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Abstract

This paper studies the properties of Likelihood Ratio (LR) tests associ-

ated with the limited information maximum likelihood (LIML) estimators in

a structural form estimation when the number of instrumental variables is

large. Two types of asymptotic theories are developed to approximate the

distribution of the likelihood ratio (LR) statistics under the null hypothesis

H0 : β = β0: the (large sample) asymptotic expansion and the large-Kn

asymptotic theory. The size comparison of two modified LR tests based on

these two asymptotics is made with Moreira’s conditional likelihood ratio

(CLR) test and the large K t-test.
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1. Introduction

Statistical inference procedures in structural equation models can be crucially

affected by the quality and the number of the instrumental variables. It has been

known that when instruments are only weakly correlated with the endogenous

variables, classical normal and chi-square asymptotic approximations to the finite-

sample distributions of IV statistics can be poor. See Nelson and Startz (1990a,b),

Bound, Jaeger, and Baker (1995), Staiger and Stock (1997), for instance. If the num-

ber of the instrumental variables is large efficiency can be improved, but it makes the

finite-sample properties of usual inference procedures poor. In addition, in recent

microeconometric applications some econometricians have used many instrumental

variables in estimating an important structural equation. One empirical example of

this kind often cited in econometric literatures is Angrist and Krueger (1991), where

they used 178 instruments in one of their specifications. Bound, Jaeger, and Baker

(1995) shows that the properties of the TSLS estimator can be poor in the face of

many weak instruments even when the sample size is huge.

In order to overcome these problems, several new statistical procedures have

recently proposed. For the inference on all the coefficients of endogenous parameters,

the Anderson-Rubin (AR) test is a fundamental building block for developing reliable

inference procedures with weak instruments; see Anderson-Rubin(1949). Kleibergen

(2002) and Moreira (2001) proposed a score-type statistic, while Moreira (2003)

proposed a conditional likelihood ratio (CLR) test, both of which are shown to be

robust to weak instruments, too. Among these testing procedures, the CLR test has

been found to dominate the other tests in terms of power. Andrews, Moreira, and

Stock (2006) show that the CLR test is quite close to being uniformly most powerful

invariant among a class of two-sided test.

On the other hand, there has been another approach to provide better approx-

imation using “large-Kn asymptotics,” where the number of instruments (K) is al-

lowed to increase with the number of observations (n). Kunitomo (1980, 1982) and
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Morimune (1983) were the earlier developers of the large-Kn asymptotics, and they

derived asymptotic expansions of the distributions of the k-class estimators including

the two stage least squares (TSLS) and the limited information maximum likelihood

(LIML) estimators in the case of two endogenous variables. Multivariate first order

approximations to the distributions were derived by Bekker (1994) and Anderson et

al (2006). Bekker (1994) found that the large-Kn asymptotics provides better ap-

proximations than the one where K is fixed even when the number of instruments is

not large. Hansen, Hausman and Newey (2006) consider the same model and show

that Bekker (1994) standard error corrects the size problem. Matsushita (2006) have

derived an asymptotic expansion of the distributions of LIML estimator and (large

K) t-ratio under H0 under the large-Kn asymptotics.

The main purpose of this paper is to explore the finite sample properties of the

likelihood ratio (LR) test on all the coefficients of endogenous variables in a struc-

tural equation model when the number of the instrumetal variables is large. We

develop two types of alternative asymptotic theories to approximate the distribu-

tion of the LR statistics under the null hypothesis: the (large sample) asymptotic

expansion (in the case of normal disturbances) and the large-Kn asymptotics (in the

case of non-normal disturbances). We propose two types of modified LR tests from

these asymptotics, and compare their finite sample properties with that of Moreira’s

conditional likelihood ratio (CLR) test using Monte Carlo experiments.

The model and several test statistics are explained in Section 2. An asymptotic

expansion of the distribution of the LR statistic under the null hypothesis is given

in Section 3, and an approximate distribution based on the large-Kn asymptotics is

given in Section 4. Some Monte Carlo experiments are provided in Section 5, and

conclusions are provided in Section 6.

2 The Model and Test Statistics

Let a single structural equation be

y1 = Y 2β + Z1γ + u, (2.1)
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where y1 and Y 2 are n× 1 and n×G1 matrices, respectively, of observations of the

endogenous variables, Z1 is an n × K1 matrix of observations of the K1 exogenous

variables, β and γ are column vectors with G1 and K1 unknown parameters, and u

is a column vector of n disturbances. We assume that (2.1) is the first equation in a

simultaneous system of G1+1 linear stochastic equations relating G1+1 endogenous

variables and K(K = K1 + K2) exogenous variables. The reduced form of y =

(y1 Y 2) is defined as

Y = ZΠ + V = (Z1 Z2)

 π1

Π2

 + (v1 V 2), (2.2)

where Z is an n × K matrix of instrumental variables, π1 = (π11 Π12) and Π2 =

(π21 Π22) are K1× (1+G1) and K2× (1+G1) matrices, respectively, of the reduced

form coefficients, and (v1 V 2) is an n × (1 + G1) matrix of disturbances. The

rows of V are independently distributed, each row having mean 0 and (nonsingular)

covariance matrix

Ω =

 ω11 ω12

ω21 Ω22

 . (2.3)

In order to relate (2.1) and (2.2), we postmultiply (2.2) by (1, −β′)′, then u =

v1 − V 2β, γ = π11 − Π12β, and

π21 = Π22β. (2.4)

The matrix (π21 Π22) is of rank G1 and so is Π22. The components of u are

independently distributed with mean 0 and variance σ2, which is defined to be

ω11 − 2β′ω21 + β′Ω22β.

