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Abstract

The so-called Stein problem is addressed in the estimation of a mean vector of
a multivariate normal distribution with a known covariance matrix. For general
prior distributions with sphericity, the paper derives conditions on priors under
which the resulting generalized Bayes estimators are minimax. It is also shown
that the conditions can be expressed based on the inverse Laplace transform of
the general prior. Stein’s super-harmonic condition is derived from the general
conditions. Finally, the priors are characterized for the admissibility.
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1 Introduction

The Stein problem is one of the most attractive topics in theoretical statistics. In the esti-
mation of a mean vector of a multivariate normal distribution, Stein (1956) and James and
Stein (1961) discovered the inadmissibility of the maximum likelihood estimator (MLE)
when the dimension of the mean vector is larger than or equal to three. A considerable
amount of studies have been devoted to this topic for half a century. Of these, Baranchik
(1970), Brown (1971), Strawderman (1971), Alam (1973) and Berger (1976) developed
classes of generalized Bayes estimators with minimaxity and/or admissibility. The classes
of generalized Bayes minimax and/or admissible estimators have been extended by Faith
(1978), Stein (1981), Fourdrinier, Strawderman and Wells (1998) and Maruyama (1998).
These results imply a characterization of prior distributions such that the resulting gener-
alized Bayes estimators are minimax and/or admissible. Such a characterization of prior
distributions in hierarchical Bayes models has been studied by Berger and Robert (1990)
and Kubokawa and Strawderman (2004) for minimaxity and by Berger and Strawderman
(1996) for admissibility. Most of these studies treated the scale-mixture of normal dis-
tributions as prior distributions except for Stein (1981) who derived the super-harmonic
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condition of the general prior distributions to satisfy the minimaxity of the Bayes estima-
tors. In this paper, we obtain a class of general prior distributions with sphericity which
results in the generalized Bayes estimators with minimaxity and/or admissibility.

To explain the outlines of the paper, we describe the model and the estimation problem.
Let X = (X1, . . . , Xp)

t be a random vector distributed as X ∼ Np(θ, Ip) for θ =
(θ1, . . . , θp)

t and the p×p identity matrix Ip. The problem of estimating the mean vector

θ by θ̂ is considered relative to the quadratic loss L(θ, θ̂) = ‖θ̂ − θ‖2. Estimator θ̂ is

evaluated in terms of the risk function R(θ, θ̂) = E�[L(θ, θ̂)]. The maximum likelihood

estimator of θ is θ̂0 = X. Since it is minimax with a constant risk R(ω, θ̂0) = p,

the improvement on θ̂0 is equivalent to deriving minimax estimators but θ̂0. To find a
minimax estimator, Stein (1956) considered a class of estimators

θ̂ψ = (1 − ψ(W )/W )X for W = ‖X‖2, (1.1)

where ψ(w) is a function of w. As stated in Stein (1956), this is a class of estimators
equivariant under the transformation X → ΓX and θ → Γθ for any p × p orthogonal
matrix Γ, namely, θ̂(ΓX) = Γθ̂(X). Out of the class, James and Stein (1961) found the

estimator θ̂
JS

= (1 − (p− 2)/W )X, and established that if p ≥ 3, then the shrinkage

estimator θ̂
JS

dominates θ̂0, namely, θ̂
JS

is minimax. The James-Stein estimator can be
further dominated by the positive-part Stein estimator, which is still inadmissible. This
fact is the primary motivation to derive generalized Bayes and minimax estimators, some
of which may be admissible and minimax.

In this paper, we handle the general form of prior distributions with sphericity, given
by h(‖θ‖2)dθ. As noted in Section 2, the generalized Bayes estimator against the prior
h(‖θ‖2)dθ belongs to the class (1.1). In a precise sense, the generalized Bayes estimator
for h(‖θ‖2)dθ is identical to the generalized Bayes estimator against the prior π(λ)dλ =
λp/2−1h(λ)dλ within the equivariant class (1.1) for λ = ‖θ‖2. This is called the Bayes

equivariant estimator in this paper and denoted by θ̂
π
.

In Section 3, we obtain general conditions on h(λ) under which θ̂
π

is minimax. For
the first and second derivatives h′(λ), h′′(λ) of h(λ), the function k(λ) ≡ {(p− λ)h′(λ) +
2λh′′(λ)}/h(λ) is assumed to be decomposed as k(λ) = k1(λ) + k2(λ), where k1(λ) is a
nondecreasing function of λ and k2(λ) is a function. Then, the general conditions are
described as

(1) the first derivative of h(λ) is not positive,
(2) h(λ) satisfies the inequality

k0 + 2 sup
λ>0

{
(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′

h′(λ)

}
− inf

λ>0
k2(λ) ≤ p,

for {k1(λ)h(λ)}′ = k′1(λ)h(λ) + k1(λ)h′(λ), the third derivative h′′′(λ) and a constant k0

defined by (3.20). Under these conditions, the Bayes equivariant estimator is minimax.
Especially, in the case that k(λ) is nondecreasing, the condition (2) can be simplified as
k0 ≤ p− 2. An example using the general conditions is given in Section 3.
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In Section 4, the general conditions can be expressed based on the inverse Laplace
transform of h(λ). When h(λ) is written as h(λ) =

∫∞
0
H(t)e−λtdt, the function H(t) is

called the inverse Laplace transform of h(λ). The general conditions on h(λ) derived in
Section 3 can be rewritten by simple conditions based on the inverse Laplace transform
H(t). Especially, in the case that h(λ) is completely monotone, it is known that H(t) is a
nonnegative function. Then, the Bayes equivariant estimator is minimax if H(t) satisfies
the inequality

K0 + 2 sup
t
K2(t) − inf

t
K2(t) ≤ p− 3,

where K(t) ≡ −(p − 4)t + t(1 + 2t)H ′(t)/H(t) is decomposed as K(t) = K1(t) + K2(t)
for a nonincreasing function K1(t) and a function K2(t), and K0 is a constant defined by
(4.7). This condition is similar to that of Fourdrinier et al . (1998), though more general
conditions are provided in Section 4. When we check the conditions for the minimaxity
for a given function h(λ), the conditions given in Section 4 are not very useful, because,
in general, it is hard to derive the inverse Laplace transform H(t) of h(λ). However,
the conditions in Section 4 are useful for constructing prior distributions of the form
h(λ) =

∫
H(t)e−λtdt such that the resulting Bayes equivariant estimators are minimax.

Section 5 explains how Stein’s super-harmonic condition can be derived from the
general conditions in Sections 3 and 4. Examples are given where the conditions in
Section 4 do not work, but Stein’s super-harmonic condition works well.

The admissibility of the Bayes equivariant estimators is studied in Section 6 based on
Brown’s admissibility condition. The prior distributions for the admissibility are charac-
terized, and some examples of admissible and minimax estimators are provided.

Finally, it is remarked that the idea of using the inverse Laplace transform appeared
in Kubokawa (2006) who dealt with a linear regression model with an error term having
a normal distribution with an unknown variance. Since the generalized Bayes estimators
are complicated in the case of the unknown variance, the estimators treated in Kubokawa
(2006) were focused on a class of estimators (1.1) with monotone nondecreasing functions
ψ(·). This paper, however, handles more general classes without assuming the monotonic-
ity of ψ(·).

2 Bayes equivariant estimators

In this section, we derive the Bayes estimator within the class of equivariant estimators
(1.1), called the Bayes equivariant estimator, and demonstrate that the Bayes equivariant
estimator can be obtained as the generalized Bayes estimator against a prior distribution
of θ. The minimaxity of the Bayes equivariant estimator will be discussed in the next
sections.

We begin with providing the risk function of the equivariant estimator θ̂ψ given by
(1.1). It is assumed that the function ψ(w) is absolutely continuous with respect to the
Lebesgue measure and satisfies that E[{ψ(W )}2/W ] < ∞. Using integration by parts

called the Stein identity, Stein (1973, 1981) showed that the risk function of θ̂ψ is given
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by

R(λ, θ̂ψ) = p+ E

[
ψ2(W ) − 2(p− 2)ψ(W )

W
− 4ψ′(W )

]
, (2.1)

which can be expressed as

R(λ, θ̂ψ) = p+

∫ ∞

0

{
ψ2(w) − 2(p− 2)ψ(w)

w
− 4ψ′(w)

}
g(w;λ)dw,

where g(w;λ) is a density of a noncentral chi-square distribution χ2
p(λ) with p degrees of

freedom and the noncentrality λ = ‖θ‖2, give by

g(w;λ) = 2−p/2
∞∑
j=0

(λ/2)j

j!Γ(p/2 + j)2j
e−λ/2wp/2+j−1e−w/2.

Let π(λ) be a prior distribution of λ, and the marginal density of W is given by

gπ(w) =
∫∞
0
g(w;λ)π(λ)dλ. Then the difference of the Bayes risks of the estimators θ̂ψ

and θ̂0 is written as

∆(π, θ̂ψ) =

∫ ∞

0

{
R(λ, θ̂ψ) − R(λ, θ̂0)

}
π(λ)dλ

=

∫ ∞

0

{
ψ2(w) − 2(p− 2)ψ(w)

w
− 4ψ′(w)

}
gπ(w)dw

where this integral is assumed to be finite. By integration by parts, it is noted that∫ ∞

0

ψ′(w)gπ(w)dw =[ψ(w)gπ(w)]∞w=0 −
∫ ∞

0

ψ(w)g′π(w)dw

= −
∫ ∞

0

ψ(w)g′π(w)dw,

where the finiteness of
∫ {ψ2(w)/w}gπ(w)dw implies that

lim
w→∞

ψ(w)gπ(w) = lim
w→0

ψ(w)gπ(w) = 0.

Then,

∆(π, θ̂ψ) =

∫ ∞

0

{
ψ2(w) − 2(p− 2)ψ(w)

w
gπ(w) + 4ψ(w)g′π(w)

}
dw,

which is minimized at

ψπ(w) = p− 2 − 2wg′π(w)/gπ(w),

and we get the Bayes estimator

θ̂
π

= (1 − ψπ(W )/W )X. (2.2)
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This is called the Bayes equivariant estimator, for it minimizes the Bayes risk within
the class of equivariant estimators. The above expression of ψπ(w) was derived by Haff
(1991) through the variational method. When the prior π(λ) is improper, we can handle
estimator (2.2) as a generalized Bayes estimator if ψπ(w) is finite. In this paper, we thus

treat the Bayes equivariant estimator θ̂
π

regardless of the finiteness of the Bayes risk and∫
π(λ)dλ. Another expression of ψπ(w) given below will be useful for deriving conditions

for the minimaxity of θ̂
π
. Carrying out the differentiation g′π(w), we may write ψπ(w) as

ψπ(w) =p− 2 − 2w

{∑∞
j=0 dj(p/2 + j − 1)wj−1∑∞

j=0 djw
j

− 1

2

}

=w − 2w

∑∞
j=1 djjw

j−1∑∞
j=0 djw

j
, (2.3)

where

dj =

∫ ∞

0

[j!Γ(p/2 + j)22j]−1 exp{−λ/2}λjπ(λ)dλ.

