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1. Introduction

In recent microeconometric applications some econometricians have used many instru-

mental variables in estimating an important structural equation. It may be partly because

it has been possible to use a large number of cross sectional data and instrumental vari-

ables. One empirical example of this kind often cited in econometric literatures is Angrist

and Krueger (1991) and there are some discussions by Bound et. al. (1995) since then.

Because the standard text books in econometrics usually do not cover the feature that

the number of instrumental variables is large, it seems that we need to investigate the

basic properties of the standard estimation methods of microeconometric models in this

situation. This paper will argue that a new light on the estimation of simultaneous equa-

tion models actually comes from old wisdoms in the past econometric literatures which

have been often ignored and there is a strong message against some econometric methods

commonly used in practice.

The study of estimating a single structural equation in econometric models has led

to develop several estimation methods as the alternatives to the least squares estimation

method. The classical examples in the econometric literature are the limited informa-

tion maximum likelihood (LIML) method and the instrumental variables (IV) method

including the two-stage least squares (TSLS) method. See Anderson and Sawa (1979),

and Anderson, Kunitomo, and Sawa (1982) on the studies of their finite sample proper-

ties, for instance. As the semi-parametric estimation methods, a generalized method of

moments (GMM) estimation, originally proposed by Hansen (1982), has been often used

in recent econometric applications. The GMM estimation method is essentially the same

as the estimating equation (EE) method originally developed by Godambe (1960) which

has been mainly used in statistical applications. Also the maximum empirical likelihood

(MEL) method has been proposed and has gotten some attention recently in the statis-

tical and econometric literatures. For sufficiently large sample sizes the LIML and the

TSLS estimators have approximately the same distribution in the standard large sample

asymptotic theory, but their exact distributions can be quite different for the sample sizes

occurring in practice. Also the GMM and the MEL estimators have approximately the

same distribution under the more general heteroscedastic disturbances in the standard

large sample asymptotic theory, but their exact distributions can be quite different for the
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sample sizes occurring in practice.

There had been alternative asymptotic theories when the number of instrumental vari-

ables is large in estimating structural equations. Kunitomo (1980, 1982), Morimune (1983),

and Bekker (1994) were the earlier developers of the large K2 asymptotic theories in the

literatures. There can be some interesting aspects in these asymptotic theories in the

context of simultaneous equation models because there are many instrumental variables

sometimes used in micro-econometric applications and panel data analyses. The first pur-

pose of this study is to give new results on the asymptotic optimality of the LIML estimator

when the number of instruments is large. However, the TSLS and the GMM estimators

lose even the consistency in some situations. Our results on the asymptotic optimality

give new interpretations of the numerical information of the finite sample properties and

some guidance on the use of alternative estimation methods in simultaneous equations and

microeconometric models with many instruments. There has been a growing literatures on

the problem of many instruments in econometric models. We shall try to relate our new

(and old) results to the recent studies including Donald and Newey (2001), Hahn (2002),

Stock and Yogo (2003), Hansen et. al. (2004), Newey (2004), Chao and Swanson (2005),

and Bekker and Ploeg (2005).

The second purpose of this study is to give information to determine the small sample

properties of the exact cumulative distribution functions (cdf’s) of these four different esti-

mators for a wide range of parameter values. We shall pay a special attention on the finite

sample properties of alternative estimators when we have possibly many instruments in the

simultaneous equations. Since it is quite difficult to obtain the exact densities and cdf’s of

these estimators, the numerical information makes possible the comparison of properties

of alternative estimation methods. We intentionally use the classical estimation setting of

a linear structural equation when we have a set of instrumental variables in econometric

models. It is our intention to make precise comparison of alternative estimation procedures

in the possible simplest case which has many applications and it is possible to generalize

our formulation into several different directions.

An important approach to the study of the finite sample properties of alternative

estimators is to obtain asymptotic expansions of their exact distributions in the normalized

forms. As noted before, the leading term of their asymptotic expansions in the standard

large sample theory are the same, but the higher-order terms are different. For instance,
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Fujikoshi et. al. (1982) and their citations for the the LIML and the TSLS estimators, and

Kunitomo and Matsushita (2003b) for the MEL and the GMM estimators for the linear

structural equation case while Newey and Smith (2004) for the bias and the mean squared

errors of estimators in the more general cases. It should be noted, however, that the mean

and the mean squared errors of the exact distributions of estimators are not necessarily

the same as the mean and the mean squared errors of the asymptotic expansions of the

distributions of estimators. In fact the LIML estimator does not possess any moments

of positive integer order under a set of reasonable assumptions. Therefore instead of

moments we need to investigate the exact cumulative distributions of the LIML, MEL,

GMM, and TSLS estimators directly in a systematic way. The problem of non-existence

of moments had been already discussed in the econometric literature. For instance, see

Mariano and Sawa (1972), Phillips (1980), and Kunitomo and Matsushita (2003a). There

have been some recent studies on the computational problem on the MEL estimator by

Mittelhammer et. al. (2004) and Guggenberger (2004), which are related to our results.

In Section 2 we state the formulation of models and alternative estimation methods

of unknown parameters in the simultaneous equations with possibly many instruments.

Then in Section 3 we develop the large K2 asymptotics and present new results on the

asymptotic variance bounds and the asymptotic optimality of the LIML estimator when

the number of instruments is large in the simultaneous equations models. They give the

pursuasive explanations of the finite sample properties of alternative estimation methods.

In Section 4 we shall explain our tables and figures of the finite sample distributions of

alternative estimators and discuss their finite sample properties. Then some conclusions

will be given in Section 5. The proof of our theorems shall be given in Section 6, and

Tables and Figures are gathered in Appendix.

2. Alternative Estimation Methods of a Structural Equation with Possibly

Many Instruments

Let a single linear structural equation in the econometric model be given by

y1i = (z
′
1i, y

′
2i)(

γ1

β2

) + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are a scalar and vector of G2 endogenous variables, z1i is a vector of K1
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included exogenous variables, θ
′
= (γ

′
1, β

′
2) is a vector of K1 + G2 unknown parameters,

and {ui} are mutually independent disturbance terms with E(ui) = 0 (i = 1, · · · , n). We

assume that (2.1) is the first equation in a system of (1+G2) structural equations with the

vector of 1+G2 endogenous variables y
′
i = (y1i, y

′
2i)

′
. The vector of K(n) (= K1 +K2(n))

{zi(n)} including z1i is the set of instrumental variables, which satisfy the orthogonal

condition E[ui zi(n)] = 0 (i = 1, · · · , n). We assume that the reduced form is given by

Y = ZΠ(n) + V ,(2.2)

where Y = (y
′
i) is the n × (1 + G2) matrix of endogenous variables, Z = (Z1, Z2(n)) (=

(z
′
i(n))) is the n×K(n) matrix of (K1 +K2(n)) instrument vectors zi(n) (= (z

′
1i, z

′
2i(n))

′
)

and Π(n) = (π
′
1, Π

′
2(n))

′
is the (K1 + K2(n)) × (1 + G2) matrix of coefficients. The

restrictions on the coefficients can be expressed as (1,−β
′
2)Π

′
(n) = (γ

′
1, 0

′
) and the last

K2(n)× 1 conditions can be written as π21(n) = Π22(n)β2, where π21(n) and Π22(n) are

K2(n) × 1 and K2(n) × G2 submatrices of Π2(n).

Define the (1 + G2) × (1 + G2) random matrices be

G = Y
′
Z2.1A−1

22.1Z
′
2.1Y ,(2.3)

and

H = Y
′ (

In − Z(Z
′
Z)−1Z

′)
Y ,(2.4)

where A22.1 = Z
′
2.1Z2.1, Z2.1 = Z2(n)− Z1A−1

11 A12,

Z1 =

⎛
⎜⎜⎜⎝

z
′
11

...

z
′
1n

⎞
⎟⎟⎟⎠ , Z2(n) =

⎛
⎜⎜⎜⎝

z
′
21(n)

...

z
′
2n(n)

⎞
⎟⎟⎟⎠ ,(2.5)

and

A = Z
′
Z =

⎛
⎝ A11 A12

A21 A22

⎞
⎠(2.6)

is a nonsingular matrix (a.s.).

Then the LIML estimator β̂LI (= (1,−β̂
′
2.LI)

′
) for the vector of coefficients β = (1,−β

′
2)

′

is given by

(G − λH)β̂LI = 0 ,(2.7)

where λ is the smallest root of

|G − lH| = 0(2.8)
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and (2.7) corresponds to the minimum of the variance ratio

L1n =

[
n∑

i=1

zi(n)
′
(y1i − γ

′
1z1i − β

′
2y2i)][

n∑
i=1

zi(n)zi(n)
′
]−1[

n∑
i=1

zi(n)(y1i − γ
′
1z1i − β

′
2y2i)]

n∑
i=1

(y1i − γ
′
1z1i − β

′
2y2i)2

.

(2.9)

If we replace λ by 0 and omit the second component, we have the TSLS estimator β̂TS (=

(1,−β̂
′
2.T S)

′
) of β = (1,−β

′
2)

′
as

Y
′
2Z2.1A−1

22.1Z
′
2.1Y

⎛
⎝ 1

−β̂2.T S

⎞
⎠ = 0(2.10)

and it also corresponds to the solution of minimizing the numerator of the variance ratio.

For the LIML and the TSLS estimators the coefficients of γ1 can be estimated by

γ̂1 = (Z
′
1Z1)−1Z

′
1Yβ̂ ,(2.11)

where β̂ is either β̂LI or β̂TS .

The maximum empirical likelihood (MEL) estimator for the vector of parameters θ in

(2.1) is defined by maximizing the Lagrange form

L∗
2n(ν, θ) =

n∑
i=1

log(npi) − µ(
n∑

i=1

pi − 1) − nν
′

n∑
i=1

pizi(n)
[
y1i − γ

′
1z1i − β

′
2y2i

]
,

where µ and ν are a scalar and a vector of Lagrange multipliers, and pi (i = 1, · · · , n) is

the weighted probability function to be chosen. It has been known (see Qin and Lawless

(1994) or Owen (1990, 2001)) that the above maximization is the same as maximizing

L2n(ν, θ) = −
n∑

i=1

log
{
1 + ν

′
zi [y1i − γ

′
1z1i − β

′
2y2i]

}
,(2.12)

where µ̂ = n and [np̂i]−1 = 1 + ν
′
zi(n)[y1i − γ

′
1z1i − β

′
2y2i] . By differentiating (2.12)

with respect to ν and combining the resulting equation for p̂i (i = 1, · · · , n), we have the

relations
∑n

i=1 p̂izi(n)
[
y1i − γ̂

′
1z1i − β̂

′

2y2i

]
= 0 and

ν̂ = [
n∑

i=1

p̂iu
2
i (θ̂)zi(n)zi(n)

′
]−1[

1
n

n∑
i=1

ui(θ̂)zi(n)] ,(2.13)
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where ui(θ̂) = y1i − γ̂
′
1z1i − β̂

′
2y2i and θ̂

′
= (γ̂

′
1, β̂

′
2) is the maximum empirical likelihood

(MEL) estimator for the vector of unknown parameters θ. Alternatively, the MEL estima-

tor of θ can be written as the solution of the equations ν̂
′∑n

i=1 p̂izi(n)[−(z
′
1i, y

′
2i)] = 0 ,

which implies

[
n∑

i=1

p̂i(
z1i

y2i

)zi(n)
′
][

n∑
i=1

p̂iui(θ̂)2zi(n)zi(n)
′
]−1[

1
n

n∑
i=1

zi(n) y1i](2.14)

= [
n∑

i=1

p̂i(
z1i

y2i

)zi(n)
′
][

n∑
i=1

p̂iui(θ̂)2zi(n)zi(n)
′
]−1[

1
n

n∑
i=1

zi(n)(z
′
1i, y

′
2i)](

γ̂1.E

β̂2.E

) .

