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Abstract

The two most popular bandwidth choice rules for kernel HAC estimation have been proposed

by Andrews (1991) and Newey and West (1994). This paper suggests an alternative approach

that estimates an unknown quantity in the optimal bandwidth for the HAC estimator (called

normalized curvature) using a general class of kernels, and derives the optimal bandwidth that

minimizes the asymptotic mean squared error of the estimator of normalized curvature. It

is shown that the optimal bandwidth for the kernel-smoothed normalized curvature estimator

should diverge at a slower rate than that of the HAC estimator using the same kernel. An

implementation method of the optimal bandwidth for the HAC estimator, which is analogous to

the one for probability density estimation by Sheather and Jones (1991), is also developed. The

�nite sample performance of the new bandwidth choice rule is assessed through Monte Carlo

simulations.
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1 Introduction

Over the last two decades considerable attention has been paid to heteroskedasticity and auto-

correlation consistent (HAC) estimation for the long-run variance (LRV) matrix of random vector

processes that may exhibit serial dependence and conditional heteroskedasticity of unknown form.

This paper focuses on a standard, kernel-smoothing approach to HAC estimation, and prescribes a

suitable choice of bandwidth for the HAC estimator.

The bandwidth choice for a pre-speci�ed kernel has been considered by Andrews (1991) and

Newey and West (1994). While both of these papers derive the bandwidth that minimizes the

asymptotic mean squared error (AMSE) of the HAC estimator, they di¤er in their approach to

estimating an unknown quantity in the AMSE-optimal bandwidth. This unknown quantity is the

ratio of the spectral density of the innovation process and its generalized derivative, evaluated at

zero frequency, which is referred to as normalized curvature hereinafter. Andrews (1991) estim-

ates the normalized curvature by simply �tting an AR(1) model. His approach is analogous to

Silverman�s �rule of thumb�for probability density estimation (Silverman, 1986, section 3.4.2). A

potential problem is that, in general, the data-dependent/automatic bandwidth is not consistent

for the AMSE-optimal bandwidth unless the reference model provides a correct speci�cation of the

process. Hence, this approach may perform poorly when the process is not well approximated by

an AR(1) model. In contrast, in order to avoid the issue of misspeci�cation of the process, Newey

and West (1994) estimate the normalized curvature nonparametrically using the truncated kernel.

However, the use of the truncated kernel prevents them from providing an optimal bandwidth for

the normalized curvature estimator. As a result, they implement the bandwidth for the normalized

curvature estimator in an ad hoc manner.

This paper suggests an alternative approach that adapts the �reliable�Sheather and Jones (1991)

bandwidth choice rule for probability density estimation to HAC estimation. The proposed method

is motivated by the parallel setting of probability and spectral density estimation: using the fact that

their AMSEs have some common structure, the aim is to establish an analog to the bandwidth choice

rule by Sheather and Jones (1991), which has been appraised as the most reliable among all existing
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methods by Jones, Marron and Sheather (1996). Similarly to the bandwidth choice of Sheather and

Jones (1991) that builds on two-stage density estimation (Jones and Sheather, 1991), the approach

in this paper sequentially estimates normalized curvature (�rst-stage) and LRV (second-stage) using

a general class of kernels, where the kernels in the two parts are possibly di¤erent. For this

reason, the paper calls the proposed approach two-stage plug-in bandwidth selection. The AMSE-

optimal bandwidth for the normalized curvature estimator is derived, and it is used for implementing

the AMSE-optimal bandwidth for the HAC estimator with an algorithm analogous to the one by

Sheather and Jones (1991).

In a related context, Politis (2003) and Politis and White (2004) propose to estimate normalized

curvature nonparametrically using the �at-top kernel for probability and spectral density estimation,

and for the block choice problem in the moving block bootstrap. While they argue that the �at-

top kernel for normalized curvature estimation appears to be theoretically very appealing, such an

in�nite-order kernel is not considered in this paper. Also, although an optimal kernel choice for

normalized curvature estimation (or even an optimal combination of kernels for �rst- and second-

stage estimation) is beyond the scope of this paper, this presents an interesting challenge for future

research.

The remainder of the paper is organized as follows. Section 2 develops the theory of two-

stage plug-in bandwidth selection and the implementation method of the optimal bandwidth with

theoretical justi�cations. Section 3 reports the results of two Monte Carlo experiments. Section 4

summarizes the main results of the paper. All assumptions and proofs are given in the appendix.

This paper adopts the following notational conventions: [x] denotes the integer part of x; kAk

signi�es the Euclidean norm of matrix A, i.e. kAk = ftr (A0A)g1=2; vec (A) denotes the column by

column vectorization function of matrix A; 
 is used to represent the tensor (or Kronecker) product;

c (> 0) denotes a generic constant, the quantity of which varies from statement to statement. The

expression �XT � YT� is used whenever XT =YT ! 1 as T ! 1. In addition, the expression

�a = op (khk)�is used if, almost everywhere h, a= khk exists and a= khk
p! 0. Lastly, de�ne 00 � 1

by convention.
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2 Two-Stage Plug-In Bandwidth Selection

2.1 Optimal Bandwidth for Normalized Curvature Estimation

To illustrate the main ideas, consider LRV estimation in the generalized method of moments (GMM)

framework (Hansen, 1982). Suppose that an economic theory implies a set of moment conditions

E fg(zt; �0)g � E (gt) = 0, where fztg1t=�1 is a stationary, strongly mixing process, � 2 � � Rp is

a parameter vector of interest with true value �0, and g(z; �) 2 Rs (p � s) is a known measurable

vector-valued function in z; 8� 2 �. De�ne the LRV of fgtg as


 = lim
T!1

1

T
E

( 
TX
t=1

gt

! 
TX
t=1

g0t

!)
=

1X
j=�1

E(gtg
0
t�j) =

1X
j=�1

�g(j):

When fgtg exhibits serial dependence and conditional heteroskedasticity of unknown form, the

inverse of a HAC estimator of 
 consistently estimates the optimal weighting matrix that is required

for e¢ cient GMM estimation. The standard HAC estimator of 
 takes the form of weighted

autocovariances


̂ =

T�1X
j=�(T�1)

k(
j

ST
)�̂g(j) =

T�1X
j=�(T�1)

k(
j

ST
)

0@ 1
T

minfT+j;TgX
t=maxf1;1+jg

ĝtĝ
0
t�j

1A ;

where k(�) is a kernel function, ST 2 R+ is a non-stochastic bandwidth sequence, ĝt = g(zt; �̂), and

�̂ is the �rst-step GMM estimator. Likewise, we denote the pseudo-estimator of 
 as

~
 =

T�1X
j=�(T�1)

k(
j

ST
)~�g(j) =

T�1X
j=�(T�1)

k(
j

ST
)

0@ 1
T

minfT+j;TgX
t=maxf1;1+jg

gtg
0
t�j

1A ;

which has the same form as 
̂ but is based on the unobservable process fgtg rather than fĝtg.

Consider �rst the AMSE-optimal bandwidth S�T for the pseudo-estimator ~
. Following Newey

and West (1994),1 de�ne the mean squared error (MSE) of ~
 as

MSE(~
;
) = E
n
w0T (~
� 
)wT

o2
; (1)

where wT is an s � 1 (possibly random) weighting vector that converges in probability, at a

suitable rate, to a constant vector w. Also let s(n) =
P1

j=�1 jjj
n
w0�g(j)w for n = 0; q 2

1 In the approximation to the MSE of the HAC estimator, it is convenient to reduce the problem to a scalar one
using some weighting vector, as in Newey and West (1994).
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(0;1), where q is the characteristic exponent of a kernel k(x) (Parzen, 1957) that satis�es kq �

limx!0 f1� k(x)g = jxjq 2 (0;1). Then, if s(q) 6= 0, (1) is approximated by

MSE(~
;
) �
k2q
�
s(q)
�2

S2qT
+
ST
T

�
2
�
s(0)
�2 Z 1

�1
k2(x)dx

�
: (2)

The optimal bandwidth that minimizes (2) is

S�T = (
T )
1

2q+1 =

(
qk2q

�
R(q)

�2R1
�1 k2(x)dx

) 1
2q+1

T
1

2q+1 ; (3)

where R(q) = s(q)=s(0) is the only unknown quantity in this formula called normalized curvature.

