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Abstract 
 

 
We investigate the adverse selection problem where a principal delegates multiple tasks to 

individuals. The individuals form a group as a single agent and share their private signals in 
order to maximize their average payoff. We characterize the virtually implementable social 
choice functions by using the linking mechanism proposed by Jackson and Sonnenschein (2005) 
that restricts the message spaces. The principal does not require any incentive wage schemes 
and can therefore avoid any information rent and welfare loss due to risk aversion. We show the 
resemblance between the functioning of this message space restriction and that of incentive 
wage schemes. 

 
JEL Classification Numbers: C70, D71, D78, D82. 

 
Keywords: Multitask Agency, Hidden Information, Group Decisions, No Side Payments, 
Linking Mechanisms, Characterization, Full Surplus Extraction. 
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1. Introduction 
 
  

This paper investigates the adverse selection problem in which a principal (an 
employer) hires many individuals (employees) and delegates different tasks to each of 
them; these tasks are assumed to be independent of each other and homogeneous. The 
hired individuals observe the private signals relevant to their respective tasks; however, 
the principal cannot observe these signals. Therefore, the principal will attempt to 
incentivize these individuals to announce their true private signals by designing a 
well-behaved mechanism or a contract. 
 The standard approach in the informational economics literature is that the 
principal regards each individual as a single selfish agent and designs separate wage 
schemes for each person. These schemes base wage payments on the individual’s 
announcements. However, this approach has the following two drawbacks. First, if the 
lower bound of wage payments (such as nonnegativity) exists, each individual can earn 
a positive information rent and the principal fails to extract the full surplus in a 
non-negligible manner. Second, if individuals are risk averse, a welfare loss is 
inevitable because the inconstant wage schemes shift the burden of risk sharing onto 
these risk-averse individuals. 
 Based on these observations, this paper presents an alternative approach to solve 
the adverse selection problem and suggests a means to overcome the above mentioned 
drawbacks. In other words, the principal compels the individuals to establish a 
well-coordinated working group in which they share their private signals and agree to 
maximize the average of their payoffs. The principal regards this group as a single agent 
with whom she makes a contract. There exists a serious conflict of interest between the 
principal and this group. However, by contracting with the group as a whole, the 
principal is not required to design an inconstant wage scheme and succeeds in extracting 
the full surplus without suffering any non-negligible welfare distortion. More precisely, 
this paper will show that when the size of the group (the number of individuals or the 
number of tasks) is sufficiently large, a social choice function is virtually implementable 
in the group incentive case with no side payments if and only if such a function is 
exactly implementable in the individual incentive case with unbounded side payment 
devices. Thus, the class of implementable social choice functions is almost the same in 
both cases. 

In order to prove this, we apply the concept of a linking mechanism, which was 
proposed by Jackson and Sonnenschein (2005). As in the case of the standard direct 



 4 

mechanism, the principal requires the group to make an announcement for each task 
about the observed private signal. The main difference between the linking mechanism 
and the direct mechanism is that the principal restricts the message space in advance by 
directing the group to ensure that the proportion of the tasks for which the group 
announces a private signal is approximately equal to the probability of this signal being 
observed for a single task. Since the total number of the tasks is sufficiently large, it is 
almost certain, based on the law of large numbers, that the realized proportion of the 
tasks for which each private signal is observed is almost the same as the probability of 
this signal being observed for a single task. Therefore, truth-telling, which induces the 
value of the social choice function for all tasks, is almost compatible with this message 
space restriction. 

The essential finding of this paper is the clear resemblance between the functioning 
of this message space restriction and that of the incentive wage schemes in the standard 
approach. This resemblance can be elucidated using the following case in which the 
principal designs separate wage schemes for each individual in order to incentivize them 
to tell the truth. Let us suppose that an individual adopts a dishonest strategy that causes 
the frequency of announcing each signal to be different from the probability of this 
signal being observed. In such a case, a well-designed wage scheme can detect this 
dishonesty and the individual will be fined a large expected amount. In this sense, the 
functioning of the incentive wage scheme parallels that of message space restriction. On 
the other hand, if an individual adopts a dishonest strategy that causes the frequency of 
announcing each signal to be equal to the probability of this signal being observed, no 
wage scheme will detect this dishonesty. Therefore, we merely need to examine whether, 
in the absence of an incentive device, each individual has an incentive to adopt a 
dishonest strategy that causes the frequency of announcing each signal to be equal to the 
probability of this signal being observed. This implies that the necessary and sufficient 
condition for implementability is generally the same for both the individual incentive 
case with wage payment devices and the group incentive case with no such devices. 
Therefore, we can conclude that applying a linking mechanism is far more 
advantageous than designing an incentive wage scheme; this is because a linking 
mechanism enables us to avoid welfare distortions and positive information rents 
without narrowing the class of implementable social choice functions. 

Needless to say, the arguments of this paper will be applied to a situation in which 
a principal contracts with a single individual and delegates multiple tasks to her. More 
importantly, we can extend our arguments to the case of multiple agents who and the 
principal are in conflict with each other. Jackson and Sonnenschein (2005) showed that 
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the linking mechanism functions effectively with multiple agents, private values, and 
independent signals across the agents if the social choice function satisfies the ex ante 
efficiency. This paper characterizes the class of social choice functions that are virtually 
implemented by the linking mechanisms and presents an alternative sufficient condition, 
i.e., supermodularity. We do not require the private values assumption. We also 
investigate the correlated signals case. 

In the agency literature in which a principal hires multiple workers, several studies 
such as Itoh (1993) and Baron and Besanko (1999) have demonstrated the superiority of 
group decisions over individual decisions. Baron and Besanko considered a setting in 
which each worker cannot verify her private signal to the other workers and, therefore, 
the workers, along with a neutral party, require a side payment contract in advance in 
order to be incentivized. In contrast, this paper assumes that each individual’s private 
signal is verifiable by the other workers and not by the principal; therefore, the 
individuals in the group can share their private signals without suffering any loss. 

We can find empirical evidences in which groups are used to elicit the private 
signals of individuals; these evidences are closely related to the basic idea of linking 
mechanisms. For instance, in developing countries, community based targeting has 
become popular; in this mechanism, governments or NGOs delegate to the community 
the authority to decide the recipients of the poverty reduction programs. Other targeting 
mechanisms that are based on reported household incomes or those that directly 
investigate household assets are also widely used; however, these mechanisms require 
substantial transaction costs or provide individuals with significant incentives to report 
incomes dishonestly (lower than the actual amount). Delegating to the community the 
authority to allocate aid can enhance the accuracy as well as the cost-effectiveness of 
targeting. See Coady, Grosch, and Hoddinott (2004) for more details. 

In the economics theory literature, we find that some papers have presented 
concepts related to linking mechanisms even before the study by Jackson and 
Sonnenschein (2005). For instance, bundling goods by a monopolist (Armstrong 
(1999)), storable votes (Casella (2005) and Casella, Gelman, and Palfrey (2003)), and 
multimarket contact (Bernheim and Whinston (1990) and Matsushima (2001)). For 
more recent studies, see Eliaz, Ray, and Razin (2005) and Fang and Norman (2005a, 
2005b). 

It is extremely important to conduct laboratory experiments to show whether the 
linking mechanism functions effectively and the extent to what it does so. As Fehr and 
Falk (2002), Fehr and Gächter (2002), and Fehr, Gächter, and Kirschsteiger (1997) have 
shown through laboratory experiments, the incentive device of monetary rewards and 
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punishments results in a decline in the reciprocal motives of real individuals. We 
conjecture that the incentive device of a linking mechanism is far more compatible with 
this reciprocal motive than is that of monetary rewards and punishments. As 
complementary research, we plan to conduct experiments on this subject.4 

This paper is organized as follows. Section 2 presents an example that elucidates 
the basic concept discussed in this paper. Section 3 describes the single agent model. 
Section 4 presents the necessary condition for the virtual implementation of a social 
choice function. Section 5 introduces the linking mechanism and characterizes the class 
of social choice functions that it virtually implements. Section 6 characterizes the class 
of the social choice functions that are exactly implemented by inconstant wage schemes 
and shows the resemblance between the functioning of incentive wage schemes and that 
of the linking mechanism. Section 7 extends our results to the case of multiple agents. 

