(MLE) following DuMouchel (1973). We also define an equivariant integrated squared error estimator
(EISE) and give asymptotic properties of EISE. For MLE explicit expressions of the asymptotic covariance
matrix and AL representations are given in the Cauchy case α = 1.

As shown in DuMouchel (1973), MLE is asymptotically normal and asymptotically efficient. The
likelihood equation is given by

∂L

∂µ
= 0 ⇔

n∑

j=1

1

2πf(xj−µ
σ ; α)

∫ ∞

−∞
e
−it

“

xj−µ

σ

”

Φµ(t; α)dt = 0,(2.1)

∂L

∂σ
= 0 ⇔

n∑

j=1

1

2πf(xj−µ
σ ; α)

∫ ∞

−∞
e
−it

“

xj−µ

σ

”

Φσ(t; α)dt = 0,(2.2)

∂L

∂α
= 0 ⇔

n∑

j=1

1

2πf(xj−µ
σ ; α)

∫ ∞

−∞
e
−it

“

xj−µ

σ

”

Φα(t; α)dt = 0,(2.3)

where
(Φµ(t;α),Φσ(t; α), Φα(t; α)) =

(
ite−|t|α ,−e−|t|α |t|αα,−e−|t|α |t|α log |t|

)
.

EISE is an affine equivariant version of the ISE (integrated squared error) estimator proposed by
Paulson et al. (1975). The original ISE estimator of Paulson et al. (1975) is not equivariant. Robustness
and efficiency of ISE estimators of location and scale parameters are discussed in Thornton and Paulson
(1977) for the normal case and in Besbeas and Morgan (2001) for the Cauchy case. EISE is based on the
standardized empirical characteristic function. Let

Φn(t; µ, σ) =
1
n

n∑

j=1

exp
(
it

xj − µ

σ

)
,

which is the same as (1.1) with µ̂n and σ̂n replaced by µ and σ. Write

(2.4) Q(µ, σ, α) =
∫ ∞

−∞
|Φn(t; µ, σ) − e−|t|α |2w(t)dt,

where we use the following weight function

(2.5) w(t) = exp(−ν|t|ᾱ), ν > 0.
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Here we call ᾱ weighting index and ν weighting constant. EISE (µ̂n, σ̂n, α̂n) is defined to be the minimizer
of Q(µ, σ, α):

(2.6) Q(µ̂n, σ̂n, α̂n) = min
µ,σ,α

Q(µ, σ, α).

It is easy to see that EISE is affine equivariant by definition. Note that the weighting constant κ in the
test statistic (1.2) and the weighting constant ν in (2.5) for EISE may be different. In our theoretical
results on EISE we can treat more general weighting functions, i.e., w(t) ≥ 0 is an arbitrary even function.
However for performing goodness-of-fit tests, it seems natural to set α0 = ᾱ and ν = κ. The integral Q(θ)
can be calculated as

Q(θ) =
∫ ∞

−∞

{
1
n2

n∑

j,k

cos
(
t(xj − xk)/σ

)
− 2

n

n∑

j=1

cos
(
t(xj − µ)/σ

)
e−|t|α + e−2|t|α

}
w(t)dt.

The estimators satisfy the following estimating equations 0 = ∂Q/∂µ = ∂Q/∂σ = ∂Q/∂α ⇔ 0 = Qµ(θ) =
Qσ(θ) = Qα(θ).

Qµ(θ) = −
∫ ∞

−∞

{
1
n

n∑

j=1

sin
(
t(xj − µ)/σ

)
te−|t|α

}
w(t)dt,(2.7)

Qσ(θ) =
1
2

∫ ∞

−∞

[{
1
n2

n∑

j,k=1

cos
(
t(xj − xk)

)
− 2

n

n∑

j=1

cos
(
t(xj − µ)

)
e−|σt|α + e−2|σt|α

}
(2.8)

×{w′(σ|t|)σ|t| + w(σt)} + 2
{

1
n

n∑

j=1

cos
(
t(xj − µ)

)
− e−|σt|α

}
α|σt|αe−|σt|αw(σt)

]
dt,

Qα(θ) =
∫ ∞

−∞

{
1
n

n∑

j=1

cos
(
t(xj − µ)/σ

)
− e−|t|α

}
e−|t|α |t|α log |t|w(t)dt,(2.9)

where w′(x) = dw(x)/dx. Note that in case of Qσ(θ) differentiation was done after the transformation
t → σt.

In the rest of this paper we use the following notations. D−→ means weak convergence of random
variables or stochastic processes, P−→ means convergence in probability.

The asymptotically linear representations (AL representation) give an method of approximating
asymptotic behavior of the estimator by sum of functions of i.i.d. random samples. For the standard
symmetric stable case f(x; α) we need following three expressions,

√
nµ̂n =

1√
n

n∑

j=1

l1(Xj) + r1n,

√
n(σ̂n − 1) =

1√
n

n∑

j=1

l2(Xj) + r2n,

√
n(α̂n − α) =

1√
n

n∑

j=1

l3(Xj) + r3n, r1n, r2n, r3n
P−→ 0.

For the case of MLE, AL representations are given in terms of the score functions ((2.1-2.3)) and the
Fisher information matrix. The proof is standard and omitted.
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Theorem 2.1 Let I(θ) denote the Fisher information matrix

I(θ) =




I11 0 0
0 I22 I23

0 I32 I33


 , Iij(θ) = −Eθ

[
∂2 log f(x, θ)

∂θi∂θj

]
.

The AL representations lθ(x) = (lµ(x), lσ(x), lα(x)) at the standard case (µ, σ) = (0, 1) are given by
lθ(x) = I−1(θ)hθ(x), where hθ(x) are

hµ(x) =
1

2πf(x; α)

∫ ∞

−∞
ite−itxe−|t|αdt,(2.10)

hσ(x) = − α

2πf(x; α)

∫ ∞

−∞
e−itxe−|t|α |t|αdt,(2.11)

hα(x) = − 1
2πf(x; α)

∫ ∞

−∞
e−itxe−|t|α |t|α log |t|dt.(2.12)

Concerning EISE we can employ standard theory of U -statistics. The proof is given in Appendix A.

Theorem 2.2 Define a 3 × 3 symmetric matrix

(2.13) A = A(α) = A(θ)|(µ,σ)=(0,1)

by

A12 = A12 = 0,

A11 =
∫ ∞

−∞
e−2|t|αt2w(t)dt,

A22 = α2

∫ ∞

−∞
e−2|t|α |t|2αw(t)dt,

A23 = α

∫ ∞

−∞
e−2|t|α |t|2α log |t|w(t)dt,

A33 =
∫ ∞

−∞
e−2|t|α |t|2α(log |t|)2w(t)dt,

and define hθ(x) = (hµ(x), hσ(x), hα(x))′ by

hµ(x) =
∫ ∞

−∞
t sin(tx)e−|t|αw(t)dt,(2.14)

hσ(x) = −α

∫ ∞

−∞
(cos(tx) − e−|t|α)e−|t|α |t|αw(t)dt,(2.15)

hα(x) = −
∫ ∞

−∞
(cos(tx) − e−|t|α)e−|t|α |t|α log |t|w(t)dt.(2.16)

For EISE the AL representations lθ(x) = (lµ(x), lσ(x), lα(x)) at the standard case (µ, σ) = (0, 1) are given
by

(2.17) lθ(x) = A(α)−1hθ(x)
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and their asymptotic covariance matrix at the standard case is given by

A−1E[hθ(X)h′
θ(X)]A−1′ = A−1




Hµµ 0 0
0 Hσσ Hσα

0 Hασ Hαα


A−1′ =




J11 0 0
0 J22 J23

0 J32 J33


 ,

where each element of H = E[hθ(X)h′
θ(X)] is

Hµµ =
∫ ∞

−∞

∫ ∞

−∞

{
1
2
(e−|s−t|α − e−|s+t|α)

}
e−(|s|α+|t|α)st w(s)w(t)dsdt,

Hσσ = α2

∫ ∞

−∞

∫ ∞

−∞

{
1
2
(e−|s−t|α + e−|s+t|α) − e−(|s|α+|t|α)

}
e−(|s|α+|t|α)|st|αw(s)w(t)dsdt,

Hσα = α

∫ ∞

−∞

∫ ∞

−∞

{
1
2
(e−|s−t|α + e−|s+t|α) − e−(|s|α+|t|α)

}
e−(|s|α+|t|α)|st|α log |t|w(s)w(t)dsds,

Hαα =
∫ ∞

−∞

∫ ∞

−∞

{
1
2
(e−|s−t|α + e−|s+t|α) − e−(|s|α+|t|α)

}
e−(|s|α+|t|α)|st|α log |s| log |t|w(s)w(t)dsdt.

