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Abstract

The Akaike information criterion (AIC) has been successfully used in the literature in model
selection for small number of parameters p and large number of observations N . The cases when
p is large and close to N or when p > N have not been considered in the literature. In fact,
when p is large and close to N , the available AIC does not perform well at all. We consider
these cases in the context of finding the number of components of the mean vector that may be
different from zero in one-sample multivariate analysis. In fact, we consider this problem in more
generality by considering it as a growth curve model introduced in Rao (1959) and Potthoff and
Roy (1964). Using simulation, it has been shown that the proposed AIC procedures perform
well.

Key words and phrases: Akaike information criterion, high correlation, high dimensional model,
ridge estimator, selection of means.

1 Introduction

Let x1, . . . ,xN be p-dimensional random vectors, independently and identically distributed (here-
after, i.i.d.) as multivariate normal with mean vector θ and covariance matrix Σ, which is assumed
to be positive definite (hereafter, p.d., or simply > 0). We usually wish to test the global hypoth-
esis H : θ = 0 against the alternative A : θ �= 0. The global hypothesis H can also be written as
H =

⋂p
i=1 Hi, where Hi : θi = 0, and θ = (θ1, . . . , θp)′. When the global hypothesis H is rejected,

it is often desired to find out which component or components θi may have caused the rejection
of the hypothesis H. Often, it is accomplished by considering the confidence intervals for θi by
Bonferroni inequality method or Roy’s (1953) method. The confidence intervals that do not include
zero are the ones that may have caused the rejection of the hypothesis H. The above two methods
provide satisfactory solution for small p < 10. However, when p ≥ 10, the above two methods fail to
provide satisfactory solution, and either the False Discovery Rate (FDR) method of Benjamini and
Hochberg (1995) or k-FWER method of Hoffman and Hommel (1988), and Lehmann and Romano
(2005) are used. The FDR method, however, requires that the test statistics that are used for
testing the hypotheses Hi are either independently distributed or positively related, see Benjamini
and Yekutieli (2001). Similarly, in the k-FWER method, it is not known how to choose ‘k’ .

As an alternative to FDR and k-FWER procedures, which have limitations as pointed out
above, we consider the Akaike information criterion (1973) to determine the number of components
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that may have caused the rejection. Essentially the problem is that for some r × 1 vector η, r ≤ p,

θ =
(

η
0

)
= Bη,

where B is a p × r matrix given by (Ir,0′)′. For a general known p × r matrix B, this problem
is called the growth curve model introduced by Rao (1959). A model for the mean matrix was
introduced by Potthoff and Roy (1964). For a general discussion of these models, see Srivastava
and Khatri (1979), Srivastava (2002) and Kollo and von Rosen (2005).

The aim of this article is to use the Akaike information criterion to choose r, the number of
components of θ that are different from zero. We consider the case when N > p as well as the
case when N ≤ p. In Section 2, we define the Akaike information criterion as well as obtain its
exact expression in the growth curve model when N ≥ p + 2. The AIC is recognized to be a
useful method for selecting models when N is large, but it does not perform well when p is large
and close to N , because the inverse of the sample covariance matrix is unstable. When p ≥ N ,
no information criteria have been considered in the literature. In Section 3, we derive the AIC
variants based on the ridge-type estimators of the precision matrix. The case of N > p is treated in
Section 3.1, and the ridge information criterion AICλ is obtained for large N . The case of p ≥ N
is handled in Section 3.2, and the ridge information criterion AIC∗

λ is derived for large p. Section
3.3 presents numerical investigation of the proposed information criteria and shows that the AIC
variants based on the ridge-type estimators of the precision matrix have nice behaviors, especially
in the high dimensional cases and/or high correlation cases. In Section 4, we extend the results to
the two-sample problem. All the analytical proofs of the results are given in the appendix.

2 Akaike Information Criterion for Growth Curve Model

2.1 Akaike information criterion and its variant

For model selection and its evaluation, Akaike (1973, 74) developed an information criterion, known
in the literature as AIC. It is based on the Kullback and Leibler (1951) information of the true
model with respect to the fitted model. Let f be the true but unknown density of the data X =
(x1, . . . ,xN ), a p×N matrix of observation vectors x1, . . . ,xN . And let g� ∈ G = {g(x|θ),θ ∈ Θ}
be the density of the approximating model, where θ ∈ Rk. It will be assumed that f ∈ G. Since
θ is unknown, it can be estimated by an efficient estimator such as maximum likelihood estimator
(MLE) θ̂. Thus, for a future p×N observation matrix Z, its predictive density can be approximated
by g

��
(z). For model selection, Akaike (1973) proposed to choose that g ∈ G for which the average

quantity

Ef(�)[I{f(z); g
��
(z)}] = Ef(�)[log f(Z)] − Ef(�)[Ef(�)[log g

��
(Z)]], (2.1)

is small. The first term on the right-side of (2.1) does not depend on the model. The Akaike
information AI is defined by the second term in (2.1), namely,

AI = −2Ef(�)[Ef(�)[log g
��
(Z)]].

The AIC is an estimator of AI. When f ∈ G and θ̂ is MLE, it is given by

AIC0 = −2 log g
��
(X) + 2d (2.2)

where d is the number of free parameters in the model G.
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Let ∆∗ be the bias in estimating AI by −2 log g
��
(X), namely,

∆∗ = E[−2 log g
��
(X)] − AI.

Akaike (1973) showed that ∆∗ = −2d + o(1) as N → ∞ when f ∈ G and θ̂ is MLE. Thus 2d in
AIC0 is interpreted as an approximated value of the bias correction term. An exact value of ∆∗

can be derived for a specific model, and if ∆∗ is free of parameters, then the corrected version of
AIC is given by

AICC = −2 log g
��
(X) − ∆∗,

which was introduced by Sugiura (1978) and studied by Hurvich and Tsai (1989).

When the MLE of θ is unstable or inefficient, we use a stable or efficient estimator. In this case,
the bias ∆∗ may depend on unknown parameters. We use an estimator ∆̂∗, then the AIC-variant
based on the estimator is given by

AICG = −2 log g
��
(X) − ∆̂∗.

For the generalization and recent development of AIC, see Konishi and Kitagawa (1996), Konishi,
Ando and Imoto (2004) and Fujikoshi and Satoh (1997). In this paper, we shall derive the AIC
variants AICG for the growth curve model in various situations.

2.2 AIC for the growth curve model

Let X = (x1, . . . ,xN ) be the p × N observation matrix, where xi are i.i.d. Np(θ,Σ), Σ > 0,
p < N . The true model density f is also normal with mean vector θ∗ and covariance matrix Σ∗

except that
θ∗ = Bη∗

where B : p×r and η∗ ∈ Rr. The model that we wish to fit to the data (hereafter called candidate
model), namely g�,Σ is also normal with mean vector θ = Bη and covariance matrix Σ > 0. Thus
the class of candidate models includes the true model. For simplicity of notation we shall write

AI = Ef(�)Ef(�)

[
−2 log g

��,�Σ
(Z)

]
= E∗

�E∗
�

[
−2 log g(Z|θ̂, Σ̂)

]
, (2.3)

where x = N−1
∑N

i=1 xi, V =
∑N

i=1(xi − x)(xi − x)′,

θ̂ =Bη̂ = B(B′V −1B)−1B′V −1x,

NΣ̂ =V + N
(
x − θ̂

)(
x − θ̂

)′
.