We define, for any full column matrix F ,

P F = F (F ′F )−1F ′, P̄ F = I − F (F ′F )−1F ′. (2.5)

The LIML estimator of (β′ γ ′)′ is (β̂
′
LI γ̂ ′

LI)
′ satisfying


y′

1

Y ′
2

Z ′
1

 P Z(y1 Y 2 Z1) − λ̂


y′

1

Y ′
2

Z ′
1

 P̄ Z(y1 Y 2 Z1)




1

−β̂LI

−γ̂LI

 = 0, (2.6)
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where λ̂ is the smallest root of∣∣∣∣∣∣∣∣∣∣∣


y′

1

Y ′
2

Z ′
1

 P Z(y1 Y 2 Z1) − λ


y′

1

Y ′
2

Z ′
1

 P̄ Z(y1 Y 2 Z1)

∣∣∣∣∣∣∣∣∣∣∣
= 0. (2.7)

When the instruments are weakly correlated to the included endogenous vari-

ables, approximations based on the standard asymptotic theory are not satisfac-

tory. In order to overcome this problem, several new statistical procedures robust

to weak instruments have recently proposed. The Anderson-Rubin (AR) test is a

fundamental building block for developing reliable inference procedures with weak

instruments. Kleibergen (2002) and Moreira (2001) proposed a score-type statistic,

while Moreira (2003) proposed a conditional likelihood ratio (CLR) test.

• Anderson-Rubin (AR) Test

Anderson and Rubin (AR) statsitic is given by

AR =
(1,−β0

′)Y ′(P Z − P Z1)Y (1,−β0
′)′

(1,−β0
′)Y ′P̄ ZY (1,−β0

′)′/(n − K)
. (2.8)

Because, under the null hypothesis, we have

AR =
u′(P Z − P Z1)u

u′P̄ Zu/(n − K)
, (2.9)

the null distribution of the AR statistic does not depend on instrument quality.

Thus the AR test is one of the testing procedures which are robust to weak

instruments. Under either the standard large sample asymptotics or weak-

instrument asymptoics, the limiting distribution of AR statistic under the

null hypothesis is χ2(K2)

• Score-type Test

Define the statistics

S = (P Z − P Z1)Y b0(b0
′Ωb0)

−1/2 (2.10)

and

T = (P Z − P Z1)Y Ω−1

 β0
′

IG1


(β0, IG1)Ω

−1

 β0
′

IG1



−1/2

, (2.11)
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and Ŝ and T̂ denote S and T evaluated with Ω̂ = Y ′P̄ ZY /(n−K) replacing

Ω, where b0 = (1,−β0
′)′. Kliebergen (2002) proposed the statistic

K = Ŝ
′
T̂ (T̂

′
T̂ )−1T̂

′
Ŝ. (2.12)

Kleibergen showed that under either the standard large sample asymptotics

or weak-instrument asymptoics, the limiting distribution of K statistic under

the null hypothesis is χ2(G1), i.e. robust to the weak instruments.

• Conditional Likelihood Ratio (CLR) Test

The likelihood ratio (LR) statistic for testing H0 : β = β0, when Ω is known,

is given by

LR =
b′

0Y
′(P Z − P Z1)Y b0

b′
0Ωb0

− min
b

b′Y ′(P Z − P Z1)Y b

b′Ωb
. (2.13)

Moreira (2003) showed that the LR statistic is a function of S and T defined in

(2.10) and (2.11), and that, in the fixed-instruments and normal-distubances

model with known Ω, if its critical value is computed from the conditional

distribution given T this conditional likelihood ratio (CLR) test is similar

(i.e. fully robust to weak instrumens). Moreira (2003) and Andrews, Mor-

eira, and Stock (2006) suggested computing the null distribution by Monte

Carlo simulation or numerical integration. In parctice, Ω is unknown. How-

ever, Ω can be consistently estimated by Ω̂ = Y ′P̄ ZY /(n − K) under the

weak-instrument asymptotics, and the conditional likelihood ratio (CLR) test

based on the plug-in value of Ω can be shown to be asymptotically robust

to weak instruments under the general conditions (stochastic instruments and

nonormal disturbances. )

3 Asymptotic Expansion of the distribution of LR

statistic under H0

In this section and the next, we will develop two types of alternative asymp-

totic theories to approximate the distribution of the LR statistics under the null
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hypothesis: the (large sample) asymptotic expansion (Section 3) and the large-Kn

asymptotics (Section 4) in order to explore the finite sample properties of the like-

lihood ratio (LR) test when the number of the instrumetal variables is large.