Note that the above AL representations and asymptotic matrices involve definite integrals, which
require numerical integration. But for some special cases like Cauchy (α = 1) we can calculate several
integrals analytically. Analytic expressions are useful for checking correctness of numerical calculations
concerning Theorem 2.1. We give the following Corollary for the case of α = 1 and MLE.

Corollary 2.1 Let γ
.= 0.577216 denote Euler constant. In the Cauchy case (α = 1) and MLE, at

(µ, σ) = (0, 1), the AL representations are given as lθ(x) = I−1hθ(x)|α=1, where

hµ(x) =
2x

x2 + 1
, hσ(x) =

x2 − 1
x2 + 1

,

hα(x) =
1 − x2

x2 + 1

[
1
2

log(x2 + 1) − 1 + γ

]
+

2x

x2 + 1
arctanx,

I11 = I22 =
1
2
, I23 = I32 =

1
2
(1 − γ − log 2), I33 =

1
2

{
π2

6
+ (γ + log 2 − 1)2

}
.

A similar result is given in Section 6 of Matsui and Takemura (2006) and the proof is omitted.

2.2 Asymptotic theory of the proposed test statistics

In this section theoretical results on asymptotics of the proposed test statistic Dn,κ are obtained. From
another expression of Dn,κ (1.3) we derive weak convergence of Ẑn(t) and weak convergence of test statistic
Dn,κ in the following two theorems. These results correspond to those of Cauchy case stated in Matsui
and Takemura (2005) where parameter α = 1 is fixed. As a special case we also describe the Cauchy case
involving estimation of α in the corollary below. Furthermore a general formula of asymptotic covariance
function of the empirical characteristic process with parameters estimated by an efficient estimator is
given in the latter part of this section. As already remarked several times, we can assume without loss
of generality that X1, . . . , Xn is random sample from f(x; α) because of affine invariance of our tests.
Following Gürtler and Henze (2000) we use the Fréchet space C(R) of continuous functions on the real
line R for considering the random processes. The metric of C(R) is given by

ρ(x, y) =
∞∑

j=1

2−j ρj(x, y)
1 + ρj(x, y)

,
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where ρj(x, y) = max|t|≤j |x(t) − y(t)|.
We first give the asymptotic covariance function of the empirical characteristic function process with

parameters estimated by MLE and EISE. In the following theorems the elements of the inverse of the
Fisher information matrix I(θ) and the matrix A in (2.13) are denoted with superscripts Iij and Aij .

Theorem 2.3 Let X1, . . . , Xn be i.i.d. f(x;α) random variables and let Ẑn be defined in (1.4). Then Ẑn
D−→ Z in C(R), where Z is a zero mean Gaussian process with covariance functions given below.

MLE :

Γ(s, t) = e−|t−s|α − e−(|t|α+|s|α) −
{

I11st + I22|st|αα2(2.18)

+I23|st|αα log |st| + I33|st|α log |s| log |t|
}

e−(|t|α+|s|α).

EISE :
Γ(s, t) = e−|t−s|α − e−(|t|α+|s|α)

+ {J11st + J22α
2|st|α + J23α|st|α(log |s| + log |t|) + J33|st|α log |t| log |s|}e−(|t|α+|s|α)

+
{
(BσA22 + BαA23)α(|t|α + |s|α) + (BσA23 + BαA33)(|t|α log |t| + |s|α log |s|)

}
e−(|t|α+|s|α)

− A11te−|t|α
∫ ∞

−∞
e|s−u|α−|u|αu w(u)du[2]

− α(A22α + A23 log |t|)|t|αe−|t|α
∫ ∞

−∞
e|s−u|α−|u|α |u|αw(u)du[2]

− (A23α + A33 log |t|)|t|αe−|t|α
∫ ∞

−∞
e|s−u|α−|u|α |u|α log |u|w(u)du[2](2.19)

where [2] after a term means symmetrization with respect to s and t, i.e., g(s, t)[2] = g(s, t)+ g(t, s), and

Bα =
∫ ∞

−∞
e−2|u|α |u|α log |u|w(u)du, Bσ = α

∫ ∞

−∞
e−2|u|α |u|αw(u)du.

As a corollary the asymptotic covariance function for the case of fixed α is given as follows.

Corollary 2.2 Under the same conditions of Theorem 2.3, when α is fixed, Ẑn(t) D−→ Z in C(R), where
Z is a zero mean Gaussian process with covariance functions given below.
MLE :

Γ(s, t) = e−|t−s|α − e−(|t|α+|s|α) − (I11st + I22|st|αα2)e−(|t|α+|s|α).

EISE :

Γ(s, t) = e−|t−s|α − e−(|t|α+|s|α) + {J11st + J22α
2|st|α + A22Bσα(|t|α + |s|α)}e−(|t|α+|s|α)

− A11te−|t|α
∫ ∞

−∞
e−|s−u|α−|u|αuw(u)du[2] − A22α2|t|αe−|t|α

∫ ∞

−∞
e−|s−u|α−|u|α |u|αw(u)du[2].

The following corollary gives the asymptotic covariance function when the true distribution is Cauchy
C(µ, σ), but the characteristic exponent α is estimated by MLE.
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Corollary 2.3 Let X1, . . . , Xn be i.i.d. C(0, 1) random variables and let Ẑn be defined in (1.4), where
parameters are estimated by MLE. Then Ẑn

D−→ Z in C(R), where Z is a zero mean Gaussian process
with covariance function given below.

Γc(s, t) = e−|t−s| − {1 + 2(st + |st|)}e−|s|−|t|(2.20)

−12
π2

{log |s| + (γ + log 2 − 1)} {log |t| + (γ + log 2 − 1)} |st|e−|s|−|t|.

Furthermore for efficient estimations including MLE, we can derive more general result after some
formulations. We assume parameter space Θ is p-dimensional. First, we define an efficient estimator θ̂n

of θ0 as such that

√
n(θ̂n − θ0) =

1√
n

n∑

j=1

I−1(θ0)
∂f(Xj ; θ0)

∂θ
+ εn

:=
1√
n

n∑

j=1

lE(Xj ; θ0) + εn,(2.21)

where εn
P−→ 0. This definition coincides with formula (20) of Durbin (1973b), though his definition is

given for nuisance parameters. He also gives conditions that the estimator θ̂n satisfies formula (2.21) under
more general arguments including local alternatives (see the condition (A3) of Durbin (1973b)). Note
that Durbin (1973b) considers estimation only for nuisance parameters θ̂n including local alternatives
and the parameters of interest (the null hypothesis) are not estimated. However in our case the whole
parameters are estimated without nuisance parameters because the null hypothesis of H1 is the whole
parameter space.

Second, we modify the conditions (iv) of Csörgő (1983) as
(iv)∗ lE(x; θ) in (2.21) is a p-dimensional Borel measurable function, E[lE(X1; θ0)] = (0, . . . , 0), and
I−1(θ0) = E[lE(X1; θ0)l′E(X1; θ0)] is finite and positive definite.