As seen in Srivastava and Khatri (1979, pp120), θ̂ and Σ̂ are the MLE of θ and Σ respectively for
the candidate model. Note that

−2 log g(X|θ̂, Σ̂) =Np log 2π + N log |Σ̂| +
N∑

i=1

tr [Σ̂
−1

(xi − θ̂)(xi − θ̂)′]

=Np log 2π + N log |Σ̂| + Np. (2.4)

When the Akaike information AI is estimated by the estimator −2 log g(X|θ̂, Σ̂), the resulting bias
is denoted by ∆∗, given by

∆∗ = E∗
�

[
−2 log g(X|θ̂, Σ̂)

]
− AI. (2.5)

The following proposition gives the value of ∆∗, where all the proofs of Propositions will be given
in the Appendix.
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Proposition 2.1 For N = n + 1 > p + 2, the bias ∆∗ in estimating AI by (2.4) is given by

∆∗ = −Np(p + 3)
n − p − 1

+
N(p − r)(2n − p + r + 1)
(n − p + r)(n − p + r − 1)

. (2.6)

Thus, from Proposition 2.1, we get the following Corollary.

Corollary 2.1 The so-called corrected AIC is given by

AICC = −2 log g(X|θ̂, Σ̂) − ∆∗, (2.7)

and the uncorrected AIC is given by

AIC0 = −2 log g(X|θ̂, Σ̂) + p(p + 1) + 2r. (2.8)

It may be noted that ∆∗ given in (2.6) can be approximated by

∆∗
A = − [p(p + 1) + 2r] − 1

n
[p(p + 2)(p + 3) − (p − r)(3(p − r) + 5)]

− 1
n2

{p(p + 1)(p + 2)(p + 3) − 2(p − r)(2(p − r) + 1)(p − r + 2)} (2.9)

Since the results in the remainder of the paper are asymptotic, and it is easier to handle ∆∗
A, we

will use ∆∗
A given by (2.9).

3 Ridge Information Criterion

When N > p and p is large and close to N , the sample matrix V is very unstable, because
of many small eigenvalues, and the available AIC does not perform well. And, in the case of
p ≥ N , no information criterion has been considered in the literature. In this section, we obtain
information criteria based on a ridge-type estimator of the precision matrix and show numerically
that the proposed information criteria perform well in both the cases. The usefulness of the ridge-
type estimators has been recognized recently. For example, Srivastava and Kubokawa (2007) and
Kubokawa and Srivastava (2005) showed that discriminant procedures based on the ridge estimators
yield high correct classification rates in multivariate classification problems.

3.1 Case of N > p

Consider the case when N > p. In the situation that V is not stable, we consider the ridge-type
estimator for Σ given by

V λ = V + λ̂Ip, (3.1)

where λ̂ is a positive function of V . Thus we consider the estimator of θ = Bη given by

θ̂λ = B(B′V −1
λ B)−1B′V −1

λ x, (3.2)

and the corresponding estimator of Σ by

NΣ̂λ = V λ + N [I − B(B′V −1
λ B)−1B′V −1

λ ]x x′[I − B(B′V −1
λ B)−1B′V −1

λ ]′ (3.3)

Define the Akaike information AIλ by

AIλ = E∗
�E∗

�

[
−2 log g(Z|θ̂λ, Σ̂λ)

]
, (3.4)
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and it is estimated by

−2 log g(X|θ̂λ, Σ̂λ) =Np log 2π + N log |Σ̂λ| +
N∑

i=1

tr [Σ̂
−1

λ (xi − θ̂λ)(xi − θ̂λ)′]

=Np log(2π) + Np + N log |Σ̂λ| − λ̂tr Σ̂
−1

λ ,

since
∑N

i=1(xi − θ̂λ)(xi − θ̂λ)′ = NΣ̂λ − λ̂Ip. Then the bias is given by

∆∗
λ = E∗

�

[
−2 log g(X|θ̂λ, Σ̂λ)

]
− AIλ. (3.5)

Proposition 3.1 Let ∆∗
A be given by (2.9). Then for larger n and λ̂ satisfying λ̂ = Op(

√
n), the

bias ∆∗
λ can be approximated as

∆∗
λ = ∆∗ + NE∗

�

[
λ̂trV −1

λ

]
− E∗

�

[
λ̂tr Σ̂

−1

λ

]
+ o(1), (3.6)

where ∆∗ is given in (2.6).

We choose

λ̂ =
√

npâ1, for â1 = trV /(np). (3.7)

It is noted that λ̂ is of the order Op(
√

n) for fixed p, and for bounded a1 = trΣ/p > 0 for all p, â1

converges to a1 as n → ∞, see Srivastava (2005). Thus λ̂ increases as p gets large in the order of√
p. Thus, we get the following corollary for the corrected AIC.

Corollary 3.1 For N > p, and ∆∗
A defined in (2.9), the corrected AIC using θ̂λ and Σ̂λ given in

(3.2) and (3.3), respectively, as estimators of θ and Σ can be approximated by

AICλ = − 2 log g(X |θ̂λ, Σ̂λ) − ∆∗
A − Nλ̂trV −1

λ + λ̂tr Σ̂
−1

λ

=Np log 2π + Np + N log |Σ̂λ| − ∆∗
A − Nλ̂trV −1

λ , (3.8)

where ∆∗
A is given in (2.9).

Our numerical evaluation shows that AICλ behaves well in our model selection when p is close
to n and n > p, see Table 1.

3.2 Case of p ≥ N

Consider the case when N ≤ p. In this case, V =
∑N

i=1(xi − x)(xi − x)′ is a singular matrix and
its inverse does not exist. Thus, while n−1V , n = N − 1, is an unbiased estimator of Σ∗, we need
an estimator of the precision matrix Σ∗−1. Two types of estimators have been proposed in the
literature by Srivastava (2007), Srivastava and Kubokawa (2007) and Kubokawa and Srivastava
(2005). One is based on the Moore-Penrose inverse of V such as an,pV

+ = an,pHL−1H ′, where
H ′H = In and L = diag (�1, . . . , �n) is the diagonal matrix of the non-zero eigenvalues of V , an,p

is a constant depending on n and p. The other is a ridge-type estimator given by

V λ = V + λ̂Ip,

as employed in (3.1). However, since n is usually much smaller than p, we will use

λ̂ =
√

pâ1, (3.9)
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instead of the one given in (3.7). Let ai = trΣi/p for i = 1, 2, 3, 4. We shall assume the following
conditions:

(C.1) 0 < limp→∞ ai ≡ ai0 < ∞,
(C.2) n = O(pδ) for 0 < δ ≤ 1/2,
(C.3) the maximum eigenvalue of Σ∗ is bounded in large p.

Then from Lemma A.3, it can be observed that E[tr V /(np)] = a1 and limp→∞ trV /(np) = a10

in probability. Hence, the ridge function λ̂ goes to infinity as p → ∞, and λ̂/n goes to zero if
n = O(pδ) for 1/2 < δ ≤ 1. However, from the assumption (C.2), it remains constant. The
parameters θ and Σ are estimated by the ridge-estimators (3.2) and (3.3) for the ridge function
(3.9). Although the MLEs of θ∗ and Σ∗ do not exist, we define the Akaike information AIλ as in
(3.4) with the estimators θ̂λ and Σ̂λ in place of MLE. This gives ∆∗

λ defined by (3.5) instead of
∆∗ given in (2.5). When the dimension p tends to infinity, a second-order approximation of ∆∗

λ is
given by the following proposition.

