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Abstract

This paper proposes an asymptotic expansion scheme of currency options with a libor market model of
interest rates and stochastic volatility models of spot exchange rates. In particular, we derive closed-form
approximation formulas for the density functions of the underlying assets and for pricing currency options
based on a third order asymptotic expansion scheme; we do not model a foreign exchange rate’s variance such
as in Heston[1993], but its volatility that follows a general time-inhomogeneous Markovian process. Further,
the correlations among all the factors such as domestic and foreign interest rates, a spot foreign exchange
rate and its volatility, are allowed. Finally, numerical examples are provided and the pricing formula are
applied to the calibration of volatility surfaces in the JPY/USD option market.

1 Introduction

In this paper we propose new approximation formulas for the density functions of foreign exchange rates and
for the valuation of currency options under stochastic volatility processes of spot exchange rates in stochastic
interest rates environment. In particular, we use models of volatility processes, not variance processes such
as in Heston[1993], and apply a libor market model developed by Brace, Gatarek and Musiela[1998] and
Miltersen, Sandmann and Sondermann[1997] to modeling term structures of interest rates. Moreover, the
correlations among all the factors such as domestic and foreign interest rates, a spot foreign exchange rate
and its volatility, are allowed.

Currency options with maturities beyond one year become common in global currencies’ markets and
even smiles or skews for those maturities are frequently observed. Because it is well known that the effects
of interest rates become more substantial in longer maturities, we have to take term structure models into
account for the currency options. Further, stochastic volatility models of foreign exchange rates are necessary
for calibration of smiles and skews. As for term structure models, market models become popular in matured
interest rates markets since calibrations of caps, floors and swaptions are required and market models are
regarded as most useful.

Hence, our objective is to develop a model with stochastic volatilities of exchange rates and with a libor
market model of interest rates. Moreover, a closed-form formula is desirable in practice especially for cali-
brations since they are very time consuming by numerical methods such as Monte Carlo simulation. Because
it is impossible to obtain an exact closed-form formula, we derive a closed-form approximation formula by
an asymptotic expansion up to the third order where a volatility of a spot exchange rate follows a general
time-inhomogeneous Markovian process, and domestic and foreign interest rates are generated by a libor
market model.
Garman and Kohlhagen[1983] and Grabbe[1983] started research for currency options based on a contingent
claim analysis; the framework of Black and Scholes[1973], Merton[1973] and Black[1976] was directly ap-
plied to pricing currency options. Grabbe[1983]’s formula also included the case of stochastic interest rates

1



following Gaussian processes though he did not specify the processes explicitly. Rumsey[1991] and Melino
and Turnbull[1991] developed models under the deterministic interest rates assumption.

Amin and Jarrow[1991] and Hilliard, Madura and Tucker[1991] derived formulas of currency options with
Gaussian stochastic interest rates; in particular, Amin and Jarrow[1991] combined term structure models
under the framework of Heath, Jarrow and Morton [1992](HJM[1992]) with currency options.

Amin and Bodurtha[1995] and Takahashi and Tokioka[1999] gave numerical solutions to price cur-
rency American options with stochastic interest rates by lattice methods; Amin and Bodurtha[1995] used
HJM[1992] models and Takahashi and Tokioka[1999] applied Hull and White[1990,1994] term structure mod-
els. Dempster and Hutton[1997] considered terminable (Bermudan) differential swaps with Gaussian interest
rates models by using the partial differential equations(PDE) approach.

Schlögl[2002] extended market models to a cross-currency framework. He did not take stochastic volatili-
ties into account and focus on cross currency derivatives such as differential swaps and options on differential
swaps as examples; currency options were not considered. Mikkelsen[2001] considered cross-currency options
with market models of interest rates and deterministic volatilities of spot exchange rates by simulation. Piter-
barg[2005] developed a model for cross-currency derivatives such as Power-Reverse-Dual-Currency(PRDC)
swaps with calibration to currency options; neither market models nor stochastic volatility models were used.

Our asymptotic expansion approach have been applied to a broad class of Itô processes appearing in
finance. It started with pricing average options; Kunitomo and Takahashi[1992] derived a first order approx-
imation and Yoshida[1992b] applied an asymptotic expansion method developed in statistics for stochastic
processes. Takahashi[1995,1999] presented second or third order schemes for pricing various options in a
general Markovian setting with a constant interest rate. Kunitomo and Takahashi[2001] provided approxi-
mation formulas for pricing bond options and average options on interest rates in term structure models of
HJM[1992] which is not necessarily Markovian.

Moreover, Takahashi and Yoshida[2004,2005] extended the method to dynamic portfolio problems in a
general Markovian setting and proposed a new variance reduction scheme of Monte Carlo simulation with an
asymptotic expansion. For mathematical validity of the method based on Watanabe[1987] in the Malliavin
calculus, see Chapter 7 of Malliavin and Thalmaier[2006], Yoshida[1992a], Kunitomo and Takahashi[2003]
and Takahashi and Yoshida[2004,2005].

Other applications and extensions of asymptotic expansions to numerical problems in finance are found as
follows: Kawai[2003], Kobayashi,Takahashi and Tokioka[2003], Takahashi and Saito[2003], Lütkebohmert[2004a,b],
Kunitomo and Takahashi[2004], Kunitomo and Kim[2005], Muroi[2005], Takahashi[2005], Matsuoka,Takahshi
and Uchida[2006], Takahashi and Uchida[2006].

