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Abstract

This paper treats the problem of simultaneously estimating the precision matri-
ces in multivariate normal distributions. A condition for improvement on the unbi-
ased estimators of the precision matrices is derived under a quadratic loss function.
The improvement condition is similar to the superharmonic condition established
by Stein (1981). The condition allows us not only to provide various alternative
estimators such as shrinkage type and enlargement type estimators for the unbiased
estimators, but also to present a condition on a prior density under which the result-
ing generalized Bayes estimators dominate the unbiased estimators. Also, a unified
method improving upon both the shrinkage and the enlargement type estimators is
discussed.

Key words and phrases: Bayes estimation, common mean, decision theory, James-Stein
estimator, risk function, simultaneous estimation, superharmonic function.

1 Introduction

There have been many papers to treat the problem of estimating the precision matrix
in a multivariate normal distribution and proposed various types of estimators for some
loss functions. These papers include Efron and Morris (1976), Haff (1977, 1979), Dey
(1987), Krishnamoorshy and Gupta (1989), and Kubokawa (2005). For the motivation of
the problem of estimating the precision matrix, see Efron and Morris (1976), Haff (1986)
and Kubokawa (2005). In this paper we treat an extended model to a k-sample problem
and consider simultaneous estimation of the precision matrices under a quadratic loss
function. The main aim is to derive estimators of the precision matrices by means of
applying Stein (1981)’s idea to our problem.
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To specify the problem considered here, let S1, . . . , Sk be mutually independent ran-
dom matrices such that

Si ∼ Wpi
(Σi, ni), i = 1, . . . , k, (1.1)

where for i = 1, . . . , k, Si is a pi × pi matrix, Σi is a pi × pi unknown positive-definite
matrix and ni − pi − 3 > 0. Consider simultaneous estimation of the precision matrices,
denoted by Σ−1 = (Σ−1

1 , . . . , Σ−1
k ), under the quadratic loss function

L(δ, Σ−1) =
k∑

i=1

tr (δi − Σ−1
i )2, (1.2)

where δ = (δ1, . . . , δk) is an estimator of Σ−1. Every estimator is evaluated by the risk
function R(δ, Σ−1) = E[L(δ, Σ−1)].

An ordinary estimator of Σ−1 is δc = (δc
1, . . . , δc

k), where δc
i = ciS

−1
i and the ci’s are

positive constants. Using Theorem 3.2 of Haff (1979), we can write the risk of δc as

R(δc, Σ−1) =

k∑
i=1

E[tr (δc
i − Σ−1

i )2]

=

k∑
i=1

{a1,ic
2
i (tr Σ−1

i )2 + a2,ic
2
i trΣ−2

i − 2a3,icitr Σ−2
i + trΣ−2

i }.

where a1,i = {(ni − pi)(ni − pi − 1)(ni − pi − 3)}−1, a2,i = {(ni − pi)(ni − pi − 3)}−1,
and a3,i = (ni − pi − 1)−1. Since the constants ci’s minimizing the risk depend on the
unknown parameters Σi’s, there are no optimal constants ci’s. A natural choice of ci is
ci = ni − pi − 1, which leads to the unbiased estimator of Σ−1, given by

δUB = (δUB
1 , . . . , δUB

k ) = ((n1 − p1 − 1)S−1
1 , . . . , (nk − pk − 1)S−1

k ).

In this paper, we consider the problem of constructing estimators improving on the
unbiased estimator δUB. Especially, we develop an interesting dominance condition cor-
responding to the superharmonic condition given by Stein (1981), who derived it in si-
multaneous estimation of a multivariate normal mean vector. More specifically, let f(S)
be a scalar-valued function of S = (S1, . . . , Sk), where f is a twice differentiable function
and f(S) > 0. For i = 1, . . . , k, let Di be a pi × pi matrix of differential operators with
respect to Si = (si·ab) such as

Di =
(1

2
(1 + δab)

∂

∂si·ab

)
,

where δab = 1 for a = b and δab = 0 for a �= b. The estimator considered in this paper is
δf = (δf

1 , . . . , δf
k) with the form

δf
i = δUB

i − 4Di log f(S) = δUB
i − 4

f(S)
Dif(S). (1.3)
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An interesting fact is that the same idea and arguments as in Stein (1981) can be applied
to evaluate the risk function of the estimator δf . In Section 2, we derive the condition

k∑
i=1

trDiDt
if(S) < 0, (1.4)

under which δf dominates δUB. The condition (1.4) corresponds to Stein’s superharmonic
condition as noted in Remark 2.1, while it does not imply that f(S) is superharmonic.
Hence, the improvement over the unbiased estimator can be shown by checking the con-
dition (1.4), and various types of improved estimators are developed in Sections 3, 4 and
5. In Section 3, four kinds of shrinkage and enlargement estimators improving on δUB are
presented. In Section 4, we handle the generalized Bayes procedure and provide a condi-
tion on a prior distribution of Σ−1 under which the resulting generalized Bayes estimator
dominates δUB. An empirical Bayes method is discussed in Section 5 and it is shown
that an Efron and Morris (1976)-type estimators are characterized as the empirical Bayes
estimators. Section 6 gives the unified dominance result of both shrinkage and enlarge-
ment estimators which improve upon δUB. Section 7 presents the numerical comparison
of the risk behavior of alternative estimators and shows that certain alternative estimator
substantially reduces risk over δUB in case that the precision matrices Σ−1

i ’s are near the
identity matrices.

Finally, it may be noted that the simultaneous estimation of Σ−1 is involved in the
following estimation problems: (i) Consider the common mean of multivariate normal
distributions, X i ∼ Np(θ, Σi), for i = 1, . . . , k where the Wishart matrices (1.1) with
p1 = · · · = pk = p are available. If the Σi’s are known, the best linear unbiased estimator
of θ is

θ̂0 =
( k∑

i=1

Σ−1
i

)−1( k∑
i=1

Σ−1
i X i

)
.

Hence it is necessary to replace the Σ−1
i ’s with their estimators when the Σ−1

i ’s are
unknown; (ii) Consider the k-sample problem of simultaneously estimating the normal

mean matrices, Θi’s, with the identity covariance matrices under the loss
∑k

i=1 tr (Θ̂i −
Θi)

t(Θ̂i−Θi). From the arguments of Efron and Morris (1976), the problem resolves itself
into that of estimating Σ−1 under a quadratic loss function. Since we need to consider
loss functions different from (1.2) to handle the problems (i) and (ii), the results given in
this paper can not be directly applied to these problems. However, the ideas and methods
used here will help us develop improved estimators in the problems.