On the other hand, the GMM estimator of θ
′
= (γ

′
1, β

′
2) can be given by the solution of

the equation

[
1
n

n∑
i=1

(
z1i

y2i

)zi(n)
′
][

1
n

n∑
i=1

ui(θ̃)2zi(n)zi(n)
′
]−1[

1
n

n∑
i=1

zi(n) y1i](2.15)

= [
1
n

n∑
i=1

(
z1i

y2i

)z
′
i][

1
n

n∑
i=1

ui(θ̃)2zi(n)zi(n)
′
]−1[

1
n

n∑
i=1

zi(n)(z
′
1i, y

′
2i)](

γ̂1.G

β̂2.G

) ,

where θ̃ is a consistent initial estimator of θ . By this representation the GMM estimator

can be interpreted as the empirical likelihood estimator when we use the fixed probability

weight functions as pi = 1/n (i = 1, · · · , n).

By using the fact that log(1+x) ∼ x−x2/2 for small x and the expression of the Lagrange

multiplier vector in (2.13), it may be possible to approximate the criterion function L2n

as −(1/2) times

L3n = [
n∑

i=1

zi(n)
′
(y1i−γ

′
1z1i−β

′
2y2i)][

n∑
i=1

p̂iu
2
i (θ)zi(n)zi(n)

′
]−1[

n∑
i=1

zi(n)(y1i−γ
′
1z1i−β

′
2y2i)] .

If we treat the disturbance terms as if they were homoscedastic, it may be reasonable to

substitute 1/n for p̂i (i = 1, · · · , n) and σ̂2 for û2
i (i = 1, · · · , n) . Then we have the degrees

of freedom times the variance ratio L1n.

Let the normalized error of estimators be in the form of

√
n(

γ̂1 − γ1

β̂2 − β2

)(2.16)
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for θ̂
′
= (γ̂

′
1, β̂

′
2) and θ

′
= (γ

′
1, β

′
2) is the vector of unknown coefficient parameters. In the

standard large sample asymptotic theory we assume that both n and the noncentrality

increase while K2 (= K2(n)) and Π (= Π(n)) are fixed. Then under a set of regularity

conditions 1 , the asymptotic variance-covariance matrix for the GMM and the MEL

estimators is given by (DMC−1MD
′
)−1 while the asymptotic variance-covariance matrix

for the LIML and TSLS estimators is given by (DMD
′
)−1DCD

′
(DMD

′
)−1, where M =

plimn→∞(1/n)
∑n

i=1 ziz
′
i, C = plimn→∞(1/n)

∑n
i=1 u2

i ziz
′
i, and

D =

⎡
⎣ (IK1 O)

Π
′
2

⎤
⎦ ,(2.17)

provided that the constant matrices M and C in the probability limits are positive definite,

and the rank condition is given by rank(D) = K1 + G2. The rank condition implies the

order condition K2 − G2 ≥ 0 , which is the degrees of over-identification.

When C = σ2M or the disturbance terms are near homoscedastic, K2 (= K2(n)) is fixed

and (1/n)A22.1
p−→ M22.1 (nonsingular) as n → ∞, then

√
n(β̂2.LI − β2)

d−→ N
[
0, σ2(Π

′
22M22.1Π22)−1

]
(2.18)

for four estimation methods in the standard case, where M22.1 = M22 − M21M−1
11 M12

and we partition the nonsingular matrix M = (Mij) (i, j = 1, 2).

3 Asymptotic Optimality of the LIML Estimator with Many

Instruments

In the recent microeconometric models several important questions on their estimation

methods for practical purposes have been raised. First, Staiger and Stock (1997) has

introduced the notion of weak instruments. One interpretation of weak instruments is

that we have a structural equation in which the noncentrality parameter is not large in

comparison with the sample size. Second, Bekker (1994) pointed out that the standard

asymptotic theory in econometrics may not be appropriate in practice when the number

of instruments is large and the large-K2 theory may be suited better to applications; see

1 See Chamberlin (1987) for the GM estimator and Qin and Lawless (1994) for the MEL estimator,

respectively.
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the earlier studies of Kunitomo (1980) and Morimune (1983). There have been some mi-

croeconometric applications when many instruments have been used, but the application

of the GMM method gave large biases. Third, Hansen et. al. (2004) have considered the

situation when there are many weak instruments and discussed several important issues.

These problems have been formulated as the situation when the number of excluded instru-

ments is large (K2(n) is large in our notation) and comparable to the size of noncentrality

parameter. It is interesting to find that it is the same situation which Kunitomo (1982,

1987) investigated under a set of limited assumptions (which could have been removed).

In this section we shall develop the asymptotic theory and report new (as well as old)

optimality results when K2(n) is dependent on the sample size n and try to relate our

results to the recent studies in econometrics.

3.1 Main Results

We first state the limiting distribution of the LIML estimator under a set of alternative

assumptions when K2(n) can be dependent on n and n → ∞ . Our result of Theorem 1

is similar to the one in Newey (2004 unpublished), but our conditions are weaker than

his conditions in the sense that we do not require any assumption on the conditional

expectations. We will give its proof in Section 6.

Theorem 1 : Let {vi, zi(n) (i = 1, 2, · · ·)} be a set of independent random vectors.

Assume that (2.1) and (2.2) hold with E[vi] = 0, E[viv
′
i] = Ω, and E[‖vi‖4] < ∞. Suppose

that z1(n), · · · , zn(n) are independent of vi (i = 1, · · · , n). Define q(n) = n−(K1+K2(n)),

and let q(n) −→ ∞ and K2(n) −→ ∞ as n −→ ∞. Suppose

(I)
K2(n)
q(n)

−→ c (0 ≤ c < ∞),

(II)
1

K2(n)
Π

′
22(n)A22.1Π22(n) p−→ Φ22.1 ,

(III)
1

K2(n)
max
1≤i≤n

‖Π′
22(n)z∗i (n)‖2 p−→ 0 ,

(IV) max
1≤i≤n

z∗
′

i A−1
22.1z

∗
i

p−→ 0 ,

where z∗i is the i-th row vector of Z2.1(n) = Z2(n) − Z1(Z
′
1Z1)−1Z

′
1Z2(n) and Φ22.1 is a

nonsingular constant matrix.

Then [
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂2.LI − β2)

d−→ N (0, Ψ∗) ,(3.1)
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where

Ψ∗ = σ2IG2 + (1 + c)Φ−1/2
22.1

[
Ωσ2 − Ωββ

′
Ω
]
22

Φ−1/2
22.1 ,(3.2)

σ2 = β
′
Ωβ and [ · ]22 is the G2 × G2 lower-right corner of (1 + G2) × (1 + G2) matrix.

Alternatively [
Π

′
22(n)A22.1Π22(n)

K2(n)

]√
K2(n)(β̂2.LI − β2)

d−→ N (0, Ψ∗∗) ,(3.3)

where

Ψ∗∗ = σ2Φ22.1 + (1 + c)
[
Ωσ2 − Ωββ

′
Ω
]
22

.(3.4)

Alternatively √
K2(n)(β̂2.LI − β2)

d−→ N (0, Ψ∗∗∗) ,(3.5)

where

Ψ∗∗∗ = σ2Φ−1
22.1 + (1 + c)Φ−1

22.1

[
Ωσ2 −Ωββ

′
Ω
]
22

Φ−1
22.1 .(3.6)

If G2 = 1, we have [Ωσ2 −Ωββ
′
Ω]22 = ω11ω22 − ω2

12 = |Ω| .

When (2.1) and (2.2) hold with v1, · · · , vn independently distributed each according

to N (0, Ω), then we do not need Condition III and Condition IV, which are utilized for

the central limit theorems. The asymptotic variance-covariance matrix in (3.1) does not

depned on the fourth order moments of disturbances under Condition IV.

For the estimation problem of the vector of structural parameters β, it may be natural

to consider a set of statistics of two (1 + G2) × (1 + G2) random matrices G and H .

Then we shall consider a class of estimators which are some functions of these two random

matrices in this section and we have a new result on the asymptotic optimality of the

LIML estimator under a set of simplified assumptions. The proof of Theorem 2 will be

given in Section 6.

Theorem 2 : Assume that (2.1) and (2.2) hold and define the class of consistent estima-

tors for β2 by

β̂2 = φ(
1

K2(n)
G,

1
q(n)

H) ,(3.7)

where φ is continuously differentiable and its derivatives are bounded at the probability

limits of random matrices in (3.7) as K2(n) → ∞, q(n) → ∞ (n → ∞). Then under the
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assumptions of Theorem 1,

[
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂2 − β2)

d−→ N (0, Ψ) ,(3.8)

where

Ψ ≥ Ψ∗(3.9)

in the sense of positive definiteness and Ψ∗ is given by (3.1).

When the distribution of V is normal N (0, Ω) and Z is exogenous, (Z
′
Z)−1Z

′
Y and

H = Y
′
[In−Z(Z

′
Z)−1Z

′
]Y are a sufficient set of statistics for Π(n) and Ω, the parameters

of a model. This implies that of all consistent estimators of β2, the LIML estimator

suitably normalized has the minimum asymptotic variance. Thus the optimality of β̂2.LI

extends to the class of all consistent estimators including the MEL estimator (provided

that it is consistent) not only the form of (3.7).

The above theorems are the generalized versions of the results given by Kunitomo

(1982) or Theorem 3.1 of Kunitomo (1987). Although they assumed that the disturbances

are normally distributed and homoscedastic, it is straightforward to extend the above

results to the non-normal disturbance cases as we have shown in Theorem 1 and Theorem 2.

Thus the essential results on the asymptotic normality as well as the asymptotic optimality

of the LIML estimator do not depend on the Gaussianity. Furthermore, Kunitomo (1982)

has investigated the higher order efficiency property of the LIML estimator when G2 = 1,

c = 0 and the disturbances are normally distributed. Chao and Swanson (2005) 2 recently

have investigated the consistency issue of instrumental variables methods when K2(n) is

dependent on n and the disturbances are not necessarily normally distributed.

The results for the simplest case when K2 (= K2(n)) is fixed had been known over

several decades since Anderson and Rubin (1950) and the more general results have been

even in econometrics textbooks under the name of the standard large sample asymptotic

theory for the estimation of simultaneous equations. However, it seems that in the second

case, called the large K2−asymptotic theory, the issue of asymptotic optimality has not

been treated in a formal way as we did in this section. The LIML estimator is asymp-

totically efficient and attains the lower bound of the variance-covariance matrix, which is

strictly larger than the information matrix and the asymptotic Cramér-Rao lower bound,
2 Apparently they were not aware of the eariler studies.
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while both the TSLS and the GMM estimators are inconsistent. This is a non-regular

situation because the number of incidental parameters increases as K2(n) increases in the

simultaneous equation models.