Following Jones and Sheather (1991), we estimate the normalized curvature R(q) using a kernel

l (�) (possibly di¤erent from k (�)) that has the characteristic exponent r 2 (0;1) satisfying lr �

limx!0 f1� l(x)g = jxjr 2 (0;1). Hereinafter, the kernels l (�) and k (�) are called the �rst- and

second-stage kernels, respectively. Also let �h(j) be the jth autocovariance of the scalar process

fhtg = fw0gtg, where w is the probability limit of the weighting vector in (1). Then, �h(j) =

w0�g(j)w = w0E
�
gtg

0
t�j
�
w and s(n) =

P1
j=�1 jjj

n
�h(j). Also let bT 2 R+ be a non-stochastic

bandwidth sequence for the �rst-stage kernel, and let ~�h(j) = T�1
PminfT+j;Tg

t=maxf1;1+jg htht�j . Then,

the pseudo-estimator of R(q) is written as

~R(q)(bT ) �
~s(q)

~s(0)
�
PT�1

j=�(T�1) l(
j
bT
) jjjq ~�h(j)PT�1

j=�(T�1) l(
j
bT
)~�h(j)

: (4)

Now we derive the AMSE-optimal bandwidth for ~R(q)(bT ).2 To approximate the MSE of ~R(q)(bT ),

it is convenient to apply the idea of the delta method. Let � =
�
1=s(0);�s(q)=

�
s(0)
�2�0

and h =�
~s(q) � s(q); ~s(0) � s(0)

�0
. Taking the �rst-order Taylor expansion of ~R(q)(bT ) around

�
~s(q); ~s(0)

�0
=�

s(q); s(0)
�0
gives ~R(q)(bT ) = R(q) + �0h + op(khk). Then, the asymptotic bias (ABias) and the

asymptotic variance (AVar) of ~R(q)(bT ) become

ABias( ~R(q)(bT )) = �0
�
E
�
~s(q)
�
� s(q)

E
�
~s(0)
�
� s(0)

�
;

AV ar( ~R(q)(bT )) = �0
�

V ar(~s(q)) Cov(~s(q); ~s(0))
Cov(~s(q); ~s(0)) V ar(~s(0))

�
�:

Based on the assumptions given in the appendix, the following lemmata give the approximations to

the bias and variance terms of h.
2Deriving only the range of divergence rates of bT for the consistency of the HAC estimator is not su¢ cient for

constructing an analog to the Sheather and Jones (1991) rule.
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Lemma 1. If A1, A3 and A4 hold, then

lim
T!1

brT

n
E(~s(q))� s(q)

o
= �lrs(q+r);

lim
T!1

brT

n
E(~s(0))� s(0)

o
= �lrs(r):

Lemma 2. If A1, A3 and A4 hold, then

lim
T!1

T

b2q+1T

V ar(~s(q)) = 2
�
s(0)
�2 Z 1

�1
jxj2q l2 (x) dx;

lim
T!1

T

bT
V ar(~s(0)) = 2

�
s(0)
�2 Z 1

�1
l2 (x) dx;

lim
T!1

T

bq+1T

Cov(~s(q); ~s(0)) = 2
�
s(0)
�2 Z 1

�1
jxjq l2(x)dx:

The two lemmata demonstrate that while the asymptotic biases of the spectral density and its

generalized derivative estimators are of the same order, the asymptotic variance of the derivative

estimator dominates in order of magnitude. Theorem 1 on the AMSE of ~R(q)(bT ) and the optimal

�rst-stage bandwidth b�T follows directly from these lemmata, and thus the proof is omitted.

Theorem 1. If A1, A3 and A4 hold and s(q)s(r) � s(0)s(q+r) 6= 0, then the MSE of ~R(q)(bT ) is

approximated by

MSE( ~R(q)(bT );R
(q)) � l2rC

2(q; r)

b2rT
+
b2q+1T

T

�
2

Z 1

�1
jxj2q l2(x)dx

�
; (5)

where C(q; r) =
�
s(q)s(r) � s(0)s(q+r)

	
=
�
s(0)
�2
. The optimal bandwidth that minimizes (5) is

b�T = (�T )
1

2q+2r+1

=

(
rl2rC

2(q; r)

(2q + 1)
R1
�1 jxj

2q
l2(x)dx

) 1
2q+2r+1

T
1

2q+2r+1 : (6)

At the optimum,

MSE( ~R(q)(b�T );R
(q)) � T�

2r
2q+2r+1

�
�
� 2r
2q+2r+1

l2rC
2(q; r) + 2�

2q+1
2q+2r+1

Z 1

�1
jxj2q l2(x)dx

�
:

Practitioners may wish to employ the same kernel twice to estimate normalized curvature and

LRV. The following corollary refers to the special case in which the same kernel is employed in

both stages. This corollary is also valid when two distinct kernels that have the same characteristic

exponent are employed (e.g. when the Parzen and Quadratic Spectral (QS) kernels are employed in
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the �rst- and the second-stages, respectively). It is worth mentioning that the Bartlett and Parzen

kernels can be employed twice, whereas the QS kernel cannot, because
R1
�1 jxj

4
k2QS(x)dx =1 (see

Table 1 in the next section) and the AVar in (5) is not well de�ned.

Corollary 1. Suppose that the kernels employed in the �rst- and the second-stages have the same

characteristic exponent, i.e. r = q. If A1, A3 and A4 hold and
�
s(q)
�2 � s(0)s(2q) 6= 0, then the

MSE of ~R(q)(bT ) is approximated by

MSE( ~R(q)(bT );R
(q)) �

l2qC
2(q)

b2qT
+
b2q+1T

T

�
2

Z 1

�1
jxj2q l2(x)dx

�
; (7)

where C(q) � C(q; q) =
n�
s(q)
�2 � s(0)s(2q)o = �s(0)�2. The optimal bandwidth that minimizes (7) is

b�T = (�T )
1

4q+1

=

(
ql2qC

2(q)

(2q + 1)
R1
�1 jxj

2q
l2(x)dx

) 1
4q+1

T
1

4q+1 :

At the optimum,

MSE( ~R(q)(b�T );R
(q)) � T�

2q
4q+1

�
�
� 2q
4q+1

l2qC
2(q) + 2�

2q+1
4q+1

Z 1

�1
jxj2q l2(x)dx

�
:

Theorem 1 shows that the optimal bandwidth (6) depends on yet another unknown quant-

ity C(q; r); the next section discusses the implementation method of the optimal bandwidth, in-

cluding the estimation of this unknown quantity. Corollary 1 demonstrates that if the same

kernel is employed in both stages, the optimal divergence rate of the �rst-stage bandwidth is

b�T = O(T 1=5) with MSE( ~R(1)(b�T );R
(1)) = O

�
T�2=5

�
for q = 1 (Bartlett), and b�T = O(T 1=9)

with MSE( ~R(2)(b�T );R
(2)) = O

�
T�4=9

�
for q = 2 (Parzen). Thus, the divergence rate of b�T is

slower than that of the optimal bandwidth for the HAC estimator S�T using the same kernel.

Next, we focus on the HAC estimator 
̂ that is based on the observable process fĝtg. Accordingly,

the normalized curvature estimator should be based on fĝtg. A random weighting vector wT

may need to be considered. Then, let ŝ(n)T =
PT�1

j=�(T�1) l(j=bT ) jjj
n
�̂h;T (j) for n = 0; q, where

�̂h;T (j) = T�1
PminfT+j;Tg

t=maxf1;1+jg ĥT;tĥT;t�j is the jth sample autocovariance of the process
n
ĥT;t

o
=

fw0T ĝtg. Also let R̂
(q)
T (bT ) = ŝ

(q)
T =ŝ

(0)
T . Furthermore, let ŝ(n) and R̂(q)(bT ) denote the corresponding

counterparts to a constant weighting vector case. Following Andrews (1991), the AMSE criterion is
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also modi�ed in two respects. First, the normalized (or scale-adjusted) version of MSE is introduced

so that its dominating term becomes O (1). Using the scale factor T 2r=(2q+2r+1), the normalized

MSE of R̂(q)T (bT ) can be expressed as

MSE(R̂
(q)
T (bT );R

(q); T
2r

2q+2r+1 ) = T
2r

2q+2r+1MSE(R̂
(q)
T (bT );R

(q)): (8)

Hereinafter, the MSE refers to (8), unless otherwise stated. Second, if �̂ has an in�nite second

moment, its use may dominate the normalized MSE criterion, even though the e¤ect of replacing �0

with �̂ in constructing R̂(q)T (bT ) is at most op (1). Then, the MSE is truncated by the scalar m > 0.