We consider testing a hypothesis that the coefficients of the endogenous variables

are zero (H0 : β = 0). The likelihood ratio test statistic for this hypothesis can be

defined as

l = (n − K)[λ0 − λ̂], (3.14)

where

λ0 =
b′

0Y
′(P Z − P Z1)Y b0

b′
0Y

′P̄ ZY b0

, (3.15)

λ̂ = min
b

b′Y ′(P Z − P Z1)Y b

b′Y ′P̄ ZY b
, (3.16)

where b′ = (1,−β′), b′
0 = (1,−β′

0), P F is F (F ′F )−1F ′, and P̄ F = I − P F for any

full column matrix F .

We consider a modification of the likelihood ratio test based on an asymptotic

expansion of the distribution of the LR statistic under H0. The following notations

are used throughout this chapter:

q′
2 =

1

σ2
(ω12 − β′Ω22,0) : 1 × p, (3.17)

C1 = q2q
′
2 : p × p, (3.18)

C2 =

 1
σ2Ω22 0

0 0

 − C1 : p × p, (3.19)

X = Z

 Π12 IK1

Π22 0

 : n × p, (3.20)

and

Q̃ = X ′X : p × p. (3.21)

We give the large sample asymptotic expansion of the distribution of the LR

statistic (3.14) under H0 in the case of the normal disturbances, which is similar to

Theorem 1 of Morimune and Tsukuda (1984).
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Theorem 1 Assume there exists a constant positive definite matrix Q = plimn→∞n−1Q̃

such that Q = n−1Q̃ + Op(n
−1). When the disturbances are normally distributed,

the following asymptotic expansion corresponds to the sample size going to infinity:

P (l ≤ ξ) = GG1(ξ) (3.22)

− ξ

n
{ 1

G1

σ2tr(Q−1C2)L − 1

2
[G1 − 2 − ξ]}gG1(ξ) + O(n−3/2),

where GG1 and gG1 are the χ2 distribution function and χ2 density function with G1

degrees of freedom, respectively.

The Cornish-Fisher type expansion gives the approximate percentile of the dis-

tribution of l as simple function of the χ2 percentile. The α percentile of l is found

by

uα +
uα

n
{ 1

G1

tr(Q−1C2)σ
2L − 1

2
(G1 − 2 − uα)}, (3.23)

where uα is the α percentile of the χ2 distribution with G1 degrees of freedom. The

unknown parameters tr(Q−1C2) can be estimated by the consistent estimator of Q

and C2, which are

Q̂
−1

= n

 Y ′
2Z(Z ′Z)−1Z ′Y 2 − λ̂Y ′

2P̄ ZY 2 Y ′
2Z1

Z ′
1Y 2 Z ′

1Z1


−1

(3.24)

and

Ĉ2 =

 1
σ̂2 Y

′
2P̄ ZY 2/q − 1

σ̂4 Y
′
2P̄ ZY b̂b̂

′
Y ′P̄ ZY 2/q

2 0

0 0

 , (3.25)

where we use the notations that σ̂2 = b̂
′
Y ′P̄ ZY b̂/q and b̂ = (1, −β̂

′
)′. We propose

a modified LR test (LRm1) using the critical value

uα +
uα

n
{ 1

G1

tr(Q̂
−1

Ĉ2)σ̂
2L − 1

2
(G1 − 2 − uα)}, (3.26)

instead of uα.
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4 Large-Kn Asymptotic Approximation of the dis-

tribution of the LR statistic under H0

In this section, we develop an alternative approximation using ”large-Kn asymp-

totics” in the case of non-normal disturbances. We consider the sequence which

allows the number of the (excluded) instruments (K2) to grow with the number of

observations (n). We assume that

n → ∞,

K/n = c1 + O(n−1), (0 ≤ c1 < 1) (4.27)

K/q = c2 + O(n−1), (0 ≤ c2 < ∞)

where we defined q = n − K.

Under the sequences (4.27), the next theorem follows. The derivation is provided

in Appendix B.

Theorem 2 Assume that E[||vi||6] are bounded, and that there exists a constant

positive definite matrix Q = plimn→∞n−1Q̃ such that Q = n−1Q̃ + Op(n
−1). Then,

under H0, under the sequences (4.27),

l
d→ 1

σ2
UQU , (4.28)

where U ∼ N(0,Ψ), and

Ψ = σ2Q−1 + c1(1 + c2)Q
−1


 Ω22σ

2 0

0 0

 − q2q
′
2σ

4

 Q−1

+Q−1[(Ξ3 + Ξ′
3) + ηΓ4]Q

−1,

The limit distribution may also be expressed as r1χ
2
1,1 + · · ·+ rpχ

2
1,G1

, where the χ2
1,js

are independent χ2 variables with one degree of freedom and the weights r1, . . . , rG1

are the G1 eigenvalues of QΨ/σ2.