We also have the asymptotic optimality results of the LIML estimator for the cases

even when K2(n) increases as n → ∞ while K2(n)/n → 0. In this case the asymptotic

lower bound of the covariance matrix is the same as the case of the large sample asymp-

totic theory. However, the limiting distribution of the LIML estimator can be different

from that of the TSLS estimator and we have the next result. (The proof will be given in

Section 6.)

Theorem 3 : Let {vi, zi(n) (i = 1, 2, · · ·)} be a set of independent random vectors. As-

sume that (2.1) and (2.2) hold with E[vi|zi(n)] = 0 (a.s.) and E[viv
′
i|zi(n)] = Ωi(n) (a.s.)

is a function of zi(n), say, Ωi[n, zi(n)]. The further assumptions on (vi, zi(n)) are that

max1≤i≤n E[v4
ij|zi(n)] (vi = (vij)) are bounded, there exists a constant matrix Ω such

that
√

n max1≤i≤n ‖Ωi(n) −Ω‖ is bounded and σ2 = β
′
Ωβ > 0 . Suppose

(I
′
)

K2(n)
nη

−→ c (0 ≤ η < 1, 0 < c < ∞),

(II
′
)

1
n
Π

′
22(n)A22.1Π22(n)

p−→ Φ22.1 ,

(III
′
)

1
n

max
1≤i≤n

‖Π′
22(n)z∗i (n)‖2 p−→ 0 ,

where z∗i (n)
′
is the i-th row vector of Z2.1(n) = Z2(n) − Z1(Z

′
1Z1)−1Z

′
1Z2.1(n).

(i) Then for the LIML estimator when 0 ≤ η < 1

[
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂2.LI − β2)

d−→ N (0, σ2IG2) ,(3.10)

where σ2 = β
′
Ωβ. Alternatively[

Π
′
22(n)A22.1Π22(n)

n

]√
n(β̂2.LI − β2)

d−→ N (0, σ2Φ22.1) .(3.11)

(ii) For the TSLS estimator when 1/2 < η < 1[
Π

′
22(n)A22.1Π22(n)

nη

]
(β̂2.T S − β2)

p−→ c(ω21, Ω22)β ,(3.12)

and when η = 1/2[
Π

′
22(n)A22.1Π22(n)

n

]√
n(β̂2.T S − β2)

d−→ N
[
c(ω21, Ω22)β, σ2Φ22.1

]
,(3.13)
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where (ω21, Ω22) is the G2 × (1 + G2) lower submatrix of Ω .

When 0 ≤ η < 1/2[
Π

′
22(n)A22.1Π22(n)

n

]√
n(β̂2.T S − β2)

d−→ N (0, σ2Φ22.1) .(3.14)

It is possible to interpret the standard large sample theory as a special case of Theorem

3 except the fact that we have used the noncentrality parameter as the normalization factor

instead of
√

n in (2.18). The asymptotic property of the LIML and TSLS estimators for

γ1 can be derived from Theorem 3. Donald and Newey (2001) (in their Lemma A.6) has

investigated the asymptotic properties of the LIML estimator when K2(n)/n −→ 0. Also

Stock and Yogo (2003), and Hansen et. al. (2004) have discussed the asymptotic properties

of the GMM estimators in some cases of the large-K2 theory when 0 < η < 1/2. It seems

that we need some strong conditions to establish the consistency and the asymptotic

normality of the MEL estimator when both K2(n) and n increase.

Now we use our formulation to investigate the results by Hahn (2002) because he had

argued that the LIML estimator is inefficient in his formulation. For this purpose define

an n × K(n) (K(n) = K1 + K2(n)), K2(n) = K21(n) + K22(n)) random matrix

Z = (Z∗, Z(e)
22 (n)) = (Z1, Z∗

21(n), Z(e)
22 (n)) ,(3.15)

where Z2(n) = (Z∗
21(n), Z(e)

22 (n)), Z∗
21(n) is the n×K21(n) matrix of instruments included

in the estimation and Z(e)
22 (n) is the n × K22(n) matrix of instruments excluded in the

estimation. Also let two (1 + G2)× (1 + G2) random matrices be

G∗ = Y
′
Z∗

2.1A
∗−1
22.1Z

∗′
2.1Y ,(3.16)

and

H = Y
′ (

In − Z∗(Z∗′Z∗)−1Z∗′)Y ,(3.17)

where A∗
22.1 = Z∗′

2.1Z
∗
2.1, Z∗

2.1 = Z21(n) − Z1(Z
′
1Z1)−1Z

′
1Z21(n).

Then the subset LIML (SLIML) estimator β̂SLI (= (1,−β̂
′

2.SLI)
′
) for the vector of coeffi-

cients β = (1,−β
′
2)

′
with a subset of instruments Z(∗) is given by

(G∗ − λ∗H∗)β̂SLI = 0 ,(3.18)
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where λ∗ is the smallest root of

|G∗ − l∗H∗| = 0 .(3.19)

If we replace λ∗ by 0, we have the subset TSLS (STSLS) estimator with a subset of

instruments β̂STS (= (1,−β̂
′
2.ST S)

′
) of β = (1,−β

′
2)

′
. For the SLIML estimator and

STSLS estimator the coefficients of γ1 can be estimated by γ̂1 = (Z
′
1Z1)−1Z

′
1Yβ̂, where

β̂ is either β̂SLI or β̂STS .

Theorem 4 : Let {vi, zi(n) (i = 1, 2, · · ·)} be a sequence of independent random

vectors. Assume that (2.1) and (2.2) hold with E[vi|zi(n)] = 0 (a.s.) and E[viv
′
i|zi(n)] =

Ωi(n) (a.s.) is a function of zi(n), say, Ωi[n, zi(n)]. The further assumptions on (vi, zi(n))

are that max1≤i≤n E[v4
ij|zi(n)] (vi = (vij)) are bounded, there exists a constant matrix Ω

such that
√

n max1≤i≤n ‖Ωi(n) − Ω‖ is bounded and σ2 = β
′
Ωβ > 0 . Let K21(n) −→ ∞

and K2(n) −→ ∞ as n −→ ∞. Suppose further

(I∗)
K21(n)√

n
−→ 0 ,

(II∗)
1
n
Π

′
22(n)A22.1Π22(n) p−→ Φ22.1 ,

(III∗)
√

n

[
1
n
Π

′
22(n)Z

′
2(n)(PZ∗ −PZ1)Z2(n)Π22(n) − Φ22.1

]
p−→ O ,

(IV∗)
1
n

max
1≤i≤n

‖Π′
22(n)Z

′
Z∗(Z∗′Z∗)−1z∗i (n)‖2 p−→ 0 ,

where PZ∗ = Z∗(Z∗′Z∗)−1Z∗′ , PZ1 = Z1(Z
′
1Z1)−1Z

′
1, z∗i (n) is the i-th row (K1 + K21(n))

vector of Z∗(n) and Φ22.1 is a nonsingulr (constant) matrix.

Then [
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂2.SLI − β2)

d−→ N (0, σ2IG2)(3.20)

and [
Π

′
22(n)A22.1Π22(n)

]1/2
(β̂2.ST S − β2)

d−→ N (0, σ2IG2) ,(3.21)

where σ2 = β
′
Ωβ .

Hahn (2002) has considered the special case when G2 = 1, Z1 = O and the dis-

turbance terms are normally distributed. Our conditons (I)∗-(III)∗ are identical to his

Condition 1 in this case and we need some additional conditions to use the central limit
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theorem. Because we have assumed the condition K21(n)/
√

n −→ 0 in the present situa-

tion,
√

nλ∗ p−→ 0 and then we have the standard efficiency bound as a simple consequence

of our results. Although Hahn (2002) has argued that the LIML estimator is inefficient,

our result of Theorem 4 shows that the SLIML estimator has an asymptotic optimality if

we define it in a natural way.

3.2 Discussions

Our results give some new light on the practical use of estimation methods in microe-

conometric models with many instruments. Since the LIML estimator has the asymptotic

optimal properties when the number of instruments is large, our results in this section

give the explanations of the finite sample properties of the LIML and MEL estimators.

Furthermore, we shall pay an attention to the fundamental relationship betweeen the si-

multaneous equation sysytem and the linear functional relationship model, which gives us

an important interpretation on the asymptotic behaviors of alternative estimation methods

including the LIML, MEL, TSLS, and GMM estimators when there are many incidental

parameters. The errors-in-variables model in the econometric literature and the linear

functional relationship model in the statistical literature are mathematically equivalent to

the simultaneous equations model considered here [(2.1) and (2.2)]. Such a model can be

defined as follows.

Let the observed (1 + G2)-component vector Xαj (α = 1, · · · , K2(n); j = 1, · · · , m) be

modelled as

Xαj = ξα + V αj ,(3.22)

where ξ1, · · · , ξK2(n) are incidental parameters, Vαj are unobserved random vectors dis-

tributed as N (0, Ω), and m is the number of repeated measurements. The assumed linear

relationship among ξα is

ξ
′
αβ = 0 , α = 1, · · · , K2(n) .(3.23)
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Then (3.22) can be written as X = ZΠ + V, where mK2(n) = n and

X =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X
′
11

...

X
′
1m

X
′
21

...

X
′
K2(n)m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Z =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 · · · 0
...

1 0 0 · · · 0

0 1 0 · · · 0
...

...

0 0 0 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

V
′
11

...

V
′
1m

V
′
21

...

V
′
K2(n)m

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(3.24)

Π =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξ
′
1

ξ
′
2

...

ξ
′
K2(n)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The linear relationship (3.24) implies that the rank of Π is G2 . The estimator of ξα

is x̄α = (1/m)
∑m

j=1 Xαj; the estimator of Π
′

= (ξ1, · · · , ξK2(n)) of unrestricted rank is

(x̄1, · · · , x̄K2(n)); further

G = m

K2(n)∑
α=1

x̄αx̄
′
α , H =

K2(n)∑
α=1

m∑
j=1

(xαj − x̄α)(xαj − x̄α)
′
.(3.25)

If β is normalized such that β
′
= (1,−β

′
2), the maximum likelihood estimator of β under

the normal disturbances is defined by (2.7). Also the least squares estimator by regressing

the first component of x̄α on other variables corresponds to the TSLS estimator defined

by (2.10). The information matrix for β (or the noncentrality parameter in the structural

equation estimation) under the assumption of the homoscedasticity and normality for the

disturbance terms can be rewritten as

Θm(β) =
m

σ2

K2(n)∑
i=1

ξiξ
′
i ,(3.26)

where σ2 = β
′
Ωβ.

The relation between the estimation problem of structural equations in econometrics

and the linear functional relationships model including statistical factor analysis have been

investigated by Anderson (1976, 1984). (See Sections 12 and 13 of Anderson (2003) for

the details.) In the econometric literature there have been several earlier studies including

Kunitomo (1980, 1982), Morimune (1983), and Bekker (1994). Anderson (1976, 1984) first
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showed that the TSLS estimation in the simultaneous equation models is mathematically

equivalent to the least squares method in the linear functional relationship models given

by (3.22) and (3.23). Bekker and Ploeg (2005) have devepoled the group asymptotics,

which deals with the problems of heteroscedastic disturbances and non-identical repeated

measurements, is related to our formulation.