The truncated MSE of R̂(q)T (bT ) with the scale factor T 2r=(2q+2r+1) is

MSEm(R̂
(q)
T (bT );R

(q); T
2r

2q+2r+1 ) = E

�
min

�
T

2r
2q+2r+1

���R̂(q)T (bT )�R(q)
���2 ;m�� :

In the rest of the paper, the truncated MSE with arbitrarily large truncation point

lim
m!1

lim
T!1

MSEm(R̂
(q)
T (bT );R

(q); T
2r

2q+2r+1 )

is used as the criterion of optimality. The next theorem shows that the normalized MSE of R̂(q)T (bT )

is asymptotically equivalent to the normalized MSE of ~R(q)(bT ).

Theorem 2. If A1 and A3 - 6 hold and b2q+2r+1T =T ! � 2 (0;1), then

(a) T r=(2q+2r+1)
n
R̂
(q)
T (bT )� ~R(q)(bT )

o
p! 0:

(b)
limm!1 limT!1MSEm(R̂

(q)
T (bT );R

(q); T 2r=(2q+2r+1))

= limm!1 limT!1MSEm( ~R
(q)(bT );R

(q); T 2r=(2q+2r+1))

= limT!1MSE( ~R(q)(bT );R
(q); T 2r=(2q+2r+1)):

2.2 Implementation of Optimal Bandwidth for HAC Estimation

Following Sheather and Jones (1991), we obtain the optimal bandwidth for the HAC estimator S�T

by numerically solving the �xed-point problem. We refer to this implementation method as the

solve-the-equation plug-in (SP) rule.3 The SP bandwidth estimator of S�T may be derived by solving

(3) for T , yielding

T =

(R1
�1 k2(x)2dx

qk2q
�
R(q)

�2
)
(S�T )

2q+1
; (9)

3The �solve-the-equation�approach originally comes from Park and Marron (1990).
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and then substituting (9) into (6) to get an expression for b�T as a function of S
�
T :

b�T = b�T (S
�
T ) =

(
�2(q; r)rl2r

R1
�1 k2(x)dx

q (2q + 1) k2q
R1
�1 jxj

2q
l2(x)dx

) 1
2q+2r+1

(S�T )
2q+1

2q+2r+1 ; (10)

where �(q; r) = C(q; r)=R(q) = s(r)=s(0) � s(q+r)=s(q). By (3) and (4), the bandwidth estimator ŜT

is given by the root of the system of nonlinear equations (10) and

S�T =

8><>:
qk2q

�
R̂
(q)
T (b�T (S

�
T ))
�2

R1
�1 k2(x)dx

9>=>;
1

2q+1

T
1

2q+1 : (11)

In case of multiple roots, the SP bandwidth estimator is de�ned formally as follows.4

De�nition. The SP bandwidth estimator ŜT is de�ned as the largest root that solves the system

of equations (10) and (11).

When the same kernel is employed to estimate normalized curvature and LRV so that l(x) = k(x)

and r = q, many common factors are cancelled out, and ŜT is derived by the simpli�ed system

S�T =

8><>:
qk2q

�
R̂
(q)
T (b�T (S

�
T ))
�2

R1
�1 k2(x)dx

9>=>;
1

2q+1

T
1

2q+1 ;

b�T (S
�
T ) =

(
�2(q)

R1
�1 k2(x)dx

(2q + 1)
R1
�1 jxj

2q
k2(x)dx

) 1
4q+1

(S�T )
2q+1
4q+1 ;

where �(q) = �(q; q) = s(q)=s(0) � s(2q)=s(q).5 For convenience, Table 1 displays the characteristic

numbers of popular kernels that are required to calculate the optimal bandwidths b�T and S
�
T .

Table 1: Characteristic Numbers of Kernels Most Popularly Applied

Kernel q kq
R1
�1 k2(x)dx

R1
�1 jxj

2
k2(x)dx

R1
�1 jxj

4
k2(x)dx

Bartlett 1 1 2=3 1=15 2=105
Parzen 2 6 151=280 491=20160 929=295680

Quadratic Spectral 2 18�2=125 1 125=72�2 1

The only remaining problem is to determine how to deal with the unknown quantity �(q). Since


̂ and R̂(q)(bT ) are T q=(2q+1)- and T q=(4q+1)-consistent at the optimum, a proxy of �(q) with a

parametric convergence rate su¢ ces for the consistency of the HAC estimator. Park and Marron

4The following de�nition comes from the suggestion in Park and Marron (1990). In line with this de�nition, a
recommended root search algorithm is the grid search starting from some large positive number. GAUSS codes for
SP bandwidth estimators using the Bartlett and Parzen kernels are available on the author�s web page.

5The rest of this section and Section 3 (Monte Carlo Results) exclusively consider the case in which the same kernel
is employed twice.

8



(1990) and Sheather and Jones (1991) argue that the in�uence of �tting a parametric model to �(q)

at this point appears to be less crucial than �tting it directly to R(q) as in Andrews (1991). Then,

�tting fhtg to a reference AR(1) model ht = �ht�1 + �t is considered. A proxy of �(q) is obtained

by substituting the least squares estimate of the AR coe¢ cient �̂LS into s
(n); n = 0; q; 2q. The

formulae of the proxy �̂(q) for q = 1; 2 for the AR(1) model are

�̂(q) =

8<:
�
�̂
2

LS + 1
�
=
�
�̂
2

LS � 1
�

for q = 1

�
�
�̂
2

LS + 8�̂LS + 1
�
=
�
�̂LS � 1

�2
for q = 2

:

2.3 Properties of Automatic Bandwidth

This section provides a theoretical justi�cation for the automatic two-stage plug-in bandwidth se-

lection. Let �̂ and � be the parameter estimator of the model �tted to the process fhtg, and its

probability limit, respectively. In line with the parametric speci�cation, the �rst- and second-stage

bandwidths are rewritten as b�T and S�T . Also let b̂T =
�
�̂T
�1=(2q+2r+1)

and ŜT = (
̂T )
1=(2q+1) be

the corresponding automatic bandwidths with �̂ plugged in. The next two theorems show that using

the automatic two-stage plug-in bandwidth, we can consistently estimate the normalized curvature

and LRV, even when the �tted reference model is misspeci�ed.

Theorem 3. If A1 and A3 - 7 hold and b2q+2r+1�T =T ! �� = rl2rC
2
� (q; r)=

n
(2q + 1)

R1
�1 jxj

2q
l2(x)dx

o
with jC�(q; r)j 2 (0;1), then

(a) T r=(2q+2r+1)
n
R̂
(q)
T (b̂T )� ~R(q)(b�T )

o
p! 0:

(b)
limm!1 limT!1MSEm(R̂

(q)
T (b̂T );R

(q)
� ; T 2r=(2q+2r+1))

= limm!1 limT!1MSEm( ~R
(q)(b�T );R

(q)
� ; T 2r=(2q+2r+1))

= limT!1MSE( ~R(q)(b�T );R
(q)
� ; T 2r=(2q+2r+1)):

Theorem 4. If A1 - 7 hold and S2q+1�T =T ! 
� = qk2q

�
R
(q)
�

�2
=
R1
�1 k2(x)dx with

���R(q)� ��� 2 (0;1),
then

(a) T q=(2q+1)
�
w0T 
̂wT � w0 ~
w

�
p! 0:

(b)
limm!1 limT!1MSEm(
̂; 
; T

2q=(2q+1))

= limm!1 limT!1MSEm(~
;
; T
2q=(2q+1))

= limT!1MSE(~
;
; T 2q=(2q+1)):

From a practical point of view, it is interesting to know what happens to the automatic two-stage

plug-in bandwidth if the process fgtg is serially uncorrelated. The next lemma shows that even in

the absence of serial dependence in fgtg, the consistency results still hold.
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Lemma 3. Suppose that �g(j) = 0;8j 6= 0. If A1 - 7 hold, then R̂(q)(b̂T )
p! R

(q)
� and 
̂

p! 
.

Lemma 3 does not consider a random weighting scheme; for the consistency of R̂(q)(b̂T ) and 
̂

A6(b) should be replaced by the fairly stringent condition T 1=2 (wT � w)
p! 0.

3 Monte Carlo Results

3.1 Experiment A: Accuracy of LRV Estimates

This experiment investigates the accuracy of LRV estimates using the SP bandwidth estimator. The

data generating processes (DGPs) are univariate ARMA(1,1) and MA(2) models. These models

are often used for Monte Carlo experiments in time series analysis. The parameter settings are

given below. In all experiments, the sample size and the number of replications are 128 and 2000,

respectively.

