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Hisayuki Tsukuma* and Tatsuya Kubokawa/
Toho University and Unwwversity of Tokyo
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Abstract

This paper treats the problem of simultaneously estimating the precision matri-
ces in multivariate normal distributions. A condition for improvement on the unbi-
ased estimators of the precision matrices is derived under a quadratic loss function.
The improvement condition is similar to the superharmonic condition established
by Stein (1981). The condition allows us not only to provide various alternative
estimators such as shrinkage type and enlargement type estimators for the unbiased
estimators, but also to present a condition on a prior density under which the result-
ing generalized Bayes estimators dominate the unbiased estimators. Also, a unified
method improving upon both the shrinkage and the enlargement type estimators is
discussed.

Key words and phrases: Bayes estimation, common mean, decision theory, James-Stein
estimator, risk function, simultaneous estimation, superharmonic function.

1 Introduction

There have been many papers to treat the problem of estimating the precision matrix
in a multivariate normal distribution and proposed various types of estimators for some
loss functions. These papers include Efron and Morris (1976), Haff (1977, 1979), Dey
(1987), Krishnamoorshy and Gupta (1989), and Kubokawa (2005). For the motivation of
the problem of estimating the precision matrix, see Efron and Morris (1976), Haff (1986)
and Kubokawa (2005). In this paper we treat an extended model to a k-sample problem
and consider simultaneous estimation of the precision matrices under a quadratic loss
function. The main aim is to derive estimators of the precision matrices by means of
applying Stein (1981)’s idea to our problem.
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To specify the problem considered here, let Sy, ..., S, be mutually independent ran-
dom matrices such that

SZ' ~ Wpi(Zi,ni), 1= ]., NN ,k, (11)

where for e = 1,... ,k, S; is a p; X p; matrix, X, is a p; X p; unknown positive-definite
matrix and n; — p; — 3 > 0. Consider simultaneous estimation of the precision matrices,
denoted by X' = (X7',..., X 1), under the quadratic loss function

k
L, X" => tr(6;— X', (1.2)
i=1
where § = (81,...,8) is an estimator of X~ '. Every estimator is evaluated by the risk
function R(8, X)) = E[L(6, X7Y)).
An ordinary estimator of X! is §° = (85,... ,8%), where 85 = ¢;S; " and the ¢;’s are

positive constants. Using Theorem 3.2 of Haff (1979), we can write the risk of § as

)

k
R(6°,X7") =) Eltr (6 — %)
i=1
k
= Z{al’icg(tr X2 4 agicitr X7 — 2azcitr X572 4 tr X%}
i=1

where a;; = {(n; — pi)(ni — pi — 1)(n; — pi — 3)}_17 az; = {(ni — pi)(ni — pi — 3,
and az; = (n; —p; — 1)7'. Since the constants ¢;’s minimizing the risk depend on the
unknown parameters X;’s, there are no optimal constants ¢;’s. A natural choice of ¢; is
¢; =n; — p; — 1, which leads to the unbiased estimator of X!, given by

677 = (877, .. 80" = ((m —p1 — ST, .., (e — o — 1S,

In this paper, we consider the problem of constructing estimators improving on the
unbiased estimator 6VZ. Especially, we develop an interesting dominance condition cor-
responding to the superharmonic condition given by Stein (1981), who derived it in si-
multaneous estimation of a multivariate normal mean vector. More specifically, let f(.S)
be a scalar-valued function of S = (S4, ..., Sy), where f is a twice differentiable function
and f(S) > 0. Fori=1,... k, let D; be a p; x p; matrix of differential operators with
respect to S; = (s;.qap) such as

D, — (%(1%—(5@)%),

where 0., = 1 for a = b and 6., = 0 for a # b. The estimator considered in this paper is
6/ = (8],...,8]) with the form

I _ §UB _ 4p, _sr_ 2 p,
9; =9; 4D;log f(S) = 9; f(S)DZf(S)' (1.3)



An interesting fact is that the same idea and arguments as in Stein (1981) can be applied
to evaluate the risk function of the estimator 87. In Section 2, we derive the condition

k
> tr DD} f(S) <0, (1.4)
=1

under which 8 dominates 8V%. The condition (1.4) corresponds to Stein’s superharmonic
condition as noted in Remark 2.1, while it does not imply that f(S) is superharmonic.
Hence, the improvement over the unbiased estimator can be shown by checking the con-
dition (1.4), and various types of improved estimators are developed in Sections 3, 4 and
5. In Section 3, four kinds of shrinkage and enlargement estimators improving on 8V are
presented. In Section 4, we handle the generalized Bayes procedure and provide a condi-
tion on a prior distribution of X~ under which the resulting generalized Bayes estimator
dominates 6YZ. An empirical Bayes method is discussed in Section 5 and it is shown
that an Efron and Morris (1976)-type estimators are characterized as the empirical Bayes
estimators. Section 6 gives the unified dominance result of both shrinkage and enlarge-
ment estimators which improve upon 6YZ. Section 7 presents the numerical comparison
of the risk behavior of alternative estimators and shows that certain alternative estimator
substantially reduces risk over 6V% in case that the precision matrices X s are near the
identity matrices.