Theorem 2.4 Let X1, . . . , Xn be i.i.d. F (x; θ0) random variables and let k(x, t) = cos(tx) + i sin(tx).
Consider the kernel transformed empirical characteristic process

(2.22) Ẑn =
∫

k(x, t)d
{√

n
(
Fn(x) − F (x; θ̂n)

)}
,

where Fn(x) denotes the empirical distribution function. Then Ẑn
D−→ Z in C(R) under the conditions

(i)∗, (ii)∗, (v) and (vi) of Csörgő (1983) where l(·; θ0) is replaced by lE(·; θ0) and (iv)∗. Here Z is a zero
mean Gaussian process with covariance function

(2.23) Γ(s, t) = Φ(s − t; θ0) − Φ(s; θ0)Φ(t; θ0) −∇θΦ(s; θ0)′I−1(θ)∇θΦ(t; θ0),

where Φ(t; θ0) is the characteristic function and ∇θΦ(t; θ0) is the derivative of Φ(t; θ0) with respect to
parameter vector θ.

Theorem 2.4 is interpreted as the Fourier kernel transformed version of Theorem 2 of Durbin (1973b)
with nuisance parameters corresponds to the estimated null hypothesis. In our subsequent works we will
consider extension of Theorem 2.4 to the case of local alternatives.

Finally we state the following theorem concerning the weak convergence of Dn,κ.
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Theorem 2.5 Under the conditions of Theorem 2.1

Dn,κ =
∫ ∞

−∞
Ẑn(t)2σ̂ne−σ̂nκ|σ̂nt|α̂n

dt
D−→ Dκ :=

∫ ∞

−∞
Z(t)2e−κ|t|αdt.

The proofs of the above theorems are given in Appendix B. We omit the proof of Theorem 2.5 since
after obtaining Theorem 2.3 the proof is the same as that of Theorem 2.2 of Gürtler and Henze (2000).

3 Approximation of the asymptotic critical values of the proposed test
statistics

In this section we investigate the distribution of Dκ for MLE. We briefly explain how to obtain the
characteristic function of Dκ. Detailed treatments of this approach in statistical applications are given in
Tanaka (1996) or Anderson and Darling (1952). Since the characteristic function of Dκ contains infinite
product of functions of eigenvalues which can not be evaluated analytically, we approximate eigenvalues
by theory of homogeneous integral equations of the second kind and the associated Fredholm determinant.
Then utilizing complex integration, we invert the characteristic function and obtain series representation
of the distribution of Dκ. Detailed theoretical argument of inversion process is given in Slepian (1957).
Actual computational approximations are given in the next section. At the end of this section we transform
our kernels Γ(s, t) on R2 to kernels K(s, t) on [−1, 1]2 for convenience in numerical computation.

In this paper we omit consideration of Dκ of EISE since kernels Γ(s, t) have definite integrals and
we need many numerical approximations. On the other hand for the case of MLE we can utilize past
researches on Fisher information in DuMouchel (1975), Nolan (2001) and Matsui and Takemura (2006) to
confirm the accuracy of our computation. For κ > 1 we can use the following standard form of Mercer’s
theorem.

Theorem 3.1 (Mercer’s Theorem, Chapter 5 of Hochstadt (1973)) Let K(s, t) be the kernel of
a positive self-adjoint operator on L2[−1, 1] and suppose that K(s, t) is continuous in both variables. Then

(3.1) K(s, t) =
∞∑

j=1

1
λj

fj(s)fj(t), 0 < λ1 ≤ λ2 ≤ · · · ↑ ∞,

where λj is an eigenvalue and fj(t) is the corresponding orthonormal eigenfunction of the integral equation

λ

∫ 1

−1
K(s, t)f(t)dt = f(s).(3.2)

The series (3.1) converges uniformly and absolutely to K(s, t).

If κ ≤ 1 we need to deal with kernels which are not continuous at two points (−1,−1) and (1, 1). We can
see discontinuity at (−1,−1) and (1, 1) in Figures 1, 3 and 5 in the case κ = 1. On the other hand there
is no discontinuity at these points for κ = 2.5 as shown in Figures 2, 4 and 6. However as in Anderson
and Darling (1952) the following version of Mercer’s theorem by Hammerstein (1927) is useful.

Theorem 3.2 Suppose that the covariance function K(s, t) of a Gaussian process is continuous except
at (−1,−1) and (1, 1) with ∂K(s, t)/∂s continuous for |s|, |t| < 1, s 6= t, and bounded in |s| ≤ 1 − ε for
every t ∈ [−1, 1] and every ε > 0. Then the right hand side of (3.1) converges uniformly in every domain
in the interior of [−1, 1]2.
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We apply the above theorems to a continuous covariance function K(s, t) of a zero mean continuous
Gaussian process Z(t), −1 < t < 1, with a finite trace

∫ 1
−1 K(t, t)dt < ∞. Let X1, X2, . . . , be i.i.d.

standard normal random variables. Then the series

Y (t) =
∞∑

j=1

1√
λj

fj(t)Xj

converges in the mean and with probability one for each t ∈ (−1, 1). Then Y (t) is a Gaussian process
with EY (t) = 0 and E[Y (t)Y (s)] = K(s, t). Thus Y (t) defines the same stochastic process as Z(t). Let

(3.3) W 2 =
∫ 1

−1
Y 2(t)dt =

∫ 1

−1

{ ∞∑

j=1

1√
λj

fj(t)Xj

}2

dt =
∞∑

j=1

1
λj

X2
j .

The characteristic function of W 2 is given as

E(eiuW 2
) = E[exp(iu

∞∑

j=1

X2
j /λj)] =

∞∏

j=1

E[exp(iuX2
j /λj)] =

∞∏

j=1

(1 − 2iu/λj)−
1
2 .

The characteristic function has an alternative expression 1/
√

D(2it) where D(λ) is the associated Fred-
holm determinant

D(λ) =
∞∏

j=1

(
1 − λ

λj

)
.

There are two problems in treating the characteristic function in the form of the Fredholm determinant.
One is in the approximation of D(λ) itself and the other is in the Lev́y’s inversion formula.

In the case of stable distributions the Fredholm determinant can not be explicitly evaluated and
approximation of D(λ) is needed as in the Cauchy case in Matsui and Takemura (2005). We approximate
D(λ) by discretizing the homogeneous integral equation and approximating eigenvalues of resulting finite
system of linear equations. Then the integral equation (3.2) is approximated by the following finite system
of linear equations

f̃ =
λ

N
K̃f̃ ,

where

K̃ =




K(ξ1, ξ1) . . . K(ξ1, ξN )
...

...
K(ξN , ξ1) . . . K(ξN , ξN )


 , f̃ =




f(ξ1)
...

f(ξN )


 .

Then the Fredholm determinant is approximated as

D̃N (λ) =
∣∣∣∣I − λ

N
K̃

∣∣∣∣ =
N∏

j=1

(
1 − λ

λ̃j

)
, 0 < λ̃1 ≤ · · · ≤ λ̃N ,

where 1/λ̃j = 1/λ̃j(N) are the eigenvalues of K̃/N . This method is called a quadrature method and we
state a version of Theorem 3.4 of Baker (1977) concerning the convergence of eigenvalues.
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Theorem 3.3 Let the eigenvalues λ̃j(N) be obtained by the quadrature method. If K(s, t) is positive
definite and continuous in s, t ∈ [−1, 1],

lim
N→∞

λ̃j(N) = λj ,

for each j and
lim

N→∞
D̃N (λ) = D(λ)

for each λ.

Remark 3.1 The covariance functions in (3.7) and (3.8) below do not satisfy the conditions of this theo-
rem if κ ≤ 1. However this theorem gives only a sufficient condition for the convergence. In our problem
the values of D̃N (λ) seem to converge as we increase N even for the case κ ≤ 1 and the resulting value is
consistent with our Monte Carlo simulations. Therefore in the next section we use the approximation of
this theorem even for the case κ ≤ 1. It remains to theoretically prove that the approximation is valid for
the case κ ≤ 1.

The probability density function of the proposed statistic is given by inverting the characteristic
function Φ(t) = 1/

√
D(2it). Since integrand of inversion formula is often wildly oscillating and converges

to 0 slowly, the ordinary numerical integration is difficult (Section 6.1 of Tanaka (1996)). However we
can utilize theory of complex integration in Slepian (1957) and invert Φ(t) very efficiently. This method
of inversion does not seem to be commonly implemented in statistical computations.