ARMA(1,1): xt = �xt�1 + �t +  �t�1; �t
iids N (0; 1) ; �;  2 f0;�:5;�:9g ; �+  6= 0:

MA(2): xt = �t +  1�t�1 +  2�t�2; �t
iids N (0; 1) ;

( 1;  2) = (�1:9; :95) ; (�1:3; :5) ; (�1:0; :2) ; (:67; :33) ; (0;�:9) ; (0; :9) ; (�1:0; :9) :

LRV estimates are calculated by the following nine estimators: (i) the QS estimator with AR(1)

reference by Andrews (1991) (QS-AR); (ii) the Bartlett estimator by Newey and West (1994) with

the bandwidth for the normalized curvature estimator set equal to
h
4 (T=100)

2=9
i
(BT-NW ); (iii)

the Bartlett estimator with AR(1) reference (BT-AR); (iv) the Bartlett two-stage plug-in estimator,

where C (1) in b�T is estimated by AR(1) reference (BT-2P); (v) the Bartlett SP estimator (BT-

SP); (vi) the Parzen estimator with AR(1) reference (PZ-AR); (vii) the Parzen two-stage plug-

in estimator, where C (2) in b�T is estimated by AR(1) reference (PZ-2P); (viii) the Parzen SP

estimator (PZ-SP); and (xi) the truncated estimator with AR(1) reference suggested by Andrews

(1991, footnote 5 on p.834) (TR-AR). Estimators (i)-(ii) are widely applied in empirical work, while

(iii)-(iv) and (vi)-(vii) are calculated as the benchmarks for two corresponding SP estimators. Unlike

the other estimators, estimator (xi) does not necessarily yield non-negative LRV estimates in �nite

samples. In case of a negative estimate, the bandwidth is shortened until the resulting estimate
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becomes positive. The root mean squared error (RMSE) is chosen as the performance criterion,

whereas bias is reported for convenience. To avoid obtaining extraordinarily large RMSEs, the least

squares estimate of the AR(1) coe¢ cient �̂ is adjusted to being less than :95 in modulus.

TABLE 2-3 ABOUT HERE

Tables 2 and 3 present the Monte Carlo results for ARMA(1,1) and MA(2) models, respectively.

The RMSEs and the biases (in parentheses) of LRV estimates are reported in the �rst and second

rows of a given DGP. For convenience, 
 (the true value of LRV) is also provided. The main

�ndings can be summarized as follows:

� So long as the AR(1) reference correctly speci�es the underlying process, QS-AR performs

best. However, for DGPs with MA terms (MA(2) models, in particular) the performance of

QS-AR tends to be dominated by SP estimators.

� Since the SP estimators are designed to limit the in�uence of the AR(1) reference, they do not

perform well for AR(1) models. Once MA terms are introduced, they appear reliable in the

sense that they often substantially reduce RMSEs, compared with their corresponding AR(1)

reference-based and 2P estimators.

� BT-SP performs best in the presence of moderate positive serial dependence. Even in the

presence of negative serial dependence it often outperforms QS-AR, while the latter still ex-

hibits advantages for the DGPs with dominating AR coe¢ cients such as ARMA(1,1) with

(�;  ) = (�:9; :5). BT-SP tends to improve its RMSE mainly by reducing the variance, and

as a result it possesses a large bias even in the case in which it has a smaller RMSE than

QS-AR; see ARMA(1,1) with (�;  ) = (0; :9) ; (:5; :5) and MA(2) with ( 1;  2) = (:67; :33), for

example. The issue of large bias is remarkable particularly for highly persistent DGPs.

� PZ-SP performs best in the presence of negative serial dependence. However, in the presence

of positive serial dependence, it often has a large RMSE, and tends to be outperformed by

QS-AR.
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� Because of its way of estimating normalized curvature, BT-NW is expected to work well for

MA models. It indeed performs best for some MA(2) models, but its overall performance does

not exceed QS-AR or SP estimators.

� Due to the issue of negative estimates in the presence of strong negative serial dependence,

TR-AR performs extremely poorly for such DGPs. On the other hand, it sometimes performs

best with respect to both RMSE and bias for the DGPs with positive serial dependence.

The results indicate that although no dominant estimator is found, SP estimators can yield more

accurate LRV estimates for a wide variety of DGPs that cannot be well approximated by AR(1)

models. Therefore, the next experiment focuses only on SP estimators.

3.2 Experiment B: Size Properties of Test Statistic

Although the SP rule is primarily motivated by improved LRV estimation, it is also of interest

whether the SP bandwidth estimator can be applied as a useful tool for inference. Then, following

West (1997), this experiment investigates the size properties of a test statistic based on the linear

regression

yt = �1 + �2x2t + �3x3t + �4x4t + �5x5t + ut � x0t� + ut; x1t � 1; t = 1; : : : ; T:

Without loss of generality the true parameter value � is set equal to zero. The parameter is estimated

by OLS, and thus the asymptotic covariance matrix of the OLS estimator �̂ is calculated as

V̂ �
 
1

T

TX
t=1

xtx
0
t

!�1
(estimate of 
)

 
1

T

TX
t=1

xtx
0
t

!�1
:

The test statistic of interest is the Wald statistic of the �rst slope coe¢ cient T �̂
2

2=V̂22
d! �21 under

H0 : �2 = 0. In all experiments, the sample size and the number of replications are 128 and 2000,

respectively. The regressors follow independent AR(1) processes with a common AR parameter �,

i.e. xit = � xit�1 + eit; i = 2; : : : ; 5, where � = :5 or :9. The variance of the iid normal random

variable feitg is chosen so that fxitg has a unit variance. The error term futg independently follows

one of the time series models used in Experiment A or the AR(2) model ut = 1:6ut�1 � :9ut�2 + vt.

An important di¤erence between the error term and the regressors is that since the innovation in
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each DGP of futg follows vt
iid� N (0; 1), the variance of futg varies across models. The Wald

statistics are calculated based on �ve estimators, namely, QS-AR, BT-NW, BT-SP, PZ-SP, and

TR-AR. To check whether the size properties can be improved by prewhitening (Andrews and

Monahan, 1992), both non-prewhitened and prewhitened versions are investigated for all estimators

except TR-AR. The procedure of prewhitening follows Andrews and Monahan (1992) with the

eigenvalues of the �tted VAR(1) coe¢ cient matrix adjusted to being less than :97 in modulus. The

weighting matrix for QS-AR and TR-AR is diagonal that assigns zero to the element corresponding

to the cross-product of the intercept and the error term and one otherwise, as suggested in Andrews

(1991). The same rule applies to the weighting vector for the other estimators.

TABLES 4-5 ABOUT HERE

Tables 4 (� = :5) and 5 (� = :9) report �nite sample rejection frequencies at the 5% nominal

size. The main �ndings can be summarized as follows:

� Table 4 shows that the performance of each of the three non-prewhitened estimators (QS-

AR, BT-SP and PZ-SP) is similar and satisfactory in general. Although over-rejections are

observed in the presence of positive serial dependence (and they are sometimes considerable

for BT-SP), they are substantially reduced by prewhitening. The size properties of the three

prewhitened estimators are comparable.

� Table 5 indicates that QS-AR sometimes yields an erratic test statistic. As reported in West

(1997), it often rejects the null too infrequently in the presence of strong negative serial depend-

ence, and it appears that prewhitening does not improve the size properties; see ARMA(1,1)

with (�;  ) = (0;�:9); (:5;�:9) and MA(2) with ( 1;  2) = (0;�:9). Moreover, there are

cases in which prewhitening makes the performance of PZ-SP worse; see ARMA(1,1) with

(�;  ) = (0;�:9); (0;�:5) and MA(2) with ( 1;  2) = (�1:9; :95) ; (�1:3; :5) ; (�1:0; :2). In

contrast, BT-SP tends to be less sensitive to prewhitening for the same DGPs. It could be

the case that the second-order spectral density derivative estimator (and thus second-order nor-

malized curvature estimator) appears to be more sensitive to prewhitening than the �rst-order
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one.

� Overall non-prewhitened BT-NW tends to exhibit over-rejections of the null, and prewhitening

does not necessarily help to reduce them substantially.

� Again as reported in West (1997), TR-AR often yields a test statistic that is too small in

the presence of negative serial dependence. Its performance in the presence of positive serial

dependence is in general better than non-prewhitened QS-AR but worse than prewhitened

QS-AR, BT-SP and PZ-SP.