Finally, it may be noted that the simultaneous estimation of X' is involved in the
following estimation problems: (i) Consider the common mean of multivariate normal
distributions, X; ~ N,(0, %), for i = 1,... ,k where the Wishart matrices (1.1) with
p1 = --- = pp = p are available. If the X;’s are known, the best linear unbiased estimator

of @ is . .
0, = (Z 2;1)_1<Z 2;1Xi>.
i=1 i=1

Hence it is necessary to replace the X;'’s with their estimators when the X;'’s are
unknown; (ii) Consider the k-sample problem of simultaneously estimating the normal
mean matrices, @;’s, with the identity covariance matrices under the loss Zle tr ((:)l -
©,)!(@;—8;). From the arguments of Efron and Morris (1976), the problem resolves itself
into that of estimating X' under a quadratic loss function. Since we need to consider
loss functions different from (1.2) to handle the problems (i) and (ii), the results given in
this paper can not be directly applied to these problems. However, the ideas and methods
used here will help us develop improved estimators in the problems.

2 Condition of dominance over the unbiased estima-
tor

In this section we derive the condition (1.4) under which 8/ dominates 6V relative to
the loss (1.2).

We begin with describing some matrix operations. Let A = (Ay,...,A;) and B =
(By,...,By), where A; and B; are p; X p; squared matrices, respectively, for i = 1,... k.
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Denote pA = (pA1,...,pAy) for a scalar ¢ and A — B = (A; — By,... , Ay — By).
Define the notations A o B and ||A|[5s by

k
AoB=) trAB], |Alyu=VAcA (2.1)

i=1
Then the quadratic loss function (1.2) is written as
L(§, X7") = |6 — =73, (2.2)

Let h(.S) be a scalar-valued function of S and H;(S) = (hj.ap) a matrix-valued function
of S. The actions of D; on h(S) and on H,(S) are defined as, respectively,

o a aca i-cl
DA(S) = (5(1+0u) ;S(Sb)) DiH;(S) = (ZH; agb)

c=

where D;h(S) and D;H;(S) are p; x p; matrices. Also, the actions of D = (D, ..., Dy)
on h(S) and on H(S) = (H(S),...,H(S)) are defined as, respectively,

Dh(S) = (D1h(S),... , Dih(S)), Do H(S) =) trD;H;(S).

Then the estimator (1.3) is written as
67 = 8YP — 4Dlog £(8S). (2.3)
To evaluate the risk, we use the Wishart identity given by
Eiltr X7 H(S)] = Ei[(n; — ps — Dtr S H(S) + 2tr D H (S)],

provided both expectations exist. Here F; denotes conditional expectation of S; given
S1,...,8i-1,81, ..., Sk The Wishart identity is equivalent to

7

Using this identity gives that

E[itr (00 — =7 H(S)| = > Ew (B[t (877 — =7 H(S)] |

=1
k
- E[ . QZtrDZHZ(S)},
i=1
where E(; denotes expectation of Sy,...,8;_1,841,...,S,. Similar to the notation
(2.1), we have the extended Wishart identity
E[(6Y% — X7 o H(S)] = —2E[D o H(S)]. (2.4)

Then the extended Wishart identity (2.4) is used to get our main result.
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Theorem 2.1 The risk function of 8 = 8Y% — 4Dlog f(S) is expressed as

R, XY =R, XY+ E [%D o Df(S)|.

Hence, if
k
DoDf(S) =) trD;D}f(S) <0, (2.5)
=1

then 8/ dominates 8Y7 relative to the loss (2.2).
Proof. It is observed that
R(§', 27" =R, 27" + BE[-8(8V" — X" o Dlog £(S) + 16| D1og f(S)||3,]
= R(6Y", X7") + E[16D o Dlog f(S) + 16| D1og f(S) ||, (2.6)

where the last equality follows from the Wishart identity (2.4). Note that Dlog f(S) =
{f(S)}™'Df(S) and that
) _DoDf(S) IDIS)E _ DoDI(S) :

Therefore combining the above facts and (2.6) completes the proof. |

Remark 2.1 Theorem 2.1 is motivated by Stein (1981), and his result is stated here
briefly. Let X ~ N,(0,1I,), where 6 is an unknown mean vector and I, denotes the
identity matrix. Consider the estimation of @ under the quadratic loss function H@ —0|?
where 8 is an estimator of 6. Let g(x) be a real-valued and twice differentiable function

of & € R? and also let V be the vector differential operator of first partial derivatives with
i-th coordinate d/0x;. Then the estimator of the form

X + Vlogg(X)

dominates the maximum likelihood estimator X under the quadratic loss if
p
9/ g(z)
t ./ _

which is equivalent to the function y/¢(X) being superharmonic. Although the condi-
tion (2.5) corresponds to this superharmonic condition, it does not imply that f(S) is
superharmonic, since the (a, b)-element of D; is given by (1/2)(1 + 044)0/0S;.ap- n

Remark 2.2 We can treat the estimation problem of X~ under the Kullback-Leibler
type loss function, namely, the so-called Stein loss function

k
Ls(86, X7 = {tr X716, —log|X;'8:] — pi}.
=1

However the dominance condition, such as (2.5), for this loss function can not be derived
since it is hard to evaluate the trace and logarithmic terms in the loss function. [



3 Alternative estimators for improvement

3.1 Example of alternative estimators

In this subsection we shall apply Theorem 2.1 to some functions for f and give alternative
estimators of X! for improving on the unbiased estimator 8°Z. The detailed derivations
of the alternative estimators and the proofs for results given in this subsection are put in
Subsection 3.2.