                                                 
4  A recent study by Engelmann and Grimm (2006) presents experimental research on linking 
mechanisms. They reported that linking mechanisms function effectively in laboratories. Moreover, the 
experiments conducted by Casella, Gelman, and Palfrey (2003) on storable votes closely related to 
linking mechanisms reported that the storable votes performed very well. 
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2. Example 
 
  

The following example will help in understanding the concepts presented in this 
paper. Consider a situation in which a principal hires K  individuals and delegates each 
individual {1,..., }h K∈  the h-th task. Each individual h  observes a private signal hω  

that is randomly determined to be either 0 or 1 with probability 1
2

. These private 

signals are drawn independently. The principal cannot observe these private signals; 
therefore, each individual is required to announce the signal between 0 and 1 that she 
actually observes. After the announcements, the principal compels each individual h  
to make an alternative choice ha , which is either 0 or 1, and pays a nonnegative wage 

0hw ≥  according to a contract specified in advance. If individual h  observes the 
private signal {0,1}hω ∈ , makes an alternative choice {0,1}ha ∈ , and receives wage 

0hw ≥ , this individual’s payoff is ( 1)h h hw a ω− + , and the principal obtains a net profit 

3
2 h ha w−  from the h-th task. The principal guarantees each individual an ex ante 

expected payoff that is either equal to or greater than the outside opportunity 1
2

− . 

 If the private signals are verifiable and there is no adverse selection problem, the 
principal can achieve the first-best allocation such that for every {1,..., }h K∈ , 
   0ha =  and 0hw =  if 1hω =  
and 
   1ha =  and 0hw =  if 0hω = .  

Therefore, the principal extracts the full surplus 3
4

 as her ex ante expected payoff for 

each task. However, if the private signals are not verifiable, the principal must 
incentivize the individuals to announce their true private signals. In order to obtain the 
first-best alternative choices, the principal must pay to each individual h  a positive 
wage 1hw =  whenever 0hω = . This, along with the nonnegativity of the wages, 

implies that the individual earns a positive information rent 1
2

 and, therefore, the 

principal’s expected payoff for each task {1,..., }h K∈  is approximately 1
4

, which is 

much lesser than the full surplus 3
4

. 
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In order to overcome the failure to extract the full surplus, the principal will 
compel the individuals to establish a working group in the following manner. The 
individuals agree to share their private signals and coordinate their announcements in 
order to maximize the average of their payoffs. The principal regards this group as a 
single agent with whom she makes a contract termed as the linking mechanism—the 
basic idea of this mechanism was proposed by Jackson and Sonnenschein (2005). 
According to the linking mechanism, the principal’s wage payments are fixed at zero, 
irrespective of the group’s announcements. Moreover, the principal requires the group to 

announce the signal 0 for at least 
2
K  tasks, irrespective of the observations of the 

individuals’ private signals. In cases where K is sufficiently large, by restricting the 
group’s possible announcements through this mechanism, the principal succeeds in 
incentivizing the group to tell the truth in any manner possible. In fact, based on the law 
of large numbers, the principal can virtually achieve the first-best allocation without 
paying any positive wages, i.e., she can achieve the full surplus extraction. 
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3. The Model 
 
 
This paper investigates the following situation in which a principal delegates K  

distinct tasks to a single agent, i.e., the agent is required to choose a profile of K  

alternatives 1 1( ,..., )K K K
k h ha a a A A== ∈ ≡ × , where for each {1,..., }h K∈ , hA  and ha  

denote the set of alternatives and an alternative for the h-th task, respectively. The agent 

observes a profile of K  private signals 1 1( ,..., )K K k
k h hω ω ω == ∈Ω ≡ × Ω , where 

hh Ω∈ω  is the signal for the h-th task. This paper focuses on symmetric models in the 
sense that for every {1,..., }h K∈ , 
   hA A=  and hΩ = Ω . 
Let IΩ = < ∞ . The agent observes a profile of private signals K Kω ∈Ω  with 
positive probability ( ) 0K Kp ω > . We assume independence in the sense that there 
exists a probability function : [0,1]p Ω→  such that 

1( ) ( )K K K
h hp pω ω== Π  for all K Kω ∈Ω . 

The principal is unaware of the private signal profile K Kω ∈Ω  and therefore 
requires the agent to announce a message on the basis of the mechanism given by 

( ) ( , ( , ))K KK M g tΓ ≡ . Here, M  is the nonempty finite set of messages for the agent, 

( )K Kg M A: → ∆ ,5 and 1( )K K K
h ht t M R== : → . When the agent announces a message 

m M∈ , the principal compels her to choose any profile of alternatives K ka A∈  with 
probability ( )[ ]K Kg m a 6; the principal herself chooses the K  profile of side payments 

given by 1( ) ( ( ),..., ( ))K K K
Kw t m t m t m R= = ∈ . Here, for every {1,..., }h K∈ , 

( )h hw t m R≡ ∈  is regarded as the wage payment for the h-th task. When the agent 

observes K Kω ∈Ω  and chooses K Ka A∈  and the principal chooses K Kw R∈ , the 
agent’s payoff is given by ( , , )K K K Kv a w Rω ∈ . We assume expected utility. For every 

simple lottery α  over KA , let ( , , ) ( , , ) ( )
K

K K K K K K K K

a

v w v a w aα ω ω α
∈Λ

≡ ∑ , where Λ  

denotes the support of α . 

                                                 
5 For every set Φ , the set of simple lotteries over Φ  is denoted by ( )∆ Φ . 
6 In order to focus on the adverse selection problem, we assume that the probabilistic alternative choices 
are verifiable by the court. 
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This paper assumes additive separability in the sense that 

   
1

1( , , ) ( , ) ( )
K

K K K K K K
h h

h
v a w u a d w

K
ω ω

=

 
= + 

 
∑ . 

Here, :K Kd R R→  is increasing and satisfies symmetry in the sense that for every 
K Kw R∈  and every K Kw R∈� , if there exists a permutation on {1,..., }K , 
: {1,..., } {1,..., }K Kπ →  such that 

( )h hw wπ= �  for all {1,..., }h K∈ , 

then 
   ( ) ( )K K K Kd w d w= � . 
The class of models in this paper includes the following two cases. 
 
Case I: The agent is regarded as a single individual. There exists an increasing and 
continuous function :d R R→  such that 

   
1

( ) ( )
K

K K
h

h

d w d w
=

= ∑  for all K Kw R∈ , 

i.e., the individuals’ payoff depends on the sum of the side payments. 
 
Case II: The agent is regarded as a group comprising K  individuals. There exists an 
increasing and continuous function :e R R→  such that 

   
1

( ) ( )
K

K K
h

h
d w e w

=

= ∑  for all K Kw R∈ . 

Each individual {1,..., }h K∈  performs the h-th task and her corresponding payoff is 
given by ( , ) ( )h h hu a e wω + . The K  individuals agree to maximize the average of their 

payoffs 
1

1 { ( , ) ( )}
K

h h h
h

u a e w
K

ω
=

 
+ 

 
∑ . 

 
An important intersection between Cases I and II is the risk-neutral agent case, 

where 
1

( )
K

K K
h

h
d w w

=

=∑ . 

A strategy (for the agent) is defined as the function K K Mσ σ= :Ω → . We denote 
the set of strategies by KΣ = Σ . A strategy σ ∈Σ  is said to be a best response in 

( )KΓ  if for every σ ′∈Σ , 

( ( ) ( ), ) ( ), ( ( ) ( ), ) ( ),K K K K K K K KE v g m t m K E v g m t m Kω σ ω σ ′   , Γ ≥ , Γ    . 
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Here, ( ),E K σ⋅ Γ    is the expectation operator over K Kω ∈Ω  given ( ( ), )K σΓ . A 

social choice function is defined as :f AΩ→ . Irrespective of {1,..., }h K∈ , 
( )f Aω ∈  is regarded as the socially desirable alternative choice for the h-th task when 

the agent observes hω ω= . A social choice function f  is said to be exactly 
implementable with respect to K  if there exist a mechanism ( )KΓ  and a best 
response σ ∈Σ  in ( )KΓ  such that 
(1)   ( ( ))[ ( )] 1K K K Kg fσ ω ω =  for all K Kω ∈Ω , 

where we denote 1( ) ( ( ),..., ( ))K K
Kf f fω ω ω≡ . An infinite sequence of mechanisms 

1( ( ))KK ∞
=Γ  is said to virtually implement a social choice function f  if for every 

0η > , there exists K  such that for every K K≥ , there is a best response σ ∈Σ  in 
( )KΓ  that satisfies 

(2)   { {1 } ( )} ( ), 1h hh K a fE K
K

ω
σ η

∈ , , | = Γ ≥ −  

" . 
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4. Necessary Condition for Virtual Implementation 
 
  

This section shows that the following condition is necessary for virtual 
implementation. 
 