2 Condition of dominance over the unbiased estima-

tor

In this section we derive the condition (1.4) under which δf dominates δUB relative to
the loss (1.2).

We begin with describing some matrix operations. Let A = (A1, . . . , Ak) and B =
(B1, . . . , Bk), where Ai and Bi are pi×pi squared matrices, respectively, for i = 1, . . . , k.
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Denote φA = (φA1, . . . , φAk) for a scalar φ and A − B = (A1 − B1, . . . , Ak − Bk).
Define the notations A ◦ B and ‖A‖M by

A ◦ B =

k∑
i=1

tr AiB
t
i, ‖A‖M =

√
A ◦ A. (2.1)

Then the quadratic loss function (1.2) is written as

L(δ, Σ−1) = ‖δ − Σ−1‖2
M . (2.2)

Let h(S) be a scalar-valued function of S and H i(S) = (hi·ab) a matrix-valued function
of S. The actions of Di on h(S) and on H i(S) are defined as, respectively,

Dih(S) =
(1

2
(1 + δab)

∂h(S)

∂si·ab

)
, DiH i(S) =

( pi∑
c=1

1 + δac

2

∂hi·cb
∂si·ac

)
,

where Dih(S) and DiH i(S) are pi × pi matrices. Also, the actions of D = (D1, . . . ,Dk)
on h(S) and on H(S) = (H1(S), . . . , Hk(S)) are defined as, respectively,

Dh(S) = (D1h(S), . . . ,Dkh(S)), D ◦ H(S) =

k∑
i=1

trDiH i(S).

Then the estimator (1.3) is written as

δf = δUB − 4D log f(S). (2.3)

To evaluate the risk, we use the Wishart identity given by

Ei[trΣ−1
i H i(S)] = Ei[(ni − pi − 1)trS−1

i H i(S) + 2trDiH i(S)],

provided both expectations exist. Here Ei denotes conditional expectation of Si given
S1, . . . , Si−1, Si+1, . . . , Sk. The Wishart identity is equivalent to

Ei[tr (δUB
i − Σ−1

i )H i(S)] = Ei[−2trDiH i(S)].

Using this identity gives that

E
[ k∑

i=1

tr (δUB
i − Σ−1

i )H i(S)
]

=
k∑

i=1

E(i)

[
Ei

[
tr (δUB

i − Σ−1
i )H i(S)

]]
=

k∑
i=1

E(i)

[
Ei

[
− 2trDiH i(S)

]]
= E

[
− 2

k∑
i=1

trDiH i(S)
]
,

where E(i) denotes expectation of S1, . . . , Si−1, Si+1, . . . , Sk. Similar to the notation
(2.1), we have the extended Wishart identity

E[(δUB − Σ−1) ◦ H(S)] = −2E[D ◦ H(S)]. (2.4)

Then the extended Wishart identity (2.4) is used to get our main result.
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Theorem 2.1 The risk function of δf = δUB − 4D log f(S) is expressed as

R(δf , Σ−1) = R(δUB, Σ−1) + E
[ 16

f(S)
D ◦ Df(S)

]
.

Hence, if

D ◦ Df(S) =
k∑

i=1

trDiDt
if(S) < 0, (2.5)

then δf dominates δUB relative to the loss (2.2).

Proof. It is observed that

R(δf , Σ−1) = R(δUB, Σ−1) + E[−8(δUB − Σ−1) ◦ D log f(S) + 16‖D log f(S)‖2
M ]

= R(δUB, Σ−1) + E[16D ◦ D log f(S) + 16‖D log f(S)‖2
M ], (2.6)

where the last equality follows from the Wishart identity (2.4). Note that D log f(S) =
{f(S)}−1Df(S) and that

D ◦ D log f(S) =
D ◦ Df(S)

f(S)
− ‖Df(S)‖2

M

f 2(S)
=

D ◦ Df(S)

f(S)
− ‖D log f(S)‖2

M .

Therefore combining the above facts and (2.6) completes the proof.

Remark 2.1 Theorem 2.1 is motivated by Stein (1981), and his result is stated here
briefly. Let X ∼ Np(θ, Ip), where θ is an unknown mean vector and Ip denotes the

identity matrix. Consider the estimation of θ under the quadratic loss function ‖θ̂ − θ‖2

where θ̂ is an estimator of θ. Let g(x) be a real-valued and twice differentiable function
of x ∈ R

p and also let ∇ be the vector differential operator of first partial derivatives with
i-th coordinate ∂/∂xi. Then the estimator of the form

X + ∇ log g(X)

dominates the maximum likelihood estimator X under the quadratic loss if

∇t∇
√

g(x) =

p∑
i=1

∂2
√

g(x)

∂x2
i

< 0,

which is equivalent to the function
√

g(X) being superharmonic. Although the condi-
tion (2.5) corresponds to this superharmonic condition, it does not imply that f(S) is
superharmonic, since the (a, b)-element of Di is given by (1/2)(1 + δab)∂/∂si·ab.

Remark 2.2 We can treat the estimation problem of Σ−1 under the Kullback-Leibler
type loss function, namely, the so-called Stein loss function

LS(δ, Σ−1) =

k∑
i=1

{trΣ−1
i δi − log |Σ−1

i δi| − pi}.

However the dominance condition, such as (2.5), for this loss function can not be derived
since it is hard to evaluate the trace and logarithmic terms in the loss function.
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3 Alternative estimators for improvement

3.1 Example of alternative estimators

In this subsection we shall apply Theorem 2.1 to some functions for f and give alternative
estimators of Σ−1 for improving on the unbiased estimator δUB. The detailed derivations
of the alternative estimators and the proofs for results given in this subsection are put in
Subsection 3.2.