Let g1, g2 and g3 be, respectively, scalar-valued functions and assume that g;, j =
1,2,3, are positive and twice differentiable functions. Denote by ¢’ and g}, respectively,
the first and second derivatives of g;. Also let a, 8 and <y be constants. Consider the
following functions:

(1) fem(S) =tgi(t), where t = 35 | tr S,
(2) f15(S) = uPgy(u?), where u = ||S||as,
(3) fus(S)=v7g3(v), where v = Hle |S].

Then from Lemma 3.2 given below, the corresponding estimators can be expressed as,
respectively,

6" = 8V — 4Dlog fra(S) = 877 —4(= + gl(t))I,

91(t)
JS _ sUB _ UB & B 2g5(u?)
875 = 6UB _ 4Dlog f,5(S) = & +4(u2 e )s
6U5 = 6UF — 4Dlog fys(S) = 6V — 4y + ”93<”))s ,
g3(v)
where I = (I,,,...,I,,)and S7' = (S7',...,S;"). Using Theorem 2.1, we can get

Theorem 3.1 The following dominance results hold relative to the loss (2.2).
(1) If a(a — 1)gi(t) + 2atg)(t) + 3¢/ (t) < 0, then §"™ dominates §V%.

(2) If B(B+2—po)ga(u?) —2(28—po)ulgh(u?) +4u'gy (u?) < 0 forpo = S0 pi(pi+1)/2,
then 8”° dominates 8%

(3) If (72 =) g3 (v)+2vvg4(v) +v2g (v) < 0 and vgs(v)+uvgs(v) > 0, then 8V dominates
oUB.

For the g;’s satisfying the conditions of (1), (2) and (3) of Theorem 3.1, we can choose

gi(z) =1, gj(z) =log(1 4+ z) and g;(z) = (1 +z)7°, b > 0, for any j.

When we consider the special case of & = 1, the above functions have the simple
forms f5,,(S) = (tr 81)%, fig(S) = (trS3)75/2 and f;4(S) = |S:1|?, which result in the



estimators

4o
EM UB
51 - 51 - tr Slel

4
trg2sl with 0 < B <pi(p1 +1)/2 -2,
1

0V =6UP —4yS7 = (ny —pr —1—4y)S7!  with0O <y < 1.

with 0 < a0 < 1,

JS UB
61 — 51 +

The estimator 67" is the similar type to that of Efron and Morris (1976) and 7% is like
the James and Stein (1961) estimator for means of normal distributions. The estimator
8Y% is probably a usual and natural estimator of X7 because the form of 67 is a constant
multiplier of S7'. See also Dey (1987) and Tsukuma and Konno (2006). It can be seen
that 67 < 6V and 6Y% < 6V%, namely, 6V — 67 and 6Y% — 6V are positive definite
matrices, respectively. Thus 67 and 8V° are called the shrinkage estimators. On the
other hand, 67° > 6Y# and hence 87 is called the enlargement estimator.

In the special case of p; = --- = pr = 1, the Wishart distribution degenerates the
chi-squared distribution. Thus the model (1.1) is rewritten as s; ~ o2x2 fori=1,...  k
and the loss function becomes S°F_ (6; — 0;2)2 = L(d,02), say. Noting that po = k in
(2) of Theorem 3.1, we can see that 6”° dominates §V7 relative to the loss L(d,02) if
0 < f < k—2and k > 3, namely, it is necessary for k to be greater than or equal to
three. The Stein phenomenon is also revealed in simultaneous estimation of the precisions
(reciprocal of variances).

We next consider an estimator in the special case of p; = -+ = p, = p, say. Let
w = |81+ -+ Sk| and let g4(x) be a twice differentiable function. Let us define
fam(S) = wgs(w), where ¢ is a constant, and consider the estimator

oM = §UB _ 4Dlog fan(8).

Using Lemma 3.3 (3) given below, we can rewrite 6** = (61" ... §M) as

G wg““”))(S1 ot S
ga(w)

Thus, applying Theorem 2.1 to fan(S), we obtain the following.

Theorem 3.2 Let p; = -+ = pi. If (2 — &)ga(w) + 2cwg)(w) + w?g)j(w) < 0 and
ega(w) + wgy(w) > 0, then §*M dominates 68U relative to the loss (2.2).

It is noted that 6™ < 6Y8 for i = 1,... , k since € + wg,(w)/gs(w) > 0. Thus 6*M
is regarded as a shrinkage estimator.

3.2 Proofs

The following lemmas are useful for calculation with respect to the matrix differential
operator D,;.



Lemma 3.1 (Haff (1981)) Let Gy and Gy be p; xp; symmetric matrices whose elements
are functions of S;. Then D;(G1Gs) = [D;G1]G2+ (G1D;)'Go, where [D;G1] means that
D; acts only on G1.