Condition 1: For every {2 }L I∈ , ,"  and every ( (1) ( )) LLω ω, , ∈Ω" , if 

( ) ( )l lω ω ′≠  for all {1 … }l L∈ , ,  and {1 … }\{ }l L l′∈ , , , 
then 

(3)   
1 1

( ( ( )) ( )) ( ( ( 1)) ( ))
L L

l l
u f l l u f l lω ω ω ω

= =
, ≥ + ,∑ ∑ , 

where we denote 1 1L + = . 
 
 Condition 1 implies that if an agent lies according to any permutation with regard 
to Ω  with the same probability across all the possible signals, her payoff never 
improves. 
 

Theorem 1: If there exists an infinite sequence of mechanisms 1( ( ))KK ∞
=Γ  that virtually 

implement a social choice function f , Condition 1 holds. 
 
Proof: Suppose that Condition 1 does not hold, i.e., there exists {2 }L I∈ , ,"  and 
( (1) ( ))Lω ω, ,"  such that ( ) ( )l lω ω ′≠  for all {1 … }l L∈ , ,  and {1 … }\{ }l L l′∈ , , , and 

1 1
( ( ( )) ( )) ( ( ( 1)) ( ))

L L

l l
u f l l u f l lω ω ω ω

= =
, < + ,∑ ∑ . 

Further, suppose that 1( ( ))KK ∞
=Γ  virtually implements f  with respect to p . By the 

revelation principle,7 we can assume that for every K , ( ) ( , , )K KK M g tΓ =  is a direct 
mechanism where KM = Ω ; the truthful strategy ˆ ˆ Kσ σ= , which is defined by 
ˆ ( )K K Kσ ω ω=  for all K Kω ∈Ω , is a best response in ( )KΓ ; and 

(4)   { {1 } ( )} ˆlim ( ), 1Kh h

K

h K a fE K
K

ω
σ

→∞

∈ , , | = Γ =  

" . 

Let 1
K
h hM M== × , hM = Ω , 1( )Km m m M= , , ∈" , and 

                                                 
7 See Myerson (1979) and Fudenberg and Tirole (1993, Chapter 7). 
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1( ) ( ( ) ( ))K K K
Kσ ω σ ω σ ω= , ," , 

where ( )K
hσ ω ∈Ω  for all {1,..., }h K∈ . Without loss of generality, we can assume 

that for every K , ( ) ( , , )K KK M g tΓ =  is symmetric in the sense that for every m M∈ , 
every K Ka A∈ , and every permutation {1 } {1 }K Kπ : , , → , ," " , 

,( )[ ] ( )[ ]K K K Kg m a g m aπ π= , 

where 1( ,..., )Km m m Mπ π π= ∈  and , , ,
1( ,..., )K K K K

Ka a a Aπ π π= ∈  are defined by 

( )h hm mπ
π =  and ,

( )
K

h ha aπ
π =  for all {1 }h K∈ , ," . 

See Appendix A for the proof that it is sufficient to consider symmetric mechanisms. 
For any 0λ > , let 

{ {1 } }( ) ( )K K K hh K p for all
K

ω ω
λ ω ω λ ω∗ ∈ , , | = 

Ω ≡ ∈Ω | − < ∈Ω . 
 

"  

The law of large numbers implies that for all 0λ > ,   

* ( )
lim ( ) 1

K K

K K

K
p

ω λ

ω
→∞ ∈Ω

=∑ . 

Therefore, there is an infinite sequence of positive real numbers 1( )K Kλ ∞
=  such that 

lim 0KK
λ

→∞
=  and 

(5)   
* ( )

lim ( ) 1
K K

K

K K

K
p

ω λ

ω
→∞

∈Ω

=∑ . 

We assume a sufficiently large K . From (4) and (5), it follows that there exists 

1( ,..., ) ( )K K
K Kω ω ω λ∗= ∈Ω� � �  such that 

(6)   ( )[ ( )]K K K Kg fω ω� �  is close to 1. 
We specify a strategy σ ′∈Σ  as follows. 
(i) For every {1 }l L∈ , ," , the number of {1 }h K∈ , ,"  satisfying ( )h lω ω=�  and 

( ) ( 1)K
h lσ ω ω′ = +�  is equal to 

{1 }
min { {1 } ( )}hl L

h K lω ω
∈ , ,

∈ , , | =
"

�" . 

(ii) For every {1 }h K∈ , ," , either ( )K
h hσ ω ω′ =� �  or 
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( )h lω ω=�  and ( ) ( 1)K
h lσ ω ω′ = +�  for some {1 }l L∈ , ," . 

(iii) For every \ { }K K Kω ω∈Ω � , 
( ) ( )K Kσ ω σ ω′ = . 

From the definition of σ ′ , it follows that there exists a permutation π  on {1,..., }K  
such that ,( )K K πσ ω ω′ =� � , 

(7)   ( )
1 1

( ( ) ) ( ( ) )
K K

h h h h
h h

u f u f πω ω ω ω
= =

, < ,∑ ∑� � � � , 

and 
(8)   ,( ( ))[ ( )]K K K Kg f πσ ω ω′ � �  is close to 1, 

where ,
1( ,..., )K K

K
π π πω ω ω= ∈Ω� � �  and ( )h h

π
πω ω=� �  for all {1 }h K∈ , ," . From (6), (7), 

and (8), it follows that 

1
ˆ( , ) ( ), ,

K
K

h h
h

E u a Kω σ ω
=

 Γ  
∑ � �

1
( , ) ( ), ,

K
K

h h
h

E u a Kω σ ω
=

 ′< Γ  
∑ � � . 

Since ( )KΓ  is symmetric, it follows that 

1
ˆ( ) ( ), ,

K
K

h
h

E d w K σ ω
=

 Γ  
∑ �

1
( ) ( ), ,

K
K

h
h

E d w K σ ω
=

 ′= Γ  
∑ � . 

Therefore, 
ˆ ˆ( ( ( )) ( ( )), ) ( ( ( )) ( ( )), )K K K K K K K K K K K Kv g t v g tσ ω σ ω ω σ ω σ ω ω′ ′, < ,� � � � � � . 

This contradicts the fact that σ̂  is a best response in ( )KΓ . 
Q.E.D. 
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5. Linking Mechanisms 

 
  

This section shows that Condition 1 is also sufficient for virtual implementation. 
The proof of this statement is constructive. Based on Jackson and Sonnenschein (2005), 
we define the linking mechanism * *( ; ) ( ) ( ( , ))K KK f K M g tΓ = Γ = ,  as follows. We 
specify ( ) : {0,..., }B K K⋅, Ω→  such that 

( , )B K K
ω

ω
∈Ω

=∑ . 

Moreover, for every : {0,..., }b KΩ→  such that ( )b K
ω

ω
∈Ω

=∑ , 

(9)   ( , ) ( )( ) ( )B K bp p
K Kω ω

ω ω
ω ω

∈Ω ∈Ω
− ≤ −∑ ∑ . 

The definition of ( )B K⋅,  implies that ( )B K
K
ω,  approximates ( )p ω  for a 

sufficiently large K , i.e., 

(10)   ( )lim ( )
K

B K p
K
ω

ω
→∞

,
=  for all ω∈Ω . 