Let g1, g2 and g3 be, respectively, scalar-valued functions and assume that gj, j =
1, 2, 3, are positive and twice differentiable functions. Denote by g′

j and g′′
j , respectively,

the first and second derivatives of gj . Also let α, β and γ be constants. Consider the
following functions:

(1) fEM(S) = tαg1(t), where t =
∑k

i=1 trSi,

(2) fJS(S) = u−βg2(u
2), where u = ‖S‖M ,

(3) fUS(S) = vγg3(v), where v =
∏k

i=1 |Si|.
Then from Lemma 3.2 given below, the corresponding estimators can be expressed as,
respectively,

δEM = δUB − 4D log fEM (S) = δUB − 4
(α

t
+

g′
1(t)

g1(t)

)
I,

δJS = δUB − 4D log fJS(S) = δUB + 4
( β

u2
− 2g′

2(u
2)

g2(u)

)
S,

δUS = δUB − 4D log fUS(S) = δUB − 4
(
γ +

vg′
3(v)

g3(v)

)
S−1,

where I = (Ip1 , . . . , Ipk
) and S−1 = (S−1

1 , . . . , S−1
k ). Using Theorem 2.1, we can get

Theorem 3.1 The following dominance results hold relative to the loss (2.2).

(1) If α(α − 1)g1(t) + 2αtg′
1(t) + t2g′′

1(t) < 0, then δEM dominates δUB.

(2) If β(β+2−p0)g2(u
2)−2(2β−p0)u

2g′
2(u

2)+4u4g′′
2(u

2) < 0 for p0 =
∑k

i=1 pi(pi+1)/2,
then δJS dominates δUB.

(3) If (γ2−γ)g3(v)+2γvg′
3(v)+v2g′′

3(v) < 0 and γg3(v)+vg′
3(v) ≥ 0, then δUS dominates

δUB.

For the gj’s satisfying the conditions of (1), (2) and (3) of Theorem 3.1, we can choose
gj(x) = 1, gj(x) = log(1 + x) and gj(x) = (1 + x)−b, b ≥ 0, for any j.

When we consider the special case of k = 1, the above functions have the simple
forms f ∗

EM (S) = (tr S1)
α, f ∗

JS(S) = (trS2
1)

−β/2 and f ∗
US(S) = |S1|γ, which result in the
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estimators

δEM
1 = δUB

1 − 4α

trS1
Ip1 with 0 < α < 1,

δJS
1 = δUB

1 +
4β

tr S2
1

S1 with 0 < β < p1(p1 + 1)/2 − 2,

δUS
1 = δUB

1 − 4γS−1
1 = (n1 − p1 − 1 − 4γ)S−1

1 with 0 < γ < 1.

The estimator δEM
1 is the similar type to that of Efron and Morris (1976) and δJS

1 is like
the James and Stein (1961) estimator for means of normal distributions. The estimator
δUS

1 is probably a usual and natural estimator of Σ−1
1 because the form of δUS

1 is a constant
multiplier of S−1

1 . See also Dey (1987) and Tsukuma and Konno (2006). It can be seen
that δEM

1 < δUB
1 and δUS

1 < δUB
1 , namely, δUB

1 −δEM
1 and δUB

1 −δUS
1 are positive definite

matrices, respectively. Thus δEM
1 and δUS

1 are called the shrinkage estimators. On the
other hand, δJS

1 > δUB
1 and hence δJS

1 is called the enlargement estimator.

In the special case of p1 = · · · = pk = 1, the Wishart distribution degenerates the
chi-squared distribution. Thus the model (1.1) is rewritten as si ∼ σ2

i χ
2
ni

for i = 1, . . . , k

and the loss function becomes
∑k

i=1(δi − σ−2
i )2 = L(δ, σ−2), say. Noting that p0 = k in

(2) of Theorem 3.1, we can see that δJS dominates δUB relative to the loss L(δ, σ−2) if
0 < β < k − 2 and k ≥ 3, namely, it is necessary for k to be greater than or equal to
three. The Stein phenomenon is also revealed in simultaneous estimation of the precisions
(reciprocal of variances).

We next consider an estimator in the special case of p1 = · · · = pk = p, say. Let
w = |S1 + · · · + Sk| and let g4(x) be a twice differentiable function. Let us define
fAM(S) = wεg4(w), where ε is a constant, and consider the estimator

δAM = δUB − 4D log fAM(S).

Using Lemma 3.3 (3) given below, we can rewrite δAM = (δAM
1 , . . . , δAM

k ) as

δAM
i = δUB

i − 4
(
ε +

wg′
4(w)

g4(w)

)
(S1 + · · · + Sk)

−1.

Thus, applying Theorem 2.1 to fAM(S), we obtain the following.

Theorem 3.2 Let p1 = · · · = pk. If (ε2 − ε)g4(w) + 2εwg′
4(w) + w2g′′

4(w) < 0 and
εg4(w) + wg′

4(w) ≥ 0, then δAM dominates δUB relative to the loss (2.2).

It is noted that δAM
i < δUB

i for i = 1, . . . , k since ε + wg′
4(w)/g4(w) ≥ 0. Thus δAM

is regarded as a shrinkage estimator.

3.2 Proofs

The following lemmas are useful for calculation with respect to the matrix differential
operator Di.
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Lemma 3.1 (Haff (1981)) Let G1 and G2 be pi×pi symmetric matrices whose elements
are functions of Si. Then Di(G1G2) = [DiG1]G2 +(G1Di)

tG2, where [DiG1] means that
Di acts only on G1.

Lemma 3.2 Let C be a pi × pi symmetric matrix of constants. Then it holds that (1)
Ditr SiC = C, (2) DitrS2

i = 2Si, (3) DiS
−1
i = −(1/2){(tr S−1

i )S−1
i + S−2

i } and (4)
Di|Si| = |Si|S−1

i .

Proof. Since the equalities (1), (2) and (3) are due to Haff (1982), we shall prove
(4). For convenience of notation, denote Si = (si·ab) by S = (sab) and pi by p only in
this proof. Note that |S| =

∑p
l=1 sal∆al, where ∆al is the cofactor of sal. Here, ∆al is

equivalent to the determinant of the matrix obtained from S by, in the a-th row and the
l-th column of S, replacing the (a, l)-element with one and the others with zeros, namely,

∆al =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

s11 · · · s1,l−1 0 s1,l+1 · · · s1p
...

. . .
...

...
...

. . .
...

sa−1,1 · · · sa−1,l−1 0 sa−1,l+1 · · · sa−1,p

0 · · · 0 1 0 · · · 0
sa+1,1 · · · sa+1,l−1 0 sa+1,l+1 · · · sa+1,p

...
. . .

...
...

...
. . .

...
sp1 · · · sp,l−1 0 sp,l+1 · · · spp

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= |S(al)|, say.