Proposition 3.2 Let aic = tr (C ′ΣC)i/q for q = p−r and i = 1, 2, where C is a p×(p−r) matrix
such that C′B = 0 and C ′C = Ip−r. Also let a = (a1, a2, a1c, a2c). Then under the assumptions
(C.1) - (C.3) and λ̂ =

√
pâ1, ∆∗

λ can be approximated as

∆∗
λ(a) = Np − E∗

�

[
λ̂tr Σ̂

−1

λ

]
− h(a) + o(p−1/2), (3.10)

where

h(a) =
√

pN

(
N + 1 − qa1c

pa1

)(
1 +

2a2

npa2
1

)
− N(N + 1)

1 + 1/
√

p

na2√
pa2

1

−√
pN

qa2c

pa1

1√
pa1 + qa1c

. (3.11)

The bias ∆∗
λ includes the unknown values ai and aic for i = 1, 2, which are estimated by the

consistent estimators

â1 =
trV

np
, â2 =

1
(n − 1)(n + 2)p

[
tr V 2 − (trV )2 /n

]
, (3.12)

â1c =
trC ′V C

nq
, â2c =

1
(n − 1)(n + 2)q

[
tr (C ′V C)2 − (trC ′V C

)2
/n
]
, (3.13)

for i = 1, 2. Replacing the unknown values with their estimators yields an estimator of ∆∗
λ(a),

denoted by ∆∗
λ(â), where â = (â1, â2, â1c, â2c).

Corollary 3.2 The AIC∗
λ can be approximated by

AIC∗
λ = − 2 log g(X|θ̂λ, Σ̂λ) − ∆∗

λ(â)

=Np log(2π) + N log |Σ̂λ| + h(â), (3.14)

for the function h(·) given in (3.11).

It is noted that the term ∆̃∗
λ depends on the data, namely, it may be affected by random

fluctuation. Another choice is to use the rough approximations such that ai = 1 and aic = 1 for
i = 1, 2, namely a = (1, 1, 1, 1), and the resulting information criterion is given in the following
corollary.

Corollary 3.3

AIC∗
A = Np log(2π) + N log |Σ̂λ| + h(1). (3.15)
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In the estimation of Σ−1, it may be important how to estimate λ. As seen from Lemma A.3,
λ̂ given in (3.9) goes to infinity as p → ∞, namely λ̂ = Op(p1/2), and it is interesting to consider
another estimate of λ with the order Op(1). We here consider another estimator of the form

λ̂# =
√

nâ1. (3.16)

Using the same arguments as in Proposition 3.2, we get the following proposition.

Proposition 3.3 Assume (C.1) - (C.3) and λ̂ =
√

nâ1. Then the bias ∆#
λ corresponding to ∆∗

λ

can be approximated as

∆#
λ = Np − λ̂tr Σ̂

−1

λ − h#(a) + o(1), (3.17)

where

h#(a) =
Np√

n

(
N + 1 − qa1c

pa1

)(
1 +

2a2

npa2
1

)
− N(N + 1)

1 +
√

n/p

√
na2

a2
1

− N
qa2c√
na1

1√
na1 + qa1c

. (3.18)

Corollary 3.4 The AIC#
λ for λ̂# =

√
nâ1 can be approximated by

AIC#
λ = − 2 log g(X|θ̂λ, Σ̂λ) − ∆#

λ (â)

=Np log(2π) + N log |Σ̂λ| + h#(â). (3.19)

Srivastava and Kubokawa (2007) proposed the ridge-type empirical Bayes estimator of λ given
by λ̂† = trV /n = pâ1. Using this estimate, we can also other estimates of θ and Σ based on
(3.2) and (3.3). Although intuitive, we here inverstigate the performance of the following criterion
such that the bias term corresponds to that of the conventional AIC, namely 2×(the number of
unknown parameters).

AIC†
R = −2 log g(X|θ̂λ, Σ̂λ) + 2 × {p(p + 1) + r}. (3.20)

It is noted that AIC†
R is motivate from the conventional AIC, but no justification can be guranteed

in the asymptotics of p → ∞. The performances of AIC†
R, AIC#

λ , AIC∗
λ and AIC∗

A are investigated
in the following section.

3.3 Simulation experiments

We now compare numerical performances of the proposed selection criteria through simulation
experiments. As the true model, we consider the model that x1, . . . ,xN are i.i.d. ∼ Np(θ∗,Σ∗)
where

θ∗ = (θ∗1, . . . , θ∗k, 0, . . . , 0)′, θ∗i = (−1)i(1 + ui), i = 1, . . . , k,

for random variable ui from a uniform distribution on the interval [0, 1], and

Σ∗ =

⎛⎜⎜⎜⎝
σ1

σ2

. . .
σp

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝

ρ|1−1| 17 ρ|1−2| 17 · · · ρ|1−p| 17

ρ|2−1| 17 ρ|2−2| 17 · · · ρ|2−p| 17

. . .

ρ|p−1| 17 ρ|p−2| 17 · · · ρ|p−p| 17

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎝

σ1

σ2

. . .
σp

⎞⎟⎟⎟⎠ .
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for a constant ρ on the interval (−1, 1) and σi = 2 + (p− i + 1)/p. Let (r) be the set {0, 1, . . . , r},
and we write the model using the first r nonnegative components by Mr or simply (r), namely, the
model (r) means that x1, . . . ,xN are i.i.d. ∼ Np(θ(r),Σ) where θ(r) = (θ1, . . . , θr, 0, . . . , 0)′. For
this model, B corresponds to (Ir,0)′. In our experiments, the true model is Mk or (k), and we
consider the set {Mr; r = 0, 1, . . . , 7} as candidate models.

When N > p, we investigate the performances of the information criteria AIC0, AICC and
AICλ defined in Section 3.1. The following two cases are examined: (A) N = 50, 100, p = 40,
k = 4 and models (0) ∼ (7); (B) N = 50, 100, p = 45, k = 10 and models (0) ∼ (13). The
frequencies of models (r), selected by the three criteria are reported in Table 1 based on 100
samples for ρ = 0.3. From Table 1, we can find some properties and features about the three
criteria. (1) When N = 50 and p = 40, 45, the conventional AIC and the corrected AIC, denoted
by AIC0 and AICC , do not work well, while AICλ based on the ridge-type estimator behaves very
well. (2) For the large sample case of N = 100, AICC and AICλ perform reasonably well. Thus,
it is found that AICλ has higher frequencies than AIC0 and AICC . From these observations, we
can recommend the use of AICλ, which performs well especially when p is close to N .

When p ≥ N , we carried out similar simulation experiments for the information criteria AIC†
R,

AIC#
λ , AIC∗

λ and AIC∗
A which are defined by (3.20), (3.19), (3.14) and (3.15), respectively. Table

2 reports the frequencies of models (r) selected by the three criteria in the three cases: (A) N = 10,
p = 100, k = 4 and models (0) ∼ (7); (B) N = 20, p = 100, k = 10 and models (0) ∼ (13), where
for the value of ρ, we handle the two cases ρ = 0.2 and ρ = 0.8. From the table, it is seen that
AIC∗

A performs well except the case of ρ = 0.8 and N = 10, where AIC†
R and AIC#

λ are not very
good and AIC∗

λ is superior. For larger N , the preformance of AIC†
R and AIC#

λ get better. Thus,
the criterion AIC∗

A is recommended.

4 Two-Sample Problem

In this section, we extend the results of the previous section to the two sample problem which may
be useful in a practical situation.

4.1 Extension to the two-sample model

Let X1 = (x11, . . . ,x1N1) and X2 = (x21, . . . ,x2N2) be the two p × N1 and p × N2 observation
matrices independently distributed in which x1i are i.i.d. Np(θ1,Σ) and x2i are i.i.d. Np(θ2,Σ).
We wish to investigate which components of θ1 are different from θ2. Thus, in this model,

θ1 =
(

θ11

µ2

)
, and θ2 =

(
θ21

µ2

)
,

where θ11 and θ21 are the r-vectors and µ2 is a (p − r) vector. That is,

δ = θ1 − θ2 =
(

θ11 − θ21

0

)
=
(

η
0

)
=
(

Ir

0

)
η = Bη,

where B = (Ir,0)′, and η is an r-vector of unknown parameters.