Let 

hM = Ω  for all {1,..., }h K∈ , 

(11)   { }{ }{1 } ( )K
hM m h K m B K for allω ω ω= ∈Ω ∈ , , | = = , ∈Ω" , 

and 
   ( )[ ( )] 1K Kg m f m =  for all m M∈ . 
Moreover, there exists a real number z R∈  such that 

( ) ( ,..., )Kt m z z=  for all m M∈ .8 
For convenience of our argument, without loss of generality, we assume 0z = . The 
agent has to announce each ω∈Ω  exactly ( )B Kω,  times. This along with (10) 
implies that for a sufficiently large K , the proportion of the tasks for which the agent 
announces ω  is almost the same as the probability ( )p ω  of ω  occurring. In the 
linking mechanism, the side payments are constant across the agent’s possible 

                                                 
8 Since the side payments are constant in the linking mechanism, we can weaken the assumption of 
additive separability in this section by requiring instead that there exists :u A R×Ω→  such that 

1

1( , , ) ( , )
K

K K K K
h h

h

v a w u a
K

ω ω
=

= ∑  for ( ,..., )Kw z z= . 
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announcements, i.e., the agent receives a constant wage 0z =  for each task, 
irrespective of the observation of the private signal profile. This implies that the linking 
mechanism is free from the welfare loss that occurs due to the agent’s risk aversion, and 
it is also free from the failure of the principal to extract the full surplus owing to the 
agent’s positive information rent that is caused by the nonnegative wage payments. 
Moreover, the linking mechanism is regarded as being well behaved from the practical 
viewpoint because it does not depend on the finer details of the agent’s utility function 
u .9 

The following theorem shows that Condition 1 is sufficient for the linking 
mechanisms to virtually implement the social choice function. 
 
Theorem 2: Under Condition 1, a social choice function f  is virtually implemented 

by the infinite sequence of the linking mechanisms *
1( ( ))KK ∞
=Γ . 

 
Proof: Suppose that there exists 0η >  such that for every K , there exists K K≥  
that satisfies the condition that for every best response σ ∈Σ  in *( )KΓ , 

   *{ {1 } ( )} ( ),h hh K a fE K
K

ω
σ η

∈ , , | ≠ Γ >  

" . 

As in the proof of Theorem 1, we can choose an infinite sequence of positive real 

numbers 1( )K Kλ ∞
=  satisfying (5) and lim 0KK

λ
→∞

= . From (5) and (10), it follows that for 

every sufficiently large K , every ( )K K
Kω λ∗∈Ω , and every ω∈Ω , 

(12)   { {1 } }hh K
K

ω ω∈ , , | ="  is approximated by ( )B K
K
ω, . 

Consider a best response σ ∈Σ  in *( )KΓ  satisfying the condition that for every best 
response σ ∈Σ�  in *( )KΓ , 

(13)   *{ {1 } ( ) } ( ),
K

h hh KE K
K
σ ω ω

σ
 ∈ , , | ≠

Γ 
 

"  

*{ {1 } ( ) } ( ),
K

h hh KE K
K
σ ω ω

σ
 ∈ , , | ≠

≤ Γ 
 

�" � . 

                                                 
9 The linking mechanism, however, depends on the probability function p  as well as the social choice 
function f . 
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It is evident that 

(14)   *{ {1 } ( )} ( ),h hh K a fE K
K

ω
σ η

∈ , , | ≠ Γ >  

" . 

The left-hand side of (14) is rewritten as 

   { {1 } ( ) }( )
K K

K
K K h hh Kp

Kω

σ ω ω
ω

∈Ω

∈ , , | ≠
×∑ "  

( )

{ {1 } ( ) }( )
K K

K

K
K K h hh Kp

Kω λ

σ ω ω
ω

∗∈Ω

∈ , , | ≠
= ×∑ "  

\ ( )

{ {1 } ( ) }( )
K K

K

K
K K h hh Kp

Kω λ

σ ω ω
ω

∗∈Ω Ω

∈ , , | ≠
+ ×∑ " . 

For every sufficiently large K , the last term is close to zero; therefore, the left-hand 
side of (14) is approximated by 

   
( )

{ {1 } ( ) }( )
K K

K

K
k K h hh Kp

Kω λ

σ ω ω
ω

∗∈Ω

∈ , , | ≠
×∑ " . 

This implies that there exists ( )ˆ KK
Kλω ∗∈Ω  such that 

(15)   
ˆ ˆ{ {1 } ( ) }K

h hh K
K
σ ω ω

η
∈ , , | ≠

>
" . 

A strategy σ ∈Σ  is said to be cyclic for K Kω ∈Ω  if there exist {1 }S K⊆ , ,"  
and a one-to-one function {1,..., # }S Sτ : →  such that 2 S K≤ ≤ , 

s sω ω ′≠  for all s S∈  and \{ }s S s′∈ , 
and for every {1,..., # }l S∈ , 

( ) ( 1)( )K
l lτ τσ ω ω += , where 1 1S + = . 

Note that if σ  is not cyclic for ˆ Kω , the proportion of the tasks for which the agent 

announces incorrect private signals, i.e., 
ˆ ˆ{ {1 } ( ) }K

h hh K
K
σ ω ω∈ , , | ≠" , is less than or 

equal to 

(16)   { {1 } } ( )ˆ hh K B K
K Kω

ω ωω
∈Ω

∈ , , | = ,
−∑ " , 

which is close to zero because of (12). This, however, contradicts (14). Hence, σ  must 
be cyclic for ˆ Kω , i.e., there exist {1 }S K⊆ , ,"  and a one-to-one function 

{1,..., # }S Sτ : →  such that 2 S K≤ ≤ , 
ˆ ˆs sω ω ′≠  for all s S∈  and \{ }s S s′∈ , 

and 
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( ) ( 1)ˆ ˆ( )K
l lτ τσ ω ω +=  for all {1,..., # }l S∈ . 

We specify a strategy σ ∈Σ�  by 
   ( )ˆ ˆK

s sσ ω ω=�  for all s S∈ , 

   ( ) ( )ˆ ˆK K
s sσσ ω ω=�  for all s S∈/ , 

and 
   ( ) ( )K Kσ ω σ ω=�  for all \ { }ˆK K Kω ω∈Ω . 
From the definition of σ� , it follows that the expected number of the tasks for which the 
agent lies according to σ�  is less than that according to σ , i.e., 

*{ {1 } ( ) } ( ),
K

h hh KE K
K
σ ω ω σ

 ∈ , , | ≠
Γ 

 

�" �  

*{ {1 } ( ) } ( ),
K

h hh KE K
K
σ ω ω

σ
 ∈ , , | ≠

< Γ 
 

" . 

From Condition 1 and the fact that σ  is a best response in *( )KΓ , it follows that σ�  
is another best response in *( )KΓ . This, however, contradicts (13). 

Q.E.D. 

 

Theorems 1 and 2 imply that Condition 1 is necessary and sufficient for virtual 
implementation. These theorems also imply that whenever a sufficiently large number 
of tasks are delegated to the agent, i.e., K  is sufficiently large, all that is required for 
virtual implementation is to check whether the linking mechanism functions or not. 

The following proposition shows that we can replace Condition 1 with a more 
intuitive condition termed as supermodularity.10 
 
Condition 2 (Supermodularity): Ω  is an ordered set with ≥ , and for every 
ω ω ω ω′ ′′ ′′′, , , ∈Ω ,  
   ( ( ) ) ( ( ) )u f u fω ω ω ω′ ′′ ′′′, + ,  

    ( ( ) ) ( ( ) )u f u fω ω ω ω ω ω ω ω′ ′′ ′ ′′′′′ ′′′≤ ∨ , ∨ + ∧ , ∧ , 
where max{ }ω ω ω ω′′ ′′∨ = ,  and min{ }ω ω ω ω′ ′′′ ′ ′′′∧ = , . 
 

                                                 
10 See Topkis (1979) and Fudenberg and Tirole (1993, Chapter 12) for supermodularity and its related 
concepts. 
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Proposition 3: Condition 2 implies Condition 1. 
 
Proof: Consider any {2 }L I∈ , ,"  and ( (1) ( )) LLω ω, , ∈Ω"  such that 

( ) ( 1)l lω ω≤ +  for all {1 1}l L∈ , , −" . 
From Condition 2, it follows that the right-hand side of (3) is rewritten as 

   
1

2
( ( (2)) (1)) ( ( (1)) ( )) ( ( ( 1)) ( ))

L

l
u f u f L u f l lω ω ω ω ω ω

−

=

, + , + + ,∑  

1

2
( ( (1)) (1)) ( ( (2)) ( )) ( ( ( 1)) ( ))

L

l
u f u f L u f l lω ω ω ω ω ω

−

=

≤ , + , + + ,∑
 ( ( (1)) (1)) ( ( (2)) ( )) ( ( (3)) (2))u f u f L u fω ω ω ω ω ω= , + , + ,  

 
1

3
( ( ( 1)) ( ))

L

l
u f l lω ω

−

=

+ + ,∑
 ( ( (1)) (1)) ( ( (2)) (2)) ( ( (3)) ( ))u f u f u f Lω ω ω ω ω ω≤ , + , + ,

 
1

3
( ( ( 1)) ( ))

L

l
u f l lω ω

−

=

+ + ,∑  

#  

1
( ( ( )) ( ))

L

l
u f l lω ω

=

≤ ,∑ , 

which implies Condition 1. 
Q.E.D. 