Assuming that the kernel K(s, t) has no multiple eigenvalues and the number of the eigenvalues are
infinite, the density and distribution of Dκ are calculated as

fD(x) =
1
π

∞∑

k=1

(−1)k

∫ λ2k
2

λ2k−1
2

e−xy

√∏∞
j=1

∣∣∣1 − 2
λj

y
∣∣∣
dy,

FD(x) = 1 − 1
π

∞∑

k=1

(−1)k

∫ λ2k
2

λ2k−1
2

e−xy

y

√∏∞
j=1

∣∣∣1 − 2
λj

y
∣∣∣
dy.

The series are alternating and convenient for checking convergence. Although the above representa-
tions have singularity at each endpoint of integral range, we can remove the singularity by the following
transformation y 7→ z as in Slepian (1957). The k-th integral is transformed by

(3.4) y =
1
2

(
λ2k

2
− λ2k−1

2

)
cos πz +

1
2

(
λ2k

2
+

λ2k−1

2

)
, 0 ≤ z ≤ 1.

Then

dy = −π

√(
y − λ2k−1

2

)(
λ2k

2
− y

)
dz.

Hence we obtain the following representations suitable for numerical integration.

(3.5) fD(x) =
∞∑

k=1

(−1)k

∫ 1

0

e−xy

√(
λ2k
2 − y

)(
y − λ2k−1

2

)

√∏∞
j=1

∣∣∣1 − 2
λj

y
∣∣∣

dz,
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(3.6) FD(x) = 1 −
∞∑

k=1

(−1)k

∫ 1

0

e−xy

√(
λ2k
2 − y

)(
y − λ2k−1

2

)

y

√∏∞
j=1

∣∣∣1 − 2
λj

y
∣∣∣

dz,

where y is given by formula (3.4).
Finally we will make a transformation of variable and map R2 into [−1, 1]2 in order to satisfy the finite

interval condition of Mercer’s theorem. This transformation also is useful for numerical approximation of
eigenvalues. For deriving the distribution of Dκ, we have to incorporate the weight function e−κ|t| into
the kernel, i.e., we consider the following kernel

Γ(s, t)e−
κ
2
(|s|+|t|).

Now we make the transformation s 7→ u defined by

s = − sgn u · log(1 − |u|), −1 ≤ u ≤ 1.

Then
ds =

1
1 − |u|

du.

The kernel and the eigenfunctions are transformed as

Γ(s, t) 7→ K(u, v) =
Γ(− sgn u · log(1 − |u|),− sgn v · log(1 − |v|))√

(1 − |u|)(1 − |v|)
,

fj(s) 7→ fj(− sgnu · log(1 − |u|))√
1 − |u|

.

Eigenvalues of (3.2) do not change by this transformation and so does Fredholm determinant. After this
transformation, writing s, t instead of u, v again, we have the following kernels on [−1, 1]2:

H1 : K(s, t) =
{

e−|−sgn s·log(1−|s|)+sgn t·log(1−|t|)|α − e−| log(1−|s|)|α−| log(1−|t|)|α(3.7)

−
(
I11 sgn s · sgn t · log(1 − |s|) log(1 − |t|)

+α2I22| log(1 − |s|) log(1 − |t|)|α

+αI23| log(1 − |s|) log(1 − |t|)|α log | log(1 − |s|) log(1 − |t|)|

+I33| log(1 − |s|) log(1 − |t|)|α log | log(1 − |s|)| · log | log(1 − |t|)|
)

×e−| log(1−|s|)|α−| log(1−|t|)|α
}
{(1 − |s|)(1 − |t|)}

κ−1
2 .

H2 : K(s, t) =
{

e−|−sgn s·log(1−|s|)+sgn t·log(1−|t|)|α − e−| log(1−|s|)|α−| log(1−|t|)|α(3.8)

−
(
I11 sgn s · sgn t · log(1 − |s|) log(1 − |t|) + α2I22| log(1 − |s|) log(1 − |t|)|α

)

×e−| log(1−|s|)|α−| log(1−|t|)|α
}
{(1 − |s|)(1 − |t|)}

κ−1
2 .
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Figure 1: MLE-H1 (α = 1.0, κ = 1.0)
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Figure 2: MLE-H1 (α = 1.0, κ = 2.5)
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Figure 3: MLE-H1 (α = 1.5, κ = 1.0)
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Figure 4: MLE-H1 (α = 1.5, κ = 2.5)
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Figure 5: MLE-H1 (α = 1.8, κ = 1.0)
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Figure 6: MLE-H1 (α = 1.8, κ = 2.5)
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3.1 Numerical approximation of critical values of Dκ

We approximate the eigenvalues in (3.6) by the quadrature method for the kernels (3.7) and (3.8). 800
eigenvalues are calculated by the above simple algorithm for the case of {κ = 1.0, 2.5, 5.0, 10.0}. We do
not consider κ = 0.1 and 0.5 since convergence of infinite integral of Dn,κ becomes very slow for small
weights and we had numerical difficulties. In Matsui and Takemura (2005) the approximated sum of∑∞

j=1 1/λj did not converge to E[Dκ] first for small κ. We mention that, unlike the Cauchy α = 1 case,
we did not observe multiple eigenvalues for other symmetric stable distributions (α 6= 1).

The infinite series and infinite products in (3.6) have to be approximated by a finite sum and finite
products. Let l and m (l < m) denote the number of terms in the sum and the products respectively.
Then we can approximate FD(x) as

FD(x) ≈ 1 −
l∑

k=1

(−1)k

∫ 1

0

e−xy

√(
λ2k
2 − y

)(
y − λ2k−1

2

)

y

√∏m
j=1

(
1 − 2

λj
y
) dz.

The series is alternating. Therefore the range of the critical value can be obtained by substituting
lower bound of each positive term and upper bound of each negative term separately. However deriving
analytical bound of integral of each term of series is difficult. Hence for accuracy of approximation of
FD(x) we depend on numerical confirmation. First, we found that finite interval quadrature (QAG) is
very accurate if we set relative error bounds below 10−5 and the convergence of series is very fast. The first
10 terms of series are enough to obtain 1% relative accuracy for most κ and x large enough to calculate
critical values. Further for m > 300 the value of FD(x) does not change with m for most κ and large x.
Finally the approximated percentage points (10% and 5 %) coincide with simulation results in Section 4.

We give Table 1 and Table 2 for approximate percentage points of Dκ under hypothesis H1 and H2

respectively. Intervals of α ∈ (0.5, 2.0) for H1 and α ∈ (0.5, 2.0] are 0.1. In each table, we set m = 500
for κ ≤ 5.0 and m = 300 for κ = 10.0, and set l = 25 for κ ≤ 2.5 and l = 10 for κ ≥ 5.0. Trial and
error indicates that since Dκ for large κ is very small, we use only accurate large values of 1/λj among
800 values. We also plot the percentage points of each Dκ under H1 in Figures 7-10. The values of
percentages are continuous with respect to α 6= 2. For large values of κ, percentage points of small α are
large compared to that of large α.

4 Computational studies

In this section we give various computational results. Since the exact finite sample distributions are
difficult to obtain, first we approximate the percentage points of Dκ under H1 and H2 respectively by
Monte Carlo simulation. Then the power of testing H2 for the finite sample is evaluated.

4.1 Maximum likelihood estimation

For MLE we maximize likelihood function in parameter space −∞ < µ < ∞, σ > 0, 0 < α ≤ 2 by
utilizing the first derivatives of each parameter. Maximizations are done by the method based on M.J.D.
Powell’s TOLMIN from IMSL library. Although explicit forms of the density and the derivatives are not
available for stable distributions, the method suggested by Matsui and Takemura (2006) which improves
the original method of Nolan (1977,2001) gives very accurate approximations. We use median as the initial
value for µ and for σ and α we do grid search and obtain the parameter values which maximize median
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inserted log-likelihood among, say, 2000 points. Note that although we can set α = 1 for the initial value
of α, the convergence is slow compared with grid search based initial values. Base on 1000 Monte Carlo
replications, the values of the estimators and the simulated information matrices I(θ̂) = Cov[θ̂i, θ̂j ]−1 are
given in Table 3 for α ∈ {0.8, 1.0, 1.5, 1.8, 2.0} and the sample size n ∈ {50, 100, 200}. We put true values
at the upper row of each values of α in Table 3. Except for α = 2, simulated values of I(θ̂) coincide
with theoretical values I(θ) which are given in Matsui and Takemura (2006). Though information of α
at α = 2.0 is ∞ and asymptotic normality is not guaranteed (DuMouchel (1973)), we can estimate α
computationally at α = 2. Interestingly we observe α̂ = 2.0 for 80%–90% of the cases for n ≥ 100 and
we also observe some downward bias.