These observations of this section give the persuasive reasons why we have finite sample

properties of the LIML, MEL, TSLS, and GMM estimators as we shall see in the next

section.

4. Evaluation of Exact Distribution Functions and Tables

4.1 Parameterization

The evaluation method of the cdf’s of estimators we have used in this study is based on the

simulation method. (See Anderson et. al. (1982) and Kunitomo and Matsushita (2003a).)

In order to describe our evaluation method, we use the classical notation of Anderson et.

al. (1982) for the ease of comparison except the sample size being n and we concentrate on

the comparison of the estimators of the coefficient parameter of the endogenous variable

when G2 = 1 for the ease of interpretation. To specify the exact distributions of estimators

we use the key parameters used by Anderson et. al. (1982) in the study of the finite sample

properties of the LIML and TSLS estimators in the classical parametric framework We

shall investigate the exact finite sample distributions of the normalized estimator as

1
σ

[
Π′

22A22.1Π22

]1/2 (β̂2 − β2) .(4.1)

The distributions of (4.1) for the LIML estimator and TSLS estimator depend only on the

key parameters used by Anderson et. al. (1982) which are K2(fixed), n − K(fixed),

δ2 =
Π

′
22A22.1Π22

ω22
,(4.2)

and

α =
ω22β2 − ω12

|Ω|1/2
=

√
ω22√
ω11.2

(β2 − ω12

ω22
) .(4.3)

Here ω12/ω22 is the regression coefficient of v1i on v2i and ω11.2 is the conditional variance

of v1i given v2i . The parameter α can be interpreted intuitively by transforming it into
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τ = −α/
√

1 + α2 . Then we can rewrite τ = −α/
√

1 + α2 = (ω12−ω22β2)/[σ
√

ω22] , which

is the correlation coefficient between two random variables ui and v2i (or y2i) and it is the

coefficient of simultaneity in the structural equation of the simultaneous equations system.

The numerator of the noncentrality parameter δ2 represents the additional explanatory

power due to y2i over z1i in the structural equation and its denominator is the error

variance of y2i . Hence the noncentrality δ2 determines how well the equation is defined

in the simultaneous equations system, and n − K is the number of degree of freedom of

H which estimates Ω in the LIML method; it is not relevant to the TSLS method.

4.2 Simulation Procedures

By using a set of Monte Carlo simulations we can obtain the empirical cdf’s of estimators

for the coefficient of the endogenous variable in the structural equation as follows. We

generate a set of random numbers by using the two-equation system

y1i = γ
(0)
1 z1i + β

(0)
2 y2i + ui ,(4.4)

and

y2i = zi
′π(0)

2 + v2i ,(4.5)

where zi ∼ N (0, IK), ui ∼ N (0, 1), v2i ∼ N (0, 1) (i = 1, · · · , n). ( We set the true values of

parameters γ
(0)
1 = β

(0)
2 = 0 and we have controlled the values of δ2 by choosing a value of c

and setting the (1+K2)-vector π
(0)
2 = c(1, · · · , 1)

′
. Inorder to examine whether our results

strongly depend on the specific values of parameters γ
(0)
1 = β

(0)
2 = 0, however we have

done several simulations for the values of γ
(0)
1 	= 0 and β

(0)
2 	= 0.) For each simulation we

generated a set of random variables from the disturbance terms and exogenous variables.

In the simulation the number of repetitions were 5,000 and we consider the representative

situations including the corresponding cases of earlier studies.

In order to investigate the effects of nonnormal disturbances on the distributions of

estimators, we used many non-normal distributions, but we only report two cases when

the distributions of the disturbances are skewed or fat-tailed. As the first case we have

generated a set of random variables (y1i, y2i, zi) by using (4.4), (4.5), and ui = −(χ2
i (3)−

3)/
√

6 , and χ2
i (3) are χ2−random variables with 3 degrees of freedom. As the second

case, we took the t-distribution with 5 degrees of freedom for the disturbance terms. Also

in order to investigate the effects of heteroscedastic disturbances on the distributions of
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estimators, we took one example from Hayashi (2000) as an important one with ui =

‖zi‖u∗
i (i = 1, · · · , n), and u∗

i (i = 1, · · · , n) are homoscedastic disturbance terms. In this

case the covariance matrix C is not necessarily the same as σ2M and the asymptotic

variance-covariance matrix for the LIML and TSLS estimators could be slightly larger

than those of the MEL and GMM estimators in the standard large sample theory.

The empirical cdf’s of estimators are consistent for the corresponding true cdf’s. In

addition to the empirical cdf’s we have used a smoothing technique of cubic splines to

estimate the cdf’s and their percentile points. The distributions are tabulated in the

standardized terms because this form of tabulation makes comparisons and interpolation

easier. The tables includes the three quartiles, the 5 and 95 percentiles and the interquar-

tile range of the distribution for each case, which are summarized in Tables of Appendix.

To evaluate the accuracy of our estimates based on the Monte Carlo experiments, we

compared the empirical and exact cdf’s of the Two-Stage Least Squares (TSLS) estimator,

which corresponds to the GMM estimator given by (2.15) when û2
i is replaced by a constant

(namely σ2), that is, the variance-covariance matrix is homoscedastic and known. The

exact distribution of the TSLS estimator has been studied and tabulated extensively by

Anderson and Sawa (1979). We do not report the details of our results, but we have found

that the differences are less than 0.005 in most cases and the maximum difference between

the exact cdf and its estimate is about 0.008. Hence our estimates of the cdf’s are quite

accurate and we have enough accuracy to two digits. This does not necessarily mean that

the simulated moments such as the mean and the mean squared error in simulations are

reliable as indicated in Introduction.

It has been known that there is a non-trivial computational problem on the MEL

estimation when the noncentrality parameter is extremely near to zero. (See Mittelhammer

et. al. (2004), for instance.) Therefore we have made figures to the extent that we did not

have any problem in the numerical convergences. Incidentally we have found that some of

our findings on the behavior of the MEL estimator were also pointed out by Guggenberger

(2004).

4.3 Distributions of the MEL and LIML Estimators

For α = 0, the densities of the LIML and MEL estimators are close to symmetric. As α

increases there is some slight asymmetry, but the median is very close to zero. For given
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α, K2, and n, the lack of symmetry decreases as δ2 increases. For given α, δ2, and n, the

asymmetry increases with K2. The main finding from tables is that the distributions of

the MEL and LIML estimators are roughly symmetric around the true parameter value

and they are almost median-unbiased. This finite sample property holds even when K2 is

fairly large. At the same time, their distributions have relatively long tails. As δ2 → ∞,

the distributions approach N (0, 1); however, for small values of δ2 there is an appreciable

probability outside of 3 or 4 ASD(asymptotic standard deviation)’s. (When δ2 is extremely

small, we cannot ignore the tail probabilities for practical purposes. See Table 9 and

Figures 17 and 18.) As δ2 increases, the spread of the normalized distribution decreases.

Also the distribution of the LIML estimator has slightly tighter tails than that of the MEL

estimator. For given α,K2, and δ2, the spread decreases as n increases and it tends to

increase with K2 and decrease with α.

4.4 Distributions of the GMM and TSLS Estimators

We have included tables of the distributions of the GMM and TSLS estimators. However,

since they are quite similar in most cases, we have included the distribution of the GMM

estimator only in many figures. The most striking feature of the distributions of the

GMM and TSLS estimators is that they are skewed towards the left for α > 0 (and

towards the right for α < 0), and the distortion increases with α and K2 . The MEL and

LIML estimators are close to median-unbiased in each case while the GMM and TSLS

estimators are biased. As K2 increases, this bias becomes more serious; for K2 = 10

and K2 = 30 , the median is less than -1.0 ASD’s. If K2 is large, the GMM and TSLS

estimators substantially underestimate the true parameter. This fact definitely favors the

MEL and LIML estimators over the GMM and TSLS estimators. However, when K2 is as

small as 3, the GMM and TSLS estimators are very similar to the MEL and its distribution

has tighter tails.

The distributions of the MEL and LIML estimators approach normality faster than the

distribution of the GMM and TSLS estimators, due primarily to the bias of the latter. In

particular when α 	= 0 and K2 = 10, 30, the actual 95 percentiles of the GMM estimator are

substantially different from 1.96 of the standard normal. This implies that the conventional

hypothesis testing about a structural coefficient based on the normal approximation to the

distribution is very likely to seriously underestimate the actual significance. The 5 and
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95 percentiles of the MEL and LIML estimators are much closer to those of the standard

normal distribution even when K2 is large.

We should note that these observations on the distributions of the MEL estimator and

the GMM estimator are anologous to the earlier findings on the distributions of the LIML

estimator and the TSLS estimator by Anderson et. al. (1982) and Morimune (1983) under

the normal disturbances in the same setting of the linear simultaneous equations system.

4.5 Effects of Normality and Heteroscedasticity

Because the distributions of estimators depend on the distributions of the disturbance

terms, we have investigated the effects of nonnormality and heteroscedasticity of distur-

bances. Among many tables we show only two tables and figures as the representative

ones. From our tables the comparison of the distributions of four estimators are approxi-

mately valid even if the distributions of disturbances are different from normal and they

are heteroscedasitic in the sense we have specified above. Thus the effects of heteroscedas-

tic disturbances on the exact distributions of alternative estimators are not large in our

setting.

5. Conclusions

First, the distributions of the MEL and GMM estimators are asymptotically equivalent

in the sense of the limiting distribution in the standard large sample asymptotic theory,

but their exact distributions are substantially different in finite samples. The relation of

their distributions are quite similar to the distributions of the LIML and TSLS estimators.

The MEL and LIML estimators are to be preferred to the GMM and TSLS estimators

if K2 is large. In some microeconometric models and models on panel data, it is often a

common feature that K2 is fairly large. For such situations we have shown that the LIML

estimator has the asymptotic optimality in the large K2−asymptotics sense. It seems that

we need some stronger conditions for the MEL estimator, but its finite sample properties

are often similar to the corresponding LIML estimator.

Second, the large-sample normal approximation in the large K2 asymptotic theory

is relatively accurate for the MEL and LIML estimators except the cases when we have

extremely small noncentrality parameter. Hence the usual methods with asymptotic stan-
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dard deviations give reasonable inferences except some extreme cases. On the other hand,

for the GMM and TSLS estimators the sample size should be very large to justify the use

of procedures based on the normality when K2 is large, in particular.

Third, it is recommended to use the probability of concentration as a criterion of com-

parisons because the LIML estimator does not possess any moments of positive integer

orders and hence we expect to have some large absolute values of their bias and mean

squared errors of estimators in the Monte Carlo simulations unless we impose some re-

strictions on the parameter space which make it a compact set. In order to make fair

comparisons of alternative estimators in a linear structural equation we need to use their

culumative distribution functions and the concentration of probability. This is the reason

why we directly considered the finite sample distribution functions of alternative estima-

tion methods.