We thus get the form

ψπ(w) = w − 2w

∑∞
j=0{j!Γ(p/2 + j + 1)22j+2}−1wj

∫∞
0
λj+1 exp{−λ/2}π(λ)dλ∑∞

j=0{j!Γ(p/2 + j)22j}−1wj
∫∞
0
λj exp{−λ/2}π(λ)dλ

. (2.4)

It may be interesting to note that the Bayes equivariant estimator θ̂
π

can be derived
as the generalized Bayes estimator against a spherically symmetric prior distribution of
θ, given by

θ ∼ h(‖θ‖2)dθ. (2.5)

In fact, the generalized Bayes estimator against prior (2.5) is given by

θ̂
GB

=

∫ ∫
θ exp{−‖X − θ‖2/2}h(‖θ‖2)dθ∫ ∫
exp{−‖X − θ‖2/2}h(‖θ‖2)dθ

.

Using the same arguments as in Kubokawa (2006), we can show that θ̂
GB

is identical to

the Bayes equivariant estimator θ̂
π
, given by (2.2), against the prior π(λ) = λp/2−1h(λ).

Hereafter, the prior distribution of λ is supposed to be of the form

π(λ) = λp/2−1h(λ), (2.6)

namely, dj above (2.4) is written as

dj =

∫ ∞

0

[j!Γ(p/2 + j)22j]−1 exp{−λ/2}λp/2+j−1h(λ)dλ. (2.7)

and investigate the minimaxity of the Bayes equivariant estimator θ̂
π
.
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3 General characterization of priors for minimaxity

We now address the problem of showing the minimaxity of the Bayes equivariant estimator
θ̂
π

against the prior π(λ) = λp/2−1h(λ). In this section, we derive general sufficient
conditions on h(λ) for the minimaxity. To this end, assume the following condition.

(A.1) The function h(λ) is three-times differentiable, and the first, second and third
derivatives of h(λ) are denoted by h′(λ), h′′(λ) and h′′′(λ). The functions h(λ), h′(λ) and
h′′(λ) are absolutely continuous and satisfy that limλ→0 λ

p/2h(λ) = limλ→0 λ
p/2h′(λ) =

limλ→0 λ
p/2+1h′′(λ) = 0 and limλ→∞ h(λ)e−δλ = limλ→∞ h′(λ)e−δλ = limλ→∞ h′′(λ)e−δλ =

0 for 0 < δ < 1/2.

Theorem 3.1 Assume that h(λ) satisfies (A.1). Then the Bayes equivariant estimator

θ̂
π

is minimax if the function h(λ) satisfies the inequality

2

∫
Cp+2(λ, w){(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)}dλ∫

Cp+2(λ, w)h′(λ)dλ

−
∫
Cp(λ, w){(p− λ)h′(λ) + 2λh′′(λ)}dλ∫

Cp(λ, w)h(λ)dλ
≤ p, (3.1)

where Ca(λ, w) =
∑∞

j=0w
j[j!Γ(a/2 + j)22j ]−1λa/2+j−1e−λ/2.

Proof. From (2.3), ψπ(w) is written as ψπ(w) =
∑∞

j=1Djw
j/
∑∞

j=0 djw
j, where Dj =

dj−1 − 2jdj. Since

ψ′
π(w) =

∑∞
j=1 jDjw

j−1∑∞
j=0 djw

j
−
∑∞

j=1Djw
j
∑∞

j=1 jdjw
j−1

(
∑∞

j=0 djw
j)2

,

it is observed that

∆̂ ≡{ψπ(w)2 − 2(p− 2)ψπ(w)}/w − 4ψ′
π(w)

=w

(∑∞
j=1Djw

j−1∑∞
j=0 djw

j

)2

− 2(p− 2)

∑∞
j=1Djw

j−1∑∞
j=0 djw

j

− 4

∑∞
j=1 jDjw

j−1∑∞
j=0 djw

j
+ 4

∑∞
j=1Djw

j
∑∞

j=1 jdjw
j−1

(
∑∞

j=0 djw
j)2

.

From (2.1), it follows that the Bayes equivariant estimator θ̂
π

is minimax if ∆̂∗ defined
by

∆̂∗ ≡∆̂

∞∑
j=0

djw
j/

∞∑
j=1

Djw
j−1

=

∑∞
j=1Djw

j∑∞
j=0 djw

j
− 4

∑∞
j=1 jDjw

j−1∑∞
j=1Djwj−1

+ 4

∑∞
j=1 jdjw

j∑∞
j=0 djw

j
− 2(p− 2)
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is not positive for any w. Since 2jdj = dj−1−Dj , it is seen that 2
∑∞

j=1 jdjw
j/
∑∞

j=0 djw
j =

w −∑∞
j=1Djw

j/
∑∞

j=0 djw
j, so that ∆̂∗ may be rewritten as

∆̂∗ = −
∑∞

j=1Djw
j∑∞

j=0 djw
j

+ 2

∑∞
j=1(Dj−1 − 2jDj)w

j∑∞
j=1Djwj

− 2(p− 2), (3.2)

where D0 = 0.

We first evaluate the term Dj for j ≥ 1. From definition (2.7) of dj, Dj/dj = dj−1/dj−
2j is expressed as

Dj/dj = 4j(p/2 + j − 1)

∫∞
0
λp/2+j−2h(λ)e−λ/2dλ∫∞

0
λp/2+j−1h(λ)e−λ/2dλ

− 2j.

By integration by parts under assumption (A.1), it is noted that

(p/2 + j − 1)

∫ ∞

0

λp/2+j−2h(λ)e−λ/2dλ

=[λp/2+j−1h(λ)e−λ/2]∞λ=0 +

∫ ∞

0

λp/2+j−1{h(λ)/2 − h′(λ)}e−λ/2dλ

=
1

2

∫ ∞

0

λp/2+j−1{h(λ) − 2h′(λ)}e−λ/2dλ, (3.3)

which yields that

Dj/dj = −4j

∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ/
∫ ∞

0

λp/2+j−1h(λ)e−λ/2dλ. (3.4)

Using integration by parts under (A.1) again, we can demonstrate that

j

∫ ∞

0

λj−1λp/2h′(λ)e−λ/2dλ

=[λp/2+jh′(λ)e−λ/2]∞λ=0 −
1

2

∫ ∞

0

{(p− λ)h′(λ) + 2λh′′(λ)}λp/2+j−1e−λ/2dλ

= − 1

2

∫ ∞

0

{(p− λ)h′(λ) + 2λh′′(λ)}λp/2+j−1e−λ/2dλ.

Hence from (3.4) and definition (2.7) of dj, we get the expression

Dj =2

∫∞
0

{(p− λ)h′(λ) + 2λh′′(λ)} λp/2+j−1e−λ/2dλ∫∞
0
λp/2+j−1h(λ)e−λ/2dλ

dj

=
2

j!Γ(p/2 + j)22j

∫ ∞

0

{(p− λ)h′(λ) + 2λh′′(λ)}λp/2+j−1e−λ/2dλ. (3.5)

We next evaluate the term Dj−1−2jDj for j ≥ 1. From (3.4) and (2.7), the term may
be written as

Dj−1 − 2jDj = −
(
Dj−1

Dj
− 2j

)
4j

∫∞
0
λp/2+j−1h′(λ)e−λ/2dλ∫∞

0
λp/2+j−1h(λ)e−λ/2dλ

dj

= −
(
Dj−1

Dj
− 2j

)∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ
4j

j!Γ(p/2 + j)22j
. (3.6)
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Using (3.4) and (2.7) again, we observe that

Dj−1

Dj
=

(j − 1)
∫∞
0
λp/2+j−2h′(λ)e−λ/2dλ/

∫∞
0
λp/2+j−2h(λ)e−λ/2dλ

j
∫∞
0
λp/2+j−1h′(λ)e−λ/2dλ/

∫∞
0
λp/2+j−1h(λ)e−λ/2dλ

dj−1

dj

=4(p/2 + j − 1)(j − 1)

∫∞
0
λp/2+j−2h′(λ)e−λ/2dλ∫∞

0
λp/2+j−1h′(λ)e−λ/2dλ

,

since dj−1/dj = 4j(p/2 + j − 1)
∫∞
0
λp/2+j−2h(λ)e−λ/2dλ/

∫∞
0
λp/2+j−1h(λ)e−λ/2dλ. Then,

−
(
Dj−1

Dj
− 2j

)∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ (3.7)

= −4(j − 1)(p/2 + j − 1)

∫ ∞

0

λp/2+j−2h′(λ)e−λ/2dλ+ 2j

∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ.

Similarly to (3.3), for j ≥ 2, we can get the equality

(p/2 + j − 1)

∫ ∞

0

λp/2+j−2h′(λ)e−λ/2dλ

=
1

2

∫ ∞

0

λp/2+j−1{h′(λ) − 2h′′(λ)}e−λ/2dλ, (3.8)

under assumption (A.1). This equality still holds for j = 1 since∫ ∞

0

λp/2−1e−λ/2{(p− λ)h′(λ) + 2λh′′(λ)}dλ = 0, (3.9)

which can be derived by using integration by parts. From (3.8), the r.h.s. of equality
(3.7) is rewritten as

−
(
Dj−1

Dj
− 2j

)∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ

= 4(j − 1)

∫ ∞

0

λp/2+j−2h′′(λ)e−λ/2dλ+ 2

∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ. (3.10)

Further using integration by parts for j ≥ 2 gives the equality

(j − 1)

∫ ∞

0

λp/2+j−2h′′(λ)e−λ/2dλ

= −1

2

∫ ∞

0

λp/2+j−1 {(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)} e−λ/2dλ.

It is noted that this equality holds for j = 1, because∫ ∞

0

λp/2e−λ/2{(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)}dλ = 0.