Here we have used the notations that Ξ3 = plimn→∞D′
2

1
n

∑n
i=1 zi[(1 + c2)a

(n)
ii −

c2]E[u2
i w

′
2i], η = (1 + c2)

2plimn→∞
1
n

∑n
i=1 a

(n)2
ii − c2

2, a
(n)
ii = z′

i(Z
′Z)−1zi, Γ4 =

E(u2
i w2iw

′
2i) − σ2E[w2iw

′
2i], and w2i = (v′

2i 0′)′ − uiq2.
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We can estimate the weights r1, . . . , rG1 using consistent estimators Q̂ and Ψ̂.

In the case of the normal disturbances, Ψ is identical to the Bekker (1994) variance,

and Q̂ and Ψ̂ can be defined by (3.24) and

Ψ̂ = σ̂2Q̂
−1

(4.29)

+
K

n
(1 + λ̂)Q̂

−1

 1
q
Y ′

2P̄ ZY 2σ̂
2 − 1

q2 Y
′
2P̄ ZY b̂b̂

′
Y ′P̄ ZY 2 0

0 0

 Q̂
−1

,

where σ̂2 = 1
q
b̂
′
Y ′P̄ ZY b̂ and b̂ = (1, β̂

′
)′, respectively.

In the case of non-normality, Ψ has additional terms depending on the third and

fourth order moments of the disturbances, which makes it complicated. However,

Anderson et al (2006) and Matsushita (2006) investigated the effects of these terms

and found that they have little effects even when the distributions of the disturbances

are deviated from the normal. We also investigate the effects of the third and fourth

order moments using Monte Carlo experiments in the next section.

We call the LR test using the critical value based on the approximation by large-

Kn asymptotics, LRlargeK .

5 Size Comparison with the CLR statistic

5.1 The Case of Normal Disturbances

We conduct the size comparisons of the two types of modified LR tests, LRm1 and

LRlargeK with the CLR test by Moreira (2003) and the large K t-test (Bekker(1994),

Matsushita(2006), for instance).

We considered models with two endogenous variables, i.e., G1 = 1. In this

case, the distributions of all the statistics considered here depend only on the key

parameters used by Anderson et al (1982), which are K2, the number of excluded

exogenous variables; n − K, the number of degrees of freedom in Ω̂;

δ2 =
Π′

22A22.1Π22

ω22

, (5.30)
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the noncentrality parameter associated with (2.1); and

α =
ω22β − ω21

|Ω|1/2
= − ρ

(1 − ρ2)1/2
, (5.31)

where ρ is a correlation between u and v2. The numerator of the noncentrality

parameter δ2 represents the additional explanatory power due to y2i over z1i in

the structural equation, and its denominator is the error variance of y2i. Hence,

the noncentrality parameter δ2 determines how well the equation is defined in the

simultaneous equations system.

We use the DGP

y1 = y2β
(0) + Z1γ

(0) + u, (5.32)

and

y2 = ZΠ
(0)
2 + V 2, (5.33)

where K1 = 1, Z ∼ N(0, IK ⊗ In), (u,V ) ∼ N(0,Σ⊗ In), Σ =

 1 ρ

ρ 1

, and the

true values of parameters β(0) = γ(0) = 0. We have controlled the values of δ2 by

choosing a real value of c and setting (1 + K2) × 1 vector Π
(0)
2 = c(1, · · · , 1)′.

Tables 1-4 contain the empirical sizes of the statistics at the 10, 5, and 1%

for various values of δ2, K2, and α. The number of repetitions is 10,000 in each

experiments. We also use 5,000 realizations each of χ2(1) and χ2(K2 − 1) random

variables to simulate the critical values of Moreira’s CLR statistic.

From the tables, when δ2/K2 is larger than five, all tests have reliable size prop-

erties. The LRm1 test improves upon the LR test which is prone to reject H0 more

than it should, in all cases. When δ2/K2 is small, the size properties of the LR test

become quite poor. (Tables 3-4) The observed size of the LR test at the 5% asymp-

totic critical value can be over 20% when K2 is thirty, for instance. One interesting

finding is that the size properties of the CLR test is also poor when the number of

the instruments is large. Since the CLR test is known to robust to weak instruments

and has good power properties, this finding seems to have some importance. When

11



Table 1: Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 =

5
α = 0.3

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 12.7 10.8 11.5 5.6 8.1

5% 7.5 5.5 6.6 2.2 4.4

1% 1.8 1.0 1.4 0.3 0.5

K2 = 5 10% 14.5 11.6 12.3 7.5 9.8

5% 8.8 6.1 7.1 3.9 6.7

1% 2.4 1.3 1.7 0.7 1.3

K2 = 30 10% 18.2 14.3 14.5 10.6 11.2

5% 10.3 7.6 8.0 5.1 6.7

1% 3.8 2.4 2.6 1.1 1.4

the number of the instruments is small (less than five), The LRm1 test and CLR test

improve the size properties. However, as the number of the instruments increases

the LRm1 test as well as the CLR become size distorted. The LRlargeK test has the

best size properties when the number of the instruments is larger than five, while it

is size distorted when the degrees of overidentifiability is less than two.