Lemma 3.2 Let C be a p; X p; symmetric matriz of constants. Then it holds that (1)
Ditr S;C = C, (2) Ditr S = 28;, (3) D:S;' = —(1/2){(tr 8§;1)8; ! + 8,2} and (4)

Proof. Since the equalities (1), (2) and (3) are due to Haff (1982), we shall prove
(4). For convenience of notation, denote S; = (s;.4) by S = (s4) and p; by p only in
this proof. Note that |S| = Y7, sula, where A, is the cofactor of s,. Here, Ay is
equivalent to the determinant of the matrix obtained from S by, in the a-th row and the
[-th column of S, replacing the (a,[)-element with one and the others with zeros, namely,

811 P Sl,l—l 0 Sl,l+1 . e Slp
Sa—1,1 *°°  Sa—1,-1 0 Sa—1,+41 " Sa—1p
Ag=| 0 -+ 0 1 0 - 0 |=I[Sawl say.
Sa+1,1  *°° Sa+1,l-1 0 Sa+1,l+41 " Sa+lp
Spr 0 Spie1r 0 Sspup e Sy

If a = b, then it obviously follows that

0 0 <
= Ay = Aga.
aSaa ‘S‘ aSaa ZZI: SalBal aa

When a # b, we can see that
0

aSab

)
S| = Awy + ;SQ,@AG,.

Note that the cofactor expansion of A,; along the b-th row is given by
Aal = SbmAal(bm)7
m#l

where Ay (bm) is the cofactor with respect to S(a), namely, the determinant of matrix
obtained from S, by, in the b-th row and the m-th column of S, replacing the (b, m)-
element with one and the others with zeros. Thus we get

0

aSab

Aal = Aal (ba) .

Noting that S is symmetric and A,(ba) = Agp(la), we have

0
; SalaTabAal = ; SlaAab(la) = AaZn
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which implies that for a # b

0
S| = 2A4.
aSab‘ ‘ b
Hence D;S = (Ay) = |S|S™" and we proved (4). ]

Proof of Theorem 3.1. We first prove (1). Note that from Lemma 3.2 (1),
th == thr Sl = IPi?

which gives that

k
DoDfpu(S) =) trDDit"g(t)

=1

= Z tr D{at* gy (1) +t%g} (1)}
= {a(a = Dgi(t) + 2atg, (t) + t2g{ (t) }t*p.,

where p, = Ele p;. Hence, from Theorem 2.1, %™ dominates Y% if the last right
hand-side in the above equation is negative.

For the proof of (2), it is seen that from Lemma 3.2 (2),
Diu = D;(u?)Y? = (1/2)(u?)"V*D;u? = (1/2)u"'Ditr 82 = w1 S,.
Noting that D;S; = (p; + 1)I,,/2, we get

DoDfs(S ZtrDDu B ga(u?)

=1

= 30D () + 2 (),

k
:Ztr{ﬁ(ﬁ+2)u‘ﬂ_4gg(u2)S?—4ﬂu F=2gL (u?) 8% + 4uP gl (u*) S?

. Bpi + Du72ga (), /2 + (pi + D g5 (u®) 1, }
=u P2{B(B+2 — po)ga(u®) — 2(28 — po)u’gy(u®) + 4u'gh (u®)},

where py = 2% | pi(p;i + 1)/2. The proof of (2) is completed.
Finally we give the proof of (3). Note that from Lemma 3.2 (4),

Dot = ([TIS:1")DilSif = 718" (Hrs ") DilSi| = 70787,

J#i



We also use Lemma 3.2 (3) to give

k
Do Dfys(S ZtrDDv g3(v)

= 2D () 770 57
—Ztr{'y 07 g3(0)872 4 (27 + D)0 gl (v) 872 + v+l (1) 87
— (1/2)(7v7gs(v) + 0" gy(v)) ((tr S71) ST+ S72)}

The fact that (tr S; ') > tr S;? implies that if ygs(v) + vgs(v) > 0, then

Do Dfys(S) < v {(v* — 7)gs(v) + 27vgs(v) + vg} (v) Z tr S

which proves (3). n
To derive the dominance result with respect to 6™, we use the following lemma.
Lemma 3.3 Letp=p;=---=prandT = S1+---+ Sk and let C be a p X p symmetric

matrix of constants. Then fori=1,...  k, we have

(1) (CD,)!S; = (1/2){tr C}H, + (1/2)C
(2) DT ' = —(1/2){tr T YT" — (1/2)T 2,
(3) Dy|T| = |T|T".
Proof. The expression (1) is due to Haff (1981). From (1), it is observed that

0pxp = Di(T™'T) = [DT T + (T7'D))'T
= [D,T T + (T7'D;)'S,
= [D;T T + (1/2){te T}, + (1/2)T ",

giving (2). The expression (3) can be verified by the same argument as in the proof of

Lemma 3.2 (3). n
Proof of Theorem 3.2. Using Lemma 3.3 (2) and (3), we can prove Theorem 3.2
based on the same argument as in Theorem 3.1 (3). [ ]

4 Generalized Bayes estimation

In this section we consider the Bayes procedures for estimation of the precision matrices
and establish a condition of prior distributions such that the resulting Bayes estimator
dominates the unbiased estimator relative to the loss (2.2).
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Let A= (Ay,..., Ay) = (Z7',..., "), Denote by 7(A) []-_, |Ai| " a prior den-
sity of A. The resulting generalized Bayes estimator is expressed as 6% = (695, ... §¢P )

with
505 _ AATTE, | A|"/2 P~ exp(—tr A;S; /2)}n(A)dA
' JATIE | |Ame/2=pi=t exp(—tr A;S,/2)}m(A)dA
It is noted from Lemma 3.2 that D;log |S;| = S; U and D;tr A;S; = A;. The generalized
Bayes estimator can be rewritten as

6GB _ (SUB + (6GB . (SUB)
= 6Y8 —4Dlog f.(S), (4.1)

where

£:(8) = [(f[ sifrn) [ H A

Fori: =1,... k, let &, = Si/QAZ-S,}/Q where S,}/Q is a symmetric half matrix of S,
namely, S; = S,} / 25,} /2 Since the Jacobian of the transformation from A; to E; is given
by |S;|~®*/2 it follows that

2(8) = [/{ﬁ\si

where S™Y2287Y? means (51_1/25151_1/2,... ,S,:l/QE'kS,:l/Q). Hence, the following

dominance property can be established by applying Theorem 2.1.