 
From Theorem 2 and Proposition 3, it follows that supermodularity is sufficient for 

the linking mechanisms to virtually implement the social choice function. 
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6. Exact Implementation 

 
 
This section focuses on Case II in which K  individuals exist and the principal 

delegates the h-th task to each individual {1,..., }h K∈ . Individual h s′  payoff is given 

by ( , ) ( )h h hu a e wω +  for all K Kw R∈ , where :e R R→  is increasing and continuous. 

This section assumes that e  is unbounded in that for every positive real number 
0B > , there exists a positive real number 0w >  such that 

   ( )e w B≥  and ( )e w B− ≤ − . 
Evidently, this assumption holds when the individuals are risk neutral in that ( )e w w=  
for all w R∈ . The agent is regarded as the group that comprises these K  individuals. 
 This section investigates exact implementation that requires the value of a social 
choice function to be realized with certainty, irrespective of which private signal profile 
the agent observes. The following proposition shows that Condition 1 is necessary and 
sufficient for exact implementation, irrespective of K ; therefore, the necessary and 
sufficient condition is the same for both virtual and exact implementation. 
 
Proposition 4: A social choice function f  is exactly implementable with respect to 
K  if and only if Condition 1 holds. 
 

Proof: We can apply Theorem 1 proposed by Fan (1956) in the same manner as it was 
used in D’Aspremont and Gèrard-Varet (1979, Theorem 7). For the complete proof, see 
Appendix B. 
 

In contrast with virtual implementation, in order to exactly implement a nontrivial 
social choice function, we have to design a mechanism ( ) ( ( , ))K KK M g tΓ = ,  that 
conditions the side payments ( )Kt m  on the agent’s announcements m . If we confine 
our analysis to mechanisms in which ( )Kt m  is constant across the agent’s possible 
announcements m , then the exactly implementable social choice functions are the only 
trivial ones, i.e., any exactly implementable social choice function f  must satisfy 
   ( ( ), ) ( ( ), )u f u fω ω ω ω′≥  for all ω∈Ω  and all ω′∈Ω . 
These inequalities imply that either there is no conflict of interest between the principal 
and the agent or the social choice function does not take into account the principal’s 
welfare. 
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 Condition 1, which is necessary and sufficient for exact implementation based on 
Proposition 4, does not depend on K . Therefore, the set of exactly implementable 
social choice functions is the same for both the situation in which the K  individuals 
agree to maximize the average of their payoffs and the one in which they do not agree 
and make decisions in their own self-interest. 

From Theorem 1 presented in Fan (1956), it follows that a necessary and sufficient 

condition for the existence of such an r  is that for every 2 {0}Rµ +:Ω → ∪ , if 

{ }( ) ( ) 0 
ω ω

µ ω ω µ ω ω
≠ ∈Ω

, − , =∑
�

� �  for all ω∈Ω , 

then 

{ }( ( ) ) ( ( ) ) ( ) 0u f u f
ω ω ω

ω ω ω ω µ ω ω
∈Ω ≠ ∈Ω

, − , , ≥∑ ∑
�

� � . 

Without loss of generality, we can focus only on the set of functions 2 {0}Rµ +:Ω → ∪  

such that ( , ) 1
ω

µ ω ω
′∈Ω

′ =∑  for all ω∈Ω , i.e., the set of mixed strategies in the direct 

mechanism, where ( , )µ ω ω′  is the probability that the agent announces ω′  given that 
she observes ω . The above condition is equivalent to the condition that for every 
mixed strategy µ  in the direct mechanism, if the frequencies of announcing private 
signals are the same as the probabilities of these signals being observed, i.e., 

   ( | ) ( , ) ( ) ( )p p p
ω

ω µ µ ω ω ω ω
∈Ω

′ ′ ′≡ =∑  for all ω′∈Ω , 

the ex ante expected payoff with no side payments induced by the dishonest mixed 
strategy is not greater than that induced by the honest strategy, i.e., 

   ( ( ) ) ( ) ( ) ( ( ) ) ( )u f p u f p
ω ω ω

ω ω µ ω ω ω ω ω ω
∈Ω ∈Ω ∈Ω

, , ≤ ,∑ ∑ ∑
�

� � . 

Based on the law of large numbers, this inequality implies that the requirement of 
truth-telling being a best response is almost satisfied when the number of the tasks K  
is sufficiently large. Hence, the functioning of the message space restriction in the 
linking mechanism for the group parallels that of the incentive payment scheme in the 
direct mechanism for each individual. 
 In the case wherein the individuals make decisions in their own interest and the 
principal designs independent mechanisms that incentivize each individual separately, 
every individual has to accept the risk that results from inconstant payments. This will 
result in significant welfare distortion when the individuals are risk averse and the 
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principal is risk neutral. In contrast, in the case wherein the individuals agree to 
maximize the average of their payoffs, the principal can apply the linking mechanisms 
to virtually implement the social choice function successfully. In this case, we do not 
require any incentive payment device and, therefore, there is no welfare distortion due 
to risk sharing. 
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7. Multiple Agents 
 
 
This section generalizes the previous results to a case in which multiple n  agents 

who observe their respective private signal profile are in conflict with each other over 
their own interests. 

 
 

7.1. The Model 
 
 

Let 1 [ ]
n
i i=Ω = × Ω  and [1] [ ]( ,..., )nω ω ω= ∈Ω . Each agent {1,..., }i n∈  observes a 

profile of K  private signals [ ] [ ],1 [ ], [ ]( ,..., )K K
i i i K iω ω ω= ∈Ω , where [ ], [ ]i h iω ∈Ω  is the 

private signal for the h-th task that agent i  observes. A mechanism is defined as 

( ) ( , ( , ))K KK M g tΓ ≡ , where 1 [ ]
n
i iM M== × , [ ]iM  is the nonempty finite set of 

messages for agent i , [ ] 1( )K K n
i it t == , and [ ] [ ], 1( )K K K

i i h ht t M R== : → . When the agents 

observe K Kω ∈Ω and choose K Ka A∈  and the principal chooses [ ] 1( )K K n
i iw w == , agent 

i s′  payoff is 

[ ] [ ] [ ] [ ] [ ]
1

1( , , ) ( , ) ( )
K

K K K K K K
i i i h h i i

h

v a w u a d w
K

ω ω
=

 
= + 

 
∑ , 

where [ ] :K K
id R R→  is increasing and satisfies symmetry. A strategy for agent i  is 

defined as [ ] [ ] [ ] [ ]
K K

i i i iMσ σ= :Ω → . Let [ ] [ ]
K

i iΣ = Σ  denote the set of strategies for agent 

i . Let [ ]
1

n

i
i=

Σ = Σ∏ . A strategy profile σ ∈Σ  is said to be a Nash equilibrium in ( )KΓ  

if for every {1,..., }i n∈  and every [ ] [ ]i iσ ′ ∈Σ , 

[ ] [ ]( ( ) ( ), ) ( ),K K K K
i iE v g m t m Kω σ , Γ   
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[ ] [ ] [ ] [ ]( ( ) ( ), ) ( ), ( , )K K K K
i i i iE v g m t m Kω σ σ− ′≥ , Γ  . 

A social choice function f  is said to be exactly implementable with respect to K  if 
there exists a mechanism ( )KΓ  and a Nash equilibrium σ ∈Σ  in ( )KΓ  such that 

( ( ))[ ( )] 1K K K Kg fσ ω ω =  for all K Kω ∈Ω . 
For each 0ε > , a strategy profile σ ∈Σ  is said to be a ε − Nash equilibrium in 

( )KΓ  if for every {1,..., }i n∈  and every [ ] [ ]i iσ ′ ∈Σ , 

[ ] [ ]( ( ) ( ), ) ( ),K K K K
i iE v g m t m Kω σ ε , Γ +   

[ ] [ ] [ ] [ ]( ( ) ( ), ) ( ), ( , )K K K K
i i i iE v g m t m Kω σ σ− ′≥ , Γ  . 