If a = b, then it obviously follows that

∂

∂saa

|S| =
∂

∂saa

p∑
l=1

sal∆al = ∆aa.

When a �= b, we can see that

∂

∂sab
|S| = ∆ab +

∑
l �=a

sal
∂

∂sab
∆al.

Note that the cofactor expansion of ∆al along the b-th row is given by

∆al =
∑
m�=l

sbm∆al(bm),

where ∆al(bm) is the cofactor with respect to S(al), namely, the determinant of matrix
obtained from S(al) by, in the b-th row and the m-th column of S, replacing the (b,m)-
element with one and the others with zeros. Thus we get

∂

∂sab
∆al = ∆al(ba).

Noting that S is symmetric and ∆al(ba) = ∆ab(la), we have∑
l �=a

sal
∂

∂sab

∆al =
∑
l �=a

sla∆ab(la) = ∆ab,
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which implies that for a �= b
∂

∂sab
|S| = 2∆ab.

Hence DiS = (∆ab) = |S|S−1 and we proved (4).

Proof of Theorem 3.1. We first prove (1). Note that from Lemma 3.2 (1),

Di t = Ditr Si = Ipi
,

which gives that

D ◦ DfEM(S) =
k∑

i=1

trDiDit
αg1(t)

=
k∑

i=1

trDi{αtα−1g1(t) + tαg′
1(t)}

= {α(α − 1)g1(t) + 2αtg′
1(t) + t2g′′

1(t)}tα−2p∗,

where p∗ =
∑k

i=1 pi. Hence, from Theorem 2.1, δEM dominates δUB if the last right
hand-side in the above equation is negative.

For the proof of (2), it is seen that from Lemma 3.2 (2),

Di u = Di(u
2)1/2 = (1/2)(u2)−1/2Di u

2 = (1/2)u−1Ditr S2
i = u−1Si.

Noting that DiSi = (pi + 1)Ipi
/2, we get

D ◦ DfJS(S) =

k∑
i=1

trDiDiu
−βg2(u

2)

=

k∑
i=1

trDi{−βu−β−2g2(u
2) + 2u−βg′

2(u
2)}Si

=

k∑
i=1

tr {β(β + 2)u−β−4g2(u
2)S2

i − 4βu−β−2g′
2(u

2)S2
i + 4u−βg′′

2(u
2)S2

i

− β(pi + 1)u−β−2g2(u
2)Ipi

/2 + (pi + 1)u−βg′
2(u

2)Ipi
}

= u−β−2{β(β + 2 − p0)g2(u
2) − 2(2β − p0)u

2g′
2(u

2) + 4u4g′′
2(u

2)},

where p0 =
∑k

i=1 pi(pi + 1)/2. The proof of (2) is completed.

Finally we give the proof of (3). Note that from Lemma 3.2 (4),

Di v
γ =

(∏
j �=i

|Sj|γ
)
Di|Si|γ = γ|Si|γ−1

(∏
j �=i

|Sj|γ
)
Di|Si| = γvγS−1

i .
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We also use Lemma 3.2 (3) to give

D ◦ DfUS(S) =

k∑
i=1

trDiDiv
γg3(v)

=
k∑

i=1

trDi{γvγg3(v) + vγ+1g′
3(v)}S−1

i

=
k∑

i=1

tr {γ2vγg3(v)S−2
i + (2γ + 1)vγ+1g′

3(v)S−2
i + vγ+2g′′

3(v)S−2
i

− (1/2)(γvγg3(v) + vγ+1g′
3(v))((trS−1

i )S−1
i + S−2

i )}.

The fact that (tr S−1
i )2 ≥ trS−2

i implies that if γg3(v) + vg′
3(v) ≥ 0, then

D ◦ DfUS(S) ≤ vγ{(γ2 − γ)g3(v) + 2γvg′
3(v) + v2g′′

3(v)}
k∑

i=1

trS−2
i ,

which proves (3).

To derive the dominance result with respect to δAM , we use the following lemma.

Lemma 3.3 Let p = p1 = · · · = pk and T = S1 + · · ·+Sk and let C be a p×p symmetric
matrix of constants. Then for i = 1, . . . , k, we have

(1) (CDi)
tSi = (1/2){trC}Ip + (1/2)C,

(2) DiT
−1 = −(1/2){tr T−1}T −1 − (1/2)T−2,

(3) Di|T | = |T |T−1.

Proof. The expression (1) is due to Haff (1981). From (1), it is observed that

0p×p = Di(T
−1T ) = [DiT

−1]T + (T−1Di)
tT

= [DiT
−1]T + (T−1Di)

tSi

= [DiT
−1]T + (1/2){trT −1}Ip + (1/2)T−1,

giving (2). The expression (3) can be verified by the same argument as in the proof of
Lemma 3.2 (3).

Proof of Theorem 3.2. Using Lemma 3.3 (2) and (3), we can prove Theorem 3.2
based on the same argument as in Theorem 3.1 (3).

4 Generalized Bayes estimation

In this section we consider the Bayes procedures for estimation of the precision matrices
and establish a condition of prior distributions such that the resulting Bayes estimator
dominates the unbiased estimator relative to the loss (2.2).
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Let Λ = (Λ1, . . . , Λk) = (Σ−1
1 , . . . , Σ−1

k ). Denote by π(Λ)
∏k

i=1 |Λi|−pi−1 a prior den-
sity of Λ. The resulting generalized Bayes estimator is expressed as δGB = (δGB

1 , . . . , δGB
k )

with

δGB
i =

∫
Λi{

∏k
i=1 |Λi|ni/2−pi−1 exp(−trΛiSi/2)}π(Λ)dΛ∫ {∏k

i=1 |Λi|ni/2−pi−1 exp(−trΛiSi/2)}π(Λ)dΛ
.

It is noted from Lemma 3.2 that Di log |Si| = S−1
i and Ditr ΛiSi = Λi. The generalized

Bayes estimator can be rewritten as

δGB = δUB + (δGB − δUB)

= δUB − 4D log fπ(S), (4.1)

where

fπ(S) =
[( k∏

i=1

|Si|(ni−pi−1)/2
)∫ { k∏

i=1

|Λi|ni/2−pi−1 exp(−trΛiSi/2)
}
π(Λ)dΛ

]1/2

.