8



Then from (3.6) and (3.10), for j ≥ 1, we get the expression

Dj−1 − 2jDj =
8j

j!Γ(p/2 + j)22j

{∫ ∞

0

λp/2+j−1h′(λ)e−λ/2dλ

−
∫ ∞

0

λp/2+j−1 {(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)} e−λ/2dλ
}
. (3.11)

Finally, we shall rewrite ∆̂∗ given by (3.2) using expressions (3.5) and (3.11) of Dj

and Dj−1 − 2jDj , respectively. Although equality (3.5) is shown for j ≥ 1, it still holds
for j = 0 from the equality (3.9). From this fact, (2.7) and (3.5), it follows that∑∞

j=1Djw
j∑∞

j=0 djw
j

=2

∑∞
j=1 cj

∫
λp/2+j−1e−λ/2{(p− λ)h′(λ) + 2λh′′(λ)}dλ∑∞

j=0 cj
∫
λp/2+j−1h(λ)dλ

=2

∑∞
j=0 cj

∫
λp/2+j−1e−λ/2{(p− λ)h′(λ) + 2λh′′(λ)}dλ∑∞

j=0 cj
∫
λp/2+j−1e−λ/2h(λ)dλ

=2

∫
Cp(λ, w){(p− λ)h′(λ) + 2λh′′(λ)}dλ∫

Cp(λ, w)h(λ)dλ
, (3.12)

where cj = wj/[j!Γ(p/2 + j)22j]. Also from (3.4) and (3.11), it is observed that∑∞
j=1(Dj−1 − 2jDj)w

j∑∞
j=1Djwj

= 2

∑∞
j=1 4jcj

∫
λp/2+j−1{−h′(λ) + (p+ 2 − λ)h′′(λ) + 2λh′′′(λ)}e−λ/2dλ∑∞

j=1 4jcj
∫
λp/2+j−1h′(λ)e−λ/2dλ

= −2 + 2

∫
Cp+2(λ, w){(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)}dλ∫

Cp+2(λ, w)h′(λ)dλ
. (3.13)

Combining (3.12) and (3.13) yields (3.1) from (3.2). Therefore, the proof of Theorem 3.1
is complete.

To derive a sufficient condition on h(·) for the minimaxity, we use the following lemma
(for the reference, see Theorem 2 in Wijsman (1985)).

Lemma 3.1 Let X be a random variable, and let f(x), g(x) and u(x) be functions. If
both g(x)/f(x) and u(x) are monotone in the same direction, then the following inequality
holds:

E[g(X)u(X)] · E[f(X)] ≥ E[g(X)] · E[f(X)u(X)],

where it is assumed that all the expectations exist and E[f(X)] > 0. The reversed inequal-
ity holds if g(x)/f(x) and u(x) are monotone in opposite directions.

Lemma 3.2 If b(λ) is a function of λ such that b(λ)/h(λ) is nondecreasing, then the
ratio of integrals ∫

Cp(λ, w)b(λ)dλ/

∫
Cp(λ, w)h(λ)dλ

is nondecreasing in w.
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Proof. Differentiating
∫
Cp(λ, w)b(λ)dλ/

∫
Cp(λ, w)h(λ)dλ with respect to w, we see

that it is sufficient to show that for cj = wj[j!Γ(p/2 + j)22j ]−1,∑
j

jcj

∫
λp/2+j−1b(λ)e−λ/2dλ

∑
j

cj

∫
λp/2+j−1h(λ)e−λ/2dλ

≥
∑
j

cj

∫
λp/2+j−1b(λ)e−λ/2dλ

∑
j

jcj

∫
λp/2+j−1h(λ)e−λ/2dλ.

Let f(j) = cj
∫
λp/2+j−1h(λ)e−λ/2dλ, g(j) = cj

∫
λp/2+j−1b(λ)e−λ/2dλ and u(j) = j in

Lemma 3.1. Since u(j) is increasing, from Lemma 3.1, we need to show that g(j)/f(j) is
nondecreasing in j, namely,∫

λp/2+j−1b(λ)e−λ/2dλ∫
λp/2+j−1h(λ)e−λ/2dλ

≤
∫
λp/2+jb(λ)e−λ/2dλ∫
λp/2+jh(λ)e−λ/2dλ

for any j. Using Lemma 3.1 again, we can verify this inequality since both b(λ)/h(λ) and
λ are nondecreasing in λ. Therefore, the requested monotonicity is proved.

Lemma 3.3 Assume (A.1) and that
(A.2) h(λ) is nonincreasing.

If limλ→0 λ
p/2d(λ) = limλ→∞ e−δλd(λ) = 0 for 0 < δ < 1/2, then the following inequality

holds for a differentiable function d(λ) satisfying that d(λ)/h(λ) is nondecreasing:∫
Cp+2(λ, w)d′(λ)dλ∫
Cp+2(λ, w)h′(λ)dλ

≤
∫
Cp(λ, w)d(λ)dλ∫
Cp(λ, w)h(λ)dλ

. (3.14)

Proof. For the numerator of the r.h.s. of (3.14), integration by parts gives that∫ ∞

0

λp/2+j−1e−λ/2d(λ)dλ =
1

p/2 + j

∫ ∞

0

λp/2+j{d(λ)/2 − d′(λ)}dλ. (3.15)

Applying a similar integration by parts to the denominator, we observe that∫
Cp(λ, w)d(λ)dλ∫
Cp(λ, w)h(λ)dλ

=

∫
Cp+2(λ, w){d(λ)/2 − d′(λ)}dλ∫
Cp+2(λ, w){h(λ)/2 − h′(λ)}dλ,

so that inequality (3.14) can be rewritten as∫
Cp+2(λ, w)d′(λ)dλ∫
Cp+2(λ, w)h′(λ)dλ

≤
∫
Cp+2(λ, w){d(λ)/2 − d′(λ)}dλ∫
Cp+2(λ, w){h(λ)/2 − h′(λ)}dλ,

which is equivalent to∫
Cp+2(λ, w){h(λ)/2 − h′(λ)}dλ

∫
Cp+2(λ, w)d′(λ)dλ

≥
∫
Cp+2(λ, w){d(λ)/2 − d′(λ)}dλ

∫
Cp+2(λ, w)h′(λ)dλ,
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since h′(λ) ≤ 0. This inequality can be simplified as∫
Cp+2(λ, w)d′(λ)dλ

∫
Cp+2(λ, w)h(λ)dλ

≥
∫
Cp+2(λ, w)d(λ)dλ

∫
Cp+2(λ, w)h′(λ)dλ. (3.16)

By integration by parts, it can be shown that∫
Cp+2(λ, w)h′(λ)dλ = −

∫
C ′
p+2(λ, w)h(λ)dλ,∫

Cp+2(λ, w)d′(λ)dλ = −
∫
C ′
p+2(λ, w)d(λ)dλ,

where C ′
p+2(λ) = (d/dλ)Cp+2(λ). Hence, inequality (3.16) may be rewritten as∫

C ′
p+2(λ, w)d(λ)dλ

∫
Cp+2(λ, w)h(λ)dλ

≤
∫
Cp+2(λ, w)d(λ)dλ

∫
C ′
p+2(λ, w)h(λ)dλ. (3.17)

Let f(λ) = Cp+2(λ, w)h(λ), g(λ) = Cp+2(λ, w)d(λ) and u(λ) = C ′
p+2(λ, w)/Cp+2(λ, w)

in Lemma 3.1. Since g(λ)/f(λ) = d(λ)/h(λ) is nondecreasing, from Lemma 3.1, we
need to check that C ′

p+2(λ, w)/Cp+2(λ, w) is nonincreasing in λ. Since Cp+2(λ, w) =∑∞
j=0 ajλ

p/2+je−λ/2 for aj = wj[j!Γ(p/2 + j + 1)22j]−1, it is observed that

C ′
p+2(λ, w)

Cp+2(λ, w)
=

∑
j aj{(p/2 + j)λp/2+j−1 − (1/2)λp/2+j}e−λ/2∑

j ajλ
p/2+je−λ/2

=

∑
j aj(p/2 + j)λj−1∑

j ajλ
j

− 1

2
. (3.18)

Note that

∞∑
j=0

aj(p/2 + j)λj−1 =
1

Γ(p/2)λ
+
w

4

∞∑
j=1

wj−1λj−1

j(j − 1)!Γ(p/2 + j)2(j−1)

=
1

Γ(p/2)λ
+
w

4

∞∑
j=0

1

j + 1
ajλ

j.

Then from (3.18), it is sufficient to show that
∑∞

j=0 (j + 1)−1ajλ
j/
∑∞

j=0 ajλ
j is nonin-

creasing in λ. Since 1/(j + 1) is decreasing in j, this monotonicity follows from the
problem 4(i) in Lehmann (1986, p.428). Hence, we obtain inequality (3.17), which proves
inequality (3.14) of Lemma 3.3.

Define k(λ) by

k(λ) =
(p− λ)h′(λ) + 2λh′′(λ)

h(λ)
, (3.19)

11



and assume that it is decomposed as

k(λ) = k1(λ) + k2(λ),

where k1(λ) is a nondecreasing and differentiable function of λ and k2(λ) is a function.
Let k0 be a constant such that

k0 ≥ lim
w→∞

∑
j w

j[j!Γ(p/2 + j)22j]−1
∫
λp/2+j−1k1(λ)h(λ)e−λ/2dλ∑

j w
j[j!Γ(p/2 + j)22j ]−1

∫
λp/2+j−1e−λ/2h(λ)dλ

. (3.20)

Combining Theorem 3.1 and Lemma 3.3, we obtain sufficient conditions given by the
following theorem.

Theorem 3.2 Assume conditions (A.1) and (A.2) and that limλ→0 λ
p/2k1(λ)h(λ) = limλ→∞ k1(λ)h(λ)e−

0 for 0 < δ < 1/2. Then the Bayes equivariant estimator θ̂
π

is minimax if h(λ) satisfies
the inequality

k0+2 sup
j≥0

∫
[(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′]λp/2+j−1e−λ/2dλ∫

h′(λ)λp/2+j−1e−λ/2dλ

− inf
j≥0

∫
k2(λ)h(λ)λp/2+j−1e−λ/2dλ∫
h(λ)λp/2+j−1e−λ/2dλ

≤ p. (3.21)

This inequality is satisfied if

k0 + 2 sup
λ>0

{
(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′

h′(λ)

}
− inf

λ>0
k2(λ) ≤ p, (3.22)

where {k1(λ)h(λ)}′ = k′1(λ)h(λ) + k1(λ)h′(λ).

Proof. From (3.1) of Theorem 3.1, it is observed that∫
Cp(λ, w)k1(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

−
∫
Cp(λ, w)k2(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

(3.23)

+ 2

{∫
Cp+2(λ, w){(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)}dλ∫

Cp+2(λ, w)h′(λ)dλ
−
∫
Cp(λ, w)k1(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

}
≤ p.

For the first term in the l.h.s. of (3.23), from Lemma 3.2, it follows that

sup
w

∫
Cp(λ, w)k1(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

= lim
w→∞

∫
Cp(λ, w)k1(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

.