1/2
ni/2=pi—1 exp(—tr AlSl/Z)}W(A)dA] :

1/2
n;/2—p;—1 exp(—tr 51/2)}7[_(5—1/255_1/2)d5 )

Theorem 4.1 If Do Df.(S) is negative, then the generalized Bayes estimator 68 dom-
inates 8Y5 relative to the loss (2.2).

It can easily be observed that

pop(s) = LS exp(—r 22} Do Dr(s 1 ZS )iz
2 (AT, B r T exp(—tr E,/2)}n(S PESP)dE) 2
LD [T S exp(—tr 2,/2)} (ST PES ) dE |,
AT, | B 27 exp(—tr B,/2)}n(S PES P)dE?

Since the second term in the right hand-side of the above expression is nonpositive, we
get a sufficient condition on the prior «(-).

Corollary 4.1 IfDoDW(S_I/zES_I/z) 18 negative, then the generalized Bayes estimator
89P dominates 8Y7 relative to the loss (2.2).

It is noted that the condition D o Dr(S~2E87'/%) < 0 provides a characterization
of the prior distribution m(-) for the resulting generalized Bayes estimator to dominate

11



0Y5. However, we may obtain a better condition by evaluating D o Df,(S) than D o
Dr(S~2=287/%). For instance, let us consider the prior distribution

k " b
(M) (3ea) 12)
i=1 i=1
namely,

(87228 = (I1S1ETY - ISk E) (tr S1ET + -+ tr S E N,

where a and b are positive constants. Let V = |S1E7"|---|SpE. | and T = tr S1E7" +
-+ tr Sk._,;l. It is observed from Lemma 3.2 that D,V¢ = aV“S;1 and D;T® =
I '=-!, which yield that

Dirp(S™2E87Y?) = aVeTt St bVt E !
= (aS; + 0T = Yrp(S2E871/?) (4.3)
and
tr D;Dymp(S~V2ES871?)
= a®VOT%r 872 + 2abV T 1tr ST E +b(b — 1)VOT 2 r B2
gV“Tb({tr S+t 8;7?)
< (a® — a)VT%r 8;2 + 2abV T Hr ST E 1 +b(b — DVT %t =2

= {(a® — a)tr 872 + 2abT 't S; =1 +b(b — 1)T %tr :;Z}WB(S_I/QES_lm). (4.4)

Letting

k

a(8) = [{I] 1=,

i=1

n;/2—p;—1 eXp(—tr 51/2) }73(5_1/258_1/2)d57

we can write D o Df,.(S) as

1DoDys(8) _ 1[Dgs(S)I
2 {ga(S)P? 1 {gn(S)F

Do Df,,(S) = (4.5)

From (4.3), it is seen that

1Dgs(S)I3

_m/ (Il=

=1

/{ﬁ=-
(S

—1/2 = —lS 1/2)d5

2
/2Pt exp(—tr 5 /2) }DiWB(S_1/2ES_1/2)dE

ma/2pi L gty 5, /2) }Z{a%rs +2abT M S;' 2"}

=1

ni/2—p;—1 _tr = -1/2 = g-1/2 :'2

yval s ([T
=1 i=1

12



which is evaluated as

IDgs(S)3s
> gB /{H|’_' ng/2—p;— eXp( tr‘—'z/z }Z{CLZtrS 4 2abT~ 1trS_1,_,_1}
=1
xmp(STPEST)dE. (4.6)

Also we use (4.4) to evaluate D o Dgp(S) as
Do DgB<S)

-J{1m=r
< /GO(S, E){Zlifgz

(e 2/} 3 DD 2 i

=1

/2P oxp(—tr B /2)} 5(S~V2ES s, (4.7)
where
k k
Go(S,8)=(a’—a) ) tr8>+2abT 'Y S ' +bb— )T ) tr&;°
=1 =1 =1
Combining (4.6) and (4.7) gives that
DoDfry(S)

_ 1D oDgp(S) _ 1|Dygs(S)i
2 {gs(S)}'* 4 {gs(S )}5/2

1 —1/2 =) =, ni/2—pi—1 = —1/2 = @—1/2\ 7=
< on(s) " [ais.2) H [ exp(—tr 5,/2) b (S ES ),

where
k
G(S,E) = (a* — 2a) ZtrS + 2abT~ Ztr S'ETN 4+ 20(b— 1T Ztr =72
=1 =1 =1
Hence, if G(S, Z) is negative, then D o Df,.(S) is negative. Furthermore, applying the
fact that T-1tr §; 2" < tr §;7% to G(S, E), we get
k k
G(S,E) < (a’ —2a+2ab) Y tr 8> +2b(b— )T ) tr 5>

i=1 =1
Then we get the following theorem.

6GB 6UB

Theorem 4.2 The generalized Bayes estimator with the prior mg dominates
relative to the loss (2.2) if a®> — 2a 4 2ab < 0 and b(b— 1) < 0.