For i = 1, . . . , k, let Ξ i = S
1/2
i ΛiS

1/2
i where S

1/2
i is a symmetric half matrix of Si,

namely, Si = S
1/2
i S

1/2
i . Since the Jacobian of the transformation from Λi to Ξ i is given

by |Si|−(pi+1)/2, it follows that

fπ(S) =
[ ∫ { k∏

i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
}
π(S−1/2ΞS−1/2)dΞ

]1/2

,

where S−1/2ΞS−1/2 means (S
−1/2
1 Ξ1S

−1/2
1 , . . . , S

−1/2
k ΞkS

−1/2
k ). Hence, the following

dominance property can be established by applying Theorem 2.1.

Theorem 4.1 If D◦Dfπ(S) is negative, then the generalized Bayes estimator δGB dom-
inates δUB relative to the loss (2.2).

It can easily be observed that

D ◦ Dfπ(S) =
1

2

∫ {∏k
i=1 |Ξ i|ni/2−pi−1 exp(−trΞi/2)}[D ◦ Dπ(S−1/2ΞS−1/2)]dΞ

{∫ {∏k
i=1 |Ξi|ni/2−pi−1 exp(−trΞi/2)}π(S−1/2ΞS−1/2)dΞ}1/2

− 1

4

‖D ∫ {∏k
i=1 |Ξ i|ni/2−pi−1 exp(−trΞi/2)}π(S−1/2ΞS−1/2)dΞ‖2

M

{∫ {∏k
i=1 |Ξ i|ni/2−pi−1 exp(−trΞi/2)}π(S−1/2ΞS−1/2)dΞ}3/2

.

Since the second term in the right hand-side of the above expression is nonpositive, we
get a sufficient condition on the prior π(·).

Corollary 4.1 If D◦Dπ(S−1/2ΞS−1/2) is negative, then the generalized Bayes estimator
δGB dominates δUB relative to the loss (2.2).

It is noted that the condition D ◦ Dπ(S−1/2ΞS−1/2) < 0 provides a characterization
of the prior distribution π(·) for the resulting generalized Bayes estimator to dominate

11



δUB. However, we may obtain a better condition by evaluating D ◦ Dfπ(S) than D ◦
Dπ(S−1/2ΞS−1/2). For instance, let us consider the prior distribution

πB(Λ) =

(
k∏

i=1

|Λ−1
i |
)a( k∑

i=1

trΛ−1
i

)b

, (4.2)

namely,

πB(S−1/2ΞS−1/2) = (|S1Ξ
−1
1 | · · · |SkΞ

−1
k |)a(trS1Ξ

−1
1 + · · ·+ trSkΞ

−1
k )b,

where a and b are positive constants. Let V = |S1Ξ
−1
1 | · · · |SkΞ

−1
k | and T = tr S1Ξ

−1
1 +

· · · + trSkΞ
−1
k . It is observed from Lemma 3.2 that DiV

a = aV aS−1
i and DiT

b =
bT b−1Ξ−1

i , which yield that

DiπB(S−1/2ΞS−1/2) = aV aT bS−1
i + bV aT b−1Ξ−1

i

= (aS−1
i + bT−1Ξ−1

i )πB(S−1/2ΞS−1/2) (4.3)

and

trDiDiπB(S−1/2ΞS−1/2)

= a2V aT btr S−2
i + 2abV aT b−1trS−1

i Ξ−1
i + b(b − 1)V aT b−2tr Ξ−2

i

− a

2
V aT b({trS−1

i }2 + trS−2
i )

≤ (a2 − a)V aT btrS−2
i + 2abV aT b−1tr S−1

i Ξ−1
i + b(b − 1)V aT b−2trΞ−2

i

= {(a2 − a)trS−2
i + 2abT−1trS−1

i Ξ−1
i + b(b − 1)T−2tr Ξ−2

i }πB(S−1/2ΞS−1/2). (4.4)

Letting

gB(S) =

∫ { k∏
i=1

|Ξ i|ni/2−pi−1 exp(−trΞ i/2)
}
πB(S−1/2ΞS−1/2)dΞ,

we can write D ◦ DfπB
(S) as

D ◦ DfπB
(S) =

1

2

D ◦ DgB(S)

{gB(S)}1/2
− 1

4

‖DgB(S)‖2
M

{gB(S)}3/2
. (4.5)

From (4.3), it is seen that

‖DgB(S)‖2
M

=
k∑

i=1

tr
[ ∫ { k∏

i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
}
DiπB(S−1/2ΞS−1/2)dΞ

]2
= gB(S)

∫ { k∏
i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
} k∑

i=1

{a2tr S−2
i + 2abT−1tr S−1

i Ξ−1
i }

× πB(S−1/2ΞS−1/2)dΞ

+

k∑
i=1

b2tr
[ ∫

T−1Ξ−1
i

{ k∏
i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
}
πB(S−1/2ΞS−1/2)dΞ

]2
,

12



which is evaluated as

‖DgB(S)‖2
M

≥ gB(S)

∫ { k∏
i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
} k∑

i=1

{a2tr S−2
i + 2abT−1tr S−1

i Ξ−1
i }

× πB(S−1/2ΞS−1/2)dΞ. (4.6)

Also we use (4.4) to evaluate D ◦ DgB(S) as

D ◦ DgB(S)

=

∫ { k∏
i=1

|Ξi|ni/2−pi−1 exp(−trΞi/2)
} k∑

i=1

trDiDiπB(S−1/2ΞS−1/2)dΞ

≤
∫

G0(S, Ξ)
{ k∏

i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
}
πB(S−1/2ΞS−1/2)dΞ, (4.7)

where

G0(S, Ξ) = (a2 − a)
k∑

i=1

tr S−2
i + 2abT−1

k∑
i=1

tr S−1
i Ξ−1

i + b(b − 1)T−2
k∑

i=1

trΞ−2
i .

Combining (4.6) and (4.7) gives that

D ◦ DfπB
(S)

=
1

2

D ◦ DgB(S)

{gB(S)}1/2
− 1

4

‖DgB(S)‖2
M

{gB(S)}3/2

≤ 1

4
{gB(S)}−1/2

∫
G(S, Ξ)

{ k∏
i=1

|Ξ i|ni/2−pi−1 exp(−trΞi/2)
}
πB(S−1/2ΞS−1/2)dΞ,

where

G(S, Ξ) = (a2 − 2a)
k∑

i=1

tr S−2
i + 2abT−1

k∑
i=1

tr S−1
i Ξ−1

i + 2b(b − 1)T−2
k∑

i=1

trΞ−2
i .