4.2 Finite sample critical values of Dn,κ

We omit the case α = 2 for both H1 and H2, since there are many papers concerning testing normality,
e.g., Henze and Wagner (1997), Csörgő (1986,89) or Naito (1996). Further we investigate Dn,κ only
α = 1.0, 1.5, 1.8 for convenience. More extensive simulation studies of Dn,κ for other values of α are left
to our future works.

We can compute Dn,κ by (1.2), when the values of the estimators have converged. Based on 5000 Monte
Carlo replications, the upper 10 and 5 percentage points of the statistics Dn,κ, κ ∈ {1.0, 2.5, 5.0, 10.0} are
tabulated in Tables 4, 5, 6, 7 for H1 and Table 8, 9, 10, 11 for H2. We tabulate simulated values in upper
row and asymptotic values in lower row in box of each value of α. In the tables of H1 when α and κ are
large, the convergences of Dn,κ to Dκ are slower than other values of α and κ. This tendency is also seen
in the tables of H2. This is explained as follows. Since behavior near origin of the characteristic function
reflects behavior of the tail of distribution, the convergence of the empirical characteristic function near
origin may be faster than that at distant values when the tail of distribution is heavy. However we find
the values of Dn,κ converging Dκ for all values of α and κ as n → ∞.

4.3 Analysis of finite sample power

In this section we examine finite sample power under H2. For alternative hypothesis we consider Student’s
t distribution with j degrees of freedom for j = 1, 2, 3, 4, 5, 10,∞, (t(1) = C(0, 1) and t(∞) = N(0, 1)),
since stable models are sometimes compared with Student’s t models in empirical applications. We
consider only α = 1.5 and α = 1.8 for null distribution of H2 because the simulation studies are heavy
when many values of α are considered. Investigations of other values of α are also left to our future works.

For the significance levels ζ = 0.1, 0.05, finite sample power of the proposed tests are tabulated in
Table 12 and 15, based on 1000 Monte Carlo replications. We summarize our findings. For α = 1.5 the
test with κ = 10.0 has poor power compared with other values of κ and the test with κ = 5.0 is the most
powerful. When alternative hypothesis is t(3) or near t(3) finite sample power is not good. For α = 1.8
the test with κ = 10.0 has also poor power as in the test for α = 1.5. While the test with κ = 5.0 is
the most powerful for heavy tail alternatives, the test with κ = 2.5 is more powerful for the light tail
alternatives. These results are interesting because although the tails of t(i) and f(x; α) are different, the
distributions are not distinguishable well in finite samples.

Finally make a remark on how to perform a test of H1. The problem is that even the asymptotic
null distribution under H1 depends on the true value of α. In the following remark D0

n,κ denotes the
observed valued of the test statistic for H1 and Dn,κ(ξ;α) denotes the upper ξ percentage points of the
null distribution of Dn,κ for H1 when α is the true characteristic exponent.

Remark 4.1 We can consider several procedures for H1.
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1. H1 is rejected if D0
n,κ ≥ supα∈(0,2] Dn,κ(ξ;α),

2. We consider α ∈ [a, b] where [a, b] ⊂ (0, 2) is a fixed range and put H1 : α ∈ [a, b]. Then H1 is
rejected if D0

n,κ ≥ supα∈[a,b] Dn,κ(ξ; α).

3. We plug in the estimate α̂n in Dn,κ(ξ; α̂n) and H1 is rejected if D0
n,κ ≥ Dn,κ(ξ; α̂n).

Though procedure 1 is logically correct for finite sample, it has the drawback that the null hypothesis
with small true characteristic exponent α0 may be rejected by comparing D0

n,κ to percentage points near
α = 2 (See Figures 7-10). Therefore procedure 2 and 3 are also worth considering. From the viewpoint of
asymptotic theory we can use procedure 3. We may use Procedure 2 considering the standard error in α̂n.

A Proof of Theorem 2.2

For simplicity we definite some constants and functions.

w′′(x) := d2w(x)/dx2, w1(t) := w′(|t|)|t| + w(t), w2(t) := α|t|αw(t),

c1 =
1
2

∫ ∞

−∞
e−2|t|αw1(t)dt, c2 =

∫ ∞

−∞
e−2|t|αw2(t)dt.

Expanding the estimating equation Qθ(θ) = (Qµ(θ), Qσ(θ), Qα(θ)) = 0 around the true parameter θ0 =
(0, 1, α), we have

Qθ(θ0) +
∂Qθ(θ∗)

∂θ
(θ̂n − θ0) = 0,

where θ∗n is some value between θ0 and θ̂n. We can write

√
nQµ(θ) = − 1√

n

n∑

j=1

g1(Xj),

√
nQσ(θ) =

√
n

2





1
n2

n∑

j,k=1

h1(Xj , Xk) −
1
n

n∑

j=1

2h2(Xj)



 ,(A.1)

√
nQα(θ) =

1√
n

n∑

j=1

g2(Xj),

where

g1(x) =
∫ ∞

−∞
sin(tx)te−|t|αw(t)dt,

g2(x) =
∫ ∞

−∞

{
cos(tx) − e−|t|α

}(
|t|α log |t|e−|t|α)

w(t)dt,

h1(x1, x2) =
∫ ∞

−∞
cos(t(x1 − x2))w1(t)dt,

h2(x) =
∫ ∞

−∞
cos(tx)e−|t|α(w1(t) − w2(t))dt − c1 + c2,

17



2
√

nQσ(θ) can be expressed in the form of a U -statistic

2
√

nQσ(θ) =
√

n



Un +

h1(X1, X1)
n

− 1
n2(n − 1)

n∑

j<k

2h1(Xj , Xk)



 =

√
nUn + rn, rn

P−→ 0,

where

Un =
2

n(n − 1)

n∑

1≤j<k≤n

{h1(Xj , Xk) − h2(Xj) − h2(Xk)} =
(

n

2

)−1 n∑

1≤j<k≤n

h(Xj , Xk).

By standard argument on U -statistics (Chapter 3 of Maesono (2001), Chapter 5 of Serfling (1980)) we
only need to evaluate

a(x1) = E[h(X1, X2) | X1 = x1],

since
√

nUn =
1√
n

n∑

j=1

2a(Xj) + rn, rn
P−→ 0.

Calculating

E[h1(X1, X2)|X1 = x1] =
∫ ∞

−∞
cos(tx1)e−|t|αw1(t)dt

and E[h2(X2)|X1 = x1] = E[h2(X2)] = c1, it can be shown that a(x1) is written as

a(x1) =
∫ ∞

−∞
cos(tx1)e−|t|αw2(t)dt − c2.

After showing the convergence of second derivatives ∂Qθ(θ∗)/∂θ
P−→ A we can obtain AL representations,

√
n(θ̂n − θ0) = −A−1√nQθ(θ0).

The proof of ∂Q(θ∗)/∂θ
P−→ A is as follows. As before the derivatives are evaluated at (µ, σ) = (0, 1).