To summarize the most important conclusion from the study of small sample distribu-

tions of four alternative estimators is that the GMM and TSLS estimators can be badly

biased in some cases and in that sense their use is risky. The MEL and LIML estimator, on

the other hand, may have a little more variability with some chance of extreme values, but

its distribution is centered at the true parameter value. The LIML estimator has tighter

tails than those of the MEL estimator and in this sense the former would be attractive to

the latter. Besides the computational burden for the LIML estimation is not heavy.

It is interesting that the LIML estimation was initially invented by Anderson and Rubin

(1949). Other estimation methods including the TSLS, the GMM, and the MEL estimation

methods have been developed with several different motivations and purposes. Now we

have some practical situations in econometric applications where the LIML estimation has

clear advantage over other estimation methods. It may be fair to say that a new light has

come from old wisdoms in econometrics.

6 Proof of Theorems

In this section we give the proofs of Theorems in Section 3.

Proof of Theorem 1 :

By substituting (2.2) into (2.3) and using the similar arguments for partitioned matrices
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as Theorem A.3.3 of Anderson (2003), we have

G = (Π
′
(n)Z

′
+ V

′
)Z2.1A−1

22.1Z
′
2.1(ZΠ(n) + V)

= Π
′
2(n)A22.1Π2(n) + V

′
Z2.1A−1

22.1Z
′
2.1V + Π

′
2(n)Z

′
2.1V + V

′
Z2.1Π2(n) .

Then we rewrite

G− [Π
′
2(n)A22.1Π2(n) + K2(n)Ω](6.1)

= Π
′
2(n)Z

′
2.1V + V

′
Z2.1Π2(n) +

[
V

′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω

]
.

By using Assumptions (II) and (IV) when K2(n) −→ ∞,

1
K2(n)

Π
′
2(n)Z

′
2.1V

p−→ O ,(6.2)

and
1

K2(n)

[
V

′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω

]
p−→ O .(6.3)

Then as K2(n) → ∞, we have the convergence in probability as

1
K2(n)

G
p−→ G0 =

⎡
⎣ β

′
2

IG2

⎤
⎦Φ22.1(β2, IG2) + Ω(6.4)

and
1

q(n)
H p−→ Ω .(6.5)

For the LIML estimation we set the smallest characteristic root and its associated

vector as |(1/K2(n))G − λ(n)(1/q(n))H| = 0 and

[
1

K2(n)
G− λ(n)

1
q(n)

H]β̂LI = 0 .(6.6)

Then the probability limit of the LIML estimator β̂LI = (1,−β̂
′
2.LI)

′
is β = (1,−β

′
2)

′
as

n → ∞ and λ(n)
p→ λ0, where

λ0β
′
Ωβ = β

′
G0β .(6.7)

Let Ĝ1 =
√

K2(n)[(1/K2(n))G−G0], λ1 =
√

K2(n)[λ(n) − λ0], b̂1 =
√

K2(n)[β̂LI − β] ,

Ĥ1 =
√

q(n)[(1/q(n))H−Ω]. Then we can write b̂1 = (−1)(0, IG2)
′√

K2(n)[β̂LI −β] . By

substituing the random variables Ĝ1, Ĥ1, and λ1 into (6.6), the resulting relation becomes

[G0 − λ0Ω]β +
1√

K2(n)
[Ĝ1 − λ1Ω]β +

1√
K2(n)

[G0 − λ0Ω]b̂1 +
1√
q(n)

[−λ0Ĥ1]β

= op(
1√

K2(n)
) .
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Then by ignoring the higher order terms and using the fact λ0 = 1, we shall consider the

modified estimator e∗LI(β) which satisfies

[G0 − λ0Ω]

⎛
⎝ 0

′

IG2

⎞
⎠ e∗LI(β) = [Ĝ1 − λ1Ω]β −√

cĤ1β .(6.8)

By defining the normalized (LIML) random vector êLI(β) =
√

K2(n)[β̂2.LI − β2], we can

show that e∗LI(β) = êLI(β)+op(1). By multiplying (0, IG2) and β
′
from the left-hand-side

of (6.8), we have the relations

(0, IG2)(G0 − λ0Ω)

⎛
⎝ 0

′

IG2

⎞
⎠ e∗LI(β) = (0, IG2)(Ĝ1 − λ1Ω −√

cĤ1)β ,(6.9)

and

β
′
(G0 − λ0Ω)

⎛
⎝ 0

′

IG2

⎞
⎠ e∗LI(β) = β

′
(Ĝ1 − λ1Ω −√

cĤ1)β .(6.10)

Since (G0 − λ0Ω)β = 0 and (0, IG2)(G0 − λ0Ω)(0, IG2)
′
= Φ22.1, we can simplify these

relations as

λ1 =
β

′
(Ĝ1 −√

cĤ1)β
β

′
Ωβ

,

and then

e∗LI(β) =

⎡
⎣(0, IG2)(G0 − λ0Ω)

⎛
⎝ 0

′

IG2

⎞
⎠
⎤
⎦
−1 [

(0, IG2)(Ĝ1 − λ1Ω−√
cĤ1)β

]
(6.11)

= Φ−1
22.1(0, IG2)[IG2+1 − Ωββ

′

β
′
Ωβ

](Ĝ1 −
√

cĤ1)β.

By using the relation Vβ = u,

(Ĝ1 −
√

cĤ1)β(6.12)

=
1√

K2(n)
Π

′
2(n)Z

′
2.1u +

1√
K2(n)

[
V

′
Z2.1A−1

22.1Z
′
2.1u− K2(n)Ωβ

]

−√
c

1√
q(n)

[
V

′
(In − Z(Z

′
Z)−1Z

′
)u − q(n)Ωβ

]
,

where K(n) + q(n) = n. Then the asymptotic distributions of each terms on the right-

hand side are normal by applying the central limit theorem with the Lindeberg conditions.

(See Theorem 1 of Anderson and Kunitomo (1992).) In order to obtain the asymptotic

covariance matrix of (6.12), we use the conditional expectation given Z as

E
[
Π

′
2(n)Z

′
2.1Vββ

′
V

′
Z2.1Π2(n)|Z

]
= β

′
ΩβΠ

′
2(n)A22.1Π2(n) .
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Then by using Conditions (II) and (III) in Theorem 1, we have the asymptotic normality

for the first term of (6.12) and its asymptotic covariance matrix is given by

σ2(
β

′
2

IG2

)Φ22.1(β2, IG2) .

For the second and third terms of (6.12) on the right-hand side, we notice that the G2

vector w2i = v2i − uiCov(v2iui)/σ2 and ui (i = 1, · · · , n) are uncorrelated and

E[w2iw
′
2i] =

1
σ2

(0, IG2)[σ
2Ω −Ωββ

′
Ω](

0
′

IG2

) .(6.13)

Then we have the representation

(0, IG2)[IG2+1 − Ωββ
′

β
′
Ωβ

]
1√

K2(n)

[
V

′
Z2.1A−1

22.1Z
′
2.1u− K2(n)Ωβ

]
(6.14)

=
1√

K2(n)

[
V

′
2 − (0, IG2)

Ωβ

σ2
u

′
]
Z2.1A−1

22.1Z
′
2.1u .

By using Lemma 1 below, we have the asymptotic normality of (6.14) and its asymptotic

covariance matrix is given by σ2× (6.13). By using the similar aruguments to the third

term of (6.12) on the right-hand side, we find that the asymptotic covariance matrix of

the normalized LIML estimator is given by Ψ∗ .

When G2 = 1, we can use the relation σ2 = ω11 − 2β2ω12 + β2
2ω22 for Ω = (ωij) to obtain

σ2ω22 − (ω12 − βω22)2 = |Ω| . Q.E.D

Lemma 1 : Let (ui, wi) (i = 1, · · · , n) be a sequence of independent random variables

with wi = a
′
w2i for any non-zero vector a. Assume E(ui) = E(wi) = 0, E(uiwi) = 0,

E(u2
i ) = σ2

u, E(w2
i ) = σ2

w, E(u4
i ) < ∞, and E(w4

i ) < ∞. Set T (n) =
∑n

i,j=1 aij(n)uiwj

and aij(n) = z∗
′

i A−1
22.1z

∗
j/
√

K2(n). Then under Condition (IV) we have

T (n) w−→ N [0, σ2
uσ

2
w] .(6.15)

Proof of Lemma 1 : First we evaluate the diagonal elements of T (n). Since the fourth

order moments are bounded, there exits a positive contant M1 such that

E[
n∑

i=1

aii(n)uiwi|Z]2 ≤ M1

[
max
1≤i≤n

z∗
′

i A−1
22.1z

∗
i

]
1

K2(n)

[
n∑

i=1

z∗
′

i A−1
22.1z

∗
i

]

p−→ 0 .
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Next let T
′
(n) =

∑
i�=j aij(n)uiwj. Then

E[T
′
(n)2|Z] = σ2

uσ2
w

1
K2(n)

∑
i�=j

z∗
′

i A−1
22.1z

∗
jz

∗′
j A−1

22.1z
∗
i(6.16)

= σ2
uσ2

w

[
1− 1

K2(n)

n∑
i=1

(z∗
′

i A−1
22.1z

∗
i )

2

]
p−→ σ2

uσ2
w .

Also because the fourth order moments are bounded, there exists a positive constant M2

such that

E[|T ′
(n)|3|Z] ≤ M2

∑
i�=j,i

′ �=j
′
,i
′′ �=j

′′
|aij(n)ai′j′ (n)ai′′j′′ (n)|

≤ M2

[
max
1≤i≤n

z∗
′

i A−1
22.1z

∗
i

]3/2 [ 1
K2(n)

]3/2
[

n∑
i=1

z∗
′

i A−1
22.1z

∗
i

]3/2

p−→ 0 ,

where we have used the Cauchy-Schwartz inequalities in the above evaluation. Hence by

using the standard arguments on the characteristic function of T (n), we have T (n) w−→
N (0, σ2

uσ
2
w). Q.E.D

Proof of Theorem 2 :

We set the vector of true parameters β
′
= (1,−β

′
2) = (1, β2, · · · , β1+G2). An estimator of

the vector β2 is composed of

β̂i = φi(
1

K2(n)
G,

1
q(n)

H) (i = 2, · · · , 1 + G2) .(6.17)

For the estimator to be consistent we need the conditions

βi = φi

⎡
⎣
⎛
⎝ β

′
2

IG2

⎞
⎠Φ22.1 (β2, IG2) + Ω, Ω

⎤
⎦ (i = 2, · · · , 1 + G2)(6.18)

as identities in β2, Φ22.1, and Ω .

Let a (1 + G2) × (1 + G2) matrix

T(k) =

(
∂φk

∂gij

)
= (τ (k)

ij ) (k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G2)(6.19)

evaluated at the probability limits of (6.18). We write a (1 + G2) × (1 + G2) matrix

Θ (= (θij))

Θ =

⎛
⎝ β

′
2

IG2

⎞
⎠Φ22.1 (β2, IG2) =

⎡
⎣ β

′
2Φ22.1β2 β

′
2Φ22.1

Φ22.1β2 Φ22.1

⎤
⎦ ,
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where Φ22.1 = (ρm,l) (m, l = 2, · · · , 1 + G2), (Φ22.1β2)l =
∑1+G2

j=2 βjρlj (l = 2, · · · , 1 + G2),

(β
′
2Φ22.1)m =

∑1+G2
i=2 βiρim (m = 2, · · · , 1 + G2), and β

′
2Φ22.1β2 =

∑1+G2
i,j=2 ρijβiβj .