Since all the information from the two observation matrices are contained in the sufficient
statistics x1 = N−1

1

∑N1
i=1 x1i, x2 = N−1

2

∑N2
i=1 x2i and

V x =
N1∑
i=1

(x1i − x1)(x1i − x1)′ +
N2∑
i=1

(x2i − x2)(x2i − x2)′

8



Table 1: Frequencies of models selected by the three criteria based on 100 samples for N > p and
ρ = 0.3

N = 50 N = 100
Mk AIC0 AICC AICλ AIC0 AICC AICλ

p = 40 True model: (4)
(0) 0 100 0 0 0 0
(1) 0 0 0 0 0 0
(2) 0 0 0 0 0 0
(3) 0 0 0 0 0 0
(4) 30 0 100 62 98 98
(5) 21 0 0 16 2 1
(6) 22 0 0 11 0 0
(7) 27 0 0 11 0 1

p = 45 True model: (10)
(0) 0 100 0 0 0 0
...

...
...

...
...

...
...

(9) 0 0 0 0 0 0
(10) 27 0 100 50 96 97
(11) 21 0 0 19 3 2
(12) 20 0 0 15 1 1
(13) 32 0 0 16 0 0

Table 2: Frequencies of models selected by the four criteria based on 100 samples for p ≥ N

ρ = 0.2 ρ = 0.8
Mk AIC†

R AIC#
λ AIC∗

λ AIC∗
A AIC†

R AIC#
λ AIC∗

λ AIC∗
A

N = 10 p = 100 True model: (4)
(0) 0 0 0 0 99 0 0 0
(1) 0 0 0 0 0 28 0 0
(2) 0 0 0 0 1 25 0 0
(3) 5 0 0 0 0 31 10 18
(4) 95 95 99 100 0 16 89 82
(5) 0 0 1 0 0 1 1 0
(6) 0 0 1 0 0 0 0 0
(7) 0 0 0 0 0 0 0 0

N = 20 p = 100 True model: (10)
(0) 0 0 0 0 0 0 0 0
(1) 0 0 0 0 0 1 0 0
(2) 0 0 0 0 0 3 0 0
(9) 0 0 0 0 0 0 0 0
(10) 100 100 99 100 100 96 98 100
(11) 0 0 1 0 0 0 2 0
(12) 0 0 0 0 0 0 0 0
(13) 0 0 0 0 0 0 0 0
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for the parameters (θ1,θ2,Σ), we will consider these sufficient statistics instead of the entire ob-
servation matrices X1 and X2. Let

dx = x1 − x2, and ux = (N1x1 + N2x2)/N,

where N = N1 + N2. Then dx, ux and V x are independently distributed and since (dx,ux) are
one-to-one transformation from (x1,x2), it contains the same amount of information as x1 and x2.
Let ν = (N1µ1 + N2µ2)/N and k = N1N2/N . Then, dx ∼ Np(δ, k−1Σ) and ux ∼ Np(ν, N−1Σ),
where

δ = Bη.

Let V λ = V x + λ̂Ip, where λ̂ is a function of V x and will be specified later. We shall also consider
the case when λ̂ = 0. Let

AV = B(B′V −1
λ B)−1B′V −1

λ .

Then we estimate δ, ν and Σ by δ̂
∗

= AV dx, ν̂∗ = ux and

NΣ̂λ = V λ + k(I − AV )dxd′
x(I − AV ) = V λ + kV λGdxd

′
xGV λ,

where G = C(C ′V λC)−1C ′ and C′ = (0, Ip−r) : (p − r) × p, that is the first r colums of C′ are
zeros. In general for p× r matrix B of rank r, C is a p× (p− r) matrix such that C ′C = Ip−r, and
C ′B = 0. Let ĝ be the approximatiing model with estimates δ̂

∗
, ν̂∗ and Σ̂λ used for the unknown

parameters in the normal model where V x = Y Y ′ with Y = (y1, . . . ,yn) and yi i.i.d. Np(0,Σ).
Here n = N1 + N2 − 2. Thus,

−2 log g(dx,ux,V x|δ̂x, ν̂x, Σ̂λ) =Np log 2π + N log |Σ̂λ| + tr [Σ̂
−1

λ (V + kV λGdxd
′
xGV λ)]

=Np log 2π + N log |Σ̂λ| + Np − λ̂tr Σ̂
−1

λ ,

with G = C(C′V λC)−1C ′ and dx = x1 − x2.

Under the true model, the parameters are δ∗, ν∗ and Σ∗, while the random vectors are still
normally distributed. The futurre observation matrix is Z = (Z1,Z2) which is independently
distributed of X = (X1,X2). The true model for Z is the same as that for X. That is normal
with parameters (δ∗,ν∗,Σ∗), where δ∗ = Bη∗. The bias is given by

∆∗
2,λ = E∗

� [−2 log g(dx,ux,V x|δ̂x, ν̂x, Σ̂λ)] − E∗
� [E∗

� [−2 log g(dz,uz,V z|δ̂x, ν̂x, Σ̂λ)]]. (4.1)

Then we obtain the following results corresponding to Propositions 2.1, 3.1 and 3.2.

Proposition 4.1 Assume that λ̂ = 0 and n > p + 1 for n = N − 2. Then the exact value of the
bias ∆∗

2,λ given by (A.19), denoted by ∆∗
2 for λ̂ = 0, is

∆∗
2 = −Np(p + 5)

n − p − 1
+

N(p − r)(2n − p + r + 3)
(n − p + r)(n − p + r − 1)

. (4.2)

Also, ∆∗
2 is approximated as ∆∗

2 = ∆∗
2,A + o(n−2), where

∆∗
2,A = − [p(p + 1) + 2(p + r)] − 1

n
{p(p + 3)(p + 5) − 3(p − r)(p − r + 3)}

− 1
n2

{2p(p + 1)(p + 3)(p + 5) − (p − r)(4(p − r) + 5)(p − r + 3)}.
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Proposition 4.2 Assume that n > p+1 and λ̂ satisfies the property λ̂ = Op(
√

n) such as in (3.7).
Then the bias ∆∗

2,λ can be approximated as

∆∗
2,λ = ∆∗

2 + NE∗
�

[
λ̂trV −1

λ

]
− E∗

�

[
λ̂tr Σ̂

−1

λ

]
+ o(1). (4.3)

as n → ∞, where ∆∗
2 is given by (4.2).

Proposition 4.3 Assume that p ≥ N and λ̂ has the form λ̂ =
√

pâ1 for â1 = trV /(np). Then un-

der the assumptions (C.1) and (C.2), ∆∗
2,λ can be approximated as ∆∗

2,λ(a) = Np−E∗
�

[
λ̂tr Σ̂

−1

λ

]
−

h2(a) + o(p−1/2), where

h2(a) =
√

pN

(
N + 2 − qa1c

pa1

)(
1 +

2a2

npa2
1

)
− N(N + 2)

1 + 1/
√

p

na2√
pa2

1

− 3N
qa2c√
pa1

1√
pa1 + qa1c

.