Write

∂Qµ(θ)
∂µ

=
1
n

n∑

j=1

∫ ∞

−∞
cos(txj)t2e−|t|αw(t)dt,

∂Qσ(θ)
∂σ

=
1
2

∫ ∞

−∞

[
1
n2

∑

j,k

cos(t(xj − xk)) −
2
n

n∑

j=1

cos(txj)e−|t|α + e−2|t|α
]
(w′′(t)|t|2 + 2w′(|t|)|t|)dt

+
1
n

n∑

j=1

∫ ∞

−∞
(cos(txj) − e−|t|α)e−|t|α |t|α

{
(−α2|t|α + α2 + α)w(t) + 2αw′(t)|t|

}
dt

+α2

∫ ∞

−∞
e−2|t|α |t|2αw(t)dt,

∂Qσ(θ)
∂α

=
1
n

n∑

j=1

∫ ∞

−∞
(cos(txj) − e−|t|α)e−|t|α |t|α

[
{log |t|(−α|t|α + α + 1) + 1}w(t) + log |t|w′(t)|t|

]
dt

+α

∫ ∞

−∞
e−2|t|α |t|2α log |t|w(t)dt,
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∂Qα(θ)
∂α

=
1
n

n∑

j=1

∫ ∞

−∞
(cos(txj) − e−|t|α)(1 − |t|α)e−|t|α |t|α(log |t|)2w(t)dt

+
∫ ∞

−∞
e−2|t|α |t|2α(log |t|)2w(t)dt.

Making use of E[cos(tX) − e−|t|α ] = 0 and by Fubini’s theorem we can calculate their expectations,

E
[
∂Qµ(θ)

∂µ

]
=

∫ ∞

−∞
e−2|t|αt2w(t)dt,

E
[
∂Qσ(θ)

∂σ

]
=

1
2n

∫ ∞

−∞
(1 − e−2|t|α)(w′′(t)|t|2 + 2w′(t)|t|)dt

+α2

∫ ∞

−∞
e−2|t|α |t|2αw(t)dt,

E
[
∂Qσ(θ)

∂α

]
= α

∫ ∞

−∞
e−2|t|α |t|2α log |t|w(t)dt,

E
[
∂Qα(θ)

∂α

]
=

∫ ∞

−∞
e−2|t|α |t|2α(log |t|)2w(t)dt.

E[∂Qθi
(θ)/∂θj ] = 0 for other parameters θi since the density is symmetric. By the weak law of large

numbers and continuity of integral about parameters we can finish the proof. 2

B Proofs of Section 2.2

B.1 Proof of Theorem 2.3

The idea of proofs is essentially the same as those of Gürtler and Henze (2000) based on the original proof
of Csörgő (1983). However, since parameter α is additionally estimated and stable distribution f(x; α0)
dose not have the α-moment E[|X|α], α > α0 > 0, we reproduce here the outline of the whole proof.
Note that the kernel k(s, t) is changed from Gürtler and Henze (2000). Before considering Fréchet space
C(R), we first assume the restricted space C(S) of continuous functions on a compact subset S with the
supremum norm ‖f‖∞ = supt∈S |f(t)|. Letting k(x, t) = cos(tx) + i sin(tx), an alternative representation
of Ẑn(t) is given by

Ẑn(t) =
1√
n

n∑

j=1

{
cos(txj) + i sin(txj) − e−|σ̂nt|α̂n

(cos(tµ̂n) + i sin(tµ̂n))
}

=
∫

k(x, t)d
{√

n
(
Fn(x) − F (x; θ̂n)

)}
.

This is the form of kernel transformed empirical process. We have to check the condition of (i)∗ (ii)∗,
(iv), (v) and (vi) of Csörgő (1983). Condition (i)∗ is satisfied from the definition of the kernel k(x, t) =
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cos(tx) + i sin(tx). Condition (ii)∗ is easy following Gürtler and Henze (2000). For 0 < ε < α0,

| k(x, s) − k(x, t) | =
√

(cos(sx) − cos(tx))2 + (sin(sx) − sin(tx))2

=
√

2
√

1 − cos ((s − t)x)
= 2

∣∣ sin((s − t)x/2)
∣∣

≤ 4 | s − t |ε/2|x |ε/2,

and E[|X|ε < ∞]. For condition (iv) we can check that the covariance matrix E[l(X)l(X)′] for MLE and
EISE are finite and positive definite from Theorem 2.1 and Theorem 2.2. Condition (v) for EISE is easy
because lθ are bounded and continuously differentiable from Theorem 2.2. However for MLE we need
some argument since hθ = fθ/f of Theorem 2.1 has no explicit form. For any compact set K ∈ R if
x ∈ K, f(x;α) and fθ(x; α) are continuously differentiable with respect to x. Thus hθ is exists almost
everywhere and finite x ∈ K. To see this we differentiate Fourier inversion formula directly and confirm
its integrability. Note that the density f(x; α) has no singularity. However as x → ∞ we have to consider
the tail orders of f(x; α) and fθ(x; α) going to 0. We utilize asymptotic expansions of f(x; α) and fθ(x;α)
in Matsui and Takemura (2006):

f(x; α) =
1
π

∞∑

k=1

Γ(kα + 1)
k!

(−1)k−1 sin(
παk

2
)x−kα−1,

f ′(x; α) =
1
π

∞∑

k=1

Γ(αk + 2)
k!

(−1)k sin(
παk

2
)x−kα−2,

fα(x; α) =
1
π

∞∑

k=1

Γ′(αk + 1)
(k − 1)!

(−1)k−1 sin
(

παk

2

)
x−kα−1

+
1
π

∞∑

k=1

Γ(αk + 1)
(k − 1)!

(−1)k−1

[
π

2
cos

(
παk

2

)
− log x sin

(
παk

2

)]
x−kα−1.

From expansions and the following relations

fµ(x; α) = −f ′(x; α), fσ(x; α) = −f(x; α) − xf(x; α),

we can confirm that lθ’s exist almost everywhere and finite except for hα at x = ∞ since hα(x) = O(log x).
From the expansions we see that another condition of (v), i.e.

(B.1) Vl(u) = sup
|x|≤u

{∣∣l(x; θ0)
∣∣ +

∣∣∣∣
∂

∂x
l(x; θ0)

∣∣∣∣
}

< ∞, ∀u > 0,

is also satisfied. Note that in the proof of Theorem at p.527 of Csörgő (1983) non-existence of lθ at x = ∞
is permissible. Therefore condition (v) holds.

Concerning condition (vi), for symmetric stable distributions elements of ∇θΦ(t; θ) = (Φµ(t; θ), Φσ(t; θ),
Φα(t; θ)) are written as

Φµ(t; θ) =
∂Φ(t; α, µ, σ)

∂µ
= {− sin(µt) + i cos(µt)}te−|σt|α ,

Φσ(t; θ) =
∂Φ(t; α, µ, σ)

∂σ
= −{cos(µt) + i sin(µt)}e−|σt|α |σt|αα/σ,

Φα(t; θ) =
∂Φ(t; α, µ, σ)

∂α
= −{cos(µt) + i sin(µt)}e−|σt|α |σt|α log |σt|.
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Putting (µ, σ, α) = θ0 = (0, 1, α) we obtain

∇θΦ(t; θ0) = (Φµ(t; α), Φσ(t;α),Φα(t; α)) =
(
ite−|t|α ,−e−|t|α |t|αα,−e−|t|α |t|α log |t|

)
.

Because ∇θΦ(t; θ) is continuous and bounded if (t, θ) ∈ S × Θ0, where Θ0 is a closed parameter space
sufficiently near θ0, the condition is satisfied. Therefore the weak convergence of Ẑn(t) to a zero mean
Gaussian process Z is proved in the space (C(S), ‖ · ‖∞). Since the compact set S is arbitrary, the space
(C(S), ‖ · ‖∞) can be extended to Fréchet space C(R) easily.

The kernel transform of AL representations are given as follows. Write F0(x) = F (x, θ0) for simplicity.
1. MLE :

(B.2)
∫ ∞

−∞
k(x, s)lθ(x)dF0(x) = I−1(θ)∇θΦ(s; θ).

2. EISE :

(B.3)
∫

k(x, s)lθ(x)dF0(x) = A−1

∫
k(x, s)hθ(x)dF0(x),

where
∫

k(x, s)hµ(x)dF0(x) = i

∫ ∞

−∞
e−|s−u|α−|u|αuw(u)du,

∫
k(x, s)hσ(x)dF0(x) = Bσe−|s|α − α

∫ ∞

−∞
e−|s−u|α−|u|α |u|αw(u)du,

∫
k(x, s)hα(x)dF0(x) = Bαe−|s|α −

∫ ∞

−∞
e−|s−u|α−|u|α |u|α log |u|w(u)du.