The second term is evaluated as∫
Cp(λ, w)k2(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

≥ inf
λ
k2(λ).

Using (3.14) of Lemma 3.3 for d(λ) = k1(λ)h(λ), we have the inequality∫
Cp+2(λ, w){k1(λ)h(λ)}′dλ∫

Cp+2(λ, w)h′(λ)dλ
≤
∫
Cp(λ, w)k1(λ)h(λ)dλ∫
Cp(λ, w)h(λ)dλ

.
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Using this inequality, we can see that the third term in the l.h.s. of (3.23) is less than or
equal to

2 sup
j≥0

∫
[(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′]λp/2+j−1e−λ/2dλ∫

h′(λ)λp/2+j−1e−λ/2dλ
,

which is also less than or equal to

2 sup
λ>0

{
(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′

h′(λ)

}
.

Combining these results gives conditions (3.21) and (3.22).

Letting k1(λ) = 0, we get a simple condition from Theorem 3.1.

Corollary 3.1 Assume (A.1) and (A.2). Then condition (3.1) holds if h(λ) satisfies the
inequality

2 sup
λ

(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)

h′(λ)
− inf

λ

(p− λ)h′(λ) + 2λh′′(λ)

h(λ)
≤ p.

When k(λ) is nondecreasing, namely, in the case of k(λ) = k1(λ), we get the following
proposition.

Proposition 3.1 Assume that the function h(λ) satisfies (A.1) and (A.2) for p ≥ 3. Also
assume that k(λ) = {(p− λ)h′(λ) + 2λh′′(λ)}/h(λ) is nondecreasing in λ. Then ψπ(w) is

nondecreasing in w and the Bayes equivariant estimator θ̂
π

is minimax if k0 ≤ p− 2 for
k0 defined by (3.20).

Proof. The assumption in Proposition 3.1 corresponds to the case of k(λ) = k1(λ)
or k2(λ) = 0 in Theorem 3.2. Noting that

d

dλ
{k(λ)h(λ)} = −h′(λ) + (p+ 2 − λ)h′′(λ) + 2λh′′′(λ),

we observe that

2 sup
λ>0

{
(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k(λ)h(λ)}′

h′(λ)

}
= 2.

Hence, the condition of Proposition 3.1 is derived from Theorem 3.2. The monotonicity
of ψπ(w) follows from Lemma 3.2.

Example 3.1 (Prior related to a multivariate t-distribution) Consider a prior dis-
tribution with a density proportional to (b + ‖θ‖2)−cdθ for nonnegative constants b
and c. Let π(λ) = λp/2−1h(λ) for h(λ) = (b + λ)−c. To check condition (3.22), we
need the first, second and third derivatives of h(λ), given by h′(λ) = −c(b + λ)−c−1,
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h′′(λ) = c(c+ 1)(b+ λ)−c−2 and h′′′(λ) = −c(c+ 1)(c+ 2)(b+ λ)−c−3. Then, k(λ) defined
by (3.19) has the form

k(λ) = c

{
1 − b− 2c+ p− 2

b+ λ
− 2(c− 1)b

(b+ λ)2

}
. (3.24)

When b− 2c+ p− 2 ≥ 0, the function k(λ) is nondecreasing. Taking k0 = c for k0 defined
by (3.20), we see from Proposition 3.1 that the Bayes equivariant estimator is minimax if
the constants b and c satisfy the condition

0 < c ≤ min

{
p− 2,

p− 2 + b

2

}
and b ≥ 0. (3.25)

We next consider the case that b − 2c + p − 2 < 0 and b ≥ 0. In this case, k(λ)
is decomposed as k(λ) = k1(λ) + k2(λ) for k1(λ) = c − 2c(c + 1)b/(b + λ)2 and k2(λ) =
c(2c−b−p+2)/(b+λ). Then we use Theorem 3.2 to derive a condition for the minimaxity.
Since {k1(λ)h(λ)}′ = −c2/(b+ λ)c+1 + 2c(c+ 1)(c+ 2)b/(b+ λ)b+3, it can be seen that

(p+ 2 − λ)h′′(λ) + 2λh′′′(λ) − {k1(λ)h(λ)}′
h′(λ)

= 1 + (2c− b− p+ 2)
c+ 1

b+ λ
,

so that condition (3.22) is expressed by

k0 + 2 sup
λ>0

{
1 + (2c− b− p+ 2)

c+ 1

b+ λ

}
− inf

λ>0

c(2c− b− p+ 2)

b+ λ
≤ p.

Since k0 = c, it is easy to see that condition (3.22) holds if

c+ 2(2c− b− p+ 2)(c+ 1)/b ≤ p− 2.

By solving this inequality, the condition for the minimaxity is given by

b+ p− 2

2
< c <

1

8

{
b+ 2p− 8 +

√
(b+ 2p)2 + 16(p− 1)b

}
,

0 < b < p− 2.
(3.26)

It can be guaranteed that there exists a c satisfying the above inequalities in (3.26) if
0 < b < p− 2.

Combining the above arguments, we conclude that the Bayes equivariant estimator is
minimax if the constants b and c satisfy either (3.25) or (3.26).

Remark 3.1 The conditions in Theorem 3.2 may be helpful for constructing prior distri-
butions such that the resulting Bayes equivariant estimators can be minimax. Let k1(λ)
be a nondecreasing function and assume that there exists a constant k0 satisfying condi-
tion (3.20). Let k2(λ) be an integrable function satisfying condition (3.21) or (3.22) of
Theorem 3.2. Then, denote k(λ) = k1(λ) + k2(λ) and solve the differential equation

(p− λ)h′(λ) + 2λh′′(λ)

h(λ)
= k(λ). (3.27)
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Letting �(λ) = (d/dλ) log h(λ) = h′(λ)/h(λ), we can rewrite equation (3.27) as

�′(λ) + �2(λ) − λ− p

2λ
�(λ) =

k(λ)

2λ
, (3.28)

which is the Riccati differential equation. In the case that there exists a particular solution,
denoted by �0(λ), of equation (3.28), we can get the general solution of (3.28). First, let
y(λ) = �(λ) − �0(λ) and p(λ) = −2�0(λ) + (λ − p)/(2λ). Then, (3.28) is rewritten by
y′(λ) + y2(λ) − p(λ)y(λ) = 0, or

y′(λ)

y2(λ)
− p(λ)

1

y(λ)
= −1, (3.29)

which is the Bernoulli differential equation. By letting z(λ) = 1/y(λ) again, equation
(3.29) leads to the linear differential equation

z′(λ) + p(λ)z(λ) = 1,

which has the general solution

z(λ) =

{∫ λ

λ1

exp

{∫ t

λ0

p(s)ds

}
dt+ C

}
exp

{
−
∫ λ

λ0

p(s)ds

}
,

where λ0, λ1 and C are constants. Since �(λ) = �0(λ) + 1/z(λ), this solution gives the
general solution of the Riccati equation (3.28), given by

�(λ) = �0(λ) +
exp{∫ λ

λ0
[−2�0(s) + (s− p)/(2s)]ds}∫ λ

λ1
exp{∫ t

λ0
[−2�0(s) + (s− p)/(2s)]ds}dt+ C

.

In general, it is hard to find out a particular solution �0(λ). However, this idea of
solving the Riccati equation possesses a possibility of extending a class of prior distri-
butions. For example, consider the prior distribution treated in Example 3.1, namely,
h0(λ) = 1/(λ + b)c, where the notation h0(λ) is used here instead of h(λ). Then, k(λ) is
given by (3.24). This means that �0(λ) = −c/(λ+b) is a particular solution of the Riccati
equation (3.28) when k(λ) is given by (3.24). In this case, the general solution of (3.28)
is

�(λ) = − c

λ+ b
+ A(λ),

where

A(λ) =
(λ+ b)2cλ−p/2eλ/2∫ λ

λ1
(s+ b)2cs−p/2es/2ds+ C

.

Since �(λ) = (d/dλ) log h(λ), the general solution provides the solution of h(λ) as

h(λ) = exp

{∫ λ

λ2

[−c/(t+ b) + A(t)]dt

}
=

C0

(λ+ b)c
exp

{∫ λ

λ2

A(t)dt

}
, (3.30)

where C0 and λ2 are positive constants. As stated above, function (3.30) provides the same
quantity of k(λ) as in (3.24). Hence, the Bayes equivariant estimator for (3.30) would be
minimax under the same condition (3.25) if h(λ) given by (3.30) satisfies (A.1) and (A.2),
though we need another hard work to check these conditions for function (3.30).

15



4 Expressions based on inverse Laplace transforms

The general conditions on the function h(λ) have been derived in Section 3 for the mini-
maxity of the Bayes equivariant estimator. When h(λ) has an inverse Laplace transform,
denoted by H(t), the general conditions can be expressed based on the inverse Laplace
transform H(t). This expression is not only useful for checking the minimaxity, but
also helpful for constructing prior distributions which result in the generalized Bayes and
minimax estimators.

For a nonnegative function h(λ), it is assumed that

(B.1) there exists a function H(t) such that

h(λ) =

∫ ∞

0

H(t)e−tλdt,

and H(t) satisfies the following conditions: limλ→0 λ
p/2−2H(s/λ) = 0 for s > 0 and there

exists an integrable function Φ(s) such that λp/2−2|H(s/λ)|sne−s ≤ Φ(s) for n = 0, 1, 2 and
small λ > 0. Also, limt→0 tH(t) = limt→∞ e−λtH(t) = 0 for t > 0 and

∫
tn|H(t)|e−λtdt <

∞ for n = 0, 1, 2, 3.

The function H(t) can be derived by the inverse Laplace transformation, defined by

H(t) = lim
R→∞

1

2π

∫ R

−R
h(λ+ i τ)e(λ+i τ)tdτ,

for i =
√−1. The inverse Laplace transformation is guaranteed under the integrability∫∞

0
|H(t)e−tλ|dt <∞. Another derivation of H(t) is given by

H(t) = lim
n→∞

(−1)n

n!

(n
t

)n+1

h(n)
(n
t

)
,

called the Post’s inverse formula, where h(n)(x) = (dn/dxn)h(x). Since
∫∞
0
π(λ)dλ =∫∞

0
H(t)

∫∞
0
λp/2−1e−tλdλdt = Γ(p/2)

∫∞
0
t−p/2H(t)dt for π(λ) = λp/2−1h(λ), it is seen

that the prior π(λ) is proper if
∫∞
0
t−p/2H(t)dt <∞.

The inverse Laplace transform allows us to rewrite the function ψπ(w) based on an
integral expression. The following lemma is useful for the purpose.