5.2 The Case of Non-normal Disturbances

Since the distributions of the LR statistics depend on the distributions of the

disturbances, we have investigated the effects of the non-normality of disturbances.

We calculated a large number of cases in which the distributions of disturbances are

skewed (χ2(3)) and have long tails (t(3)). We have chosen the case of n−K = 30, α =

1, and δ2/K2 = 1 and reported the observed sizes at the 10%, 5% ans 1% asymptotic

critical values of LR, LRm1, CLR, tlargeK and LRlargeK in Tables 5-6. We calculated

the critical values of the LRm1, tlargeK and LRlargeK using the asymptotic variance

assuming normal disturbances. From these experiments, the size properties of all

these statistics, which are derived under the assumption of normal disturbances,

are approximately valid even if the distributions of disturbances are deviated from

normal.
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Table 2: Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 =

5
α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 12.2 10.7 11.3 9.0 9.1

5% 7.0 5.8 6.6 6.3 5.1

1% 1.8 1.2 1.5 2.3 1.1

K2 = 5 10% 13.0 11.0 11.5 8.9 10.7

5% 7.0 5.2 5.9 5.4 4.9

1% 1.9 1.0 1.4 2.0 1.3

K2 = 30 10% 15.3 13.0 13.3 10.9 10.7

5% 8.3 6.5 7.0 5.4 6.5

1% 2.7 1.8 2.0 1.3 1.5

Table 3: Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 =

1
α = 0.3

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 20.0 14.5 14.4 1.9 10.1

5% 11.0 7.2 6.1 0.8 6.6

1% 3.6 1.8 2.1 0.1 1.8

K2 = 5 10% 27.1 17.3 16.0 4.5 13.1

5% 18.0 10.2 10.8 1.7 7.6

1% 6.2 2.9 2.1 0.2 2.9

K2 = 30 10% 36.1 22.5 22.5 9.0 14.0

5% 27.3 14.6 17.5 4.8 7.8

1% 16.9 7.2 6.5 1.3 2.6
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Table 4: Empirical sizes of statistics that test H0 : β = β0 with n−K = 30, δ2/K2 =

1
α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 18.1 13.5 11.4 9.9 9.8

5% 9.5 6.7 6.1 6.8 5.1

1% 2.7 1.5 1.9 2.4 1.8

K2 = 5 10% 20.3 13.7 11.7 10.4 10.3

5% 13.2 7.8 6.9 7.2 6.5

1% 4.9 2.1 2.3 3.2 2.0

K2 = 30 10% 25.8 17.1 19.2 9.3 10.4

5% 19.1 11.3 11.9 6.0 7.5

1% 9.1 4.3 3.8 2.7 2.2

Table 5: Empirical sizes of statistics that test H0 (The Cases of Non-normal Dis-

turbances): β = β0 with n − K = 30, δ2/K2 = 1

ui = (χ2(3) − 3)/
√

6, α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 16.0 12.0 11.1 10.5 9.3

5% 9.1 6.7 6.6 7.0 5.2

1% 2.6 1.4 1.7 2.8 1.5

K2 = 5 10% 21.0 14.1 13.2 10.8 12.3

5% 13.7 8.3 7.7 7.5 7.2

1% 5.1 2.5 2.7 3.1 2.3

K2 = 30 10% 25.6 16.9 17.4 8.8 11.9

5% 18.2 10.7 11.3 5.9 7.2

1% 8.9 4.2 4.9 2.6 2.3
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Table 6: Empirical sizes of statistics that test H0 (The Cases of Non-normal Dis-

turbances): β = β0 with n − K = 30, δ2/K2 = 1

ui = t(3), α = 1

LR LRm1 CLR tlargeK LRlargeK

K2 = 2 10% 16.7 12.9 12.2 9.7 10.3

5% 10.0 7.2 6.9 6.5 5.5

1% 2.8 1.7 1.9 2.4 1.5

K2 = 5 10% 20.6 13.9 13.0 10.6 12.1

5% 13.5 8.2 7.7 7.1 6.8

1% 5.0 2.4 2.4 2.9 2.2

K2 = 30 10% 25.2 17.0 17.5 8.9 11.9

5% 18.1 10.8 11.4 5.6 6.8

1% 8.9 4.0 4.7 2.1 2.2

6 Conclusions

In this paper, we have made two types of asymptotic approximations of the dis-

tribution of the likelihood ratio statistics under the null hypothesis, and propose

modifications of the LR test. The Monte Carlo experiments show that, when the

instruments are weak, the size properties of the LR test become quite poor, and the

LRm1 test (based on the asymptotic expansion) improves upon the LR test when

the number of the instruments is small and δ2/K2 is more than one. However, the

LRm1 test can be size distorted when the number of the instruments is large. One

finding is that the size properties of the CLR test can be also poor when the number

of the instruments is large. The LRlargeK test (based on large-Kn asymptotics) has

the best size properties when the number of the instruments is large and δ2/K2 is

more than one.