Let 〈·, ·〉 denote the standard inner product of R3 . Write

Φ(t; θ̂n) = Φ(t; θ0) −
〈
θ̂n − θ0,∇θΦ(t, θ∗n)

〉

=
∫

k(x, t)dF0(x) −
〈
θ̂n − θ0,∇θΦ(t, θ∗n)

〉
,

where θ∗n is some value between θ0 and θn. Note that θ∗n
P−→ θ0. Now replace

√
n(θ̂n − θ0) by its AL

representations. Then Ẑn(t) is written as

Ẑn(t) =
∫

k(x, t)d
{√

n
(
Fn(x) − F0(x)

)}
−

〈√
n(θ̂n − θ0),∇θΦ(t; θ∗n)

〉

= Z∗
n(t) + ∆(2)

n (t) + ∆(3)
n (t),

where

Z∗
n(t) :=

∫
k(x, t)d

{√
n
(
Fn(x) − F0(x)

)}
−

〈
1√
n

n∑

j=1

lθ(xj),∇θΦ(t; θ0)

〉
.

Z∗
n also converges to Z. The remainder terms ∆(2)

n and ∆(3)
n are defined by

∆(2)
n :=

〈√
n(θ̂n − θ0),∇θΦ(t; θ0) −∇θΦ(t; θ∗n)

〉
,

∆(3)
n := −〈εn,∇θΦ(t; θ0)〉 , εn = (rn1, rn2, rn3)′.
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These remainder terms satisfy sup
t∈S

|∆(2)
n | P−→ 0, and sup

t∈S
|∆(3)

n | P−→ 0 by conditions (iv) and (vi) of

Csörgő (1983). The asymptotic process Z has an alternative expression

Z(t) =
∫

k(x, t)dBF0(x) −
〈∫

lθ(x)dBF0(x),∇θΦ(t; θ0)
〉

,

where BF0(x) is the Brownian bridge corresponding to the distribution function F0, having covariance
function E[BF0(s)BF0(t)] = F0(s ∧ t) − F0(s)F0(t). Z∗ and Z have the same covariance function

Γ(s, t) = Φ(s − t; θ0) − Φ(s; θ0)Φ(t; θ0) + Φ(s, θ0)′E[lθ(X1)lθ(X1)′]Φ(t, θ0)(B.4)

−
〈
∇θΦ(s; θ0),

∫
k(x, t)lθ(x)dF0(x)

〉
−

〈
∇θΦ(t; θ0),

∫
k(x, s)lθ(x)dF0(x)

〉
.

Note ∫
k(x, s)k(x, t)dF0(x) =

∫
k(x, s − t)dF0(x) = Φ(s − t; θ0).

Evaluating (B.4) for the case of MLE and EISE using (B.2) and (B.3) proves Theorem 2.3. 2

B.2 Proof of theorem 2.4

We have only to show

(B.5) ∇θΦ(s; θ0)′I−1(θ)∇θΦ(t; θ0) =
〈
∇θΦ(t; θ0),

∫
k(x, s)lE(x)dF0(x)

〉
.

Because AL representations can be written by I−1(θ)∂ log f(x; θ0)/∂θ, their kernel transformations are
∫

k(x, s)lE(x)dF0(x) = I−1(θ)
∫

k(x, s)
∂ log f(x; θ0)

∂θ
dF0(x).

= I−1(θ)
∫

k(x, s)
1

f(x; θ0)
∂f(x; θ0)

∂θ
f(x; θ0)dx

= I−1(θ)
1
2π

∫
eisx ∂f(x; θ0)

∂θ
dx

= I−1(θ)∇θΦ(s; θ0).

Since both sides of the formula (B.5) are scalars the proof is over. 2

B.3 Proof of corollary 2.2.1

Let α = 1. Then I−1(θ) is explicitly written as

I−1(θ) =




2 0 0
0 2 + 12

π2 (γ + log 2 − 1)2 12
π2 (γ + log 2 − 1)

0 12
π2 (γ + log 2 − 1) 12

π2


 .

Letting α = 1 in (2.18) and replacing I−1(θ) by the above matrix we can prove the corollary. 2
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Figure 7: Upper quantiles (κ = 1.0, H1)
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Figure 8: Upper quantiles (κ = 2.5, H1)
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Table 1: Upper ξ percentage points of Dκ under H1

α ξ\κ 1.0 2.5 5.0 10.0
1.9 0.1 1.097 0.1030 0.00759 0.000973

0.05 1.352 0.1338 0.01000 0.001267
1.8 0.1 1.037 0.0963 0.00977 0.002283

0.05 1.273 0.1240 0.01257 0.002984
1.7 0.1 0.991 0.0958 0.01375 0.003974

0.05 1.211 0.1217 0.01754 0.005183
1.6 0.1 0.957 0.1007 0.01921 0.006077

0.05 1.161 0.1258 0.02431 0.007895
1.5 0.1 0.933 0.1108 0.02615 0.008650

0.05 1.122 0.1361 0.03280 0.011180
1.4 0.1 0.918 0.1260 0.03469 0.011770

0.05 1.094 0.1527 0.04313 0.015120
1.3 0.1 0.915 0.1462 0.04503 0.015530

0.05 1.078 0.1754 0.05553 0.019813
1.2 0.1 0.925 0.1717 0.05740 0.020042

0.05 1.078 0.2041 0.07025 0.025370
1.1 0.1 0.948 0.2027 0.07206 0.025434

0.05 1.095 0.2390 0.08755 0.031916
1.0 0.1 0.988 0.2395 0.08923 0.031846

0.05 1.130 0.2804 0.10765 0.039574
0.9 0.1 1.044 0.2824 0.10903 0.039422

0.05 1.186 0.3288 0.13063 0.048454
0.8 0.1 1.118 0.3315 0.13145 0.048287

0.05 1.262 0.3840 0.15627 0.058625
0.7 0.1 1.213 0.3855 0.15611 0.058531

0.05 1.362 0.4446 0.18397 0.070081
0.6 0.1 1.325 0.4413 0.18217 0.070175

0.05 1.482 0.5065 0.21239 0.082722
0.5 0.1 1.441 0.4928 0.20834 0.083189

0.05 1.609 0.5615 0.23966 0.096393
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Table 2: Upper ξ percentage points of Dκ under H2

α ξ\κ 1.0 2.5 5.0 10.0
2.0 0.1 1.216 0.1258 0.00881 0.000241

0.05 1.499 0.1622 0.01177 0.000335
1.9 0.1 1.150 0.1129 0.00921 0.00142

0.05 1.413 0.1444 0.01164 0.00179
1.8 0.1 1.110 0.1111 0.01354 0.00329

0.05 1.357 0.1398 0.01679 0.00416
1.7 0.1 1.080 0.1157 0.01984 0.00566

0.05 1.313 0.1431 0.02457 0.00713
1.6 0.1 1.058 0.1256 0.02773 0.00858

0.05 1.277 0.1532 0.03426 0.01076
1.5 0.1 1.044 0.1404 0.03721 0.01211

0.05 1.249 0.1697 0.04578 0.01514
1.4 0.1 1.037 0.1599 0.04840 0.01636

0.05 1.231 0.1919 0.05927 0.02037
1.3 0.1 1.039 0.1840 0.06148 0.02144

0.05 1.222 0.2195 0.07493 0.02660
1.2 0.1 1.051 0.2127 0.07670 0.02748

0.05 1.225 0.2524 0.09300 0.03396
1.1 0.1 1.074 0.2465 0.09428 0.03464

0.05 1.242 0.2907 0.11376 0.04262
1.0 0.1 1.111 0.2862 0.11445 0.04307

0.05 1.276 0.3356 0.13742 0.05273
0.9 0.1 1.159 0.3305 0.13723 0.05291

0.05 1.322 0.3855 0.16395 0.06443
0.8 0.1 1.226 0.3811 0.16263 0.06426

0.05 1.389 0.4424 0.19326 0.07779
0.7 0.1 1.310 0.4365 0.19018 0.07714

0.05 1.476 0.5045 0.22466 0.09278
0.6 0.1 1.412 0.4936 0.21890 0.09144

0.05 1.583 0.5678 0.25681 0.10919
0.5 0.1 1.517 0.5464 0.24726 0.10689

0.05 1.696 0.6250 0.28773 0.12661
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Table 3: Simulation results of symmetric stable distributions (1000 iterations)

n α̂ µ̂ σ̂ Î11 Î22 Î33 Î12 Î13 Î23

2.0 0 1 0.5 2.0 ∞ 0 0 ∗
50 1.976 0.00014 0.977 0.607 1.875 5.647 -0.029 -0.010 -0.828
100 1.990 0.00017 0.975 0.868 1.402 9.445 0.032 -0.057 -0.594
200 1.994 0.00094 0.977 0.784 1.239 12.77 -0.009 0.078 -0.539