It is noted that 6% with the prior 75 is regarded as a shrinkage estimator since each
component of —Dlog f.,(S) is negative definite.
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5 Empirical Bayes method

In this section we consider the empirical Bayes method for estimation of the precision
matrices. The findings of this section is that 67" and §*™ given in Section 3 are char-
acterized as empirical Bayes estimators.

Letting A = (Ay,..., A}) with A; = X7  fori = 1,... , k, we can write the likelihood
of S = (S4,...,8k) as

m‘/2|SZ,|(ni—P¢—1)/26—trA¢S¢/2‘

p(S]A) H A

i=1

For i = 1,... ,k, suppose that A; = =, + vI,, and that the =,’s are independently
distributed as the matrix-variate t-distributions having the joint density

k

p(E) < []15

i=1

"I, + S|,

where n; > m; + 2p;. Then the posterior density of = and the marginal density of S are
given by

k
P(EIS) o [[ 1572 =502
=1
k
p(S|’y) X H fy(ni—mi—pi—l)pi/Z‘Si‘(m—mz‘—Qpi—Q)/Qe—'ytrSi/2’
=1

both of which are Wishart distributions. Hence, the posterior mean of A; is

E[Ai] = E[E; + 11, 7] = (m; + pi + 1)S; ' + 71,

From the marginal density of S, the maximum likelihood estimator of ~ is given by

c
trS;+---+trSy’

A=

where c is a constant. Thus the resulting empirical Bayes estimator of A; = X' Lis

¢ I
trSy+---+tr S, ¥

677 = (mi+pi+1)S7' +

(SEM

for i = 1,... k. This estimator is the same type as considered in Section 3.

Next, we consider an empirical Bayes estimator in the case of p = p; = -+ = pi.
Suppose that A; = =Z; + I for i =1,... , k and that

k

p(EID) < []15

i=1

ML, + B 0T

14



Then the posterior density of = and the marginal density of S are given by, respectively,

k

H—'.

k
S‘F H (ni— mi—p—l)/2’Si’(ni—mi—2p—2)/2€—tr[‘5i/2.
=1

mi/Qe—tI‘EiSi/27

Therefore the posterior mean of A; is E[A;|y] = (m; +p+1)S; '+ I'. From the marginal
density of S, the maximum likelihood estimator of I' is given by I' = ¢(S; + - - -+ Sy) 71,
where ¢ is a constant. Thus the resulting empirical Bayes estimator of X! is

87 = (mi+p+1)8; +c(S1+--+8;)7"

Therefore §72* with m; = n; — 2p — 2 is equivalent to 6™ given in Section 3.

The dominance results of 672 and §¥2* over the unbiased estimator 6V are given as
in Section 3.

6 Further dominance results

6.1 Unified improvement upon both shrinkage and enlargement
estimators

As seen in Section 3, the estimators 6ZM, §™ and §Y° are shrinkage type estimators for

the unbiased estimator 6YZ, while 67° is an enlargement type estimator. Furthermore,

from result of Section 4, we can see that the generalized Bayes estimator 6“2 given by

(4.1) is a shrinkage type estimator if D;f.(S) is positive definite. This section concerns
unified improvement methods on both shrinkage and enlargement estimators.

First, define a shrinkage estimator as 6°% = §V? —4Dlog fsx(S) and an enlargement
estimator as 6% = Y% — 4Dlog fzn(8S), where fsu(S) and fry(S) are positive and
scalar-valued functions of S. We note that each component of D fsy(S) is positive definite,
namely, D;fsu(S) is positive definite for 4 = 1,...,k, and that 6" is the shrinkage
type estimator for the unbiased estimator §Y% since 5SH Y8 — (4/ fsu(8))Dfsu(S).
Similarly we see that each component of D frx(S) is negative definite.

Let us consider an improved estimator of the form

6! = 6Y8 — 4Dlog(fsu(S) fen(S)),

which can be expressed as

51 = (SSH — 4D log fEN(S)
= 6" —4Dlog fsu(S).

Then we get the interesting result.
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Theorem 6.1 Assume that Do D fsy(S) <0 and DoDfpn(S) < 0. Then &' dominates
both 8% and 8% relative to the loss (2.2).

Proof. By applying Theorem 2.1 to the estimators 87 and 87, the difference between

the risk functions of 87 and 6°¥ can be expressed as
I -1y SH s—1y _ Do D(fsu(S)fen(S)) _ DoDfsu(S)
R e w v ]
_ [Dfsu(S)] o [Dfen(S)] DoDfrn(S)
s oy R ey

(6.1)

It is observed that
[Dfsu(S)] o [Dfen(S)] = th [Di fsu(S)|[Difen(S)].