An infinite sequence of mechanisms 1( ( ))KK ∞
=Γ  is said to virtually implement a social 

choice function f  if for every 0η >  and every 0ε > , there exists K  such that for 
every K K≥ , there is a ε −Nash equilibrium σ ∈Σ  in ( )KΓ  satisfying 

{ {1 } ( )} ( ), 1h hh K a fE K
K

ω σ η∈ , , | = Γ ≥ −  

" . 

Let 

[ ] [ ]

[ ] [ ]( ) ( )
i i

i ip p
ω

ω ω
− −∈Ω

≡ ∑ . 

We define the linking mechanism * *( ; ) ( ) ( ( , ))K KK f K M g tΓ = Γ = ,  in ways that 
( )[ ( )] 1K Kg m f m =  for all m M∈ , 

for every {1,..., }i n∈ , 

[ ],i hM = Ω  for all {1,..., }h K∈ , 

{ }{ }[ ] [ ] [ ] [ ], [ ] [ ] [ ] [ ]{1 } ( )K
i i i i h i i i i iM m h K m B K for allω ω ω= ∈Ω ∈ , , | = = , ∈Ω" , 

and 

[ ], ( ) 0K
i ht m =  for all {1,..., }h K∈  and all m M∈ . 

Here, [ ]( ) : {0,..., }i iB K K⋅, Ω →  is specified as satisfying 
[ ] [ ]

[ ]( , )
i i

i iB K K
ω

ω
∈Ω

=∑ . 

Moreover, for every [ ] [ ]: {0,..., }i ib KΩ →  such that 
[ ] [ ]

[ ] [ ]( )
i i

i ib K
ω

ω
∈Ω

=∑ , 
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[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]
[ ] [ ] [ ] [ ]

( , ) ( )
( ) ( )

i i i i

i i i i
i i i i

B K b
p p

K Kω ω

ω ω
ω ω

∈Ω ∈Ω
− ≤ −∑ ∑ . 

 The following conditions are direct extensions of Conditions 1 and 2, respectively. 
 
Condition 3: For every {1,..., }i n∈ , every {2 }L I∈ , ," , and every 

[ ] [ ] [ ]( (1) ( )) L
i i iLω ω, , ∈Ω" , if 

[ ] [ ]( ) ( )i il lω ω ′≠  for all {1 … }l L∈ , ,  and {1 … }\{ }l L l′∈ , , , 

then 

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1

( ( ( ), ) ( ), ) ( )
L

i i i i i i i
l

E u f l l lω ω ω ω ω− −
=

 , ∑

[ ] [ ] [ ] [ ] [ ] [ ] [ ]
1

( ( ( 1), ) ( ), ) ( )
L

i i i i i i i
l

E u f l l lω ω ω ω ω− −
=

 ≥ + , ∑ , 

where [ ] [ ][ ]i iE ω⋅  is the expectation operator over [ ]iω−  conditional on [ ]iω . 

 

Condition 4 (Supermodularity): For every {1,..., }i n∈ , [ ]iΩ  is an ordered set with 

≥ , and for every [ ] [ ] [ ] [ ] [ ]i i i i iω ω ω ω′ ′′ ′′′, , , ∈Ω , 

  [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i iE u f ω ω ω ω ω− − ′ ′,  [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i iE u f ω ω ω ω ω− − ′′ ′′′ ′′′+ ,   

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i i i i iE u f ω ω ω ω ω ω ω ω− − ′′ ′ ′′′ ′ ′′′≤ ∨ , ∨ ∨   

[ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) , )i i i i i i i i i iE u f ω ω ω ω ω ω ω ω− − ′′ ′ ′′′ ′ ′′′+ ∧ , ∧ ∧  . 

 
 

7.2. Results 
 
  

As in the arguments in the previous sections, we can present the following 
theorem. 
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Theorem 5: Suppose that the agents’ private signals for each task are independent of 
each other, i.e., 

   [ ] [ ]
1

( ) ( )
n

i i
i

p pω ω
=

=∏  for all ω∈Ω . 

Then, the following four properties hold. 

Property 1: If there exists an infinite sequence of mechanisms 1( ( ))KK ∞
=Γ  that 

virtually implement a social choice function f , Condition 3 holds. 
Property 2: Under Condition 3, a social choice function f  is virtually implemented 

by the infinite sequence of the linking mechanisms *
1( ( ))KK ∞
=Γ . 

Property 3: Condition 4 implies Condition 3. 
Property 4: Suppose that for every {1,..., }i n∈ , there exists an increasing, 

continuous, and unbounded function :ie R R→  such that [ ] [ ],
1

( ) ( )
K

K K K
i i i i h

h

d w e w
=

= ∑  for 

all [ ]
K K
iw R∈ . Then, a social choice function f  is exactly implementable with respect 

to K  if and only if Condition 3 holds. 
 
 Properties 3 and 4 are easy to prove because we can directly apply the proofs of 
Propositions 3 and 4. However, we need to provide some explanations in order to prove 
Properties 1 and 2. The definition of virtual implementation in this section is different 
from that in the single agent case presented in Section 3. This is because we do not 
require the agents to play their best responses in the exact sense. However, even if we 
replace the original definition in Section 3 with that provided in this section, we can 
prove the necessity of Condition 1 for virtual implementation in exactly the same 
manner as in the proof of Theorem 1. Based on this, we can extend the necessity result 
obtained in the single agent case to the multiple agent case by simply applying the same 
logic as that used in the former case. 
 We need to provide more detailed explanations in order to prove Property 2. Let us 
assume any positive real number 0η >  sufficiently close to zero and consider a 

sufficiently large K . Let [ ] [ ]( , )i iKηΣ ⊂ Σ  denote the set of agent i s′  strategies [ ]iσ  

such that the expected value of the proportion of the tasks for which the agent 
announces incorrect private signals is less than η , i.e., 
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[ ], [ ], *
[ ]

{ {1 } }
( ),i h i h

i

h K m
E K

K
ω

σ η
∈ , , | ≠ 

Γ < 
 

"
, 

where *
[ ][ ( ), ]iE K σ⋅ Γ  is the expectation operator over ω  conditional on 

*
[ ]( ( ), )iK σΓ . As in Theorem 2, we can observe that [ ] [ ]( , )i iKηΣ ⊂ Σ  is nonempty for a 

sufficiently large K . Let us define 

[ ]( , )i Kε η
[ ] [ ] [ ] [ ]

*
[ ] [ ]( , )

max max ( ( ) ( ), ) ( ),
i i i i

K K K K
i iK

E v g m t m K
σ η σ

ω σ
− −∈Σ ∈Σ

  ≡ , Γ 
 

[ ] [ ]

*
[ ] [ ]( , )

max ( ( ) ( ), ) ( ),
i i

K K K K
i iK

E v g m t m K
σ η

ω σ
∈Σ

 − , Γ 
. 

Note that there exists a [ ]{1,..., }
max ( , )ii n

Kε η
∈

−Nash equilibrium in *( )KΓ . As in the proof 

of Theorem 2, we can observe that there exists a best response for agent i  such that the 
expected value of the proportion of the tasks for which the agent announces incorrect 
private signals is close to zero.11 This implies that we can choose a strategy for agent i  

in [ ]( , )i KηΣ  that is nearly a best response and, therefore, we can choose [ ]( , )i Kε η  

close to zero. In fact, by choosing η  as close to zero and then choosing a sufficiently 

large K , we can obtain [ ]( , )i Kε η  as close to zero as possible. Thus, we have proved 

Property 2. 
 