Taking the simulation results in Section 3.3 into account, we suggest the following ridge infor-
mation criteria from Propositions 2.1, 3.1 and 3.2. When N > p, let λ̂ =

√
npâ1 and consider the

ridge information criterion

AICλ = − 2 log g(X ,Y |θ̂1λ, θ̂2λ, Σ̂λ) − ∆∗
2,A − Nλ̂trV −1

λ + λ̂tr Σ̂
−1

λ

=Np log 2π + Np + N log |Σ̂λ| − ∆∗
2,A − Nλ̂trV −1

λ ,

where ∆∗
2,A is given in Proposition 4.1. When p ≥ N , we can propose the criteria corresponding to

(3.14) and (3.15). Let λ̂ =
√

pâ1 and consider

AIC∗
λ = − 2 log g(X,Y |θ̂1λ, θ̂2λ, Σ̂λ) − ∆∗

2,λ(â)

=Np log 2π + N log |Σ̂λ| + h2(â),

and the AIC corresponding to (3.15) is given by

AIC∗
A = Np log 2π + N log |Σ̂λ| + h2(1).

Since AIC†
R and AIC#

λ do not perform well as examined in Section 3.3, we do not investigate them
in the comparison.

4.2 Numerical studies

We briefly state the numerical results of the information criteria proposed in the previous subsection
through the simulation and empirical studies when p ≥ N for N = N1 + N2.

For the simulation study, we carried out similar experiments to Section 3.3 where the mean
vectors of the true model are given by

θ∗
1 =(θ∗11, . . . , θ∗1k, 0, . . . , 0)′, θ∗1i = 1.5 × u1i, i = 1, . . . , k,

θ∗
2 =(θ∗21, . . . , θ∗2k, 0, . . . , 0)′, θ∗2i = −1.5 × u2i, i = 1, . . . , k,

for random variables u1i and u2i from a uniform distribution on the interval [0, 1], and the covarinace
matrix Σ∗ of the true model has the same structure as used there. The performances of the criteria
AIC∗

λ and AIC∗
A are examined in the three cases: (A) N1 = 10, N2 = 10, k = 4 and models

11



Table 3: Frequencies of models selected by the two criteria based on 100 samples in the two sample
problem for p = 100

ρ = 0.2 ρ = 0.6
Mk AIC∗

λ AIC∗
A AIC∗

λ AIC∗
A

N1 = 10 N2 = 10 True model: (4)
(0) 0 0 0 0
(1) 0 0 0 0
(2) 0 0 0 0
(3) 2 5 27 54
(4) 94 94 69 46
(5) 4 1 3 0
(6) 0 0 1 0
(7) 0 0 0 0
N1 = 10 N2 = 30 True model: (10)
(0) 0 0 0 0
(8) 0 0 0 0
(9) 0 0 1 1
(10) 97 99 95 98
(11) 3 1 4 1
(12) 0 0 0 0
(13) 0 0 0 0

(0) ∼ (7); (B) N1 = 10, N2 = 30, k = 10 and models (0) ∼ (13). Table 3 reports the frequencies of
models (r) selected by the three criteria based on 100 samples for p = 100 and ρ = 0.2,0.6. Table
3 shows that both AIC∗

λ and AIC∗
A have good performances except for the case of small sample

sizes (N1, N2) = (10,10) and the high-correlation ρ = 0.6. In this case, AIC∗
λ is slightly better.

We next apply the information criterion to the real datasets of microarray referred to as
Leukemia. This dataset contains gene expression levels of 72 patients either suffering from acute
lymphoblastic leukemia(N1 = 47 cases) or acute myeloid leukemia(N2 = 25 cases) for 3571 genes.
These data are publicly available at

“http://www-genome.wi.mit.edu/cancer”.
The description of the above datasets and preprocessing are due to Dettling and Buhlmann (2002),
except that we do not process the datasets such that each tissue sample has zero mean and unit
variance across genes, which is not explainable in our framework.

We carried out the simple experiments of using the first p = 150 dimensional data. We here
use the criterion AIC∗

A. The value of the information criterion AIC∗
A under the model of θ1 = θ2

is denoted by AIC∗
A(0), which takes the value 945.951 + C0 where C0 is a constant. We first

consider the case of r = 1. Let AIC∗
A(1)j be the value under the model of θ1j �= θ2j and θ1i = θ2i

for all i(�= j). Computing AIC∗
A(1)j for all j from j = 1 to j = 150, we see that the location

which gives the minimum value of AIC∗
A(1)j is j = 61 with AIC∗

A(1)61 = 940.954 + C0. We
next consider the case of r = 2. Let AIC∗

A(2)61,j be the value under the model of θ1,61 �= θ2,61,
θ1j �= θ2j and θ1i = θ2i for all i(�= 61, j). Then the location minimizing AIC∗

A(2)61,j is j = 118 with
AIC∗

A(2)61,118 = 939.578 + C0. We can further consider the case of r = 3, and search for locations
giving smaller values of AIC∗

A(3)61,118,j which is defined similarly. The possible locations are j = 110
and j = 131 with AIC∗

A(3)61,118,110 = 940.893 + C0 and AIC∗
A(3)61,118,131 = 940.517 + C0. It is
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observed that the values of AIC∗
A for r ≥ 4 are larger than 942 + C0. Hence the model minimizing

the information criterion AIC∗
A is the model with the location (i, j) = (61,118) for r = 2, namely,

θ1,61 �= θ2,61, θ1,118 �= θ2,118 and θ1i = θ2i for all i(�= 61, 118). Also we can suggest the models with
the locations (i, j, k) = (61,110,118), (61,110,131) for r = 3.

5 Concluding remarks

The Akaike information criterion has been very successfully used in model selection. But so far
the focus has been for small p (dimension or parameters) and large sample size N . For large p
and or when p is close to N , the estimators of the parameters are unstable. However nothing has
been known about the performance of AIC. In this article we have modified AIC using the ridge
estimator of the precision matrix and evaluated its performance not only for the case when p < N
and close to N but have also considered the case when p ≥ N . We have proposed AICλ given in
(3.8) for the case when N > p, and AIC∗

λ and AIC∗
A given by (3.14) and (3.15) for the case when

p ≥ N . Finally, we have extended the results to the two sample problem.

A Appendix

Before proving Propositions, we provide a unified expression of the bias ∆∗
λ given by (3.5), where

the ridge-type estimators θ̂λ and Σ̂λ are given by (3.2) and (3.3). To evaluate the bias, we need
the following two lemmas which are referred to Srivastava and Khatri (1979, Corollary 1.9.2 and
Theorem 1.4.1).

Lemma A.1 Let B be a p × r matrix of rank r ≤ p, and V be a p × p positive definite matrix.
Then there exists a matrix C : p × (p − r) such that C′B = 0, C′C = Ip−r, and

V −1 = V −1B(B′V −1B)−1B′V −1 + C(C ′V C)−1C ′.

Lemma A.2 Let P and Q be nonsingular matrices of proper orders. Then, if Q = P + UV ,

Q−1 = P−1 − P−1U(I + V P−1U)−1V P−1.

From Lemma A.1, it follows that

NΣ̂λ =V λ + N [I − B(B′V −1
λ B)−1B′V −1

λ ]xx′[I − B(B′V −1
λ B)−1B′V −1

λ ]′

=V λ + NV λC(C ′V λC)−1C′xx′C(C ′V λC)−1C ′V λ.