� Table 5 indicates that there are cases in which prewhitening does not work well for inference.

For MA(2) with ( 1;  2) = (0; :9), prewhitening worsens the size properties of QS-AR and

BT-SP. For MA(2) with ( 1;  2) = (�1:0; :9) and AR(2) with (�1; �2) = (1:6;�:9), the non-

prewhitened Wald statistic based on BT-SP shows a satisfactory performance. Prewhitening

worsens the size properties of the Bartlett-based estimator in the MA(2) case, and it makes the

QS- and Bartlett-based estimators underreject in the AR(2) case. The spectral densities of the

three DGPs have a peak or trough at a nonzero frequency. A lesson that can be drawn from

this experience is that prewhitening may adversely a¤ect the performance of test statistics,

when DGPs have such nasty spectral densities.

4 Conclusion

This paper develops a new method for bandwidth selection in HAC estimation. The proposed

two-stage plug-in bandwidth selection is inspired by a well-known bandwidth choice rule in the

literature of probability density estimation. The key idea is to estimate normalized curvature

using a general class of kernels, and then derive the AMSE-optimal bandwidth for the normalized

curvature estimator. It is demonstrated that the optimal bandwidth should diverge at a slower rate

than that of the HAC estimator using the same kernel. The SP rule, an implementation method

for the AMSE-optimal bandwidth selection for the HAC estimator, is also developed. The Monte

Carlo results indicate that for a variety of DGPs, the HAC estimator based on the SP rule can

estimate LRV more accurately than the QS estimator by Andrews (1991) or the Bartlett estimator
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by Newey and West (1994). The test statistic constructed from the SP-HAC variance estimator

has size properties comparable with the QS-based test statistic, and better in general than the test

statistic based on the Bartlett estimator.

A Appendix

A.1 Assumptions

All the assumptions that establish the theorems are given below. A1 and A2 refer to the properties

of the �rst- and second-stage kernels. Although these appear restrictive, every K1 class kernel (An-

drews, 1991) with bounded support and a �nite characteristic exponent greater than 1=2 (including

the Bartlett and Parzen kernels) satis�es these conditions. Note that in�nite-order kernels such as

the truncated and the �at-top kernels do not satisfy A1 or A2. The conditions
R1
0
jxj2q �l(x)dx <1

and
R1
0
�k(x)dx < 1 in A1(a) and A2(a) ensure that certain Riemann-type sums de�ned in terms

of kernels l(�) and k(�) converge to their integral representation counterparts; see Jansson (2002,

p.1451) for discussion. A4(a)(b) are the same as Assumption 2 in Newey and West (1994). A4(c)

is also standard for spectral density estimation. As discussed in Andrews (1991), A6(a) implies that

the right-hand side of (8) is L1+�-bounded for some � > 0. Without this assumption, it would be

L1-bounded, which would not su¢ ce to establish the �rst-order equivalences of MSEs in Theorems

2, 3 and 4. A6(b) is required only when a random weighting scheme is applied.

A1. The �rst-stage kernel l(�) satis�es the following conditions:

(a) l : R! [�1; 1], l(0) = 1, l(x) = l(�x);8x 2 R, l(�) is continuous at 0 and almost everywhere, the

characteristic exponent r 2 (1=2;1), for a given characteristic exponent of the second-stage

kernel q, supx�0 jxj
q jl(x)j <1 and

R1
0
jxj2q �l(x)dx <1 where �l(x) = supy�x jl(y)j.

(b) jl(x)� l(y)j � c jx� yj for some c; 8x; y 2 R.

(c) For a given characteristic exponent of the second-stage kernel q, jl(x)j � c jxj�b1 for some c and

for some b1 > q + 1 + (q + 2) = f2 (q + r)g.
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(d) l(x) has [r] + 1 continuous, bounded derivatives on [0; �x1] for some �x1 > 0, with the derivatives

at x = 0 evaluated as x! 0+.

A2. The second-stage kernel k(�) satis�es the following conditions:

(a) k : R ! [�1; 1], k(0) = 1, k(x) = k(�x);8x 2 R, k(�) is continuous at 0 and almost

everywhere, the characteristic exponent q 2
��
�1 +

p
5
�
=4;1

�
, and

R1
0
�k(x)dx < 1 where

�k(x) = supy�x jk(y)j.

(b) jk(x)� k(y)j � c jx� yj for some c,8x; y 2 R.

(c) For a given characteristic exponent of the �rst-stage kernel r, jk(x)j � c jxj�b2 for some c and

for some b2 > 1 + (2q + 2r + 1) = fq (2r � 1)� 1=2g, provided that q (2r � 1) > 1=2.

(d) k(x) has [q] + 1 continuous, bounded derivatives on [0; �x2] for some �x2 > 0, with the derivatives

at x = 0 evaluated as x! 0+.

A3. (a) The �rst-stage bandwidth bT satis�es 1=bT + b
maxf1;rg
T =T + b2q+1T =T ! 0 as T !1.

(b) The second-stage bandwidth ST satis�es 1=ST+ S
maxf1;qg
T =T ! 0 as T !1.

A4. (a) g(z; �) is twice continuously di¤erentiable with respect to � in a neighborhood N0 of �0

with probability 1.

(b) Let gt (�) � g(zt; �), gt� (�) � @g(zt; �)
0=@�, and git�� (�) � @2gi(zt; �)=@�@�

0, where gi(�; �) is

the ith component of g(�; �). Then, there exist a measurable function ' (z) and some constant

K > 0 such that sup�2N0
kgt (�)k < ' (z), sup�2N0

kgt� (�)k < ' (z), sup�2N0
kgit�� (�)k <

' (z) ; i = 1; : : : ; s, and E
�
'2 (z)

	
< K.

(c) Let vt �
�
gt (�0)

0
; vec (gt� (�0)� E (gt� (�0)))0

�0
=
�
g0t; vec (gt� (�0)� E (gt� (�0)))

0�0. Also let

�v(j) and �v;abcd(�; �; �) be the jth-order autocovariance of the process fvtg and the fourth-order

cumulant of (va;t; vb;t+j ; vc;t+j+l; vd;t+j+l+n), where vi;t is the ith element of vt. Then, fvtg is

a zero-mean, fourth-order stationary sequence that satis�es
P1

j=�1 jjj
q+maxf1;rg k�v(j)k <1

and
P1

j=�1
P1

l=�1
P1

n=�1 j�v;abcd(j; l; n)j <1;8a; b; c; d � s+ ps.
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A5. T 1=2
�
�̂ � �0

�
= Op (1).

A6. (a) The process fgtg is eighth-order stationary with
P1

j1=�1 � � �
P1

j7=�1 j�g;a1:::a8(j1; : : : ; j7)j <

1;8a1; : : : ; a8 � s, where �g;a1:::a8(j1; : : : ; j7) is the cumulant of (ga1;0; ga2;j1 ; : : : ; ga8;j7) and gi;t is

the ith element of gt.

(b) The random weighting vector wT satis�es either T q=(2q+1) (wT � w)
p! 0 for r � q (2q + 1), or

T r=(2q+2r+1) (wT � w)
p! 0 for r > q (2q + 1).

A7. T 1=2
�
�̂ � �

�
= Op (1).

A.2 Proof of Lemma 1

The proof closely follows that of Theorem 10 in Chapter V of Hannan (1970). Using E
�
~�h(j)

�
=

(1� jjj =T ) �h(j); j 2 f0;�1; : : :� (T � 1)g gives

brT

n
E
�
~s(q)
�
� s(q)

o
= brT

T�1X
j=�(T�1)

�
l(
j

bT
)� 1

�
jjjq �h(j)� brT

T�1X
j=�(T�1)

l(
j

bT
) jjjq jjj

T
�h(j)� brT

1X
jjj�T

jjjq �h(j)

� B1 �B2 �B3:

Now,

B1 = �
T�1X

j=�(T�1)

�
1� l(j=bT )
jj=bT jr

�
jjjq+r �h(j)! �lr

1X
j=�1

jjjq+r �h(j) = �lrs(q+r):

On the other hand,

jB2j �
brT
T

T�1X
j=�(T�1)

����l( jbT )
���� jjjq+1 j�h(j)j �

(
(brT =T )

P1
j=�1 jjj

q+r j�h(j)j ! 0 for r � 1
(brT =T )

P1
j=�1 jjj

q+1 j�h(j)j ! 0 for r < 1
:

Also by bT � T for an arbitrarily large T ,

jB3j � 2
1X
j=T

jjjq+r j�h(j)j ! 0;

which establishes the �rst approximation.