 
7.3. Remarks 

 
 
From Property 4, it follows as in Appendix B that we can replace Condition 3 with 

the condition that for every {1,..., }i n∈ , there exists [ ] [ ]:i ir RΩ →  such that for every 

[ ] [ ]i iω ∈Ω  and every [ ] [ ]i iω ∈Ω� , 

                                                 
11 This does not imply that the expected value of the proportion of the tasks for which the agent 
announces incorrect private signals is less than η . This is why we cannot use the exact Nash equilibrium 
in place of ε − Nash equilibrium in the case of multiple agents. 
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[ ] [ ] [ ] [ ] [ ]( ( ) ) ( )i i i i iE u f rω ω ω ω , +   

[ ] [ ] [ ] [ ] [ ] [ ] [ ]( ( , ) ) ( )i i i i i i iE u f rω ω ω ω ω− ≥ , + � � . 

By assuming [ ] [ ]( ) 0i ir ω ≡  for all {1,..., }i n∈ , we can verify that for Condition 3, it is 

sufficient that for every {1,..., }i n∈ , every [ ] [ ]i iω ∈Ω , and every [ ] [ ]i iω ∈Ω� , 

[ ] [ ] [ ]( ( ) )i i iE u f ω ω ω ,  [ ] [ ] [ ] [ ] [ ]( ( , ) )i i i i iE u f ω ω ω ω− ≥ , � . 

This condition is the same as the ex ante efficiency that was introduced by Jackson and 
Sonnenschein (2005) as the sufficient condition for implementation. In contrast with the 
present paper, Jackson and Sonnenschein assumed private values and showed full 
implementation in that for a sufficiently large K , every Nash equilibrium in the linking 
mechanism virtually induces the value of the ex ante efficient social choice function. 
 Even from a practical viewpoint, linking mechanisms are more effective than 
incentive wage schemes. In fact, unlike incentive wage schemes, the linking 
mechanisms are not dependent on the details of the agents’ payoff functions.12  
 In Theorem 5, we have supposed that the agents’ private signals are independent of 
each other. Similarly, even in the case of correlated private signals across all the agents, 
we can prove that Properties 1, 2, and 3 hold and that the sufficient part of Property 4 
holds. However, if the agents’ signals are correlated to each other, the class of exactly 
implementable social choice functions is wider than the class of social choice functions 
that are virtually implementable by linking mechanisms. In fact, any social choice 
function is exactly implementable whenever the probability distribution of the other 
agents’ signal profile conditional on each agent’s private signal varies across her signals, 
i.e., 

   [ ] [ ] [ ] [ ]( | ) ( | )i i i ip pω ω′⋅ ≠ ⋅  for all [ ] [ ]i iω ∈Ω  and all [ ] [ ] [ ]\ { }i i iω ω′ ∈Ω , 

where 

[ ] [ ]

[ ] [ ] [ ]
[ ] [ ]

( )( | )
( , )

i i

i i i
i i

pp
p

ω

ωω ω
ω ω

− −

−
−

′ ∈Ω

≡
′∑

. Needless to say, this sufficient condition is 

extremely weak. See Crèmer and McLean (1985, 1988), Matsushima (1990, 2005), 

                                                 
12 In the case of multiple agents, both linking mechanisms and incentive wage schemes depend on the 
probability function of each agent’s signals. In the case of a single agent, however, incentive wage 
schemes need not be dependent on this distribution. 
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Aoyagi (1998), Chung (1999), and others. In this case, the incentive wage scheme for 
each agent depends on the other agents’ announcements as well as on her own 
announcement. This implies that whether each agent should be punished or rewarded is 
crucially dependent on the whistle-blowing of the other agents. Thus, even though the 
linking mechanism is a potentially powerful tool to incentivize agents in the case of 
correlated private signals, the drawback of this mechanism as compared with incentive 
wage schemes is that whistle-blowing is never effective without side payments. 

 
 

7.4. Macro Shock 
 
  

Throughout this paper, we have assumed that the private signals were drawn 
independently across all the tasks. However, by just adding a prior message stage in a 
simple way, the linking mechanism does function effectively even if the private signals 
are correlated across all the tasks. 

Consider a situation in which there exist three or more agents. Suppose that there 
exists a macro shock θ ∈Θ  on which the probability distribution of hω  for each task 

{1,..., }h K∈  and the social choice function are dependent. We denote 

( ) ( | )p pω ω θ= , [ ] [ ] [ ] [ ]( ) ( | )i i i ip pω ω θ= , and ( ) ( , )f fω ω θ= . 

Here, we assume that Θ  is a finite set, and for every {1,..., }i n∈ , every θ ∈Θ , and 
every \ { }θ θ′∈Θ , 

(17)   [ ] [ ]( | ) ( | )i ip pθ θ ′⋅ ≠ ⋅ . 

In order to be able to apply the appropriate linking mechanism, the principal needs to 
know the true macro shock θ . However, the principal and the agents both cannot 
observe this shock. 

As we have already known, with a sufficiently large K , it is almost certain, based 
on the law of large numbers, that the realized proportion of the tasks for which an agent 
observes each private signal is almost the same as the probability of her observing this 
signal for a single task. This along with (17) implies that it is almost certain that each 
agent can infer the macro shock correctly from the observed private signals for all the 
tasks. 

With three or more agents, the principal can incentivize the agents to tell of what 
they know about the macro shock to the best of their abilities as follows. The principal 



 30 

requires each agent to announce about the macro shock. If more than a half of the agents 
announce the same macro shock θ ∈Θ� , the principal will apply the linking mechanism 

associated with ( ) ( | )p p θ⋅ = ⋅ �  and ( ) ( , )f fω ω θ= � . If there is no such θ� , the 

principal will apply some fixed mechanism. Hence, announcing about the macro shock 
honestly is nearly a best response for each agent if the other agents announce honestly, 
because her announcement does not much influence which mechanism the principal will 
apply. This implies that truth-telling about the macro shock is described as an 
epsilon-Nash equilibrium strategy. 

Unfortunately, this argument depends crucially on the assumption that there exist 
three or more agents. In fact, with a single agent, the principal needs to design an 
incentive wage scheme, in addition to the linking mechanism, in order to elicit the true 
macro shock from this single agent.13 

 

                                                 
13 Currently we are preparing a paper on this subject. 
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Appendix A 
 

 
We will show that in the proof of Theorem 1, we can assume that for every K , 

( )KΓ  is symmetric. Suppose that ( )KΓ  is not symmetric. For each permutation π  
on {1,..., }K , we define ,Kg π  and ,Kt π  by 

, ,( )[ ] ( )[ ] K K K Kg m a g m aπ π π =  for all m M∈  and all K Ka A∈  
and 

,
( ) ( ) ( ) K K
h ht m t mπ π

π =  for all m M∈  and all {1 … }h K∈ , , . 

Let , ,( ) ( , , )K KK M g tπ π πΓ = . Note that for every σ ∈Σ  and every K Kω ∈Ω , 

 
1

( , ) ( ) ( ), ,{ }
K

K
h h h

h
E u a d w Kω σ ω

=

 + Γ  
∑  

, ,

1
( , ) ( ) ( ) , ,{ }

K
K K

h h h
h

E u a d w kπ π π πω σ ω
=

 = + Γ  
∑ , 

where ( ), , KE K σ ω ⋅ Γ   is the expectation operator over ω  conditional on 

( ( ), , )KK σ ωΓ , , , ,
1( ,..., )K K K K

K
π π πω ω ω= ∈Ω  is defined by ,

( )
K

h h
π

πω ω=  for all 

{1 … }h K∈ , , , and ,K π πσ σ= ∈Σ  is defined by ,( )K mπ π πσ ω = , where ( )Km σ ω= , 
for all K Kω ∈Ω . Since the truthful strategy σ̂  is a best response in ( )KΓ  and ˆ πσ  
is also truthful, i.e., ˆ ˆπσ σ= , it follows from (4) that σ̂  is a best response in ( )K πΓ , 
and 

,{ {1 } ( )} ˆlim ( ), 1Kh h

K

h K a fE K
K

π πω σ
→∞

∈ , , | = Γ =  

" . 

We define ( ) ( , , )K KK M g tΓ =  by 

,1K Kg g
K

π

π∈Π
≡

!∑  and ,1K Kt t
K

π

π∈Π
≡

!∑ , 

where Π  denotes the set of permutations on {1,..., }K . It is clear that ( )KΓ  is 
symmetric, σ̂  is a best response in ( )KΓ , and 

{ {1 } ( )} ˆlim ( ), 1Kh h

K

h K a fE K
K

ω σ
→∞

∈ , , | = Γ =  

" . 