From Lemma A.2, it is seen that

Σ̂
−1

λ = N

{
V −1

λ − N
C(C ′V λC)−1C′xx′C(C ′V λC)−1C ′

1 + Nx′C(C ′V λC)−1C ′x

}
. (A.1)

For z1, . . . ,zN i.i.d. Np(θ∗,Σ∗) and Z = (z1, . . . ,zN ), the Akaike information AIλ of (3.4) is
written as

AIλ =E∗
�E∗

�

[
Np log 2π + N log |Σ̂λ| +

N∑
i=1

tr [Σ̂
−1

λ (zi − θ̂λ)(zi − θ̂λ)′]

]
=E∗

�

[
Np log 2π + N log |Σ̂λ| + Ntr [Σ̂

−1

λ {Σ∗ + (θ̂λ − θ∗)(θ̂λ − θ∗)′}]
]
.
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Then the bias (3.5) is expressed as

∆∗
λ =E

[
−2 log g(X|θ̂λ, Σ̂λ)

]
− AIλ

=E∗
�

[
tr [Σ̂

−1

λ

N∑
i=1

(xi − θ̂λ)(xi − θ̂λ)′] − Ntr [Σ̂
−1

λ Σ∗] − Ntr [Σ̂
−1

λ (θ̂λ − θ∗)(θ̂λ − θ∗)′]

]
=Np − E∗

� [λ̂tr Σ̂
−1

λ ] − NE∗
�

[
tr [Σ̂

−1

λ Σ∗]
]
− NE∗

�

[
tr [Σ̂

−1

λ (θ̂λ − θ∗)(θ̂λ − θ∗)′]
]
. (A.2)

To calculate ∆∗
λ in (A.2), we need to evaluate the two terms E∗

�
[tr [Σ̂

−1

λ Σ∗]] and E∗
�

[tr [Σ̂
−1

λ (θ̂λ−
θ∗)(θ̂λ − θ∗)′]], where θ∗ = Bη∗. Then from (A.1),

E∗
�

[
tr [Σ̂

−1

λ Σ∗]
]

= NE∗
�

[
trΣ∗V −1

λ − N
x′C(C ′V λC)−1C′Σ∗C(C ′V λC)−1C′x

1 + Nx′C(C ′V λC)−1C ′x

]
.

Noting that C ′Bθ∗ = 0, we get u =
√

N(C ′Σ∗C)−1/2C ′x ∼ Np−r(0, I). Let

W λ = (C ′Σ∗C)−1/2(C ′V λC)(C ′Σ∗C)−1/2; (A.3)

W is W λ with λ̂ = 0. Then, it is observed that

E∗
�

[
N

x′C(C ′V λC)−1C′Σ∗C(C ′V λC)−1C ′x
1 + Nx′C(C ′V λC)−1C ′x

]
= E∗

�

[
u′W−2

λ u

1 + u′W−1
λ u

]
,

which yields that

E∗
�

[
tr [Σ̂

−1

λ Σ∗]
]

= NE∗
�

[
tr [V −1

λ Σ∗]
]− NE∗

�

[
u′W−2

λ u

1 + u′W−1
λ u

]
. (A.4)

Let AV = B(B′V −1
λ B)−1B′V −1

λ . Noting that B′Σ̂
−1

λ B = NB′V −1
λ B since C ′B = 0, we see that

E∗
�

[
tr [Σ̂

−1

λ (θ̂λ − θ∗)(θ̂λ − θ∗)′]
]

= E∗
�

[
tr [Σ̂

−1

λ AV (x − Bη∗)(x − Bη∗)′A′
V ]
]

=
1
N

E∗
�

[
tr [Σ̂

−1

λ AV Σ∗A′
V ]
]
,

which is equal to

E∗
�

[
tr [Σ∗V −1

λ B(B′V −1
λ B)−1V −1

λ ]
]

= E∗
�

[
tr [Σ∗{V −1

λ − C(C ′V λC)−1C ′}]]
= E∗

�

[
tr [Σ∗V −1

λ ] − trW−1
λ

]
. (A.5)

Combining (A.2), (A.4) and (A.5), ∆∗
λ given by (A.2) is expressed as

∆∗
λ =Np − N(N + 1)E∗

�

[
tr [Σ∗V −1

λ ]
]− E∗

� [λ̂tr Σ̂
−1

λ ]

+ NE∗
�

[
trW−1

λ

]
+ N2E∗

�

[
u′W−2

λ u

1 + u′W−1
λ u

]
, (A.6)

Propositions 2.1, 3.1 and 3.2 can be proved using the expression (A.6).
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A.1 Proof of Proposition 2.1

For this proof, let λ̂ = 0, and denote V λ and W λ for λ̂ = 0 by V and W , respectively. In the
expression (A.6), it can be easily shown that E∗

�
[tr [Σ∗V −1]] = p/(n−p−1) and E∗

�
[trW−1] = (p−

r)/(n− (p−r)−1) for n = N −1. To evaluate the second term E∗
�

[
u′W−2u/(1 + u′W−1u)

]
, the

arguments as in Srivastava (1995) are useful. It is noted that under the true model u ∼ Np−r(0, I)
and W ∼ Wp−r(I, n) are independently distributed. Let Γ be an orthogonal matrix with the last
row as u′/‖u‖, where ‖u‖ = (u′u)1/2. Then making the transformation W̃ = ΓWΓ′, we find that
W̃ is still distributed as Wishart, Wp−r(I, n) and hence is independent of u. Let W̃ = TT ′, where

T =
(

T 1 0
t′12 tmm

)
is the unique triangular factorization of W̃ for m = p − r. Then, u′W−1u = u′u/t2mm, and

u′W−2u =(u′u)(0′, 1)W̃
−2

(0′1)′

=(u′u)
[
(w̃12)′w̃12 + (w̃mm)2

]
=(u′u)

[
t−4
mm + t−4

mmt′12(T
′
1T 1)−1t12

]
,

where 0′ is an m − 1 row vector of zeros and

W̃
−1

=

(
W̃

11
w̃12

(w̃12)′ w̃mm

)
= (T̃ T̃

′
)−1.

Hence,
u′W−2u

1 + u′W−1u
=

u′u
t2mm

1 + t′12(T
′
1T 1)−1t12

t2mm + u′u
,

where u′u ∼ χ2
m, t2mm ∼ χ2

n−m+1 and [1+t′12(T
′
1T 1)−1t12] are independently distributed. And from

Basu’s theorem u′u/t2mm and t2mm + u′u are independently distributed. Since t12 is independently
distributed of T 1 and t12 ∼ Nm−1(0, I), it follows that

E∗
�

[
1 + t′12(T

′
1T 1)−1t12

]
=1 + E∗

�

[
tr (T ′

1T 1)−1
]

= 1 + E∗
�

[
tr (T 1T

′
1)

−1
]

=1 + (m − 1)/(n − m) = (n − 1)/(n − p + r).

Note that E∗
�

[
(t2mm + u′u)−1

]
= E[(χ2

n+1)
−1] = (n− 1)−1 and E∗

�

[
u′u/t2mm

]
= m/(n−m− 1) =

(p − r)/(n − p + r − 1). Hence,

E∗
�

[
u′W−2u

1 + u′W−1u

]
=

p − r

(n − p + r)(n − p + r − 1)
. (A.7)

Combining (A.6) and (A.7), we get

∆∗ = Np − N(N + 1)
p

n − p − 1
+ N

p − r

n − p + r − 1
+ N2 p − r

(n − p + r)(n − p + r − 1)
,

which is equal to the expression (2.6).
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A.2 Proof of Proposition 3.1

We shall evaluate each terms in (A.6). It is noted that λ̂/n = Op(1/
√

n) and that nV −1
λ =

{V /n + (λ̂/n)I}−1 = nV −1 + op(1). Then it can be shown that

NE∗
�

[
tr W−1

λ

]
=NE∗

�

[
trW−1

]
+ o(1),

N2E∗
�

[
u′W−2

λ u

1 + u′W−1
λ u

]
=N2E∗

�

[
u′W−2u

1 + u′W−1u

]
+ o(1),

for W defined below (A.3). Since tr [Σ∗(V /n)−1]−tr [Σ∗{V /n+(λ̂/n)I}−1] = (λ̂/n)tr [Σ∗{V /n+
(λ̂/n)I}−1(V /n)−1], it is observed that

∆∗
λ = ∆∗ +

N

n
(N + 1)E

[
(λ̂/n)tr [Σ∗{V /n + (λ̂/n)I}−1(V /n)−1]

]
+ o(1),

so that we need to evaluate the second term in the r.h.s. of the equality. Note that V /n − Σ∗ =
Op(1/

√
n) and λ̂/n = Op(1/

√
n). From the Taylor expansion,

(V /n)−1 = Σ∗−1 − Σ∗−1(V /n − Σ∗)Σ∗−1 + Op(1/n).