Lemma 4.1 For a positive constant a and a function f(t), the following equation holds:

∞∑
j=0

wj

j!Γ(a+ j)22j

∫ ∞

0

∫ ∞

0

λa+j−1e−(1+2t)λ/2f(t)dλdt

=2a
∫ ∞

0

1

(1 + 2t)a
ew/[2(1+2t)]f(t)dt, (4.1)

where it is assumed that
∫∞
0

∫∞
0
λa+j−1e−(1+2t)λ/2|f(t)|dλdt <∞.
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In fact, integrating out the l.h.s. of (4.1) with respect to λ yields

2a
∫ ∞

0

1

(1 + 2t)a

∞∑
j=0

(
w

2(1 + 2t)

)j
f(t)dt.

Noting that
∑

j(j!)
−1{w/[2(1 +2t)]}j = exp{w/[2(1 +2t)]}, we get the r.h.s. of (4.1) and

Lemma 4.1 is verified.

Applying Lemma 4.1 to both the numerator and the denominator of the second term
in (2.4), we can rewrite it as

ψπ(w) =w − w

∫∞
0

(1 + 2t)−p/2−1 exp{w/[2(1 + 2t)]}H(t)dt∫∞
0

(1 + 2t)−p/2 exp{w/[2(1 + 2t)]}H(t)dt

=w

∫∞
0

2t(1 + 2t)−p/2−1 exp{w/[2(1 + 2t)]}H(t)dt∫∞
0

(1 + 2t)−p/2 exp{w/[2(1 + 2t)]}H(t)dt
,

which is equal to

ψπ(w) = w

∫∞
0

2t(1 + 2t)−p/2−1 exp{−wt/(1 + 2t)}H(t)dt∫∞
0

(1 + 2t)−p/2 exp{−wt/(1 + 2t)}H(t)dt
.

Using the inverse Laplace transform, we now replace the condition in Theorem 3.1.
Define the functions K(t) and q(t;w) by

K(t) = − (p− 4)t+ t(1 + 2t)H ′(t)/H(t), (4.2)

q(t;w) =(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}.

Theorem 4.1 Under assumption (B.1), the Bayes equivariant estimator θ̂
π

is minimax
if the following inequality is satisfied for any w > 0:

2

∫
K(t)t(1 + 2t)−1q(t;w)dt∫
t(1 + 2t)−1q(t;w)dt

−
∫
K(t)q(t;w)dt∫
q(t;w)dt

≤ p− 3. (4.3)

To prove Theorem 4.1, the following fundamental property of the Laplace transforma-
tion is useful: for positive integer n,∫

tnH(t)e−tλdt = (−D)nh(λ) = (−1)nh(n)(λ),

where D = d/dt and h(n)(λ) = dnh(λ)/dtn, the n-th derivative of h(λ).

Proof. We begin with proving the following equalities:∫
K(t)H(t)e−λtdt = − h(λ) + (p− λ)h′(λ) + 2λh′′(λ), (4.4)∫
tK(t)H(t)e−λtdt =2h′(λ) − (p+ 2)h′′(λ) + λh′′(λ) − 2λh′′′(λ). (4.5)
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To evaluate the term
∫
K(t)H(t)e−λtdt, it is noted that the term is written by −(p −

4)
∫
tH(t)e−λtdt+

∫
t(1 + 2t)H ′(t)e−λtdt. By integration by parts,∫

t(1 + 2t)H ′(t)e−λtdt =
[
t(1 + 2t)e−λtH(t)

]∞
t=0

−
∫

(1 + 4t)H(t)e−λtdt+ λ

∫
t(1 + 2t)H(t)e−λtdt

= − h(λ) − 4h1(λ) + λh1(λ) + 2λh2(λ),

where hn(λ) =
∫
tnH(t)e−λtdt for a positive integer n. Since hn(λ) = (−1)n(dn/dλn)h(λ),∫
t(1 + 2t)H ′(t)e−λtdt = −h(λ) + 4h′(λ) − λh′(λ) + 2λh′′(λ),

so that equality (4.4) is obtained. For the second equality, note that∫
tK(t)H(t)e−λtdt = −(p− 4)

∫
t2H(t)e−λtdt+

∫
t2(1 + 2t)H ′(t)e−λtdt,

and the same arguments as discussed above can be applied. By integration by parts,∫
t2(1 + 2t)H ′(t)e−λtdt =

[
t2(1 + 2t)e−λtH(t)

]∞
t=0

− 2

∫
(t+ 3t2)H(t)e−λtdt+ λ

∫
t2(1 + 2t)H(t)e−λtdt,

so that ∫
tK(t)H(t)e−λtdt = −2h1(λ) − (p+ 2)h2(λ) + λh2(λ) + 2λh3(λ),

which leads to equality (4.5).

Using Lemma 4.1, we can see that the following equalities hold:∫
K(t)q(t;w)dt∫
q(t;w)dt

=

∑
j w

j[j!Γ(p/2 + j)22j]−1
∫
λp/2+j−1e−λ/2

∫
K(t)H(t)e−λtdtdλ∑

j w
j[j!Γ(p/2 + j)22j ]−1

∫
λp/2+j−1e−λ/2

∫
H(t)e−λtdtdλ

,

and ∫
K(t)t(1 + 2t)−1q(t;w)dt∫
t(1 + 2t)−1q(t;w)dt

=

∑
j w

j[j!Γ(p/2 + j + 1)22j]−1
∫
λp/2+je−λ/2

∫
tK(t)H(t)e−λtdtdλ∑

j w
j[j!Γ(p/2 + j + 1)22j]−1

∫
λp/2+je−λ/2

∫
tH(t)e−λtdtdλ

.

It is noted that assumption (A.1) can be satisfied by (B.1). In fact, from the con-
dition limλ→0 λ

p/2−2H(s/λ) = 0 and the dominated convergence theorem, it follows
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that limλ→0 λ
p/2h(λ) = limλ→0 λ

p/2h′(λ) = limλ→0 λ
p/2+1h′′(λ) = 0. Also note that for

λ > λ1,
∫
tn|H(t)|e−λtdte−δλ ≤ ∫

tn|H(t)|e−λ1tdte−δλ, which tends to zero as λ → ∞,
because

∫
tn|H(t)|e−λ1tdt is finite from (B.1). This implies that limλ→∞ h(λ)e−δλ =

limλ→∞ h′(λ)e−δλ = limλ→∞ h′′(λ)e−δλ = 0 for 0 < δ < 1/2. Hence, condition (4.3)
can be derived from the above equalities and Theorem 3.1 by noting equalities (4.4) and
(4.5). The proof of Theorem 4.1 is therefore complete.

Assume that K(t) is decomposed as

K(t) = K1(t) +K2(t),

where K1(t) is a nonincreasing function of t and K2(t) is a function. Let K0 be a constant
such that

K0 ≥ lim
w→∞

∫
K1(t)q(t;w)dt/

∫
q(t;w)dt. (4.6)

Making the transformation s = 2wt/(1 + 2t), we can express inequality (4.6) as

K0 ≥ lim
w→∞

∫ w
0
K1(s/[2(w − s)])H(s/[2(w − s)])(1 − s/w)p/2−2e−s/2ds∫ w

0
H(s/[2(w − s)])(1 − s/w)p/2−2e−s/2ds

, (4.7)

which is useful for getting the limiting value.

Theorem 4.2 Assume (B.1) and that
(B.2)

∫
tH(t)e−λtdt is a nonnegative function.

Then the Bayes equivariant estimator θ̂
π

is minimax if the following inequality is satisfied:

K0 + 2 sup
w

∫
K2(t)t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt∫
t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt

− inf
w

∫
K2(t)(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt∫

(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt ≤ p− 3. (4.8)

Further, if
(B.2′) H(t) is a nonnegative function,

then inequality (4.8) is satisfied under the condition

K0 + 2 sup
t
K2(t) − inf

t
K2(t) ≤ p− 3. (4.9)

In the case that K(t) = K1(t), θ̂
π

is minimax when K0 ≤ p− 3.

Proof. From the monotonicity of K1(t), it follows that∫
K1(t)t(1 + 2t)−1q(t;w)dt∫
t(1 + 2t)−1q(t;w)dt

≤
∫
K1(t)q(t;w)dt∫
q(t;w)dt

.
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In fact, this inequality can be verified by putting f(t) = q(t;w), g(t) = t(1 + 2t)−1q(t;w)
and u(t) = K1(t) in Lemma 3.1. Thus, condition (4.3) holds if for any w > 0,∫

K1(t)q(t;w)dt∫
q(t;w)dt

+ 2

∫
K2(t)t(1 + 2t)−1q(t;w)dt∫
t(1 + 2t)−1q(t;w)dt

−
∫
K2(t)q(t;w)dt∫
q(t;w)dt

≤ p− 3. (4.10)

We here show that the ratio of integrals
∫
K1(t)q(t;w)dt/

∫
q(t;w)dt is nondecreasing in

w. The derivative with respect to w is proportional to∫
K1(t)

1 + 2t
q(t;w)dt

∫
q(t;w)dt−

∫
K1(t)q(t;w)dt

∫
1

1 + 2t
q(t;w)dt. (4.11)

Letting f(t) = q(t;w), g(t) = K1(t)q(t;w) and u(t) = 1/(1 + 2t) and noting that both
g(t)/f(t) = K1(t) and u(t) = 1/(1+2t) are nonincreasing, we can see that quantity (4.11)
is nonnegative, so that the ratio of integrals

∫
K1(t)q(t;w)dt/

∫
q(t;w)dt is nondecreasing

in w. Hence,

sup
w>0

∫
K1(t)q(t;w)dt∫
q(t;w)dt

= lim
w→∞

∫
K1(t)q(t;w)dt∫
q(t;w)dt

. (4.12)

Therefore, condition (4.8) in Theorem 4.2 is obtained from (4.10) and (4.12). It can be
easily verified that inequality (4.9) implies inequality (4.8).

It is noted that assumption (B.2′) is equivalent to the function h(λ) being completely
monotone (see Feller (1971)). Then, condition (4.9) is similar to that of Fourdrinier et al .
(1998). When K(t) is nonincreasing, namely, in the case of K(t) = K1(t), we get the
following proposition from Theorem 4.2.

Proposition 4.1 Assume that the function H(t) satisfies conditions (B.1) and (B.2′) for
p ≥ 3. Also assume that K(t) = −(p − 4)t + t(1 + 2t)H ′(t)/H(t) is nonincreasing in t.

Then ψπ(w) is nondecreasing in w and the Bayes equivariant estimator θ̂
π

is minimax if
K0 ≤ p− 3 for K0 defined by (4.6) or (4.7).