Hence, if G(S, Ξ) is negative, then D ◦ DfπB
(S) is negative. Furthermore, applying the

fact that T−1trS−1
i Ξ−1

i < trS−2
i to G(S, Ξ), we get

G(S, Ξ) < (a2 − 2a + 2ab)
k∑

i=1

trS−2
i + 2b(b − 1)T−2

k∑
i=1

tr Ξ−2
i .

Then we get the following theorem.

Theorem 4.2 The generalized Bayes estimator δGB with the prior πB dominates δUB

relative to the loss (2.2) if a2 − 2a + 2ab ≤ 0 and b(b − 1) ≤ 0.

It is noted that δGB with the prior πB is regarded as a shrinkage estimator since each
component of −D log fπB

(S) is negative definite.
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5 Empirical Bayes method

In this section we consider the empirical Bayes method for estimation of the precision
matrices. The findings of this section is that δEM and δAM given in Section 3 are char-
acterized as empirical Bayes estimators.

Letting Λ = (Λ1, . . . , Λk) with Λi = Σ−1
i for i = 1, . . . , k, we can write the likelihood

of S = (S1, . . . , Sk) as

p(S|Λ) ∝
k∏

i=1

|Λi|ni/2|Si|(ni−pi−1)/2e−tr�i�i/2.

For i = 1, . . . , k, suppose that Λi = Ξ i + γIpi
and that the Ξ i’s are independently

distributed as the matrix-variate t-distributions having the joint density

p(Ξ|γ) ∝
k∏

i=1

|Ξ i|mi/2|Ipi
+ Ξi/γ|−ni/2,

where ni > mi + 2pi. Then the posterior density of Ξ and the marginal density of S are
given by

p(Ξ|S) ∝
k∏

i=1

|Ξ i|mi/2e−tr�i�i/2,

p(S|γ) ∝
k∏

i=1

γ(ni−mi−pi−1)pi/2|Si|(ni−mi−2pi−2)/2e−γtr�i/2,

both of which are Wishart distributions. Hence, the posterior mean of Λi is

E[Λi|γ] = E[Ξi + γIpi
|γ] = (mi + pi + 1)S−1

i + γIpi
.

From the marginal density of S, the maximum likelihood estimator of γ is given by

γ̂ =
c

trS1 + · · ·+ tr Sk
,

where c is a constant. Thus the resulting empirical Bayes estimator of Λi = Σ−1
i is

δEB
i = (mi + pi + 1)S−1

i +
c

tr S1 + · · · + trSk
Ipi

for i = 1, . . . , k. This estimator is the same type as δEM considered in Section 3.

Next, we consider an empirical Bayes estimator in the case of p = p1 = · · · = pk.
Suppose that Λi = Ξ i + Γ for i = 1, . . . , k and that

p(Ξ|Γ ) ∝
k∏

i=1

|Ξ i|mi/2|Ip + ΞiΓ
−1|−ni/2.
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Then the posterior density of Ξ and the marginal density of S are given by, respectively,

p(Ξ |S) ∝
k∏

i=1

|Ξ i|mi/2e−tr�i�i/2,

p(S|Γ ) ∝
k∏

i=1

|Γ |(ni−mi−p−1)/2|Si|(ni−mi−2p−2)/2e−tr��i/2.

Therefore the posterior mean of Λi is E[Λi|γ] = (mi + p+1)S−1
i +Γ . From the marginal

density of S, the maximum likelihood estimator of Γ is given by Γ̂ = c(S1 + · · ·+Sk)
−1,

where c is a constant. Thus the resulting empirical Bayes estimator of Σ−1
i is

δEB∗
i = (mi + p + 1)S−1

i + c(S1 + · · ·+ Sk)
−1.

Therefore δEB∗
i with mi = ni − 2p − 2 is equivalent to δAM given in Section 3.

The dominance results of δEB and δEB∗ over the unbiased estimator δUB are given as
in Section 3.

6 Further dominance results

6.1 Unified improvement upon both shrinkage and enlargement
estimators

As seen in Section 3, the estimators δEM , δAM and δUS are shrinkage type estimators for
the unbiased estimator δUB, while δJS is an enlargement type estimator. Furthermore,
from result of Section 4, we can see that the generalized Bayes estimator δGB given by
(4.1) is a shrinkage type estimator if Difπ(S) is positive definite. This section concerns
unified improvement methods on both shrinkage and enlargement estimators.

First, define a shrinkage estimator as δSH = δUB −4D log fSH(S) and an enlargement
estimator as δEN = δUB − 4D log fEN(S), where fSH(S) and fEN(S) are positive and
scalar-valued functions of S. We note that each component of DfSH(S) is positive definite,
namely, DifSH(S) is positive definite for i = 1, . . . , k, and that δSH is the shrinkage
type estimator for the unbiased estimator δUB since δSH = δUB − (4/fSH(S))DfSH(S).
Similarly we see that each component of DfEN(S) is negative definite.

Let us consider an improved estimator of the form

δI = δUB − 4D log(fSH(S)fEN(S)),

which can be expressed as

δI = δSH − 4D log fEN(S)

= δEN − 4D log fSH(S).

Then we get the interesting result.
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Theorem 6.1 Assume that D◦DfSH(S) < 0 and D◦DfEN(S) < 0. Then δI dominates
both δSH and δEN relative to the loss (2.2).

Proof. By applying Theorem 2.1 to the estimators δI and δSH , the difference between
the risk functions of δI and δSH can be expressed as

R(δI , Σ−1) − R(δSH , Σ−1) = 16E
[D ◦ D(fSH(S)fEN(S))

fSH(S)fEN(S)

]
− 16E

[D ◦ DfSH(S)

fSH(S)

]
= 32E

[ [DfSH(S)] ◦ [DfEN(S)]

fSH(S)fEN(S)

]
+ 16E

[D ◦ DfEN(S)

fEN(S)

]
.

(6.1)

It is observed that

[DfSH(S)] ◦ [DfEN(S)] =

k∑
i=1

tr [DifSH(S)][DifEN(S)].

Hence, the first expectation in the last right hand-side of (6.1) is negative since DifSH(S)
is positive definite and DifEN(S) is negative definite for i = 1, . . . , k. Therefore the
assumption on fEN(S) gives that R(δI , Σ−1)−R(δSH , Σ−1) < 0. Similarly, we can show
that R(δI , Σ−1) < R(δEN , Σ−1), and the proof of Theorem 6.1 is complete.