Therefore, we can assume that for every K , ( )KΓ  is symmetric. 
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Appendix B: Proof of Proposition 4 
 

 
Let us select K  arbitrarily. Suppose that a social choice function f  is exactly 

implementable with respect to K , i.e., there exist a mechanism ( )KΓ  and a best 
response σ ∗ ∈Σ  in ( )KΓ  such that 
(B-1)  ( ( ))[ ( )] 1K K K Kg fσ ω ω∗ =  for all K Kω ∈Ω . 
Consider any K ′  such that K yK z′ = +  for some positive integer y  and some 
integer {0,..., 1}z K∈ − . It is clear that by using ( )KΓ  in a set of y  for the first yK  
tasks, we can construct a mechanism ( )K ′Γ  such that there exists a best response in 

( )K ′Γ  that induces the value of the social choice function f  for the first yK  tasks. 
This implies that there exists an infinite sequence of mechanisms that virtually 
implements f  with respect to p . This along with Theorem 1 implies that Condition 1 
is necessary for exact implementation. 

Next, we will prove the sufficiency. We merely need to show that Condition 1 is 
sufficient in the case of 1K =  because if this is true, we can exactly implement the 
social choice function irrespective of K  by simply using ( )KΓ  in a set of K  for all 
tasks. Thus, it is sufficient to verify whether or not there exists a side payment function 

:r RΩ→  such that 
( ( ) ) ( ) ( ( ) ) ( )u f r u f rω ω ω ω ω ω, + ≥ , +� �  for all ω∈Ω  and all ω∈Ω� .14 

Using Theorem 1 proposed by Fan (1956) as it is used in D’Aspremont and 
Gèrard-Varet (1979, Theorem 7), we can show that a necessary and sufficient condition 

for the existence of such an r  is that for every 2 {0}Rµ +:Ω → ∪ , if 

(B-2)  { }( ) ( ) 0 
ω ω

µ ω ω µ ω ω
≠ ∈Ω

, − , =∑
�

� �  for all ω∈Ω , 

then 

(B-3)  { }( ( ) ) ( ( ) ) ( ) 0u f u f
ω ω ω

ω ω ω ω µ ω ω
∈Ω ≠ ∈Ω

, − , , ≥∑ ∑
�

� � . 

For every {2 … }L I∈ , , , an L-tuple of private signals ( (1) … ( )) LLω ω, , ∈Ω  is said to 
be a cycle if for every {1 … }l L∈ , , , 

( ( ) ( 1)) 0l lµ ω ω, + >  
                                                 
14 According to the revelation principle, without loss of generality, we can limit our attention to the direct 
mechanisms that have a side payment function :t RΩ→  such that for every ω∈Ω  and every 
ω∈Ω� , 
   ( ( ) ) ( ( )) ( ( ) ) ( ( ))u f e t u f e tω ω ω ω ω ω, + ≥ , +� � . 
This along with the unboundedness of e  implies that there exists such an r  in which r e t≡ D . 
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and 
 ( ) ( )l lω ω ′≠  for all  {1 … } \ { }l L l′ ∈ , , . 

Suppose that Condition 1 holds, i.e., for every {2 }L I∈ , ,"  and every 
( (1) ( ))Lω ω, ," , if 

( ) ( )l lω ω ′≠ ∈Ω  for all {1 … }l L∈ , ,  and all  {1 … } \ { }l L l′ ∈ , , , 
then 

(B-4)  
1 1

( ( ( )) ( )) ( ( ( 1)) ( ))
L L

l l
u f l l u f l lω ω ω ω

= =
, ≥ + ,∑ ∑ . 

It is evident that we can choose 2(1) {0}Rµ µ += :Ω → ∪ , (1)ω ∈Ω , and 

(2) \ { (1)}ω ω∈Ω  satisfying (B-2) and 
( (1) (2)) 0µ ω ω, > . 

If ( (2) (1)) 0µ ω ω, >  holds, then ( (1) (2))ω ω,  is a cycle. If ( (2) (1)) 0µ ω ω, = , it 
follows from (B-2) that we can choose a private signal (3) \ { (1) (2)}ω ω ω∈Ω ,  such 
that 

( (2) (3)) 0µ ω ω, > . 
Let us select a positive integer l  arbitrarily. Suppose that ( (1) ..., ( 1))lω ω, −  

satisfies 
( ) ( )l lω ω′ ′′≠  for all {1 … 1}l l′∈ , , −  and {1 … 1} \ { }l l l′′ ′∈ , , − , 
( ( ) ( 1)) 0l lµ ω ω′ ′, + >  for all {1 … 2}l l′∈ , , − , 

and 
( ( ) ( )) 0l lµ ω ω′ ′′, =  for all  {2 … 2}l l′ ∈ , , −  and {1 … 1}l l′′ ′∈ , , − . 

If there exists  {1 … 2}l l′ ∈ , , −  such that ( ( 1) ( )) 0l lµ ω ω ′− , > , then 
( ( ) ..., ( 1))l lω ω′ , −  is a cycle. If there exists no such l′ , it follows from (B-2) that we 
can choose a private signal ( ) \ { (1) ..., ( 1)}l lω ω ω∈Ω , −  such that 

( ( 1) ( )) 0l lµ ω ω− , > . 
Since IΩ =  is finite, by continuing the above step, we can determine 

{2,..., }l I∈  and {1,...., 1}l l′∈ −  such that ( ( ) ..., ( ))l lω ω′ ,  is a cycle. By replacing l′  
and l  with 1  and L , respectively, we denote this cycle by 

(1) ( (1) … ( ))C Lω ω≡ , , . 
Let 

{1 … }
(1) min ( ( ) ( 1))

l L
l lξ µ ω ω

∈ , ,
≡ , + . 

We specify 2(1) : Rη Ω →  such that 
(1)( ( ) ( 1)) (1)l lη ω ω ξ, + =  for all {1,..., }l L∈ , 

and for every 2( )ω ω′, ∈Ω , if there exists no {1,..., }l L∈  such that 
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( ) ( ( ), ( 1))l lω ω ω ω′, = + , 
then 

(1)( ) 0η ω ω′, = .  
From (B-4), it follows that 

{ }
2( , )

( ( ) ) ( ( ) ) (1)( , ) 0u f u f
ω ω

ω ω ω ω η ω ω
′ ∈Ω

′ ′, − , ≥∑ . 

We define 2(2) Rµ :Ω →  by 
(2) (1) (1)µ µ η≡ − . 

From (B-2) and the definition of (1)η , it follows that 
   (2)( ) 0µ ω ω′, ≥  for all ω∈Ω  and all ω′∈Ω  
and 

{ }(2)( ) (2)( ) 0
ω ω

µ ω ω µ ω ω
≠ ∈Ω

, − , =∑
�

� �  for all ω∈Ω . 

If (2)( ) 0µ ω ω, =�  for all ω∈Ω  and all \ { }ω ω∈Ω� , the inequality (B-3) holds for 
(2)µ µ= , i.e., 

{ }( ( ) ) ( ( ) ) (2)( ) 0u f u f
ω ω ω

ω ω ω ω µ ω ω
∈Ω ≠ ∈Ω

, − , , ≥∑ ∑
�

� � . 

If (2)( ) 0µ ω ω, >�  for some ω∈Ω  and some \ { }ω ω∈Ω� , we can construct a cycle 
(2)C  and (3)µ  as we did in (1)C  and (2)µ . 

By continuing the above step, we can determine a positive integer q , 

2( ) : {0}q Rη +′ Ω → ∪  for each {1,..., 1}q q′∈ − , and 2( ) : {0}q Rµ +Ω → ∪  such that 

{ }
\{ }

( ( ) ) ( ( ) ) ( )( ) 0u f u f q
ω ω ω

ω ω ω ω µ ω ω
∈Ω ∈Ω

, − , , ≥∑ ∑
�

� � , 

for every {1,..., 1}q q′∈ − , 

{ }
2( , )

( ( ) ) ( ( ) ) ( )( , ) 0u f u f q
ω ω

ω ω ω ω η ω ω
′ ∈Ω

′ ′ ′, − , ≥∑ , 

and 

   
1

1
( ) ( )

q

q
q qµ η µ

−

′=

′= +∑ . 

These imply (B-3). Thus, we have proved Proposition 4. 
 