Hence, the first expectation in the last right hand-side of (6.1) is negative since D; fsy (.S)
is positive definite and D; fgn(S) is negative definite for i« = 1,... k. Therefore the
assumption on fry(S) gives that R(67, X~1) — R(6°", X71) < 0. Similarly, we can show
that R(6', X7) < R(6"Y, X71), and the proof of Theorem 6.1 is complete. [ ]

For instance, the estimators 8% with fj,,(S) = (tr 8y + - -- + tr S)* and §”° with
fi5(S) = |IS||;F are dominated by

6" = "% — 4D log(f5a(S) f75(S))

46
= 6" 4 S
IS113,
gl e
Zle tr Sz ’

where 0 < a<1land 0 < 3 < py— 2 for py = Elepi(pi—l—l)/z

Remark 6.1 We now consider geometric interpretation of the above result. Let F =
(Fi,... ,Fy) and G = (Gy,...,Gy), where F;’s and G,’s are, respectively, p; X p;
matrices and the elements of F';’s and G;’s are functions of S. Define the inner product
of F and G as (F,G) = E[F o G| and denote the norm of F by ||F| g = +/(F,F). It is
noted that (§V2 — X1, X7 = 0, namely, 6Y% — X! and X! intersect orthogonally.
Also, note that both norms ||6V?||z and ||6Y" — X7!||z depend on X"

Let Sp be the open sphere centered at the origin O with radius ||6Y7||z and also
let Sy be the open sphere centered at X' with radius ||6Y? — X7!||z. Note that all
shrinkage type estimators improving upon the unbiased estimator 6”7 belong to So NS
and that all enlargement type estimators improving upon Y%7 belong to S N Sy, where
S¢ denotes the complement of Sp.

Figure 1 shows positions of the estimators "2, 6% §7° and '™ in the metric
space with norm || - ||g. The notation Bp and By denote the boundaries of Sy and Sy,
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respectively. 7™ is a shrinkage type estimator and belongs to So N Sx. Also 677 is an
enlargement type estimator and belongs to S N Ss. Moreover 0™ is given by parallel
translation from 6% along 67° — Y% or from 67% along %M — §V5. ]

6.2 Improvement upon the usual estimator

As seen from Theorem 3.1, the usual estimator 675 = §Y% — 478~ with 0 < v < 1 im-

proves upon the unbiased estimator 8”7 relative to the loss (2.2). From the result in the
preceding subsection, we can improve upon the usual estimator 6°° by adding an enlarge-
ment factor such as —4Dlog f54(S) since 6% is a shrinkage estimator. In this subsection
we consider improvement upon 8° by an estimator having another enlargement factor
than —4Dlog f54(S).

The estimator considered here is of the form
o'V = 86U —4Dlog £(S),

whose risk function can be expressed as

k
R(6'"Y, x> = R(8V5, X7 — SE[Ztr{(ni —pi—1—4y)8;7' — X71)D; log f(S)]
=1

+ 16E[||Dlog f(S)]I3/]
— R(6YS, 1) + 16 E[D o Dlog f(S)] + 327E[S~! 0 Dlog f(S)]
+16E[|[Dlog £(S)|13,]

» 16 »
= R8", 57) + B[ 555 (DoDI(S) + 248 °DS(9))]-

Then we get the following theorem.

Theorem 6.2 The estimator 8"V dominates 8V° relative to the loss (2.2) if

DoDf(S)+2yS ' oDf(S) < 0. (6.2)

JUB

By
Figure 1: Geometric interpretation with respect to the estimators V2, 6%, §7° and

oM.
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We shall seek the function f(.S) satisfying (6.2). First, we look into f},,(S) = (tr Sy +
o+t Sk)®. For fi,,(S), assume that —D;log f7,,(S) is positive definite, namely, « is
negative constant. Noting that

k k
(;tr5i><;tr5;l) zpz

for p, = Zle p; and that v > 0, we can evaluate the left hand-side of (6.2) for ff,,(.S)
as

k —
Do Dfpp(S) +2vS™ o Dfps(S) = ala — 1)p*<2tr SZ») ’

+ 2cw<zk: tr SZ-)a_l zk: trS; !
i=1

i=1
k

< (Ztr S,L»)a_z x p.{a® + a(2yp, — 1)}
=1

Therefore we have

Corollary 6.1 The estimator 8™ = §Y5 —4Dlog f1,,(S) dominates the usual estima-
tor 8V5 relative to the loss (2.2) if —(2yp, — 1) < a < 0.

We next check the condition (6.2) for f},,(S) = |T|° = |S1+ --- + Sk|° when p =
p1 = -+ = pg. Assume that € is a negative constant. To evaluate the condition (6.2) for
fau(S) we use the following fact: Define the arithmetic and the harmonic mean matrices
of positive definite matrices S1,..., Sy as (81 + -+ Si)/k and k(ST +--- + S, )7,
respectively. We then get the matrix inequality for the arithmetic and the harmonic mean
matrices of positive definite matrices.

Lemma 6.1 For positive definite matrices Sy, ..., S}y, we have the followings.
(1) k(ST +--+ 8 < (Su+--+ Si)/k,
2) (87 4+ S /k> k(S +---+ 8.

The equalities hold in (1) and (2) if and only if S1 =--- = Sj.

Proof. The matrix inequality (1) is proved by Sagae and Tanabe (1994) and the
matrix inequality (2) is verified by combining (1) and the fact that A™* > B™'if A< B
for two positive definite matrices A and B. [ ]

From the above lemma, it is seen that Zle tr ST > ke T 2 for T =8+ +
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Si. We also use the inequality {trT~'}? < ptr T2 to give that
k
DoDfh,(S)+2v8 o Df4,,(S) = k| T|Ftr T2 — §|T|E({trT_1}2 + tr T72)

k
+2ey|TI) tr ST
=1
<k |T|tr T2 — (ke/2)(p + 1)|T|tr T2
+ 2k |T|*tr T2
= K|T|*tr T7% x {e® + e(dky — p — 1)/2}.