A4(c) implies that
P1

j=�1 jjj
maxf1;rg j�h(j)j <1. Then, the second approximation is immedi-

ately established if this condition is used for the term corresponding to B2. �
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A.3 Proof of Lemma 2

The proof closely follows that of Theorem 9 in Chapter V of Hannan (1970). The result in Hannan

(1970, p.313) gives

TCov
�
~�h(i); ~�h(j)

�
=

1X
u=�1

f�h(u)�h(u+ i� j) + �h(u+ i)�h(u� j) + �h(i; u; u+ j)g'T (u; i; j); (12)

where �h(�; �; �) is the fourth-order cumulant generated by the process fhtg, and 'T (u; i; j) is de�ned

for i � j by

'T (u; i; j) =

8<: 0 if u � �T + i; 1� (i� u) =T if � T + i � u � 0;
1� i=T if 0 � u � i� j; 1� (j + u) =T if i� j � u � T � j;
0 if T � j � u:

Hence,

T

b2q+1T

V ar(~s(q)) =
1

bT

T�1X
i=�(T�1)

T�1X
j=�(T�1)

���� ibT
����q ���� jbT

����q l( ibT )l( jbT )
1X

u=�1
�h(u)�h(u+ i� j)'T (u; i; j)

+
1

bT

T�1X
i=�(T�1)

T�1X
j=�(T�1)

���� ibT
����q ���� jbT

����q l( ibT )l( jbT )
1X

u=�1
�h(u+ i)�h(u� j)'T (u; i; j)

+
1

bT

T�1X
i=�(T�1)

T�1X
j=�(T�1)

���� ibT
����q ���� jbT

����q l( ibT )l( jbT )
1X

u=�1
�h(i; u; u+ j)'T (u; i; j)

� V1 + V2 + V3:

Let v � i� j. Then, V1 can be rewritten as

V1 =

2(T�1)X
v=�2(T�1)

1X
u=�1

�h(u)�h(u+ v)

8<: 1

bT

X
j

'T (u; j + v; j)

���� jbT
����q l( jbT )

����j + vbT

����q l(j + vbT
)

9=; ;

where the summation over j runs only for fj : jjj � T � 1; jj + vj � T � 1g. Picking trimming

functions mT = O
�
b1��T

�
for some � 2 (0; 1) and MT = O

�
b1+�T

�
for some � 2 (0; �= (2q + 1)), we

can show6 that

V1 �

8<: X
juj�mT

�h(u)

9=;
28<: 1

bT

X
jjj�MT

���� jbT
����2q l2( jbT )

9=;!
�
s(0)
�2 Z 1

�1
jxj2q l2 (x) dx <1:

Similarly, we have V2 !
�
s(0)
�2 R1

�1 jxj
2q
l2 (x) dx. Lastly, by A1(a) and A4(c),

jV3j �
1

bT

�
sup
x�0

jxjq jl(x)j
�2 1X

i=�1

1X
u=�1

1X
v=�1

j�h(i; u; v)j ! 0;

6A detailed argument is available on the author�s web page.
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which establishes the �rst approximation. The second approximation is a standard result of spectral

density estimation. The third approximation can be shown by recognizing that
R1
�1 jxj

q
l2(x)dx <

1 by A1(a). �

A.4 Proof of Theorem 2

Part (a): On the right-hand side of

T
r

2q+2r+1

n
R̂
(q)
T (bT )� ~R(q)(bT )

o
= T

r
2q+2r+1

n
R̂
(q)
T (bT )� R̂(q)(bT )

o
+T

r
2q+2r+1

n
R̂(q)(bT )� ~R(q)(bT )

o
;

the �rst term is op (1) by A6(b). Hence, we need to show that the second term is op (1). Taking the

�rst-order Taylor expansion of R̂(q)(bT ) around
�
ŝ(q); ŝ(0)

�0
=
�
~s(q); ~s(0)

�0
gives R̂(q)(bT ) = ~R(q)(bT )+

~�
0
ĥ + op

�


ĥ


�, where ~� = �
1=~s(0);�~s(q)=

�
~s(0)
�2�0

and ĥ =
�
ŝ(q) � ~s(q); ŝ(0) � ~s(0)

�0
. Then, we

only need to show that
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Hence, the left-hand side of (13) can be rewritten as
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D1 = op (1) is obvious. Since
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we only need to show that R2 = Op (1) to establish D2 = op (1). R2 is further rewritten as
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T�1X
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9=;
� 2R21 + 2R22:

Since E fht�j (ht� � E (ht�))g and E fht (ht�j� � E (ht�))g are autocovariances, the same arguments

as in the proofs of Lemmata 1 and 2 apply. Then, R21 and R22 can be shown to converge

in mean square and thus in probability to R�21 �
P1

j=1 j
nE fht�j (ht� � E (ht�))g and R�22 �P1

j=1 j
nE fht (ht�j� � E (ht�))g, respectively, where R�21 and R�22 are both bounded by A4(c).

Hence, R2 = Op (1).
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D3 can be rewritten as
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To establish D3 = op (1), we only need to show that R3 = op (1), where
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9=;
2

!
�Z 1

�1
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Then, it follows from bT = O
�
T 1=(2q+2r+1)

�
that V ar (R31) = O

�
T�(2r�1)=(2q+2r+1)

�
= o (1).

Similarly, V ar (R32) = o (1), and thus V ar (R3) = o (1) by the Cauchy-Schwarz inequality. Finally,

R3 = op (1) is shown by Chebyshev�s inequality.

Moreover,
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���� jbT
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jxjq jl(x)j dx <1;

we have D4 = op (1) if R4 = op (1). However, T r=(2q+2r+1)�1b
q+1
T = O

�
T�(q+r)=(2q+2r+1)

�
= o (1),

and
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�
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2
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 � 2 kwk2K <1 (15)

by A4(b). Then, R4 = op (1) follows from Markov�s inequality. Furthermore, using similar

arguments, we have D5 = op (1) and D6 = op (1), which establish (13).
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Part (b): The proof directly follows the proof of Theorem 1(c) in Andrews (1991). �

A.5 Proof of Theorem 3

Part (a): By A6(b) we only need to show that T r=(2q+2r+1)
n
R̂(q)(b̂T )� ~R(q)(b�T )

o
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the �rst-order Taylor expansion of R̂(q)(b̂T ) around
�
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; ŝ(0)

�
b̂T

��
=
�
~s(q)(b�T ); ~s

(0)(b�T )
�0

gives R̂(q)(b̂T ) = ~R(q)(b�T ) + ~�
0
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Now, T 1=2
�����Ĉ2(q; r)�1=(2q+2r+1) � �C2� (q; r)�1=(2q+2r+1)���� = Op (1) and Ĉ2(q; r)
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by A7 and the delta method. By (12), j'T (�; �; �)j � 1 and A4(c), we can �nd a constant M (which
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For such J , H2 can be rewritten as
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H213 = op (1), and thus H21 = op (1) is established. On the other hand, by A1(c),
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)� l( j

b�T
)

�
jn

8<: 1T
TX

t=j+1

(ht�j (ht� � E (ht�)) + ht (ht�j� � E (ht�)))

9=; = op (1) :

By T 1=2
�
�̂ � �0

�
= Op (1), we have ~D2 = op (1), and thus D̂2 = op (1). Next, consider

D̂3 = 2T
r

2q+2r+1

T�1X
j=1

l(
j

b̂T
)jn

0@ 1
T

TX
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+2T
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l(
j

b̂T
)jn

0@ 1
T

TX
t=j+1
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1AE (ht�)
�
�̂ � �0

�
� 2D̂31 + 2D̂32:
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Pick an integer n1 =
�
T 1=(2q+2r+1)

�
. Then, by jl(�)j � 1 and A1(c),
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�b1
D̂0
312

�
: (18)

We have D̂31 = op (1) if D̂0
311 and D̂

0
312 are both op (1). Now, D̂00

311 � T r=(2q+2r+1)�1
Pn1

j=1 j
q =

O
�
T�(q+r)=(2q+2r+1)

�
= o (1). In addition, b1�q > 1) D̂00

312 � T (r+b1)=(2q+2r+1)�1
PT�1
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jq�b1 =

O
�
T�(q+r)=(2q+2r+1)

�
= o (1). Then, by E

n
T�1=2

���PT
t=j+1 ht�j

���o2 � P1
j=�1 j�h (j)j < 1 and

Markov�s inequality, D̂0
311 = op (1) and D̂0

312 = op (1). Similarly, D̂32 = op (1) and thus D̂3 = op (1).