For instance, the estimators δEM with f ∗
EM (S) = (trS1 + · · · + tr Sk)

α and δJS with
f ∗

JS(S) = ‖S‖−β
M are dominated by

δIM = δUB − 4D log(f ∗
EM (S)f ∗

JS(S))

= δEM +
4β

‖S‖2
M

S

= δJS − 4α∑k
i=1 trSi

I,

where 0 < α < 1 and 0 < β < p0 − 2 for p0 =
∑k

i=1 pi(pi + 1)/2.

Remark 6.1 We now consider geometric interpretation of the above result. Let F =
(F 1, . . . , F k) and G = (G1, . . . , Gk), where F i’s and Gi’s are, respectively, pi × pi

matrices and the elements of F i’s and Gi’s are functions of S. Define the inner product
of F and G as 〈F , G〉 = E[F ◦G] and denote the norm of F by ‖F ‖E =

√〈F , F 〉. It is
noted that 〈δUB − Σ−1, Σ−1〉 = 0, namely, δUB − Σ−1 and Σ−1 intersect orthogonally.
Also, note that both norms ‖δUB‖E and ‖δUB − Σ−1‖E depend on Σ−1.

Let SO be the open sphere centered at the origin O with radius ‖δUB‖E and also
let SΣ be the open sphere centered at Σ−1 with radius ‖δUB − Σ−1‖E . Note that all
shrinkage type estimators improving upon the unbiased estimator δUB belong to SO ∩SΣ

and that all enlargement type estimators improving upon δUB belong to Sc
O ∩ SΣ , where

Sc
O denotes the complement of SO.

Figure 1 shows positions of the estimators δUB, δEM , δJS and δIM in the metric
space with norm ‖ · ‖E. The notation BO and BΣ denote the boundaries of SO and SΣ,
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respectively. δEM is a shrinkage type estimator and belongs to SO ∩ SΣ . Also δJS is an
enlargement type estimator and belongs to Sc

O ∩ SΣ. Moreover δIM is given by parallel
translation from δEM along δJS − δUB or from δJS along δEM − δUB.

6.2 Improvement upon the usual estimator

As seen from Theorem 3.1, the usual estimator δUS = δUB − 4γS−1 with 0 < γ < 1 im-
proves upon the unbiased estimator δUB relative to the loss (2.2). From the result in the
preceding subsection, we can improve upon the usual estimator δUS by adding an enlarge-
ment factor such as −4D log f ∗

JS(S) since δUS is a shrinkage estimator. In this subsection
we consider improvement upon δUS by an estimator having another enlargement factor
than −4D log f ∗

JS(S).

The estimator considered here is of the form

δIU = δUS − 4D log f(S),

whose risk function can be expressed as

R(δIU , Σ−1) = R(δUS, Σ−1) − 8E
[ k∑

i=1

tr {(ni − pi − 1 − 4γ)S−1
i − Σ−1

i }Di log f(S)
]

+ 16E[‖D log f(S)‖2
M ]

= R(δUS, Σ−1) + 16E[D ◦ D log f(S)] + 32γE[S−1 ◦ D log f(S)]

+ 16E[‖D log f(S)‖2
M ]

= R(δUS, Σ−1) + E
[ 16

f(S)
(D ◦ Df(S) + 2γS−1 ◦ Df(S))

]
.

Then we get the following theorem.

Theorem 6.2 The estimator δIU dominates δUS relative to the loss (2.2) if

D ◦ Df(S) + 2γS−1 ◦ Df(S) < 0. (6.2)

Figure 1: Geometric interpretation with respect to the estimators δUB, δEM , δJS and
δIM .
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We shall seek the function f(S) satisfying (6.2). First, we look into f ∗
EM(S) = (trS1+

· · ·+ trSk)
α. For f ∗

EM (S), assume that −Di log f ∗
EM (S) is positive definite, namely, α is

negative constant. Noting that

( k∑
i=1

trSi

)( k∑
i=1

trS−1
i

)
≥ p2

∗

for p∗ =
∑k

i=1 pi and that γ > 0, we can evaluate the left hand-side of (6.2) for f ∗
EM(S)

as

D ◦ Df ∗
EM(S) + 2γS−1 ◦ Df ∗

EM(S) = α(α − 1)p∗
( k∑

i=1

tr Si

)α−2

+ 2αγ
( k∑

i=1

trSi

)α−1
k∑

i=1

trS−1
i

≤
( k∑

i=1

trSi

)α−2

× p∗{α2 + α(2γp∗ − 1)}.

Therefore we have

Corollary 6.1 The estimator δIEM = δUS −4D log f ∗
EM (S) dominates the usual estima-

tor δUS relative to the loss (2.2) if −(2γp∗ − 1) < α < 0.

We next check the condition (6.2) for f ∗
AM(S) = |T |ε = |S1 + · · · + Sk|ε when p =

p1 = · · · = pk. Assume that ε is a negative constant. To evaluate the condition (6.2) for
f ∗

AM(S) we use the following fact: Define the arithmetic and the harmonic mean matrices
of positive definite matrices S1, . . . , Sk as (S1 + · · · + Sk)/k and k(S−1

1 + · · · + S−1
k )−1,

respectively. We then get the matrix inequality for the arithmetic and the harmonic mean
matrices of positive definite matrices.

Lemma 6.1 For positive definite matrices S1, . . . , Sk, we have the followings.

(1) k(S−1
1 + · · ·+ S−1

k )−1 ≤ (S1 + · · ·+ Sk)/k,

(2) (S−1
1 + · · ·+ S−1

k )/k ≥ k(S1 + · · · + Sk)
−1.

The equalities hold in (1) and (2) if and only if S1 = · · · = Sk.

Proof. The matrix inequality (1) is proved by Sagae and Tanabe (1994) and the
matrix inequality (2) is verified by combining (1) and the fact that A−1 ≥ B−1 if A ≤ B
for two positive definite matrices A and B.