15



APPENDIX

A Derivation of Theorem 1

We make use of the results of Kunitomo, Morimune, and Tsukuda (1983) and

Morimune and Tsukuda (1984). The variance ratio λ̂ defined by (3.16) is stochasti-

cally expanded as

(n − K)λ̂ = λ̂(0) +
1√
n

λ̂(1) +
1

n
λ̂(2) + Op(n

−3/2), (A.34)

where

λ̂(0) = u′(P Z − P X)u/σ2,

λ̂(1) = − 1

σ2
{2u′(P Z − P X)(V 2,0)e(0) + u′(P Z − P X)u(x − 2q′e(0))},

λ̂(2) =
1

σ2
{[(V 2,0)e(0) +

1√
n

Xe(1)]′(P Z − P Z1)[(V 2,0)e(0) +
1√
n

Xe(1)]

2u′(P Z − P X)(V 2,0)[e(1) − (x − 2q′e(0))e(0)]

+
1

σ2
u′(P Z − P X)u[2(w12 − β′W 22,0)e(0) − σ2

3
(x2 − 2)

+σ2(x − 2q′e(0))2 + 2σ2q′e(1) − σ2e(0)′(C1 + C2)e
(0)]},

where

e(0) = Q−1X ′u/
√

n,

and

e(1) = Q−1{(V 2,0)′(P Z − P X)u − u′(P Z − P X)uq − X ′(V 2,0)e(0)/
√

n},

defining w12 =
√

n[ 1
n
v′

1P̄ ZV 2 − ω12], W 22 =
√

n[ 1
n
V ′

2P̄ ZV 2 − Ω22], and x =

(1,−β′)
√

n[ 1
n
V P̄ ZV −Ω](1,−β′)′ which is distributed with mean zero and variance

two.

Similarly λ0 defined by (3.15) is expanded as

(n − K)λ0 = λ
(0)
0 +

1√
n

λ
(1)
0 +

1

n
λ

(2)
0 + Op(n

−3/2), (A.35)
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where

λ
(0)
0 = u′(P Z − P Z1)u/σ2,

λ
(1)
0 = − 1

σ2
[u′(P Z − P Z1)ux],

and

λ
(2)
0 =

1

σ2
[u′(P Z − P Z1)u{−

1

3
(x2 − 2) + x2}].

Hence the test statistic is stochastically expanded as

l = l(0) +
1√
n

l(1) +
1

n
l(2) + Op(n

−3/2), (A.36)

where

l(0) ≡ v = λ
(0)
0 − λ̂(0) =

1

σ2
u′(P X − P Z1)u, (A.37)

l(1) = λ
(1)
0 − λ̂(1) (A.38)

=
1

σ2
{2u′(P Z − P X)(V 2,0)e(0) − u′(P X − P Z1)ux − 2u′(P Z − P X)uq′e(0)},

and

l(2) = λ
(2)
0 − λ̂(2) (A.39)

=
1

σ2
{−[(V 2,0)e(0) +

1√
n

Xe(1)]′(P Z − P Z1)[(V 2,0)e(0) +
1√
n

Xe(1)]

+2u′(P Z − P X)(V 2,0)[e(1) − (x − 2q′e(0))e(0)]

− 1

σ2
u′(P Z − P X)u[2(w12 − β′W 22,0)e(0)

−4σ2q′e(0)x + 2σ2q′e(1) − σ2e(0)′(C1 + C2)e
(0)]

+u′(P X − P Z1)u[−1

3
(x2 − 2) + x2]}.

We shall derive an asymptotic expansion of the distribution of l by inverting the

characteristic function of l up to order n−1:

C(t) = E(exp(itv)) +
1√
n

E(itE(l(1)|v)exp(itv)) (A.40)

+
1

n
E(itE(l(2)|v)exp(itv)) +

1

2n
E(i2tE(l(1)

2|v)exp(itv)) + O(−n−3/2).

Validity of the method can be given following the same method used by Kunitomo

et.al (1983). To calculate the conditional expectations given the first order term

17



v, we use the following formula which was developed by Morimune and Tsukuda

(1984):

E(e(0)′Cje
(0)|v) =

v

G1

σ2tr(Q−1Cj), j = 1, 2, (A.41)

where C1 and C2 are defined by (3.18) and (3.19) respectively.