Theorem 4.2 provides a class of prior distributions such that the resulting Bayes equiv-
ariant estimators can be minimax. Let K1(t) be a nonincreasing function and assume that
there exists a constant K0 such that

K0 ≥ lim
w→∞

∫
K1(t)q(t;w)dt/

∫
q(t : w)dt,

which is also described by (4.7). Let K2(t) be an integrable function satisfying condition
(4.8) or (4.9). Then, denote K(t) = K1(t) +K2(t) and solve the differential equation

−(p− 4)t+ t(1 + 2t)
d

dt
logH(t) = K(t),

for a positive function H(t). A solution of this equation is given by

H(t) = (1 + 2t)(p−4)/2 exp

{∫ t

t0

K(x)

x(1 + 2x)
dx

}
,
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where t0 is a positive constant. Then the Bayes equivariant estimator against the prior
h(‖θ‖2) =

∫
H(t) exp{−‖θ‖2t}dt is minimax if H(t) satisfies (B.1).

Applying Theorem 4.2 to the prior distribution treated in Example 3.1, we can get
the same conditions as in Example 3.1. In fact, the function h(λ) can be expressed by
h(λ) = (b+ λ)−c =

∫∞
0
H(t)e−tλdt for H(t) = tc−1e−bt, which gives

K(t) = −2bt2 − (b− 2c+ p− 2)t+ c− 1.

Using condition (4.8) in Theorem 4.2, we can derive the same conditions as in (3.25) and
(3.26) for the minimaxity of the Bayes equivariant estimator. Another example is given
below.

Example 4.1 (Scale mixture of a normal distribution) Consider the scale mixture
of the normal distribution

θ|t ∼Np

(
0, (2t)−1Ip

)
,

t ∼ tb−2

(1 + 2t)a
ν(t)dt, t > 0,

(4.13)

for constants a, b and a function ν(t) satisfying the conditions

(NM-1) a > b and 1 − p/2 + a < b ≤ (p− 2)/2,

(NM-2) the function ν(t) is nonnegative, differentiable and bounded.

The function h(λ) is given by h(λ) =
∫∞
0
H(t)e−λtdt for H(t) = tp/2+b−2(1 + 2t)−aν(t)

where the normalization constant is omitted. It can be verified that assumptions (B.1)
and (B.2′) are satisfied under the conditions (NM-1) and (NM-2). From the arguments
between (2.5) and (2.6), the generalized Bayes estimator against prior (4.13) is the Bayes

equivariant estimator θ̂
π

against the prior π(λ) = λp/2−1h(λ). The function K(t) defined
by (4.2) may be written as

K(t) = − (2a+ p− 4)t+ (p/2 + b− 2)(1 + 2t) + t(1 + 2t)ν ′(t)/ν(t)

=2(b− a)t+ (p/2 + b− 2) + t(1 + 2t)ν ′(t)/ν(t).

When (1+2t)tν′(t)/ν(t) is nonincreasing in t, the function K(t) is nonincreasing under
the conditions (NM-1) and (NM-2). Noting that the constant K0 defined by (4.6) or (4.7)
is given by K0 = p/2 + b − 2, we see from Proposition 4.1 that the Bayes equivariant

estimator θ̂
π

against prior (4.13) is minimax if (1 + 2t)tν′(t)/ν(t) is nonincreasing in t.

When (1 + 2t)tν′(t)/ν(t) does not have a monotonicity property, let K1(t) = 2(b −
a)t+ (p/2 + b− 2) and K2(t) = t(1 + 2t)ν ′(t)/ν(t). From condition (4.9), it follows that
the Bayes equivariant estimator is minimax if

b+ 2 sup
t

(1 + 2t)tν′(t)
ν(t)

− inf
t

(1 + 2t)tν′(t)
ν(t)

≤ (p− 2)/2. (4.14)

For a suitable function m(t), solve the differential equation

(1 + 2t)tν′(t)/ν(t) = m(t).
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A solution of this equation is given by

ν(t) = exp

{∫ t

t0

m(s)

(1 + 2s)s
ds

}
,

for a positive constant t0. Take the function m(t) such that ν(t) is bounden for any t.
Then, ν(t) satisfies the condition (NM-2) and condition (4.14) is expressed by

b+ 2 sup
t
m(t) − inf

t
m(t) ≤ (p− 2)/2. (4.15)

For example, consider the function m(t) = −2ct/(1 + t2) for c > 0. Then, ν(t) ≤ 1,
namely, ν(t) is bounded, and condition (4.15) holds if b+ c ≤ (p− 2)/2.

In the case that m(t) = (1 + 2t)tν′(t)/ν(t) is nondecreasing in t, condition (4.14) can
be used. However, we can derive a better condition from (4.8) by using the monotonicity
property of m(t). From the monotonicity of K2(t) = m(t), it is noted that∫

m(t)t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt∫
t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt

is nonincreasing in w, so that

sup
w

∫
m(t)t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt∫
t(1 + 2t)−p/2−1H(t) exp{w/[2(1 + 2t)]}dt

=

∫
m(t)t(1 + 2t)−p/2−1H(t)dt∫
t(1 + 2t)−p/2−1H(t)dt

.

Similary,

inf
w

∫
m(t)(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt∫

(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt

= lim
w→∞

∫
m(t)(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt∫

(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt .

Since K0 = p/2 + b− 2, condition (4.8) can be rewritten as

b+ 2

∫
m(t)t(1 + 2t)−p/2−1H(t)dt∫
t(1 + 2t)−p/2−1H(t)dt

− lim
w→∞

∫
m(t)(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt∫

(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt ≤ (p− 2)/2. (4.16)

For example, consider the increasing function m(t) = 2ct/(1 + 2t) for c > 0. Then, the
function ν(t) is written by

ν(t) = exp

{
2c

∫ t

t0

(1 + 2s)−2ds

}
= C0 exp{−c/(1 + 2t)},
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which is bounded. It can be verified that

lim
w→∞

∫
m(t)(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt∫

(1 + 2t)−p/2H(t) exp{w/[2(1 + 2t)]}dt = 0.

Hence, condition (4.16) can be expressed as

b+ 4c

∫∞
0
tp/2+b(1 + 2t)−p/2−a−2 exp{−c/(1 + 2t)}dt∫∞

0
tp/2+b−1(1 + 2t)−p/2−a−1 exp{−c/(1 + 2t)}dt ≤ (p− 2)/2,

or

b+ 2c

∫ 1

0
za−b(1 − z)p/2+b exp{−cz}dz∫ 1

0
za−b(1 − z)p/2+b−1 exp{−cz}dz ≤ (p− 2)/2, (4.17)

which is derived by making the transformation z = 1/(1 + 2t). On the other hand, (4.15)
yields the condition that b+ 2c ≤ (p− 2)/2, which is not better than (4.17), although we
need to resort to numerical computation to check condition (4.17).

5 Derivation of Stein’s super-harmonic condition

In this section, we shall provide another expression of condition (3.1) and clarify the
relationship between condition (3.1) and the super-harmonic condition of the prior density.

Theorem 5.1 Assume condition (A.1). Then condition (3.1) is equivalent to

2

∫
Cp(λ, w)s(λ)dλ∫

Cp(λ, w)
∫∞
λ
h′(t)e−t/2dteλ/2dλ

+

∫
Cp(λ, w){−λh′(λ) + s(λ)}dλ∫

Cp(λ, w)h(λ)dλ
≥ 0, (5.1)

where

s(λ) = ph′(λ) + 2λh′′(λ). (5.2)

Proof. From (3.15), it is observed that for an absolutely continuous function f(λ),∫ ∞

0

Cp+2(λ, w){f(λ)/2 − f ′(λ)}dλ =

∫ ∞

0

Cp(λ, w)f(λ)dλ.

We here consider the differential equation

f(λ)/2 − f ′(λ) = h′(λ),

which has a solution of the form f(λ) =
∫∞
λ
h′(t)e−t/2dt eλ/2. Then under condition (A.1),

we get the equality∫
Cp+2(λ, w)h′(λ)dλ =

∫
Cp(λ, w)

∫ ∞

λ

h′(t)e−t/2dt eλ/2dλ. (5.3)
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Since s′(λ) = (p+ 2)h′′(λ) + 2λh′′′(λ), the same argument is used to get that∫
Cp+2(λ, w) {(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)} dλ

=

∫
Cp+2(λ, w) {−λh′′(λ) + s′(λ)} dλ (5.4)

=

∫
Cp(λ, w)

∫ ∞

λ

{−th′′(t) + s′(t)} e−t/2dt eλ/2dλ.

By integration by parts, it is noted that∫ ∞

λ

s′(t)e−t/2dt = −s(λ)e−λ/2 +
1

2

∫ ∞

λ

s(t)e−t/2dt,

which gives that∫ ∞

λ

{−th′′(t) + s′(t)} e−t/2dt = −s(λ)e−λ/2 +
p

2

∫ ∞

λ

h′(t)e−t/2dt.

Hence from (5.4),∫
Cp+2(λ, w) {(p+ 2 − λ)h′′(λ) + 2λh′′′(λ)} dλ

= −
∫
Cp(λ, w)s(λ)dλ+

p

2

∫
Cp(λ, w)

∫ ∞

λ

h′(t)e−t/2dt eλ/2dλ. (5.5)

Combining (5.3) and (5.5), we obtain condition (5.1) from Theorem 3.1.

Assume that s(λ) is decomposed as

s(λ) = ph′(λ) + 2λh′′(λ) = s1(λ) + s2(λ),

where s1(λ) ≤ 0 and s2(λ) > 0 for any λ > 0. Then from Theorem 5.1, we get the
following condition.

Proposition 5.1 Assume (A.1) and (A.2). Then, the Bayes equivariant estimator θ̂
π

is
minimax if

2 inf
λ

{
s2(λ)e−λ/2∫∞

λ
h′(t)e−t/2dt

}
+ inf

λ

{−λh′(λ) − s1(λ) + s2(λ)

h(λ)

}
≥ 0. (5.6)

If {(d/dλ)[s2(λ)e−λ/2]}/{h′(λ)e−λ/2} is nonincreasing, then

inf
λ

{
s2(λ)e−λ/2∫∞

λ
h′(t)e−t/2dt

}
= lim

λ→0

{
s2(λ)e−λ/2∫∞

λ
h′(t)e−t/2dt

}
. (5.7)
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Proof. Noting that∫ ∞

λ

h′(t)e−t/2dt = −h(λ)e−λ/2 +
1

2

∫ ∞

λ

h(t)e−t/2dt ≥ −h(λ)e−λ/2,

we observe that ∫
Cp(λ, w)s1(λ)dλ∫

Cp(λ, w)
∫∞
λ
h′(t)e−t/2dteλ/2dλ

≥ −
∫
Cp(λ, w)s1(λ)dλ∫
Cp(λ, w)h(λ)dλ

.