By differentiating each components of Θ with respect to βj (j = 1, · · · , G2), we have

∂Θ
∂βj

= (
∂θlm

∂βj
) ,(6.20)

where ∂θ11
∂βj

= 2
∑1+G2

i=2 ρjiβi (j = 2, · · · , 1 + G2), ∂θ1m
∂βj

= ρjm (m = 2, · · · , 1 + G2), ∂θl1
∂βj

=

ρlj (l = 2, · · · , 1 + G2), and ∂θlm
∂βj

= 0 (l, m = 2, · · · , 1 + G2) .

Hence

tr

(
T(k) ∂Θ

∂βj

)
= 2τ

(k)
11

1+G2∑
i=2

ρjiβi + 2
1+G2∑
i=2

ρjiτ
(k)
ji = δk

j ,(6.21)

where we define δk
k = 1 and δk

j = 0 (k 	= j) .

Define a (1 + G2) × (1 + G2) partitioned matrix

T(k) =

⎡
⎣ τ

(k)
11 τ

(k)′
2

τ
(k)
2 T(k)

22

⎤
⎦ .(6.22)

Then (6.21) is represented as

2τ
(k)
11 Φ22.1β + 2Φ22.1τ

(k)
2 = εk ,(6.23)

where ε
′
k = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the k-th place and zeros in other elements.

Since Φ22.1 is positive definite, we solve (6.23) as

τ
(k)
2 =

1
2
Φ−1

22.1εk − τ
(k)
11 β2 .(6.24)

Further by differentiating Θ with respect to ρij, we have

∂Θ
∂ρii

= (
∂θlm

∂ρii
) ,(6.25)

where ∂θ11
∂ρii

= β2
i , ∂θ1m

∂ρii
= βi (m = i), 0 (m 	= i) , ∂θl1

∂ρii
= βi (l = i), 0 (l 	= i) and

∂θlm
∂ρii

= 1 (l = m = i), 0 (otherwise).

For i 	= j
∂Θ
∂ρij

= (
∂θlm

∂ρij
) ,(6.26)

where ∂θ11
∂ρij

= 2βiβj , ∂θ1m
∂ρij

= βj (m = i), βi (m = j), 0 (m 	= i, j) , ∂θl1
∂ρij

= βj (l =

i), βi (l = j), 0 (l 	= i, j) , and ∂θlm
∂ρij

= 1 (l = i, m = j or l = j, m = i), 0 (otherwise) for
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(2 ≤ l, m ≤ 1 + G2) .

Then we have the representation

tr

(
T(k) ∂Θ

∂ρij

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

β2
i τ

(k)
11 + 2τ

(k)
1i βi + τ

(k)
ii (i = j)

2βiβjτ
(k)
11 + 2τ

(k)
1j βi + 2τ

(k)
1i βj + 2τ

(k)
ij (i 	= j)

.(6.27)

In the matrix form we have a simple relation as

τ
(k)
11 β2β

′
2 + τ

(k)
2 β

′
2 + β2τ

(k)′
2 + T(k)

22 = O .(6.28)

Then we have the representation

T(k)
22 = −τ

(k)
11 β2β

′
2 − τ

(k)
2 β

′
2 − β2τ

(k)′
2

= τ
(k)
11 β2β

′
2 −

1
2

[
Φ−1

22.1εkβ
′
2 + β2ε

′
kΦ

−1
22.1

]
.

Next we consider the role of the second matrix in (6.17). By differentiating (6.18) with

respect to ωij (i, j = 1, · · · , 1 + G2), we have the condition

∂φk

∂gii
= −∂φk

∂hii
(k = 2, · · · , 1 + G2; i, j = 1, · · · , 1 + G1)

evaluated at the probability limit of (6.18). Let

S = Ĝ1 −
√

cĤ1 =

⎡
⎣ s11 s

′
2

s2 S22

⎤
⎦ .(6.29)

Since φ( · ) is differentiable and its first derivatives are bounded at the true parameters by

assumption, the linearized estimator of βk in the class of our concern can be represented

as
1+G2∑
g,h=1

τ
(k)
gh sgh = τ

(k)
11 s11 + 2τ

(k)′
2 s2 + tr

[
T(k)

22 S22

]

= τ
(k)
11 s11 +

(
ε
′
kΦ

−1
22.1 − 2τ

(k)
11 β

′
2

)
s2 + tr

[(
τ

(k)
11 β2β

′
2 − Φ−1

22.1εkβ
′
2

)
S22

]
= τ

(k)
11

[
s11 − 2β

′
2s2 + β

′
2S22β2

]
+ ε

′
kΦ

−1
22.1(s2 − S22β2)

= τ
(k)
11 β

′
Sβ + ε

′
kΦ

−1
22.1(s2, S22)β .

Let

τ 11 =

⎡
⎢⎢⎢⎣

τ
(2)
11
...

τ
(1+G2)
11

⎤
⎥⎥⎥⎦(6.30)
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and we consider the asymptotic behavihor of the normalized estimator
√

K2(n)(β̂2 − β2)

as

ê =
[
τ 11β

′
+ (0, Φ−1

22.1)
]
Sβ .(6.31)

Since the asymptotic variance-covariance matrix of Sβ has been obtained from the proof

of Theorem 1, we have

E
[
ê ê

′]

=
[
τ 11β

′
+ (0, Φ−1

22.1)
] ⎡⎣σ2(

β
′
2

IG2

)Φ22.1(β2, IG2) + (1 + c)
(
σ2Ω + Ωββ

′
Ω
)⎤⎦

×
[
τ 11β

′
+ (0, Φ−1

22.1)
]′

= 2(1 + c)σ4τ 11τ
′
11

+

⎡
⎣2(1 + c)σ2τ 11β

′
Ω

⎛
⎝ 0

′

Φ−1
22.1

⎞
⎠
⎤
⎦+

⎡
⎣2(1 + c)σ2τ 11β

′
Ω

⎛
⎝ 0

′

Φ−1
22.1

⎞
⎠
⎤
⎦

′

+
(
0, Φ−1

22.1

)⎡⎣σ2(
β

′
2

IG2

)Φ22.1(β2, IG2) + (1 + c)
(
σ2Ω + Ωββ

′
Ω
)⎤⎦
⎛
⎝ 0

′

Φ−1
22.1

⎞
⎠

= Ψ∗ + 2(1 + c)
[
σ2τ 11 + (0, Φ−1

22.1)Ωβ
] ⎡⎣σ2τ

′
11 + β

′
Ω

⎛
⎝ 0

′

Φ−1
22.1

⎞
⎠
⎤
⎦ ,

where Ψ∗ has been given by Theorem 1.

This covariance matrix is the sum of a positive semi-definite matrix of rank 1 and a positive

definite matrix. It has a minimum if

τ 11 = − 1
σ2

(0, Φ−1
22.1)Ωβ .(6.32)

Hence we have completed the proof of Theorem 2.

Q.E.D.

Proof of Theorem 3 :

(I) We make use of the fact that Z(Z
′
Z)−1Z

′
and Z2.1(Z

′
2.1Z2.1)−1Z

′
2.1 are idempotent of

rank K(n) and K2(n), respectively, and that the boundedness of E[v4
ij |zi(n)] implies a

Lindeberg condition

sup
i=1,···,n

E
[
v

′
iviI(v

′
ivi > a)|z1(n), · · · , zn(n)

]
p−→ 0 (a → ∞) .(6.33)
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We shall refer to Theorem 1 of Anderson and Kunitomo (1992).

When 0 ≤ η < 1/2, we set

Ĝ∗
1(n) =

√
n[

1
n
Ĝ − 1

n
Π

′
2(n)A22.1Π2(n)]

=
1√
n
Π

′
2(n)Z

′
2.1V +

1√
n
V

′
Z2.1Π2(n) +

1√
n

[
V

′
Z2.1A−1

22.1Z
′
2.1V

]
.(6.34)

Since the random matrix V
′
Z2.1A−1

22.1Z
′
2.1V is positive definite and E[viv

′
i|zi(n)] is bounded,

we have a (constant) Ω̄ such that

E[
1√
n
V

′
Z2.1A−1

22.1Z
′
2.1V] = E[

1√
n

n∑
i=1

Ωi(n)z∗
′

i (n)A−1
22.1z

∗
i (n)](6.35)

≤ K2(n)√
n

Ω̄ −→ O .

Then

Ĝ∗
1(n)β − 1√

n
Π

′
2(n)Z

′
2.1Vβ

p→ 0 .(6.36)

Lemma 2 : Let λ(n) be the smallest characteristic root of

| 1
n
G− l∗

1
q(n)

H| = 0 .

For 0 < ν < 1 − η and 0 ≤ η < 1 ,

nνλ(n)
p−→ 0(6.37)

as n → ∞ .

Proof of Lemma 2

Write

λ(n) = min
b

b
′ 1
nGb

b′ 1
q(n)Hb

(6.38)

≤ q(n)
n

β
′
Gβ

β
′
Hβ

=
q(n)
n

β
′
V

′
Z2.1A−1

22.1Z
′
2.1Vβ

β
′
V′(In − Z(Z′Z)−1Z′)Vβ

.

By using the boundedness of the fourth order moments of vi, we have

1
n

n∑
i=1

viv
′
i

p→ Ω .(6.39)
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Also n−(1−ν)V
′
Z2.1A−1

22.1Z
′
2.1V

p→ O by using the similar arguments as (6.35). Then

nνλ(n) ≤
[
q(n)
n

]
n−(1−ν)β

′
V

′
Z2.1A−1

22.1Z
′
2.1Vβ

n−1β
′
V′(In − Z(Z′Z)−1Z′)Vβ

p−→ 0(6.40)

as n → ∞ .

Q.E.D.