Substituting this expansion in the second expression on the r.h.s. of ∆∗
λ, we can see that

N

n
(N + 1)E

[
(λ̂/n)tr [Σ∗{V /n + (λ̂/n)I}−1(V /n)−1]

]
=N(1 + 2/n)E

[
(λ̂/n)tr {V /n + (λ̂/n)I}−1

]
(A.8)

− N(1 + 2/n)E
[
(λ̂/n)tr [{V /n + (λ̂/n)I}−1Σ∗−1(V /n − Σ∗)]

]
+ O(1/

√
n).

The first term in the r.h.s. of (A.8) can be written as N(1 + 2/n)E[(λ̂/n)tr {V /n + (λ̂/n)I}−1] =
NE[λ̂tr (V + λ̂I)−1] + O(1/

√
n). The second term can be expressed as

√
nE[tr (V /n)tr [{V /n + (λ̂/n)I}−1Σ∗−1(V /n − Σ∗)]]

=
√

nE[trΣ∗tr [{V /n + (λ̂/n)I}−1Σ∗−1(V /n − Σ∗)]]

+
√

nE[tr (V /n − Σ∗)tr [{V /n + (λ̂/n)I}−1Σ∗−1(V /n − Σ∗)]]

=
√

nE[trΣ∗tr [(V /n)−1Σ∗−1(V /n − Σ∗)]] + O(1/
√

n),

which can be seen to be O(1/
√

n) by substituting the Taylor expansion of (V /n)−1. Therefore,
the proof of Proposition 3.1 is complete.

A.3 Proof of Proposition 3.2

To calculate ∆∗
λ given by (A.6), we need some preliminary results. The following lemmas due to

Srivastava (2005, 2007) are useful for evaluating expectations based on â1 and â2 given by (3.12).

Lemma A.3 (Srivastava (2005)) Let V ∼ Wp(Σ, n). Then,
(i) E[âi] = ai for i = 1, 2.
(ii) limp→∞ âi = ai0 in probability for i = 1, 2 if the conditions (C.1) and (C.2) are satisfied.
(iii) V ar(â1) = 2a2/(np).

Corollary A.1 Under the conditions (C.1) and (C.2), âi is a consistent estimator of ai for i = 1, 2,
if p → ∞, or (n, p) → ∞.
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Lemma A.4 (Srivastava (2007)) Let V ∼ Wp(Σ, n), n < p, and V = H1LH ′
1, where H ′

1H1 =
In and L = (�1, . . . , �n), an n×n diagonal matrix which are the non-zero eigenvalues of V . Then,

(i) limp→∞ L/p = a10In in probability.
(ii) limp→∞ H ′

1ΣH1 = (a20/a10)In in probability.

For the proofs, see Srivastava (2005, 2007). For the estimators â1c and â2c given by (3.13),
similar results hold.

To prove Proposition 3.2, we need to evaluate each terms in (A.6). We first evaluate the term
E∗
�

[
tr [Σ∗V −1

λ ]
]
. Let H : p × p be an orthogonal matrix HH ′ = Ip such that

V = H

(
L 0
0 0

)
H ′,

where H = (H1,H2), H1 : p × n, L : n × n diagonal matrix defined above, and H2H
′
2 =

Ip − H1H
′
1. Then we get from Lemma A.4,

E∗
� [tr [Σ∗V −1

λ ]] =E∗
� [tr [Σ∗H

(
(L + λ̂I)−1 0

0 λ̂−1Ip−n

)
H ′]]

=E∗
� [trΣ∗{H1(L + λ̂I)−1H ′

1 + λ̂−1H2H
′
2}]

=E∗
� [pλ̂−1trΣ∗/p − λ̂−1tr [(In + λ̂L−1)−1H ′

1Σ
∗H1]].

Note that λ̂ =
√

pâ1. Then, E∗
�

[
tr [Σ∗V −1

λ ]
]

is expressed as

E∗
�

[
tr [Σ∗V −1

λ ]
]

= E∗
�

[√
p
a1

â1
− 1√

pâ1
tr [(In +

√
pâ1L

−1)−1H ′
1Σ

∗H1]
]

.

It is here noted that

a1

â1
=

1
1 + (â1 − a1)/a1

= 1 − â1 − a1

a1
+

(â1 − a1)2

a2
1

+ op(p−1),

which gives from Lemma A.3

E∗
�

[
a1

â1

]
= 1 +

V ar(â1)
a2

1

+ o(p−1) = 1 +
2a2

npa2
1

+ o(p−1).

Also from Lemmas A.3 and A.4,

E∗
�

[
1√
pâ1

tr [(In +
√

pâ1L
−1)−1H ′

1Σ
∗H1]

]
=

1√
pa1

tr [(In + In/
√

p)−1 a2

a1
In] + o(p−1/2)

=
na2

(1 + 1/
√

p)
√

pa2
1

+ o(p−1/2).

Combining these evaluations, we get

E∗
�

[
tr [Σ∗V −1

λ ]
]

=
√

p

(
1 +

2a2

npa2
1

− na2

(1 + 1/
√

p)pa2
1

)
+ o(p−1/2). (A.9)
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We next evaluate the term E∗
�

[
trW−1

λ

]
. Let q = p−r, and let Σ∗

c = C′Σ∗C and V c = C ′V C.
Let Hc : q × q be an orthogonal matrix such that HcH

′
c = Iq and

C ′V C = Hc

(
Lc 0
0 0

)
H ′

c,

where Hc = (H1c,H2c), H1c : q × n, Lc : n × n diagonal matrix, and H2cH
′
2c = Iq − H1cH

′
1c.

Then, we get

trW−1
λ =tr [Σ∗

c(V c + λ̂Iq)−1]

=tr [Σ∗
cHc

(
(Lc + λ̂In)−1 0

0 λ̂−1Iq−n

)
H ′

c]

=tr [Σ∗
c{H1c(Lc + λ̂In)−1H ′

1c + λ̂−1H2cH
′
2c}]

=tr Σ∗
c/λ̂ − λ̂−1tr [(In + λ̂L−1

c )−1H ′
1cΣ

∗
cH1c]

=
qa1c√
pâ1

− 1√
pâ1

tr [(In + (
√

pâ1/q)qL−1
c )−1H ′

1cΣcH1c], (A.10)

where λ̂ =
√

pâ1. Using similar arguments as in (A.9), we can see that

E∗
� [tr W−1

λ ]

=
qa1c√
pa1

{
1 +

1
a2

1

V ar(â1)
}
− 1√

pa1
tr
(

In +
√

pa1

qa1c
In

)−1 a2c

a1c
+ o(p−1/2)

=
qa1c√
pa1

{
1 +

2a2

npa2
1

}
− na2c√

pa1a1c

qa1c√
pa1 + qa1c

+ o(p−1/2). (A.11)

Finally, we shall show that E∗
�

[
u′W−2

λ u/(1 + u′W−1
λ u)

]
can be evaluated as

E

[
u′W−2

λ u

1 + u′W−1
λ u

∣∣∣V ] =
tr (W−2

λ )
1 + tr (W−1

λ )
+ op(p−1/2). (A.12)