Finally, following (18),
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Obviously, D̂4 = op (1) if D̂0
41 and D̂

0
42 are both op (1). However, D̂00

311 = o (1), D̂00
312 = o (1), (15),

and Markov�s inequality establish D̂0
41 = op (1) and D̂0

42 = op (1). Similarly, we have D̂5 = op (1)

and D̂6 = op (1). Therefore, H3 = op (1) and thus (16) is established.
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Part (b): This is immediately established by applying the same argument as in the proof of

Theorem 2(b). In particular, for the �rst equality, the references should be changed from Theorems

1 and 2(a) to Theorem 3(a). �

A.6 Proof of Theorem 4

Part (a): By A6(b) we only need to show that T q=(2q+1)
�
w0
̂w � w0 ~
w

�
p! 0. Observe that

T
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o
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Since A2 = op (1) and A3 = op (1) have been already shown as Lemmata A7 and A8 in Newey and

West (1994), we only need to show that A1 = op (1).

By A2(c) we can pick some � such that � 2 (1+1= f2 (b2 � 1)g ; 3=4+fr (2q + 1)g = f2 (2q + 2r + 1)g).
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Now, T r=(2q+2r+1)
�����
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(0;1) by Theorem 3 and the delta method. It follows from
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3=4 + fr (2q + 1)g = f2 (2q + 2r + 1)g that T (q�1)=(2q+1)�r=(2q+2r+1)�1=2
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j=1 j = o (1). Then, by

V ar
�
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�
�M and Markov�s inequality, A11 = op (1). Next, by A2(c),
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� 2 (0;1), we have A12 = op (1). Using similar arguments, we have A13 = op (1),

which establishes A1 = op (1).

Part (b): This part has been already shown in Theorem 3(c) in Andrews (1991). To see this,

recognize that (1) can be rewritten as MSE(~
;
) = E
n
vec(~
� 
)0 (wTw0T 
 wTw0T ) vec(~
� 
)

o
;

in other words,MSE(~
;
; T 2q=(2q+1)) can be always expressed as equation (3.5) in Andrews (1991),

where the weighting matrix is WT = (wTw
0
T )
 (wTw0T ). �

A.7 Proof of Lemma 3

Since fhtg = fw0gtg is serially uncorrelated, we have s(q)� = s
(q+r)
� = 0 so that C�(q; r) = R

(q)
� = 0.
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�
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�
. The estimator of the �rst-stage optimal
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� if both terms on the right-hand side are Op (1). However, by the �rst-order
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Indeed it is not hard to establish (19) by recognizing that E
�
~�h(j)

�
= (1� jjj =T ) �h(j) = 0;8j 6= 0

and applying the arguments used in the proofs of Lemma 2 and Theorems 2 and 3. Therefore,
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�
T�1=2

�
= Op

�
T�1=2

�
, or R̂(q)(b̂T )

p! R
(q)
� (= 0). As a result, the estimator
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T
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Table 2: Accuracy of LRV Estimates for ARMA(1,1) Models

ρ ψ Ω QS­AR BT­NW BT­AR BT­2P BT­SP PZ­AR PZ­2P PZ­SP TR­AR
­.9 0 .277 .080 .232 .144 .285 .178 .127 .100 .095 5.337

( .048 ) ( .199 ) ( .066 ) ( .082 ) ( .044 ) ( .106 ) ( .037 ) ( .041 ) ( 4.977 )
­.5 0 .444 .104 .279 .138 .161 .162 .105 .112 .113 .724

( .044 ) ( .107 ) ( .064 ) ( .074 ) ( .074 ) ( .043 ) ( .018 ) ( .016 ) ( .300 )
.5 0 4.000 1.348 1.451 1.398 1.478 1.520 1.383 1.497 1.516 1.285

( ­.655 ) ( ­1.026 ) ( ­.934 ) ( ­1.148 ) ( ­1.238 ) ( ­.660 ) ( ­.823 ) ( ­.779 ) ( ­.612 )
.9 0 100.000 63.897 73.425 64.839 68.862 69.216 64.425 67.891 67.260 61.822

( ­49.611 ) ( ­71.980 ) ( ­55.876 ) ( ­63.914 ) ( ­65.030 ) ( ­52.237 ) ( ­58.672 ) ( ­58.081 ) ( ­46.482 )
0 ­.9 .010 .399 .227 .281 .149 .091 .360 .133 .065 1.292

( .388 ) ( .116 ) ( .275 ) ( .145 ) ( .086 ) ( .352 ) ( .125 ) ( .057 ) ( .945 )
0 ­.5 .250 .243 .229 .200 .163 .150 .219 .142 .128 .347

( .222 ) ( .082 ) ( .179 ) ( .128 ) ( .102 ) ( .200 ) ( .102 ) ( .068 ) ( .106 )
0 .5 2.250 .642 .705 .618 .661 .589 .660 .687 .726 .567

( ­.155 ) ( ­.388 ) ( ­.268 ) ( ­.416 ) ( ­.379 ) ( ­.174 ) ( ­.250 ) ( ­.274 ) ( ­.038 )
0 .9 3.610 1.120 1.186 1.067 1.149 .961 1.161 1.198 1.313 1.025

( ­.293 ) ( ­.691 ) ( ­.466 ) ( ­.747 ) ( ­.629 ) ( ­.337 ) ( ­.464 ) ( ­.563 ) ( ­.157 )
­.9 ­.9 .003 .219 .720 .337 .279 .222 .434 .131 .130 19.080

( .201 ) ( .689 ) ( .319 ) ( .251 ) ( .190 ) ( .412 ) ( .104 ) ( .096 ) ( 17.830 )
­.9 ­.5 .069 .140 .456 .208 .185 .155 .275 .093 .096 12.088

( .126 ) ( .434 ) ( .191 ) ( .156 ) ( .113 ) ( .258 ) ( .067 ) ( .068 ) ( 11.219 )
­.9 .5 .623 .124 .198 .194 .328 .200 .129 .346 .129 1.296

( ­.005 ) ( .050 ) ( .024 ) ( .095 ) ( .041 ) ( .004 ) ( .102 ) ( ­.011 ) ( 1.037 )
­.5 ­.9 .004 .217 .553 .207 .120 .084 .226 .059 .048 3.671

( .211 ) ( .289 ) ( .204 ) ( .117 ) ( .078 ) ( .222 ) ( .053 ) ( .040 ) ( 3.601 )
­.5 ­.5 .111 .134 .393 .135 .100 .090 .138 .052 .055 2.255

( .125 ) ( .193 ) ( .126 ) ( .081 ) ( .060 ) ( .131 ) ( .032 ) ( .031 ) ( 2.211 )
­.5 .9 1.604 .362 .455 .337 .371 .324 .376 .390 .420 .362

( ­.047 ) ( ­.199 ) ( ­.102 ) ( ­.223 ) ( ­.162 ) ( ­.063 ) ( ­.107 ) ( ­.129 ) ( .136 )
.5 ­.9 .040 .729 .171 .643 .577 .367 .659 .652 .658 .697

( .709 ) ( .110 ) ( .616 ) ( .527 ) ( .290 ) ( .640 ) ( .602 ) ( .555 ) ( .644 )
.5 .5 9.000 3.758 3.402 3.539 3.772 3.441 3.875 3.987 4.428 3.443

( ­1.299 ) ( ­2.430 ) ( ­1.877 ) ( ­2.709 ) ( ­2.558 ) ( ­1.442 ) ( ­1.892 ) ( ­2.238 ) ( ­.887 )
.5 .9 14.440 6.151 5.554 5.803 6.248 5.641 6.338 6.668 7.407 5.601

( ­2.697 ) ( ­4.194 ) ( ­3.444 ) ( ­4.764 ) ( ­4.352 ) ( ­2.966 ) ( ­3.679 ) ( ­4.389 ) ( ­1.930 )
.9 ­.5 25.000 17.397 18.022 18.039 18.383 18.609 16.981 16.461 16.151 18.068

( ­16.161 ) ( ­17.631 ) ( ­17.239 ) ( ­17.758 ) ( ­18.064 ) ( ­15.504 ) ( ­14.704 ) ( ­14.159 ) ( ­17.165 )
.9 .5 225.000 149.666 163.870 144.369 156.685 153.102 152.146 161.578 151.477 140.263

( ­117.794 ) ( ­160.538 ) ( ­121.811 ) ( ­145.203 ) ( ­142.463 ) ( ­127.351 ) ( ­141.060 ) ( ­132.925 ) ( ­100.006 )
.9 .9 361.000 252.219 264.245 239.151 255.084 248.999 254.339 267.369 250.659 239.142

( ­188.633 ) ( ­258.388 ) ( ­195.318 ) ( ­232.992 ) ( ­228.789 ) ( ­204.974 ) ( ­224.522 ) ( ­214.641 ) ( ­161.681 )
Note:  The first and second rows of each DGP are RMSEs and biases (in parentheses).