We consider

(0, IG2)
[
1
n
Π

′
2(n)A22.1Π2(n) +

1√
n
Ĝ∗

1(n) − λ(n)
1

q(n)
H
]⎛⎝ 1

−β̂2.LI

⎞
⎠ = 0(6.41)

for the LIML estimator. By using the facts that (1/
√

n)Ĝ∗
1

p→ O, λ(n)
p→ 0 and

[1/q(n)]H
p→ Ω, we have

Φ22.1(β2, IG2)plimn→∞

⎛
⎝ 1

−β̂2.LI

⎞
⎠ = 0 ,

which implies plimn→∞β̂2.LI = β2 because Φ22.1 is positive definite. Then we again

consider

√
n

[
1
n
Π

′
2(n)A22.1Π2(n) +

1√
n
Ĝ∗

1(n) − λ(n)
1

q(n)
H
] [

β + (β̂LI − β)
]

= 0.(6.42)

Due to Lemma 1,
√

n λ(n)
p→ 0 when 0 ≤ η < 1/2, and the asymptotic distributions of

the LIML and TSLS estimators are equivalent when 0 ≤ η < 1/2. Then

(0, IG2)
1
n
Π

′
2(n)A22.1Π22(n)

√
n(β̂2.LI − β2) − (0, IG2)Ĝ

∗
1(n)β

p→ 0 .(6.43)

We notice that

1
n

n∑
i=1

Ωi(n) ⊗Π
′
22(n)z∗i (n)z∗

′
i (n)Π22(n) −Ω ⊗Φ22.1

=
1
n

n∑
i=1

(Ωi(n) −Ω) ⊗Π
′
22(n)z∗i (n)z∗

′
i (n)Π22(n)

+
1
n

n∑
i=1

Ω⊗
[
Π

′
22(n)z∗i (n)z∗

′
i (n)Π22(n) −Φ22.1

]
p−→ O

because Condition (II) and

‖ 1
n

n∑
i=1

(Ωi(n) − Ω) ⊗ Π
′
22(n)z∗i (n)z∗

′
i (n)Π22(n)‖

≤ max
1≤i≤n

‖Ωi(n)− Ω‖‖ 1
n

n∑
i=1

Π
′
22(n)z∗i (n)z∗

′
i (n)Π22(n)‖ p−→ 0 .
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Then by applying the central limit theorem (see Theorem 1 of Anderson and Kunitomo

(1992)) to (1/
√

n)Π
′
22(n)Z

′
2.1Vβ, we obtain the limiting normal distribution N (0, σ2Φ22.1) .

This proves (i) of Theorem 3 for 0 ≤ η < 1/2.

(II) We consider the asymptotoic behavior of the quadratic term

1√
n

[
V

′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω

]
(6.44)

=
1√
n

⎡
⎣ n∑

i,j=1

z∗
′

i A−1
22.1z

∗
j

(
viv

′
j − δj

i Ωi(n)
)⎤⎦+

1√
n

[
n∑

i=1

z∗
′

i A−1
22.1z

∗
i (Ωi(n) − Ω)

]
,

where δj
i is the indicator function (δi

i = 1 and δj
i = 0 (i 	= j)). For any (constant vectors)

a and b, there exists M3 (M3 > 0) such that

1
n
E

⎡
⎣ n∑

i,j=1

z∗
′

i A−1
22.1z

∗
j × a

′
(viv

′
j − δj

i Ωi(n))b

⎤
⎦

2

=
1
n
E

[
n∑

i=1

[z∗
′

i A−1
22.1z

∗
i ]

2[a
′
(viv

′
i −Ωi(n))b]2

+
∑
i�=j

[z∗
′

i A−1
22.1z

∗
j ]

2[a
′
vivjb]2 +

∑
i�=j

[z∗
′

i A−1
22.1z

∗
j ]

2[a
′
viv

′
jba

′
vjv

′
ib]

⎤
⎦

≤ M3
K2(n)

n
−→ 0

because the conditional moments of v4
ij are bounded,

∑n
i=1 z∗

′
i A−1

22.1z
∗
i = K2(n) and∑n

i=1(z
∗′
i A−1

22.1z
∗
i )

2 ≤ K2(n) . Since

‖ 1√
n

[
n∑

i=1

z∗
′

i A−1
22.1z

∗
i (Ωi(n)− Ω)

]
‖ ≤

[√
n max

1≤i≤n
‖Ωi(n) −Ω‖

]
K2(n)

n
,

we find
1√
n

[
V

′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω

]
p−→ O(6.45)

when 0 ≤ η < 1 .

Next, we shall investigate the asymptotic property of the TSLS estimator. If we substitute

λ(n) for 0 in (6.6), we have the TSLS estimator. Then we find that the limiting distribution

of the TSLS estimator is the same as the LIML estimator when 0 ≤ η < 1/2.

When η = 1/2, however, we have

Ĝ∗
1(n)β −

[
cΩβ +

1√
n
Π

′
2(n)Z

′
2.1Vβ

]
p−→ O .(6.46)
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We set β̂
′
TS = (1,−β̂

′
2.T S), which is the solution of (2.10). By evaluating each terms of

(0, IG2)
√

n

[
1
n
Π

′
2(n)A22.1Π2(n) +

1√
n
Ĝ∗

1(n)
] [

β + (β̂TS − β)
]

= 0 ,

we have [
1
n
Π

′
22(n)A22.1Π2(n)

]√
n(β̂TS − β) − (0, IG2)Ĝ

∗
1(n)β = op(1) .(6.47)

Then the limiting distribution of
√

n(β̂2.T S−β2) is the same as that of Φ−1
22.1(0, IG2)G

∗
1(n)β.

By using (1/
√

n)V
′
Z2.1A−1

22.1Z
′
2.1Vβ

p→ cΩβ and applying the CLT as (I), we have the

result for the TSLS estimator of β when η = 1/2.

When 1/2 < η < 1, we notice

n1−η
[
1
n
G− 1

n
Π

′
2(n)A22.1Π2(n)

]
β(6.48)

=
K2(n)

nη
Ωβ +

1
nη

Π
′
2(n)Z

′
2.1Vβ +

1
nη

[
V

′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω

]
β.

Because the last two terms of the right-hand side of (6.48) except the first term are of the

order op(n−η), we have

n1−η
[
1
n
G− 1

n
Π

′
2(n)A22.1Π2(n)

]
β

p−→ cΩβ(6.49)

as n −→ ∞. Hence by using the similar arguments as (I) for the TSLS estimator of β,

(0, IG2)
1
n
Π

′
2(n)A22.1Π22(n)× n1−η(β̂2.T S − β2) − (0, IG2)cΩβ

p→ 0(6.50)

and we complete the proof of (ii) of Theorem 3 for the TSLS estimator when 1/2 ≤ η < 1.

(III) We consider the asymptotic property of the LIML estimator when 1/2 ≤ η < 1 . By

using the argument of (6.41) and the fact that λ(n) p−→ 0, we have β̂2.LI − β2
p−→ 0 . By

multiplying β
′
from the left to (6.41), we have

β
′
{√

n[
K2(n)

n
− λ(n)]Ω +

1√
n
V

′
Z2.1Π2(n) +

1√
n

[V
′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω]

−λ(n)
√

n

q(n)
Ĥ1

}
×
[
β + (β̂LI − β)

]
= 0 .

Then by (6.37), (6.41) and σ2 = β
′
Ωβ > 0 , we have the following result, which is

summarized as a lemma.

Lemma 3 : For 0 ≤ η < 1,

√
n

[
λ(n) − K2(n)

n

]
p−→ 0(6.51)
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as n −→ ∞ .

Multiply (6.42) on the left by (0, IG2) to obtain

(0, IG2)
√

n

{[
1
n
Π

′
2(n)A22.1Π2(n) +

K2(n)
n

Ω
]

+
1√
n

[
1√
n
Π

′
2(n)Z

′
2.1V +

1√
n
V

′
Z2.1Π2(n) +

1√
n

(V
′
Z2.1A−1

22.1Z
′
2.1V − K2(n)Ω)

]

− [λ∗(n)]
1

q(n)
H
}
×
[
β + (β̂LI − β)

]
= 0 .

We now use (6.37), (6.41) and the fact that
[
1
n
Π

′
2(n)A22.1Π2(n) +

K2(n)
n

Ω − λ(n)
1

q(n)
H
]
β = op(

1√
n

) .

By multiplying the preceding equation out to separate the terms with factor β and with

the factor
√

n (β̂LI − β), we have

(0, IG2)
[
1
n
Π

′
2(n)A22.1Π2(n)

√
n(β̂LI − β) +

1√
n
Π

′
2(n)Z

′
2.1Vβ

]
p→ 0 ,(6.52)

which is equivalent to

[
Π

′
22(n)M22.1Π22(n)

]√
n(β̂2.LI − β2)−

1√
n
Π

′
22(n)Z

′
2.1Vβ

p→ 0 .(6.53)

By applying the CLT to the second term of (6.53) as (I), we complete the proof of (i) of

Theorem 2 for the LIML estimator of β when 1/2 ≤ η < 1 . Q.E.D.

Proof of Theorem 4 :

We use the similar arguments as the proofs of Theorem 1 and Theorem 3 and consider the

representation

1
n
G∗ =

1
n

(Π
′
(n)Z

′
+ V

′
)(PZ∗ −PZ1)(ZΠ(n) + V)

=
1
n
Π

′
(n)Z

′
(PZ∗ −PZ1)ZΠ(n) +

1√
n

[
1√
n
V

′
(PZ∗ −PZ1)]ZΠ(n)

]

+
1√
n

[
1√
n
Π

′
(n)Z

′
(PZ∗ − PZ1)V

]
+

1
n
V

′
(PZ∗ −PZ1)V .

As n −→ ∞, three terms of (1/n)G∗ except the first term converge to zero matrices

because of our conditions in our assumptions,

E[
1
n
V

′
(PZ∗ − PZ1)V|Z]− K21(n)

n
Ω

p−→ O ,
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and

E{[ 1√
n
Π

′
22(n)Z

′
2(n)(PZ∗ −PZ1)V][

1√
n
V

′
(PZ∗ −PZ1)Z2(n)Π22(n)]|Z}

−tr(Ω)
1
n
Π

′
22(n)Z

′
2(n)(PZ∗ − PZ1)Z2(n)Π22(n)

p−→ O

and

1
n
H∗ =

1
n
Y

′
Y − 1

n
G∗

=
1
n

(Π
′
(n)Z

′
+ V

′
)(ZΠ(n) + V)− 1

n
G∗ p−→ Ω .

Then as n → ∞, we have the convergence in probability as

1
n
G∗ p−→ G†

0 =

⎡
⎣ β

′
2

IG2

⎤
⎦Φ22.1 [β2, IG2] .(6.54)

For the SLIML estimation we set the smallest characteristic root (we may write λ∗(n))

and its associated vector as |(1/n)G∗ − λ∗(n)(1/n)H∗| = 0 and

[
1
n
G∗ − λ∗(n)

1
n
H∗]β̂SLI = 0 .(6.55)

The probability limit of the SLIML estimator β̂SLI = (1,−β̂
′

2.LI)
′

is β = (1,−β
′
2)

′
as

n → ∞ and λ∗(n) p→ 0 . Let Ĝ1 =
√

n[(1/n)G∗−G†
0], λ1 =

√
nλ∗(n), b̂1 =

√
n[β̂SLI −β],

Ĥ1 =
√

n[(1/n)H∗ −Ω], and then we can write

b̂1 = (−1)(0, IG2)
′√

n[β̂SLI − β]. By substituing the random variables Ĝ1, Ĥ1, and λ1

into (6.6), the resulting relation becomes

G†
0β +

1√
n

[Ĝ1 − λ1Ω]β +
1√
n
G†

0b̂1 = op(
1√
n

) .