Hence we get

Corollary 6.2 The estimator 8™ = §V5 —4Dlog f3,,(S) dominates the usual estima-
tor 8V5 relative to the loss (2.2) if —(4ky —p—1)/2 < e < 0.

We finally examine f34(S) = ||S||;/. Using Theorem 6.1, we can see that 6/ =
6Y% —4Dlog f55(S) dominates 6Y% under the condition that 0 < 8 < py — 2. Calculating
the left hand-side of (6.2) for f}4(S) directly, on the other hand, we can show that

DoDfis(S) +278™ o Df55(S) = S5 BB+ 2) — Bpo} — 287p:lIS|l37
= IS5/ 28> — Blpo + 2vp. — 2)},

where po = S5, pi(pi +1)/2. Thus we obtain the better condition for the dominance of
6175 = §Y5 — 4Dlog f44(8S) over 6V

Corollary 6.3 If 0 < 3 < py + 2yp, — 2, then §"° = Y — 4Dlog fi4(S) dominates
8V relative to the loss (2.2).

In the special case of p; = - - = pr = 1, the best constant v of the usual estimator 6V
is given by v = 1/2. The condition that ¢’’* improves upon "% is 52 — 26(k —1) < 0
and k& > 2, namely, it is possible to improve upon the best usual estimator

5BU = ((nl —4)/81,... ,(nk—4)/sk)

for even k = 2, but then impossible to improve upon the unbiased estimator 7. See
also Berger (1980).

7 Numerical studies

In this section we compare the risk functions of alternative estimators of X! under the
loss function (2.2).

For risk comparison in case of p = p; = - - - = py,, we examined the six estimators 677,
oS, 6175 §IEM  §IAM anq §'9B | of which i-th components are given by, respectively,

(1) 677 = (ni —p—-1)S7",
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2) 0V = (n;—p—1—49)8;",

(2) 4;

(3) &;7% = 67" + {2(po + 2vp. — 2)/[IS[13,} S,
(4) 6" =67 + {2(29p. — 1)/ L, tr S},
(5)
(6)

5 6IAM (SUS <4k7_p_1)(51++sk)_17

6) 6197 = 6% 1+ {2(py — 2)/||S||3,}S;, where the prior of 677 is given by (4.2) with
a=1and b=1/2.

Here py = kp(p+1)/2 and p, = kp. It is noted from Corollaries 6.1, 6.2 and 6.3 that '/
S'PM and §™M dominate the usual estimator 8 and, also, from Theorem 6.1 that §7¢2
dominates the unbiased estimator 8V% relative to the loss (2.2).

We note that 5?3, i=1,...,k, is expressed by

son_ EWSIW, - mp(W)
EWVISTrg(W)]

(7.1)

where EWIS denotes conditional expectation with respect to W = (W, ..., W},) given
S. Here the conditional distribution of W; given S; is W, (S; ', n;—p—1) fori=1,...  k
and the W,’s are independent. Hence the estimates of 82 were derived from the Monte

Carlo approximations for the two expectations in the denominator and the numerator of
(7.1).

The estimates of risk values were computed by 10,000 independent replications. We
chose k = 3, p = 2 and v = 1/2 and took three sets of sample size (ni,ns,n3g) =
(10, 10, 10), (30, 10, 50) and (50,70,30). For the precision matrices X; '’s, we considered
the following case: X;' =1,, X, ’ =(1+c)I,, and X3' = (1 +¢)7'I, for ¢ > 0.

The simulation results are given in Figures 2, 3 and 4. The curves in Figures are those
of the relative risks for each alternative estimator and the unbiased estimator, that is, the
ratio of risks of an alternative estimator & and 6°%,

RR = R(6,X7")/R(8VE, 7).

Note that the RR is a function of ¢ and that an estimator 8 is better than "% if RR < 1.
‘UB’, ‘US’, ‘1JS’, ‘IEM’, ‘IAM’ and ‘IGB’ denote 6”7, 6%, 6'7%, 6'"M §'4M and 6%,
respectively.

The simulation results given in Figures 2, 3 and 4 show the following important ob-
servations.

1. In the case that the precision matrices X', Ug are the identity matrices, §77° is the
best for all sets of sample size. For small sample size (ny, ng,n3) = (10, 10, 10), the

RR of §'7% is about 0.35 and 6'7° has substantial reduction in risk than 6“? and
8v”.

2. When the X;'’s are much different, §'%* is excellent in the six estimators. Par-

ticularly in the case of (ny,nq,n3) = (30, 10,50), it is favorable over wide range of
c.

20



. The risk behavior of 8% and 6’4" are very similar. However the RR of 6/% is
slightly better than that of 674,

. The risk of 7%® is near that of 8/°, and is better than that of 8”° except that the
X bs disperse for (ny,ns,n3) = (30,10, 50).

. The risk reduction of estimators are large when the sample size n;’s are small. In
such case, the risk variation over ¢, too, are large.

. In the case that the n;’s disperse, the maximum reduction in risks is not given by
¢ = 0, namely, the X !’s being the identity matrices, probably since any risk of
alternative estimators is dependent on the X '’s.

0.65
1

0.60
1

0.55
1
m
<

RR

0.45
1

o
IGB

0.40
1

Figure 2: The relative risks in case of (ny,ns,n3) = (10, 10, 10).
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Figure 3: The relative risks in case of (ny,n2,n3) = (30, 10, 50).
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Figure 4: The relative risks in case of (ny,n2,n3) = (50, 70, 30).
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