Then we have the conditional expectations given the first order term v as follows:

E(l(1)|v) = 0, (A.42)

E(l(2)|v) = 2v + tr(Q−1C2σ
2)L, (A.43)

E(l(1)2|v) = 4tr(Q−1C2σ
2)L + 2v2. (A.44)

The probablity P (l ≤ ξ) is approximated to the order n−1 by the Fourier inverse

transformation of the characteristic function (A.40). The inverse transformation of

the first term is GG1(ξ) which is the χ2 cdf function with G1 degrees of freedom. We

also use the next Fourier Inversion formula which was developed by Kunitomo et.al

(1983): ∫ ξ

x=0

1

2π

∫
t
(−it)pexp(−itx)E[exp(itv)vj]dtdx (A.45)

=
2jΓ(G1

2
+ j)

Γ(G1

2
)

· g(p−1)
G1+2j(ξ),

where i =
√
−1, j is any integer (G1 + 2j > 0), and g

(p−1)
G1+2j(ξ) is the (p − 1)-th

order derivative of gG1+2j which is the χ2 density function with G1 + 2j degrees of

freedom. Theorem 1 follows after simplifications. (Q.E.D.)

B Derivation of Theorem 2

The variance ratio (3.16) is exactly rewritten as

λ̂ =
{u − 1√

n
[ZD2 + (V 2,0)]ê}′P Z{u − 1√

n
[ZD2 + (V 2,0)]ê}

{u − 1√
n
(V 2,0)ê}′P̄ Z{u − 1√

n
(V 2,0)ê}

(B.46)

where

ê =
√

n

 β̂LI − β

γ̂LI − γ

 ,
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D = (D1 D2) =


 π11

π21


 Π12 IK1

Π22 0


 .

The large-Kn asymptotics of ê is expanded in terms of n−1/2 as

ê = e(0) +
1√
n

e(1) + Op(n
−1). (B.47)

The terms of e(0) and e(1) are given in Matsushita(2006) as

e(0) = Q−1[
1√
n

D′
2Z

′u +

√
c1√
K

W ′
2P Zu −

√
c1c2√
q

W ′
2P̄ Zu], (B.48)

e(1) = −Q−1[{ 1√
n

D′
2Z

′(V 2 0) +

√
c1√
K

W ′
2P Z(V 2 0) (B.49)

−
√

c1c2
1
√

q
W ′

2P̄ Z(V 2 0)}e(0) +
1√
n

W ′
2ZD2e

(0)

−c1

c2

λ(1)


 Ω22 0

0 0

 − q2q
′
2σ

2

 e(0) +

√
c1

c2

λ(1) 1
√

q
W ′

2P̄ Zu].

We first make the large-Kn stochastic expansion of the variance ratio (3.16).

Substituting (B.47) into (B.46), the numerator of the variance ratio devided by K

becomes

σ2 +
1√
n
{
√

1

c1

√
K(

1

K
u′P Zu − σ2) − 2(b′

0Ω,0)J2e
(0)}

+
1

n
{−2

√
1

c1

√
K[

1

K
b′

0V
′P Z(V 2,0) − (b′

0Ω,0)J2]e
(0)

−2
1

c1

1√
n

u′ZD2e
(0) +

1

c1

e(0)′ 1

n
D′

2Z
′ZD2e

(0)

+e(0)′

 Ω 0

0 0

 e(0) − 2(b′
0Ω,0)J2e

(1)} (B.50)

to terms of Op(n
−1). The denominator devided by q(= n − K) becomes

σ2 +
1√
n
{
√

c2

c1

√
q(

1

q
u′P̄ Zu − σ2) − 2(b′

0Ω,0)J2e
(0)}

+
1

n
{−2

√
c2

c1

√
q[

1

q
b′

0V
′P̄ Z(V 2,0) − (b′

0Ω,0)J2]e
(0)

−2
1

c1

1√
n

u′ZD2e
(0) +

1

c1

e(0)′ 1

n
D′

2Z
′ZD2e

(0)

+e(0)′

 Ω 0

0 0

 e(0) − 2(b′
0Ω,0)J2e

(1)} (B.51)
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to terms of Op(n
−1).

Multiplying Taylor’s expansion of the inverse of (B.51) to (B.50) it follows the

large-Kn stochastic expansion of the variance ratio (3.16):

λ̂ = λ̂(0) +
1√
n

λ̂(1) +
1

n
λ̂(2) + Op(n

−3/2), (B.52)

where

λ̂(0) = c2,

λ̂(1) =
c2

σ2
{ 1
√

c1

(
1√
K

u′P Zu) −
√

c2

c1

(
1
√

q
u′P̄ Zu)},

λ̂(2) =
c2

σ2
{− 1

c1

e(0)′Qe(0)

−
√

c2

c1

1

σ2
[

1
√

c1

(
1√
K

u′P Zu) −
√

c2

c1

(
1
√

q
u′P̄ Zu)][

√
q(

1

q
u′P̄ Zu − σ2)]}

Similarly λ0 defined by (3.15) is expanded as

λ0 = λ
(0)
0 +

1√
n

λ
(1)
0 +

1

n
λ

(2)
0 + Op(n

−3/2), (B.53)

where

λ
(0)
0 = c2,

λ
(1)
0 =

c2

σ2
{ 1
√

c1

(
1√
K

u′P Zu) −
√

c2

c1

(
1
√

q
u′P̄ Zu},

λ
(2)
0 = − c2

σ4

√
c2

c1

[
1

√
c1

(
1√
K

u′P Zu) −
√

c2

c1

(
1
√

q
u′P̄ Zu)][

√
q(

1

q
u′P̄ Zu − σ2)].