Table 3: Accuracy of LRV Estimates for MA(2) Models

ψ1 ψ2 Ω QS­AR BT­NW BT­AR BT­2P BT­SP PZ­AR PZ­2P PZ­SP TR­AR
­1.9 .95 .003 .306 .777 .383 .202 .135 .326 .054 .045 5.581

( .295 ) ( .353 ) ( .376 ) ( .196 ) ( .127 ) ( .319 ) ( .043 ) ( .032 ) ( 5.500 )
­1.3 .5 .040 .161 .410 .202 .111 .081 .171 .031 .028 2.941

( .154 ) ( .187 ) ( .197 ) ( .105 ) ( .071 ) ( .166 ) ( .020 ) ( .015 ) ( 2.889 )
­1.0 .2 .040 .243 .285 .202 .111 .079 .230 .063 .043 1.964

( .236 ) ( .130 ) ( .198 ) ( .106 ) ( .071 ) ( .225 ) ( .056 ) ( .033 ) ( 1.871 )
.67 .33 4.000 1.343 1.412 1.291 1.363 1.210 1.381 1.433 1.565 1.187

( ­.391 ) ( ­.895 ) ( ­.629 ) ( ­.914 ) ( ­.825 ) ( ­.454 ) ( ­.611 ) ( ­.732 ) ( ­.177 )
0 ­.9 .010 1.855 .212 1.806 1.801 .360 1.714 1.660 .712 1.849

( 1.827 ) ( .147 ) ( 1.780 ) ( 1.773 ) ( .297 ) ( 1.686 ) ( 1.609 ) ( .446 ) ( 1.824 )
0 .9 3.610 1.781 1.264 1.715 1.767 1.731 1.653 1.645 1.477 1.882

( ­1.642 ) ( ­.812 ) ( ­1.620 ) ( ­1.661 ) ( ­1.541 ) ( ­1.487 ) ( ­1.329 ) ( ­.997 ) ( ­1.793 )
­1.0 .9 .810 .407 .503 .247 .464 .212 .341 .273 .307 2.061

( ­.392 ) ( .038 ) ( ­.051 ) ( .045 ) ( ­.045 ) ( ­.317 ) ( ­.225 ) ( ­.277 ) ( 1.994 )
Note:  The first and second rows of each DGP are RMSEs and biases (in parentheses).
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Table 4: Finite Sample Rejection Frequencies at the 5% Nominal Size (� = :5)
(%)

QS­AR BT­NW BT­SP PZ­SP QS­AR BT­NW BT­SP PZ­SP TR­AR
ARMA(1,1): ρ ψ

­.9 0 4.0 5.7 3.9 4.5 5.1 5.9 5.0 4.9 .5
­.5 0 5.1 5.7 4.6 4.8 6.1 7.4 6.2 6.2 2.8
0 0 6.0 7.4 5.2 5.3 6.1 7.3 6.1 6.1 5.3
.5 0 9.6 11.0 12.0 10.5 7.7 9.4 7.7 7.7 8.9
.9 0 12.4 15.0 15.5 14.0 9.1 10.0 9.1 9.1 11.6
0 ­.9 4.4 6.7 4.1 4.3 5.2 6.8 5.2 5.1 2.5
0 ­.5 4.3 5.8 3.5 3.4 5.1 6.3 5.1 5.1 3.7
0 .5 8.6 9.1 10.4 9.1 6.7 8.0 6.8 6.8 7.2
0 .9 9.2 10.2 11.3 10.2 6.7 8.6 6.9 6.9 8.1

­.9 ­.9 4.1 5.3 3.7 4.8 4.6 6.0 4.7 4.7 .3
­.5 ­.9 3.5 5.6 3.5 3.9 4.2 5.3 4.2 4.2 .6
­.5 .9 8.4 8.9 9.4 8.7 7.0 8.4 7.1 7.2 7.6
.5 ­.9 4.1 5.8 3.4 3.4 4.5 5.9 4.5 4.5 2.9
.5 .9 10.0 12.4 13.1 11.0 7.2 8.9 7.5 7.6 9.0
.9 .9 10.3 13.8 14.5 12.5 6.7 7.5 6.8 7.0 10.2

MA(2): ψ1 ψ2
­1.9 .95 4.2 6.1 4.1 4.6 4.8 6.5 4.9 4.9 .5
­1.3 .5 3.5 5.1 3.6 4.0 3.6 5.9 3.6 3.5 .4
­1.0 .2 4.3 6.1 4.2 4.8 4.5 6.6 4.5 4.4 .9
.67 .33 9.6 10.9 12.1 10.5 7.6 8.5 7.7 7.7 8.9
0 ­.9 3.7 5.7 4.0 3.9 4.0 5.7 4.1 4.3 3.9
0 .9 9.9 9.8 9.5 9.0 10.2 10.2 10.2 10.2 9.3

­1.0 .9 5.2 7.2 5.1 5.8 6.0 7.9 6.2 6.1 .9
AR(2): ρ1 ρ2

1.6 ­.9 9.3 11.3 11.2 10.3 6.0 7.2 6.7 6.7 8.5

Non­Prewhitened Prewhitened

Table 5: Finite Sample Rejection Frequencies at the 5% Nominal Size (� = :9)
(%)

QS­AR BT­NW BT­SP PZ­SP QS­AR BT­NW BT­SP PZ­SP TR­AR
ARMA(1,1): ρ ψ

­.9 0 4.3 2.7 4.9 4.5 5.6 6.8 5.3 5.4 .0
­.5 0 6.2 9.9 6.8 7.7 6.9 10.2 6.7 6.6 .9
0 0 7.5 10.7 7.0 6.9 7.6 11.5 7.7 7.8 7.2
.5 0 13.6 15.7 15.9 14.8 9.4 11.8 9.8 9.6 12.3
.9 0 25.9 28.6 29.2 27.9 17.9 18.3 18.4 18.1 24.1
0 ­.9 .7 6.9 2.2 2.8 .7 6.0 1.7 .5 .1
0 ­.5 3.4 8.4 5.0 5.7 3.2 7.4 3.6 2.9 1.4
0 .5 9.6 11.9 10.2 10.8 5.0 9.8 5.5 6.4 7.9
0 .9 10.9 12.5 10.8 12.3 4.9 11.5 5.2 7.5 9.6

­.9 ­.9 2.2 1.3 3.3 2.3 3.8 4.5 3.0 2.9 .0
­.5 ­.9 1.1 6.0 2.7 3.1 1.6 5.4 2.4 2.0 .0
­.5 .9 8.9 11.1 9.4 9.5 5.9 10.7 6.4 7.5 7.7
.5 ­.9 1.1 7.3 2.2 1.8 1.0 7.0 1.7 1.1 1.6
.5 .9 16.9 18.7 17.3 18.1 6.4 12.2 6.8 9.7 15.4
.9 .9 27.3 29.9 30.8 29.3 14.0 15.3 15.3 14.8 25.1

MA(2): ψ1 ψ2
­1.9 .95 1.1 5.8 2.5 3.3 1.3 3.7 2.1 1.6 .0
­1.3 .5 1.0 5.6 2.0 2.9 1.2 4.7 1.8 1.3 .0
­1.0 .2 1.8 6.6 3.5 4.4 1.8 6.4 2.9 1.6 .1
.67 .33 12.6 14.8 12.9 13.5 5.7 11.8 6.6 7.7 11.0
0 ­.9 .3 7.4 2.0 2.3 .3 6.7 1.8 2.4 .4
0 .9 15.0 14.0 14.6 13.8 16.5 14.2 16.3 14.4 15.7

­1.0 .9 9.7 10.2 7.7 10.2 10.5 10.6 9.1 8.9 .2
AR(2): ρ1 ρ2

1.6 ­.9 10.0 6.8 6.0 12.4 .5 2.4 1.1 5.7 6.0

Non­Prewhitened Prewhitened

31