From the above lemma, it is seen that
∑k

i=1 trS−1
i T−1 ≥ k2tr T−2 for T = S1 + · · ·+

18



Sk. We also use the inequality {trT −1}2 ≤ ptr T−2 to give that

D ◦ Df ∗
AM(S) + 2γS−1 ◦ Df ∗

AM(S) = kε2|T |εtrT −2 − kε

2
|T |ε({trT −1}2 + tr T−2)

+ 2εγ|T |ε
k∑

i=1

tr S−1
i T−1

≤ kε2|T |εtrT−2 − (kε/2)(p + 1)|T |εtrT −2

+ 2k2εγ|T |εtrT −2

= k|T |εtrT −2 × {ε2 + ε(4kγ − p − 1)/2}.
Hence we get

Corollary 6.2 The estimator δIAM = δUS − 4D log f ∗
AM(S) dominates the usual estima-

tor δUS relative to the loss (2.2) if −(4kγ − p − 1)/2 < ε < 0.

We finally examine f ∗
JS(S) = ‖S‖−β

M . Using Theorem 6.1, we can see that δIJS =
δUS −4D log f ∗

JS(S) dominates δUS under the condition that 0 < β < p0 −2. Calculating
the left hand-side of (6.2) for f ∗

JS(S) directly, on the other hand, we can show that

D ◦ Df ∗
JS(S) + 2γS−1 ◦ Df ∗

JS(S) = ‖S‖−β−2
M {β(β + 2) − βp0} − 2βγp∗‖S‖−β−2

M

= ‖S‖−β−2
M {β2 − β(p0 + 2γp∗ − 2)},

where p0 =
∑k

i=1 pi(pi + 1)/2. Thus we obtain the better condition for the dominance of
δIJS = δUS − 4D log f ∗

JS(S) over δUS.

Corollary 6.3 If 0 < β < p0 + 2γp∗ − 2, then δIJS = δUS − 4D log f ∗
JS(S) dominates

δUS relative to the loss (2.2).

In the special case of p1 = · · · = pk = 1, the best constant γ of the usual estimator δUS

is given by γ = 1/2. The condition that δIJS improves upon δUS is β2 − 2β(k − 1) < 0
and k ≥ 2, namely, it is possible to improve upon the best usual estimator

δBU = ((n1 − 4)/s1, . . . , (nk − 4)/sk)

for even k = 2, but then impossible to improve upon the unbiased estimator δUB. See
also Berger (1980).

7 Numerical studies

In this section we compare the risk functions of alternative estimators of Σ−1 under the
loss function (2.2).

For risk comparison in case of p = p1 = · · · = pk, we examined the six estimators δUB,
δUS, δIJS, δIEM , δIAM and δIGB, of which i-th components are given by, respectively,

(1) δUB
i = (ni − p − 1)S−1

i ,
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(2) δUS
i = (ni − p − 1 − 4γ)S−1

i ,

(3) δIJS
i = δUS

i + {2(p0 + 2γp∗ − 2)/‖S‖2
M}Si,

(4) δIEM
i = δUS

i + {2(2γp∗ − 1)/
∑k

i=1 tr Si}Ip,

(5) δIAM
i = δUS

i + (4kγ − p − 1)(S1 + · · ·+ Sk)
−1,

(6) δIGB
i = δGB

i + {2(p0 − 2)/‖S‖2
M}Si, where the prior of δGB

i is given by (4.2) with
a = 1 and b = 1/2.

Here p0 = kp(p+1)/2 and p∗ = kp. It is noted from Corollaries 6.1, 6.2 and 6.3 that δIJS,
δIEM and δIAM dominate the usual estimator δUS and, also, from Theorem 6.1 that δIGB

dominates the unbiased estimator δUB relative to the loss (2.2).

We note that δGB
i , i = 1, . . . , k, is expressed by

δGB
i =

E� |�[W i · πB(W )]

E� |�[πB(W )]
, (7.1)

where E� |� denotes conditional expectation with respect to W = (W 1, . . . , W k) given
S. Here the conditional distribution of W i given Si is Wp(S

−1
i , ni−p−1) for i = 1, . . . , k

and the W i’s are independent. Hence the estimates of δGB were derived from the Monte
Carlo approximations for the two expectations in the denominator and the numerator of
(7.1).

The estimates of risk values were computed by 10,000 independent replications. We
chose k = 3, p = 2 and γ = 1/2 and took three sets of sample size (n1, n2, n3) =
(10, 10, 10), (30, 10, 50) and (50, 70, 30). For the precision matrices Σ−1

i ’s, we considered
the following case: Σ−1

1 = Ip, Σ−1
2 = (1 + c)Ip, and Σ−1

3 = (1 + c)−1Ip for c ≥ 0.

The simulation results are given in Figures 2, 3 and 4. The curves in Figures are those
of the relative risks for each alternative estimator and the unbiased estimator, that is, the
ratio of risks of an alternative estimator δ and δUB,

RR = R(δ, Σ−1)/R(δUB, Σ−1).

Note that the RR is a function of c and that an estimator δ is better than δUB if RR < 1.
‘UB’, ‘US’, ‘IJS’, ‘IEM’, ‘IAM’ and ‘IGB’ denote δUB, δUS, δIJS, δIEM , δIAM and δIGB,
respectively.

The simulation results given in Figures 2, 3 and 4 show the following important ob-
servations.

1. In the case that the precision matrices Σ−1
i ’s are the identity matrices, δIJS is the

best for all sets of sample size. For small sample size (n1, n2, n3) = (10, 10, 10), the
RR of δIJS is about 0.35 and δIJS has substantial reduction in risk than δUB and
δUS.

2. When the Σ−1
i ’s are much different, δIEM is excellent in the six estimators. Par-

ticularly in the case of (n1, n2, n3) = (30, 10, 50), it is favorable over wide range of
c.
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3. The risk behavior of δIEM and δIAM are very similar. However the RR of δIEM is
slightly better than that of δIAM .

4. The risk of δIGB is near that of δIJS, and is better than that of δUS except that the
Σ−1

i ’s disperse for (n1, n2, n3) = (30, 10, 50).

5. The risk reduction of estimators are large when the sample size ni’s are small. In
such case, the risk variation over c, too, are large.

6. In the case that the ni’s disperse, the maximum reduction in risks is not given by
c = 0, namely, the Σ−1

i ’s being the identity matrices, probably since any risk of
alternative estimators is dependent on the Σ−1

i ’s.
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Figure 2: The relative risks in case of (n1, n2, n3) = (10, 10, 10).
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Figure 3: The relative risks in case of (n1, n2, n3) = (30, 10, 50).
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Figure 4: The relative risks in case of (n1, n2, n3) = (50, 70, 30).
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