To this end, it is noted that

E

[
u′W−2

λ u

(1 + u′W−1
λ u)

∣∣∣V ]− tr (W−2
λ )

1 + tr (W−1
λ )

= E

[
u′W−2

λ u

(1 + u′W−1
λ u)

∣∣∣V ]− E

[
u′W−2

λ u

1 + tr (W−1
λ )

∣∣∣V ]

= −E

[
u′W−2

λ u(u′W−1
λ u − tr (W−1

λ ))
(1 + u′W−1

λ u)(1 + tr (W−1
λ ))

∣∣∣V ] ,

the absolute value of which, from the Cauchy-Schwartz inequality, is less than or equal to{
E
[{ u′W−2

λ u

1 + u′W−1
λ u

}2
∣∣∣V ]× E

[{u′W−1
λ u − tr (W−1

λ )
1 + tr (W−1

λ )

}2
∣∣∣V ]}1/2

≤
{

E
[(u′W−2

λ u

u′W−1
λ u

)2∣∣∣V ]}1/2

×
{

E
[(

u′W−1
λ u − tr (W−1

λ )
)2∣∣∣V ]}1/2

1 + tr (W−1
λ )

.
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Hence, it is sufficient to show that

lim
p→∞ pE

[(u′W−2
λ u

u′W−1
λ u

)2∣∣∣V ]× E
[(

u′W−1
λ u − tr (W−1

λ )
)2∣∣∣V ]{

1 + tr (W−1
λ )
}2 = 0, (A.13)

for the proof of (A.12). It can be verified that for q × q matrices G and Q,

E
[
u′Gu × u′Qu

]
= tr (G)tr (Q) + 2tr (GQ),

which is used to get that

E
[(

u′W−1
λ u − tr (W−1

λ )
)2∣∣∣V ] = (tr W−1

λ )2 + 2trW−2
λ − 2(tr W−1

λ )2 + (trW−1
λ )2

= 2tr W−2
λ . (A.14)

Using the same arguments as in (A.10), we can show that

trW−1
λ =

qa1c√
pa1

+ op(p1/2), (A.15)

trW−2
λ =

1
pâ2

1

tr
[
Σ∗

c(Iq − H1c(In +
√

pâ1L
−1
c )−1H ′

1c)

× Σ∗
c(Iq − H1c(In +

√
pâ1L

−1
c )−1H ′

1c)
]

=
qa2c

pa2
1

+ op(1). (A.16)

Hence, it is observed that

lim
p→∞p

E
[(

u′W−1
λ u − tr (W−1

λ )
)2∣∣∣V ]{

1 + tr (W−1
λ )
}2

= 2 lim
p→∞ p

trW−2
λ{

1 + tr (W−1
λ )
}2 = 2 lim

p→∞
qa2c/(pa2

1){
1/
√

p + a1c/a1

}2 ,

which is bounded. On the other hand, it is noted that

u′W−2
λ u

u′W−1
λ u

≤ sup
�

u′W−2
λ u

u′W−1
λ u

≤ chmax(Σ∗
c) × chmax{(C ′V λC)−1}

≤chmax(Σ∗
c) ×

1

λ̂
=

chmax(Σ∗
c)√

pâ1
,

where chmax(A) denotes the maximum eigenvalue of a matrix A. Since chmax(Σ∗
c) is bounded from

the condition (C.2), it is seen that u′W−2
λ u/u′W−1

λ u = Op(1/
√

p). Hence, the approximation
(A.12) is proved, so that

E

[
u′W−2

λ u

1 + u′W−1
λ u

]
= E

[
tr (W−2

λ )
1 + tr (W−1

λ )

]
+ o(p−1/2).

Using (A.15) and (A.16) again, we obtain that

E

[
u′W−2

λ u

1 + u′W−1
λ u

]
=

qa2c/(pa2
1)

1 + qa1c/(
√

pa1)
+ o(p−1/2)

=
qa2c√
pa1

1√
pa1 + qa1c

+ o(p−1/2). (A.17)
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Combining (A.6), (A.9), (A.11) and (A.17), we get the second order approximation given by

∆λ = Np − λ̂tr Σ̂
−1

λ − h(a) + o(p−1/2), (A.18)

where

h(a) =N(N + 1)
√

p

{
1 +

2a2

npa2
1

− na2

pa2
1

1
1 + 1/

√
p

}
− N

√
p

{
qa1c

pa1

(
1 +

2a2

npa2
1

)
− na2c

pa1a1c

1
1 +

√
pa1/(qa1c)

}
− N2 qa2c

pa2
1

1
1 + qa1c/(

√
pa1)

.

which can be expressed as in (3.10), and the proof of Proposition 3.2 is complete.

A.4 Proof of Proposition 3.3

This can be shown by using the same arguments as in the proof of Proposition 3.2, and we observe
that

∆∗
λ = Np − λ̂tr Σ̂

−1

λ − h#(a) + o(1),

where

h#(a) =N(N + 1)
p√
n

{
1 +

2a2

npa2
1

− na2

pa2
1

1
1 +

√
n/p

}
− Np√

n

{
qa1c

pa1

(
1 +

2a2

npa2
1

)
− na2c

pa1a1c

1
1 +

√
na1/(qa1c)

}
− N2 qa2c

na2
1

1
1 + qa1c/(

√
na1)

,

which can be expressed as in (3.17), and the proof of Proposition 3.3 is complete.

A.5 Proof of Propositions 4.1, 4.2 and 4.3

We shall evaluate the bias (4.1). Let R∗ = E∗
�

[−2 log g(dz,uz,V z|δ̂x,νx, Σ̂λ) − Np log 2π]. Then,

R∗ =N log |Σ̂λ| + E∗
� [tr [Σ̂

−1

λ {V z + k(dz − δ̂x)(dz − δ̂x)′ + N(uz − ν̂x)(uz − ν̂x)′}]]
=N log |Σ̂λ| + tr [Σ̂

−1

λ [NΣ∗ + k(δ̂x − δ∗)(δx − δ∗)′ + N(ν̂x − ν∗)(ν̂x − ν∗)′]],

and thus using the results from (A.3) and (A.4), we observe that

E∗
� [R∗] =NE∗

� [log |Σ̂λ|] + E∗
� [(N + 1)tr [Σ̂

−1

λ Σ∗]] + E∗
� [ktr [Σ̂

−1

λ (δ̂x − δ∗)(δ̂x − δ∗)′]]

=NE∗
� [log |Σ̂λ|] + (N + 1)E∗

� [tr [Σ∗Σ̂
−1

λ ]] + E∗
� [tr [Σ̂

−1

λ AV Σ∗A′
V ]]

=NE∗
� [log |Σ̂λ|] + N(N + 2)E∗

� [Σ∗V −1
λ ] − NE∗

� [tr W−1
λ ]

− N(N + 1)E∗
�

[
u′W−2

λ u

1 + u′W−1
λ u

]
,

where u =
√

k(C ′Σ∗C)−1/2C ′ux ∼ Np−r(0, I) and

W λ = (C ′Σ∗C)−1/2(C ′V λC)(C ′Σ∗C)−1/2.

Hence, the bias is given by

∆∗
2,λ =E∗

� [−2 log g(dx,ux,V x|δ̂x, ν̂x, Σ̂λ)] − E∗
� [E∗

� [−2 log g(dz,uz,V z|δ̂x, ν̂x, Σ̂λ)]]

=Np − E� [λ̂tr Σ̂
−1

λ ] − N(N + 2)E∗
� [Σ∗V −1

λ ] + NE∗
� [tr W−1

λ ]

− N(N + 1)E∗
�

[
u′W−2

λ u

1 + u′W−1
λ u

]
. (A.19)
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