By ignoring the higher order terms, we need to consider the modified estimator e∗SLI(β)

which satisfies

G†
0

⎛
⎝ 0

′

IG2

⎞
⎠ e∗LI(β) = [Ĝ1 − λ1Ω]β .(6.56)

By defining the normalized (SLIML) random vector êSLI(β) =
√

n[β̂2.SLI − β2], we can

show that e∗SLI(β) = êSLI(β) + op(1). Then by multiplying (0, IG2) and β
′

from the

left-hand-side of (6.56), we have the relation

(0, IG2)G
†
0

⎛
⎝ 0

′

IG2

⎞
⎠ e∗SLI(β) = (0, IG2)(Ĝ1 − λ1Ω)β ,(6.57)
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and

β
′
G†

0

⎛
⎝ 0

′

IG2

⎞
⎠ e∗SLI(β) = β

′
(Ĝ1 − λ1Ω)β .(6.58)

Since G†
0β = 0 and (0, IG2)G

†
0(0, IG2)

′
= Φ22.1, we find λ1 = β

′
Ĝ1β/σ2 and

e∗SLI(β) = Φ−1
22.1(0, IG2)[IG2+1 − Ωββ

′

β
′
Ωβ

]Ĝ1β .

Since Vβ = u, we have

Ĝ1β =
1√
n
Π

′
2(n)Z

′
(PZ∗ −PZ1)u +

1√
n
V

′
(PZ∗ −PZ1)Vβ .(6.59)

By using Conditon (I), we have (1/
√

n)E[V
′
(PZ∗−PZ1)V|Z]−(1/

√
n)[K21(n)−K1]Ω

p−→
O and λ1

p−→ 0 as n → ∞. Then we have the asymptotic distribution of (6.59) by ap-

plying the central limit theorem with the Lindeberg conditions. (See Theorem 1 of An-

derson and Kunitomo (1992), for instance.) In order to obtain the asymptotic covariance

matrix, we need to find the probability limit of the conditional expectation given Z as

E
[
Π

′
2(n)Z

′
(PZ∗ −PZ1)uu

′
(PZ∗ − PZ1)Π2(n)|Z

]
. Then by using Conditions of Theorem

4, we have the asymptotic normality and its asymptotic covariance matrix is given by the

lower-right block matrix of

σ2(
β

′
2

IG2

)Φ22.1(β2, IG2) .

Finally, by setting λ∗(n) = 0, we have the asymptotic distribution of the STSLS estimator,

which is the same as the LIML estimator. It is because
√

nλ∗(n) p−→ 0 in the present

situation. Q.E.D
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APPENDIX : TABLES AND FIGURES

Notes on Tables

In Tables the distributions are tabulated in the standardized terms, that is, of (4.1). The tables include

three quartiles, the 5 and 95 percentiles and the interquartile range of the distribution for each case.

Since the limiting distributions of (4.1) for the MEL and GMM estimators in the standard large sample

asymptotic theory are N(0, 1) as n → ∞, we add the standard normal case as the bench mark.

Notes on Figures

In Figures the cdf’s of the LIML, MEL and GMM estimators are shown in the standardized terms, that

is, of (4.1). (The cdf of the TSLS estimator is quite similar to that of the GMM estimator in all cases and

it was omitted in many cases.) The dotted lines were used for the distributions of the GMM estimator.

For the comparative purpose we give the standard normal distribution as the bench mark for each case.
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Table 1: n − K = 30,K2 = 3, α = 1

δ2 = 30 δ2 = 100
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.40 -1.52 -1.55 -1.64 -1.47 -1.54 -1.59 -1.63
L.QT -0.67 -0.64 -0.66 -0.83 -0.85 -0.65 -0.67 -0.77 -0.79

MEDN 0 0.00 -0.01 -0.24 -0.26 0.00 0.01 -0.14 -0.14
U.QT 0.67 0.76 0.80 0.44 0.47 0.71 0.75 0.55 0.57
X95 1.65 2.14 2.37 1.64 1.66 1.90 1.98 1.71 1.74
IQR 1.35 1.40 1.46 1.27 1.31 1.36 1.42 1.32 1.36

Table 2: n − K = 100,K2 = 10, α = 1

δ2 = 50 δ2 = 100
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.49 -1.68 -1.98 -2.09 -1.54 -1.61 -1.97 -2.04
L.QT -0.67 -0.66 -0.74 -1.31 -1.33 -0.66 -0.72 -1.17 -1.22

MEDN 0 0.00 0.01 -0.77 -0.77 0.00 -0.01 -0.59 -0.61
U.QT 0.67 0.76 0.83 -0.18 -0.15 0.73 0.81 0.05 0.08
X95 1.65 2.11 2.35 0.76 0.89 1.90 2.11 1.06 1.18
IQR 1.35 1.42 1.57 1.12 1.19 1.39 1.53 1.22 1.30

Table 3: n − K = 300,K2 = 30, α = 1

δ2 = 50 δ2 = 100
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.63 -1.82 -2.88 -2.95 -1.56 -1.77 -2.76 -2.87
L.QT -0.67 -0.75 -0.79 -2.28 -2.30 -0.69 -0.75 -2.10 -2.14

MEDN 0 0.00 0.02 -1.85 -1.85 0.00 0.02 -1.60 -1.59
U.QT 0.67 0.85 0.97 -1.40 -1.37 0.77 0.86 -1.07 -1.02
X95 1.65 2.48 2.94 -0.67 -0.60 2.08 2.38 -0.21 -0.12
IQR 1.35 1.60 1.76 0.88 0.94 1.46 1.61 1.03 1.11

Table 4: n − K = 100,K2 = 10, α = 1, δ2 = 50

ui = (χ2(3) − 3)/
√

6 ui = t(5)
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.52 -1.53 -2.06 -1.96 -1.51 -1.55 -2.02 -1.97
L.QT -0.67 -0.67 -0.67 -1.32 -1.24 -0.62 -0.67 -1.28 -1.22

MEDN 0 -0.01 -0.01 -0.77 -0.69 0.02 0.01 -0.75 -0.69
U.QT 0.67 0.75 0.76 -0.17 -0.09 0.77 0.83 -0.18 -0.12
X95 1.65 2.17 2.24 0.78 0.82 2.12 2.33 0.78 0.86
IQR 1.35 1.42 1.43 1.14 1.15 1.39 1.50 1.10 1.10
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Table 5: α = 1, δ2 = 100, ui = ‖Zi‖εi

n − K = 30,K2 = 3 n − K = 100,K2 = 10
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.39 -1.51 -1.52 -1.57 -1.52 -1.64 -1.96 -2.03
L.QT -0.67 -0.60 -0.66 -0.73 -0.78 -0.67 -0.70 -1.20 -1.22

MEDN 0 0.02 -0.02 -0.14 -0.17 -0.04 0.03 -0.65 -0.60
U.QT 0.67 0.70 0.71 0.52 0.51 0.70 0.83 -0.03 0.07
X95 1.65 1.93 2.05 1.62 1.70 1.97 2.20 1.03 1.09
IQR 1.35 1.29 1.36 1.25 1.29 1.37 1.53 1.18 1.29

Table 6: n − K = 300,K2 = 30, α = 1, ui = ‖Zi‖εi

δ2 = 50 δ2 = 100
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.62 -1.77 -2.90 -2.97 -1.56 -1.70 -2.76 -2.83
L.QT -0.67 -0.72 -0.77 -2.30 -2.31 -0.70 -0.74 -2.14 -2.14

MEDN 0 0.02 0.03 -1.87 -1.86 0.00 0.01 -1.63 -1.60
U.QT 0.67 0.89 0.97 -1.43 -1.39 0.79 0.88 -1.10 -1.05
X95 1.65 2.55 2.97 -0.76 -0.68 2.13 2.34 -0.25 -0.14
IQR 1.35 1.61 1.73 0.87 0.92 1.49 1.61 1.04 1.09

Table 7: n − K = 1000,K2 = 100, α = 1, δ2 = 100
ui = N(0, 1) ui = ‖Zi‖εi

normal LIML TSLS GMM LIML TSLS GMM
X05 -1.65 -1.82 -4.46 -4.51 -1.84 -4.44 -4.49
L.QT -0.67 -0.78 -3.89 -3.92 -0.81 -3.91 -3.93

MEDN 0 0.00 -3.53 -3.53 0.01 -3.54 -3.53
U.QT 0.67 0.89 -3.14 -3.12 0.93 -3.17 -3.12
X95 1.65 2.39 -2.57 -2.49 2.51 -2.59 -2.51
IQR 1.35 1.67 0.75 0.80 1.74 0.75 0.81

Table 8: n − K = 300,K2 = 30, δ2 = 100

α = 0 α = 5
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.90 -2.16 -1.44 -1.53 -1.43 -1.52 -3.14 -3.24
L.QT -0.67 -0.78 -0.90 -0.60 -0.66 -0.64 -0.69 -2.63 -2.65

MEDN 0 0.00 -0.02 0.00 -0.01 0.00 -0.02 -2.22 -2.22
U.QT 0.67 0.78 0.86 0.60 0.64 0.73 0.76 -1.77 -1.73
X95 1.65 1.93 2.14 1.46 1.56 1.98 2.14 -1.02 -0.96
IQR 1.35 1.56 1.76 1.19 1.30 1.37 1.45 0.86 0.92
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Table 9: α = 1

n − K = 100,K2 = 3, δ2 = 5 n − K = 100,K2 = 10, δ2 = 10
normal LIML MEL TSLS GMM LIML MEL TSLS GMM

X05 -1.65 -1.78 -1.84 -1.68 -1.66 -1.72 -2.16 -2.09 -2.04
L.QT -0.67 -0.70 -0.73 -0.97 -0.95 -0.77 -0.90 -1.59 -1.47

MEDN 0 -0.08 -0.10 -0.52 -0.51 -0.06 -0.14 -1.08 -1.09
U.QT 0.67 0.81 0.80 0.02 0.02 1.00 0.94 -0.64 -0.68
X95 1.65 4.37 4.71 1.22 1.16 4.45 4.40 0.11 0.02
IQR 1.35 1.51 1.53 0.99 0.97 1.77 1.84 0.85 0.79
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Figure 1: n − K = 30,K2 = 3, α = 1, δ2 = 30
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Figure 2: n − K = 30,K2 = 3, α = 1, δ2 = 100
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Figure 3: n − K = 100,K2 = 10, α = 1, δ2 = 50
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Figure 4: n − K = 100,K2 = 10, α = 1, δ2 = 100
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Figure 5: n − K = 300,K2 = 30, α = 1, δ2 = 50
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Figure 6: n − K = 300,K2 = 30, α = 1, δ2 = 100
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Figure 7: n − K = 100,K2 = 10, α = 1, δ2 = 50, ui = χ2(3)−3√
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Figure 8: n − K = 100,K2 = 10, α = 1, δ2 = 50, ui = t(5)
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Figure 9: n − K = 30,K2 = 3, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 10: n − K = 100,K2 = 10, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 11: n − K = 300,K2 = 30, α = 1, δ2 = 50, ui = ‖zi‖εi
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Figure 12: n − K = 300,K2 = 30, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 13: n − K = 1000,K2 = 100, α = 1, δ2 = 100
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Figure 14: n − K = 1000,K2 = 100, α = 1, δ2 = 100, ui = ‖zi‖εi
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Figure 15: n − K = 300,K2 = 30, α = 0, δ2 = 100
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Figure 16: n − K = 300,K2 = 30, α = 5, δ2 = 100
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Figure 17: n − K = 100,K2 = 3, α = 1, δ2 = 5
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Figure 18: n − K = 100,K2 = 10, α = 1, δ2 = 10
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