Hence we have the relation that

l =
n − K

n
(λ

(2)
0 − λ̂(2)) =

1

σ2
e(0)′Qe(0) + op(1). (B.54)

Anderson, Kunitomo and Matsushita (2006) show that

e(0) d→ N(0,Ψ). (B.55)

Then we have the desired result.

20



References

[1] Anderson, T.W. (2003), An Introduction to Multivariate Statistical Analysis,

John-Wiley, 3rd Edition.

[2] Anderson, T.W. and H. Rubin (1949), “Estimation of the Parameters of a

Single Equation in a Complete System of Stochastic Equations,” Annals of

Mathematical Statistics, Vol. 20, 46-63.

[3] Anderson, T.W. and H. Rubin (1950), “The Asymptotic Properties of Estimates

of the Parameters of a Single Equation in a Complete System of Stochastic

Equation,” Annals of Mathematical Statistics, Vol. 21, 570-582.

[4] Anderson, T.W., N. Kunitomo, and T. Sawa (1982), “Evaluation of the Distri-

bution Function of the Limited Information Maximum Likelihood Estimator,”

Econometrica, Vol. 50, 1009-1027.

[5] Anderson, T.W., N. Kunitomo, and Y. Matsushita (2006), “A New

Light from Old Wisdom: Alternative Estimation methods of Simultane-

ous Equations and Microeconometric Models,” Discussion Paper CIRJE-F-

321, Graduate School of Economics, University of Tokyo. (http://www.e.u-

tokyo.ac.jp/cirje/research/dp/2005/2005cf321.pdf)

[6] Andrews, D. W. K., M. J. Moreira, and J. H. Stock (2006), “Optimal Two-Sided

Invariant Similar Tests for Instrumental Variables Regression,” Ecoonometrica,

Vol.74, 715-752.

[7] Angrist, J. D. and A. Krueger (1991), “Does Compulsory School Attendance

Affect Schooling and Earnings,” Quarterly Journal of Economics, Vol. 106,

979-1014.

[8] Bekker, P.A. (1994), “Alternative Approximations to the Distributions of In-

strumental Variables Estimators,” Econometrica, Vol. 63, 657-681.

21



[9] Bound, J., D.A. Jaeger, and R.M. Baker (1995), “Problems with Instrumental

Variables Estimation when the Correlation between the Instruments and the

Endogenous Explanatory Variables is Weak,” Journal of the American Statis-

tical Association, Vol. 90, 443-450.

[10] Fujikoshi, Y., K. Morimune, N. Kunitomo, and M. Taniguchi (1982), “Asymp-

totic Expansions of the Distributions of the Estimates of Coefficients in a Si-

multaneous Equation System,” Journal of Econometrics, Vol. 18, 2, 191-205.

[11] Guggenberger, P. and R.J. Smith (2005), “Generalized Empirical Likelihood

Tests under Partial, Weak and Strong Identification,” Econometric Theory,

Vol. 21, forthcoming.

[12] Hansen, C., J. Hausman, and W.K.Newey (2005), “Estimation with Many In-

strumental Variables,” Unpublished Manuscript.

[13] Kleibergen, F. (2002), “Pivotal Statistics for Testing Structural Parameters in

Instrumental Variables Regression,” Econometrica, Vol.70-5, 1781-1803.

[14] Kunitomo, N. (1980), “Asymptotic Expansions of Distributions of Estimators

in a Linear Functional Relationship and Simultaneous Equations,” Journal of

the American Statistical Association, Vol. 75, 693-700.

[15] Kunitomo, N. and Y. Matsushita (2003a), “Finite Sample Distributions

of the Empirical Likelihood Estimator and GMM Estimator,” Discussion

Paper CIRJE-F-200, Graduate School of Economics, University of Tokyo.

(http://www.e.u-tokyo.ac.jp/cirje/research/dp/2003/2003cf200.pdf)

[16] Kunitomo,N. and Matsushita, Y. (2005), “Asymptotic Expansions of the Dis-

tribuitons of Semi-Parametric Estimators in A Linear Simultaneous Equations

System,” Preprint.

[17] Matsushita, Y. (2006), “t-Tests in A Structural Equation with Many Instru-

ments,” Preprint.

22



[18] Moreira, M. (2003), “A Conditional Likelihood Ratio Test for Structural Mod-

els,” Econometrica, Vol. 71-4, 1027-1048.

[19] Morimune, K. (1983), “Approximate Distribiutions of k-class Estimators when

the Degree of Overidentification is Large Compared With Sample Size,” Econo-

metrica, Vol.51-3, 821-841.

[20] Morimune, K and Y. Tsukuda (1984), “Testing a Subset of Coefficients in a

Structural Equation,” Econometrica, Vol.52, 427-448.

[21] Staiger, D. and J. Stock (1997), “Instrumental Variables Regression with Weak

Instruments,” Econometrica, Vol. 65, 557-586.

23