Hence from Theorem 5.1, it suffices to show that

2

∫
Cp(λ, w)s2(λ)dλ∫

Cp(λ, w)
∫∞
λ
h′(t)e−t/2dteλ/2dλ

+

∫
Cp(λ, w){−λh′(λ) + s(λ) − 2s1(λ)}dλ∫

Cp(λ, w)h(λ)dλ
≥ 0,

which yields sufficient condition (5.6).
To verify equality (5.7), we show that the ratio g(λ)/

∫∞
λ
h′(t)e−t/2dt is nondecreasing

in λ for g(λ) = s2(λ)e−λ/2. Since g(λ) = − ∫∞
λ
g′(t)dt, the derivative of the ratio is

proportional to

g′(λ)

∫ ∞

λ

h′(t)e−t/2dt+ g(λ)h′(λ)e−λ/2

=

∫ ∞

λ

h′(t)h′(λ)e−(t+λ)/2

{
g′(λ)

h′(λ)e−λ/2
− g′(t)
h′(t)e−t/2

}
dt,

which is nonnegative if g′(t)/{h′(t)e−t/2} is nonincreasing in t. Therefore, Proposition 5.1
is established.

When s(λ) ≤ 0 for any λ > 0, this condition implies that h′(λ) ≤ 0 for any λ > 0. In
fact, whenever h′(λ) > 0, the derivative of h′(λ) is negative since h′′(λ) ≤ −ph′(λ)/(2λ).
This fact means that h′(λ) ≤ 0, and assumption (A.2) holds. Then from Proposition 5.1,
we get

Corollary 5.1 If s(λ) ≤ 0 for any λ > 0, then the Bayes equivariant estimator θ̂
π

is
minimax under assumption (A.1).

Stein (1981) showed that the Bayes equivariant estimator is minimax if the prior
density h(‖θ‖2) is super-harmonic, namely

∑p
i=1(∂

2/∂θ2
i )h(‖θ‖2) ≤ 0 for any θ. Since∑p

i=1(∂
2/∂θ2

i )h(‖θ‖2) is identical to s(λ), it is seen that the condition s(λ) ≤ 0 corre-
sponds to the super-harmonic condition.

We now express the Stein super-harmonic condition based on the inverse Laplace
transform H(t) of h(λ). Let

S(t) = −(p− 4)tH(t) + 2t2H ′(t)

and assume that S(t) is decomposed as

S(t) = S1(t) + S2(t),

where S1(t) ≤ 0 and S2(t) ≥ 0 for any t > 0.
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Proposition 5.2 Assume (B.1) and (B.2). Then the function s(λ) can be expressed by

s(λ) =

∫
S(t)e−λtdt,

and the Bayes equivariant estimator is minimax if

−2 sup
λ

∫
S2(t)e

−λtdt∫
t(t+ 1/2)−1H(t)e−λtdt

+ inf
λ

∫ {tH ′(t) − S1(t) + S2(t)}e−λtdt∫
H(t)e−λtdt

+ 1 ≥ 0. (5.8)

If (t + 1/2)S2(t)/{tH(t)} is nondecreasing in t, then

sup
λ

∫
S2(t)e

−λtdt∫
t(t+ 1/2)−1H(t)e−λtdt

= lim
λ→0

∫
S2(t)e

−λtdt∫
t(t+ 1/2)−1H(t)e−λtdt

. (5.9)

Proof. By using the same arguments as in the proof of Theorem 4.1, it is observed
that

s(λ) =ph′(λ) + 2λh′′(λ)

= − p

∫
tH(t)e−λtdt+ 2λ

∫
t2H(t)e−λtdt

=

∫ {−ptH(t) + 4tH(t) + 2t2H ′(t)
}
e−λtdt,

which is equal to
∫
S(t)e−λtdt. Similarly,

−λh′(λ) = λ

∫
tH(t)e−λtdt =

∫
{H(t) + tH ′(t)} e−λtdt. (5.10)

It is also noted that

−
∫ ∞

λ

h′(x)e−x/2dx =

∫ ∞

λ

∫
tH(t)e−txdte−x/2dx

=

∫
t(t+ 1/2)−1H(t)e−λtdte−λ/2. (5.11)

Letting s1(λ) =
∫
S1(t)e

−λtdt and s2(λ) =
∫
S2(t)e

−λtdt, we can see that s1(λ) ≤ 0 and
s2(λ) ≥ 0 for any λ > 0 since S1(t) ≤ 0 and S2(t) ≥ 0 for any t > 0. From expressions
(5.10) and (5.11), condition (5.6) in Proposition 5.1 is described by the condition (5.8).

To establish equality (5.9), we need to show that the ratio
∫
S2(t)e

−λtdt/
∫
t(t +

1/2)−1H(t)e−λtdt is nonincreasing in λ. The derivative of the ratio is proportional to

−
∫
tS2(t)e

−λtdt
∫
t(t+ 1/2)−1H(t)e−λtdt

+

∫
S2(t)e

−λtdt
∫
t2(t + 1/2)−1H(t)e−λtdt,

which can be shown to be non-positive by using Lemma 3.2 if (t + 1/2)S2(t)/{tH(t)} is
nondecreasing.
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Corollary 5.2 If S(t) ≤ 0 for any t > 0, then the super-harmonic condition s(λ) ≤ 0
holds.

Applying the super-harmonic condition to the prior distribution treated in Example
3.1, we see that the function s(λ) defined by (5.2) is written as

s(λ) = ph′(λ) + 2λh′′(λ) = −2c(c + 1)b

(b+ λ)c+2
+
c(2c+ 2 − p)

(b+ λ)c+1
,

which is not positive for 2c + 2 − p ≤ 0. Thus, the super-harmonic condition for the
minimaxity is

0 < c ≤ (p− 2)/2.

It is noted that the same condition can be derived from the condition S(t) < 0 in Corollary
5.2. However, it is quite restrictive in comparison with conditions (3.25) and (3.26).
Although the Stein super-harmonic condition is more restrictive in this example, it can
provide nice and simple conditions for the minimaxity as demonstrated in the following
example.

Example 5.1 (Prior based on the arctan function) Let us treat a prior distribu-
tion of the form

θ ∼ 1

α

{
tan−1 α

‖θ‖2

}
dθ, (5.12)

where α is a positive constant. In this case, the function h(λ) is written by

h(λ) =
1

α
tan−1 α

λ
=

1

α

(
π

2
− tan−1 λ

α

)
=

1

α

∫ ∞

λ/α

1

1 + x2
dx,

and the inverse Laplace transform is given by

H(t) =
sinαt

αt
,

namely, h(λ) =
∫ {sinαt/(αt)}e−λtdt. It is noted that H(t) goes to zero with taking

positive and negative values periodically as t tends to infinity. Since h(λ) is rewritten
as h(λ) =

∫∞
λ

(α2 + s2)−1ds by making the transformation s = αx, it is observed that
h′(λ) = −(α2 + λ2)−1 and h′′(λ) = 2λ(α2 + λ2)−2. Since H(t) takes negative values
periodically, the conditions given in Section 4 do not work well. The conditions derived
in Section 3 can give a feasible but somewhat restrictive condition on α2 and p. However,
the Stein super-harmonic condition provides a nice condition for the minimaxity. That
is, the function s(λ) defined by (5.2) can be written as

s(λ) = −{(p− 4)λ2 + pα2
}
/(α2 + λ2)2,

which is not positive if p ≥ 4. Hence from Corrolary 5.1, the Bayes equivariant estimator
θ̂
π

against prior (5.12) is minimax for p ≥ 4. Although it is interesting to clarify whether

θ̂
π

is minimax for p = 3, it is not easy to show.
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The Stein super-harmonic condition can be applied to another type of prior dis-
tributions. When the prior of θ is (α2 + ‖θ‖4)−1dθ, it corresponds to the case that
h(λ) = (α2 + λ2)−1 and H(t) = sin(αt), namely, h(λ) =

∫
sin(αt) exp{−λt}dt. Then,

s(λ) = − 2λ

(α2 + λ2)2

{
p− 6 +

8α2

α2 + λ2

}
,

which is not positive if p ≥ 6. Hence, the Bayes equivariant estimator is minimax for
p ≥ 6.

6 Admissibility of the Bayes equivariant estimators

The conditions for the minimaxity have been investigated for the Bayes equivariant esti-
mators. Another interesting topic is to provide a characterization of prior distributions for
the admissibility. Using Brown’s admissibility condition, in this final section, we derive
conditions on priors for the admissibility of the Bayes equivariant estimator. The results
given here may be helpful for checking the admissibility for general priors, though most
of them are known in the literature.

We begin with stating Brown’s admissibility condition, which is known as a very useful
tool for checking the admissibility in the Stein problem. As noted in Section 2, the gener-
alized Bayes estimator against a prior distribution with the spherically symmetric density
h(‖θ‖2)dθ is the Bayes equivariant estimator θ̂

π
against the prior π(λ) = λp/2−1h(λ) for

λ = ‖θ‖2. Define A(h) by

A(h) =

∫ ∞

1

{
rp−1fh(r)

}−1
dr,

where

fh(‖x‖) =

∫
(2π)−p/2 exp{‖x − θ‖2/2}h(‖θ‖2)dθ.

Theorem 6.1 (Brown (1971)) The Bayes equivariant estimator θ̂
π

is inadmissible if

A(h) < ∞. When fh(‖x‖) and ‖θ̂π − x‖ are uniformly bounded with respect to x, θ̂
π

is
admissible if A(h) = ∞.

It is noted that fh(‖x‖) is the marginal density with respect to dx while

gπ(w) =
1

2p/2

∞∑
j=0

wp/2+j−1 exp{−w/2}
j!Γ(p/2 + j)22j

∫
λp/2+j−1e−λ/2h(λ)dλ

is the marginal density with respect to dw for w = ‖x‖2. It is thus seen that gπ(w) =
wp/2−1fh(

√
w), or fh(r) = r2−pgπ(r2) for r =

√
w, and A(h) is written as

A(h) =

∫ ∞

1

1

rgπ(r2)
dr.

Since ‖θ̂π − x‖ = ψπ(w)/
√
w, Theorem 6.1 is rewritten in the following.
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Lemma 6.1 Assume that there exists a constant δ such that gπ(r
2) ∼ C0r

δ for some

generic constant C0 as r → ∞. If δ > 0, the Bayes equivariant estimator θ̂
π

is inad-
missible. When gπ(w)/wp/2−1 and ψπ(w)/

√
w given by (2.4) are uniformly bounded, θ̂

π
is

admissible if δ ≤ 0.