1.8 0 1 0.4552 1.3898 0.5937 0 0 -0.3138
50 1.818 0.0012 0.991 0.487 1.231 0.676 -0.033 -0.026 -0.267
100 1.822 0.0033 1.002 0.482 1.356 0.584 0.005 -0.016 -0.340
200 1.810 -0.0000 1.000 0.450 1.399 0.603 -0.007 -0.003 -0.323

1.5 0 1 0.4281 0.9556 0.4737 0 0 -0.2174
50 1.548 -0.0022 1.012 0.3161 0.5796 0.4252 0.005 -0.009 -0.1927
100 1.524 -0.0000 1.000 0.3914 0.9138 0.4278 0.001 -0.010 -0.2291
200 1.510 -0.0003 1.000 0.4028 0.9474 0.4683 -0.018 -0.006 -0.2229

1.0 0 1 0.5 0.5 0.8590 0 0 -0.1352
50 1.026 -0.0029 0.996 0.4243 0.4877 0.670 -0.004 0.0248 -0.1779
100 1.001 -0.0041 0.988 0.4438 0.4205 0.746 0.007 0.003 -0.1527
200 1.006 -0.0039 1.001 0.4929 0.5013 0.845 -0.003 -0.0251 -0.1534

0.8 0 1 0.6800 0.3586 1.3928 0 0 -0.0913
50 0.815 -0.0016 1.005 0.5434 0.3243 1.111 -0.01432 0.0015 -0.083
100 0.811 -0.0001 1.003 0.6015 0.3459 1.171 0.00435 -0.0313 -0.097
200 0.805 -0.0009 1.000 0.6232 0.3708 1.303 0.01785 -0.0276 -0.086
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Figure 9: Upper quantiles (κ = 5.0, H1)
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Figure 10: Upper quantiles (κ = 10.0, H1)
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Table 4: Upper 10 percentage points of D100,κ under H1

α \ κ 1.0 2.5 5.0 10.0
1.8 1.037 0.1037 0.01271 0.00326

1.037 0.0963 0.00977 0.00228
1.5 0.953 0.1213 0.03061 0.00996

0.933 0.1108 0.02615 0.00865
1.0 1.032 0.2541 0.09450 0.03336

0.988 0.2395 0.08923 0.03185

Table 5: Upper 5 percentage points of D100,κ under H1

α \ κ 1.0 2.5 5.0 10.0
1.8 1.279 0.1334 0.01681 0.00451

1.273 0.1240 0.01257 0.00298
1.5 1.141 0.1504 0.03968 0.01348

1.122 0.1361 0.03280 0.01118
1.0 1.216 0.3059 0.11400 0.04230

1.130 0.2804 0.10765 0.03957

Table 6: Upper 10 percentage points of D200,κ under H1

α \ κ 1.0 2.5 5.0 10.0
1.8 1.029 0.1003 0.01119 0.00279

1.037 0.0963 0.00977 0.00228
1.5 0.929 0.1145 0.02807 0.00926

0.933 0.1108 0.02615 0.00865
1.0 1.006 0.2462 0.09072 0.03233

0.988 0.2395 0.08923 0.03185

Table 7: Upper 5 percentage points of D200,κ under H1

α \ κ 1.0 2.5 5.0 10.0
1.8 1.290 0.1292 0.01467 0.00386

1.273 0.1240 0.01257 0.00298
1.5 1.125 0.1419 0.03575 0.01222

1.122 0.1361 0.03280 0.01118
1.0 1.161 0.2887 0.10938 0.04015

1.130 0.2804 0.10765 0.03957
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Table 8: Upper 10 percentage points of D100,κ under H2

α \ κ 1.0 2.5 5.0 10.0
1.8 1.100 0.1126 0.01415 0.00356

1.110 0.1111 0.01354 0.00329
1.5 1.030 0.1403 0.03709 0.01202

1.044 0.1404 0.03721 0.01211

Table 9: Upper 5 percentage points of D100,κ under H2

α \ κ 1.0 2.5 5.0 10.0
1.8 1.333 0.1397 0.01878 0.00533

1.357 0.1398 0.01679 0.00416
1.5 1.220 0.1690 0.04710 0.01590

1.249 0.1697 0.04578 0.01514

Table 10: Upper 10 percentage points of D200,κ under H2

α \ κ 1.0 2.5 5.0 10.0
1.8 1.077 0.1108 0.01369 0.00332

1.110 0.1111 0.01354 0.00329
1.5 1.037 0.1414 0.03754 0.01204

1.044 0.1404 0.03721 0.01211

Table 11: Upper 5 percentage points of D200,κ under H2

α \ κ 1.0 2.5 5.0 10.0
1.8 1.368 0.1409 0.01818 0.00470

1.357 0.1398 0.01679 0.00416
1.5 1.244 0.1695 0.04620 0.01561

1.249 0.1697 0.04578 0.01514

Table 12: Power of Dn,κ under H2 (α = 1.5, significance levels ξ = 0.1, 0.05, n = 100)

ξ 0.1 0.05
κ 1.0 2.5 5.0 10.0 1.0 2.5 5.0 10.0

N(0, 2) 44 68 76 45 30 49 45 2
t(1) 82 93 96 95 75 90 92 92
t(2) 16 20 17 15 9 12 10 8
t(3) 11 10 5 3 6 6 2 1
t(4) 12 12 9 3 7 6 3 0
t(5) 14 15 15 5 8 9 5 0
t(10) 26 40 42 15 14 22 16 0
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Table 13: Power of Dn,κ under H2 (α = 1.5, significance levels ξ = 0.1, 0.05, n = 200)

ξ 0.1 0.05
κ 1.0 2.5 5.0 10.0 1.0 2.5 5.0 10.0

N(0, 2) 79 99 100 100 63 96 99 98
t(1) 98 99 100 100 96 99 100 100
t(2) 24 26 21 16 16 18 14 10
t(3) 12 10 10 9 6 6 5 3
t(4) 16 24 32 27 8 12 16 8
t(5) 23 40 50 47 12 26 33 19
t(10) 48 83 93 92 34 66 84 68

Table 14: Power of Dn,κ under H2 (α = 1.8, significance levels ξ = 0.1, 0.05, n = 100)

ξ 0.1 0.05
κ 1.0 2.5 5.0 10.0 1.0 2.5 5.0 10.0

N(0, 2) 14 14 3 0 8 8 1 0
t(1) 98 100 100 100 96 100 100 100
t(2) 55 72 77 70 41 60 65 55
t(3) 28 35 34 22 20 25 23 12
t(4) 16 18 14 6 10 10 6 3
t(5) 11 12 9 4 6 6 3 1
t(10) 9 10 3 0 4 5 1 0

Table 15: Power of Dn,κ under H2 (α = 1.8, significance levels ξ = 0.1, 0.05, n = 200)

ξ 0.1 0.05
κ 1.0 2.5 5.0 10.0 1.0 2.5 5.0 10.0

N(0, 2) 20 23 18 0 10 12 4 0
t(1) 99 100 100 100 97 99 100 100
t(2) 83 94 94 89 72 88 89 80
t(3) 45 54 49 33 28 37 37 21
t(4) 24 25 18 7 13 15 9 4
t(5) 16 17 9 3 7 9 4 1
t(10) 13 12 9 1 5 6 2 0

30