Though this section, we use the notations C, C ′, C0, C1 and C2 as as generic positive
constants, namely, for example we use the same notation C for different constants without
anything confusing.

It may be hard to check the conditions in Lemma 6.1. However, the use of the inverse
Laplace transform of h(λ) can make them tractable. Since h(λ) =

∫
H(t)e−λtdt, it is

observed that∫
λp/2+j−1e−λ/2h(λ)dλ = Γ(p/2 + j)

∫
H(t)

1

(t+ 1/2)p/2+j
dt,

so that gπ(w) is expressed as

gπ(w) =wp/2−1e−w/2
∫ ∞∑

j=0

1

j!

(
w

2(1 + 2t)

)j
H(t)

(1 + 2t)p/2
dt

=wp/2−1

∫
H(t)

(1 + 2t)p/2
exp

{
− 2t

2(1 + 2t)
w

}
dt.

Making the transformation z = 2t/(1+2t) gives the expression gπ(w) = wp/2−1Gπ(
√
w)/2

where

Gπ(r) =

∫ 1

0

(1 − z)p/2−2H

(
z

2(1 − z)

)
e−r

2z/2dz. (6.1)

Also, the function ψπ(w) is written by

ψπ(w) = w

∫ 1

0
z(1 − z)p/2−2H(z/[2(1 − z)]) exp{−wz/2}dz∫ 1

0
(1 − z)p/2−2H(z/[2(1 − z)]) exp{−wz/2}dz . (6.2)

Then Lemma 6.1 is expressed in the following.

Lemma 6.2 Assume that there exists a constant δ such that Gπ(r) ∼ C0r
2−p+δ for some

generic constant C0 as r → ∞. If δ > 0, the Bayes equivariant estimator θ̂
π

is inadmis-
sible. When Gπ(r) and ψπ(r

2)/r are uniformly bounded, θ̂
π

is admissible if δ ≤ 0.

When H(t) is a positive function, it follows from (6.2) that ψπ(w) ≤ w. If ψπ(w) is
bounded, namely,

ψπ(w) ≤ C,

for a constant C, then it is observed that ψπ(r
2)/r ≤ min{r, C/r} ≤ √

C, so that ψπ(r
2)/r

is uniformly bounded. Hence, the boundedness of ψπ(r
2) is sufficient for the boundedness

of ψπ(r
2)/r. Lemma 6.3 is also useful for checking the conditions in Lemma 6.2.
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Lemma 6.3 For positive constants a, b and d, there are constants C1 and C2 such that

C1

∫ 1

0

za−1e−dzdz ≤
∫ 1

0

za−1(1 − z)b−1e−dzdz ≤ C2

∫ 1

0

za−1e−dzdz.

This implies that
∫ 1

0
za−1(1 − z)b−1e−dzdz ∼ C0/d

a for a constant C0 as d→ ∞.

Proof. In the case of 0 < b < 1, (1 − z)b−1 is increasing and 1 ≤ (1 − z)b−1, so that
the left inequality holds. Since (1 − z)b−1 and e−dz are monotone in opposite directions,
Lemma 3.1 implies that

E[(1 − Z)b−1e−dZ ] ≤ E[(1 − Z)b−1]E[e−dZ ], (6.3)

where Z is a random variable having the density aza−1. Inequality (6.3) is expressed as∫ 1

0

za−1(1 − z)b−1e−dzdz ≤ a

∫ 1

0

za−1(1 − z)b−1dz

∫ 1

0

za−1e−dzdz,

which yields the right inequality. In the case of b ≥ 1, (1 − z)b−1 is deccreasing and
(1 − z)b−1 ≤ 1. The same arguments can be used to get the inequalities in Lemma 6.3.

Since
∫ 1

0
za−1e−dzdz = d−a

∫ d
0
xa−1e−xdx, the inequalities in Lemma 6.3 implies that

C1 ≤ limd→∞ da
∫ 1

0
za−1(1−z)b−1e−dzdz ≤ C2, which means that

∫ 1

0
za−1(1−z)b−1e−dzdz ∼

C0/d
a for C1 ≤ C0 ≤ C2 as d→ ∞.

We conclude this section with checking the conditions in Lemma 6.2 for the admissi-
bilty of the Bayes equivariant estimators treated in examples in the previous sections.

Example 6.1 (Prior related to a multivariate t-distribution. Continued) In this
example, we treat the prior distribution discussed in Example 3.1, namely, H(t) is given
by H(t) = tc−1e−bt. For some generic constant C0, Gπ(r) may be written as

Gπ(r) = C0

∫ 1

0

zc−1(1 − z)p/2−c−1e−bz/(1−z)−(r2/2)zdz,

which can be seen to be uniformly bounded with respect to r for 0 < c < p/2 and b ≥ 0.
We here prove the inequalities

C1

∫ 1

0

zc−1(1 − z)p/2−c−1e−(r2/2)zdz

≤ Gπ(r) ≤ C0

∫ 1

0

zc−1(1 − z)p/2−c−1e−(r2/2)zdz. (6.4)

In fact, Gπ(r) is expressed by Gπ(r) = CE[e−bZ/(1−Z)e−(r2/2)Z ] for a random variable Z
having the density zc−1(1 − z)p/2−c−1/B(c, p/2 − c). Since both e−bZ/(1−Z) and e−(r2/2)Z

are decreasing in Z, it follows from Lemma 3.1 that

Gπ(r) ≥ CE[e−bZ/(1−Z)]E[e−(r2/2)Z ]

= C1

∫ 1

0

zc−1(1 − z)p/2−c−1e−(r2/2)zdz,
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which shows the left inequality in (6.4). The right inequality is trivial.
Combining inequalities (6.4) and Lemma 6.3 gives that

Gπ(r) ∼ C

∫ 1

0

zc−1(1 − z)p/2−c−1e−(r2/2)zdz ∼ C ′r2−p+(p−2−2c),

as r → ∞. Inequality (6.4) and Lemma 6.3 are again used to evaluate ψπ(w) as

ψπ(w) =w

∫ 1

0
zc(1 − z)p/2−c−1e−bz/(1−z)−(w/2)zdz∫ 1

0
zc−1(1 − z)p/2−c−1e−bz/(1−z)−(w/2)zdz

≤Cw
∫ 1

0
zce−(w/2)zdz∫ 1

0
zc−1e−(w/2)zdz

(6.5)

=C

∫ w
0
xce−x/2dx∫ w

0
xc−1e−x/2dx

≤ C

∫∞
0
xce−x/2dx∫∞

0
xc−1e−x/2dx

,

which is bounded. Since Gπ(r) is bounded, we can use Lemma 6.2 for δ = p − 2 − 2c

and 0 < c < p/2. Hence, the Bayes equivariant estimator θ̂
π

is inadmissible for 0 < c <
(p−2)/2 and b ≥ 0, and admissible for (p−2)/2 ≤ c < p/2 and b ≥ 0. When (p−2)/2 ≤
c ≤ min{p − 2, (p − 2 + b)/2}, c < p/2 and b ≥ 0, θ̂

π
is admissible and minimax. This

result suggests to take c = (p − 2)/2, because the resulting Bayes equivariant estimator
is admissible and minimax for any b ≥ 0.

Example 6.2 (Scale mixture of a normal distribution. Continued) We next treat
the prior distribution in Example 4.1,H(t) is given byH(t) = tp/2+b−2(1+2t)−aν(t). Then,

Gπ(r) = C0

∫ 1

0

zp/2+b−2(1 − z)a−bν
(

z

2(1 − z)

)
e−(r2/2)zdz,

which is bounded when 1 − p/2 < b < a + 1 and ν(t) is bounded as 0 < ν1 ≤ ν(t) ≤ ν2

for some positive constants ν1 and ν2. Since

C0ν1

∫ 1

0

zp/2+b−2(1 − z)a−be−(r2/2)zdz

≤ Gπ(r) ≤ C0ν2

∫ 1

0

zp/2+b−2(1 − z)a−be−(r2/2)zdz,

Lemma 6.3 implies that Gπ(r) ∼ Cr2−p−2b as r → ∞. The boundedness of ψπ(w) can be
verified by the same arguments as in (6.5). Hence from Lemma 6.2, it is concluded that

θ̂
π

is inadmissible for 1 − p/2 < b < min(0, a + 1), and admissible for 0 ≤ b < a + 1.

When 0 ≤ b < a and 1 − p/2 + a < b ≤ (p − 2)/2, the Bayes equivariant estimator θ̂
π

is admissible and minimax, where ν(t) is a nonnegative and differentiable function such
that 0 < ν1 ≤ ν(t) ≤ ν2 and (1 + 2t)tν′(t)/ν(t) is nonincreasing in t.

Example 6.3 (Prior based on the arctan function. Continued) For the prior dis-
tribution treated in Example 5.1, H(t) is given by H(t) = (sinαt)/(αt). Since (sin t)/t ≤
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1, it is observed that

Gπ(r) =

∫ 1

0

(1 − z)p/2−2 sin(αz/[2(1 − z)])

αz/[2(1 − z)]
e−(r2/2)zdz

≤
∫ 1

0

(1 − z)p/2−2e−(r2/2)zdz,

which is bounded for p ≥ 3. Also from Lemma 6.3, it can be seen that∫ 1

0

(1 − z)p/2−2e−(r2/2)zdz ∼ C0r
2−p+(p−4).

On the other hand, h(λ) is evaluated as

h(λ) =

∫
H(t)e−λtdt =

∫ ∞

λ

(α2 + s2)−1ds

≥
∫ ∞

λ

(α + s)−2ds =
1

α+ λ
=

∫
H0(t)e

−λtdt,

for H0(t) = e−αt. This inequality implies that

Gπ(r) ≥
∫ 1

0

(1 − z)p/2−2e−(α/2)z/(1−z)e−(r2/2)zdz

≥C
∫ 1

0

e−(r2/2)zdz ∼ C ′r2−p+(p−4),

where the second inequality follows from inequality (6.4) and Lemma 6.3. Combining
these observations gives that Gπ(r) ∼ Cr2−p+(p−4) as r → ∞. Since ψπ(w) can be verified

to be bounded, it is concluded from Lemma 6.2 that the Bayes equivariant estimator θ̂
π

is inadmissible for p > 4, and admissible for p = 3 and p = 4. The estimator θ̂
π

is
admissible and minimax for p = 4, though it is minimax, but inadmissible for p ≥ 5.
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