The organization of the paper is as follows: After the next section describes basic structure of our model,
Section 3 derives approximation formulas. Section 4 shows numerical examples and the final section states
conclusion. Appendix A gives the concrete expressions of coefficients in the asymptotic expansions, and
Appendix B presents formulas used in Appendix A.

2 European Currency Options with a Market Model of Inter-
est Rates and Stochastic Volatility Models of Spot Exchange
Rates

Let (Ω,F , P, {Ft}0≤t≤T∗<∞) be a complete probability space with filtration satisfying the usual conditions.
First we briefly state the basics of European currency options. The payoffs of call and put options with
maturity T ∈ (0, T ∗] and strike rate K > 0 are expressed as (S(T ) − K)+ and (K − S(T ))+ respectively
where S(t) denotes the spot exchange rate at time t ≥ 0 and x+ denotes max(x, 0). In this paper we will
concentrate on the valuation of a call option since the value of a put option can be obtained through the
put-call parity or similar method. We also note that the spot exchange rate S(T ) can be expressed in
terms of a foreign exchange forward(forex forward) rate with the same maturity T . That is, S(T ) = FT (T )
where FT (t), t ∈ [0, T ] denotes the time t value of the forex forward rate with maturity T . It is well
known that the arbitrage-free relation between the forex spot rate and the forex forward rate are given by

FT (t) = S(t)
Pf (t,T )

Pd(t,T )
where Pd(t, T ) and Pf (t, T ) denote the time t values of domestic and foreign zero coupon

bonds with maturity T respectively.
Hence, our objective is to obtain the present value of the payoff (FT (T ) − K)+. In particular, we need
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to evaluate:

V (0; T, K) = Pd(0, T )E
[
(FT (T ) − K)+

]
(1)

where V (0; T, K) denotes the value of an European call option at time 0 with maturity T and strike rate
K, and E[·] denotes the expectation operator under EMM(Equivalent Martingale Measure) of numeraire of
the domestic zero coupon bond maturing at T (we use a term of the domestic terminal measure in what
follows). Then, the distribution of FT (T ) under the domestic terminal measure is necessary for pricing the
option. For this objective, a market model and stochastic volatility models are applied to modeling interest
rates’ and the spot exchange rate’s dynamics respectively.

In the rest of this section, we describe briefly the model to which an asymptotic expansion approach
will be applied in the following sections, where the appropriate regularity conditions are implicitly assumed
without mentioned.

We first define domestic and foreign forward interest rates as fdj(t) =
(

Pd(t,Tj)

Pd(t,Tj+1)
− 1
)

1
τj

and ffj(t) =(
Pf (t,Tj)

Pf (t,Tj+1)
− 1
)

1
τj

respectively, where j = n(t), n(t) + 1, · · · , N , τj = Tj+1 −Tj , and Pd(t, Tj) and Pf (t, Tj)

denote the prices of domestic/foreign zero coupon bonds with maturity Tj at time t(≤ Tj) respectively;
n(t) = min{i : t ≤ Ti}. We also define spot interest rates to the nearest fixing date denoted by fd,n(t)−1(t)

and ff,n(t)−1(t) as fd,n(t)−1(t) =
(

1
Pd(t,Tn(t))

− 1
)

1
(Tn(t)−t)

and ff,n(t)−1(t) =
(

1
Pf (t,Tn(t))

− 1
)

1
(Tn(t)−t)

.

Finally, we set T = TN+1 and will abbreviate FTN+1(t) to FN+1(t) in what follows.
R++-valued processes of domestic forward interest rates under the domestic terminal measure can be

specified as; for j = n(t) − 1, n(t), n(t) + 1, · · · , N ,

fdj(t) = fdj(0) +

∫ t

0

{
−fdj(u)γ̃

′
dj(u)

N∑
i=j+1

τifdi(u)γ̃di(u)

1 + τifdi(u)

}
du +

∫ t

0

fdj(u)γ̃
′
dj(u)dWu (2)

where x
′
denotes the transpose of x, and W is a D dimensional Brownian motion under the domestic terminal

measure; γ̃dj(u) is a function of time-parameter u. Similarly, R++-valued processes of foreign ones under
the foreign terminal measure are specified as

ffj(t) = ffj(0) +

∫ t

0

{
−ffj(u)γ̃

′
fj(u)

N∑
i=j+1

τiffi(u)γ̃fi(u)

1 + τiffi(u)

}
du +

∫ t

0

ffj(u)γ̃
′
fj(u)dW f

u (3)

where W f is a D dimensional Brownian motion under the foreign terminal measure and γ̃fj(u) is a function
of u.

Finally, it is assumed that the spot exchange rate S(t) and its volatility σ̃(t) follow R++-valued stochastic
processes below under the domestic risk neutral measure:

S(t) = S(0) +

∫ t

0

S(u)(rd(u) − rf (u))du +

∫ t

0

S(u)σ̃(u)σ̄
′
dŴu

σ̃(t) = σ̃(0) +

∫ t

0

µ̂(σ̃(u), u)du +

∫ t

0

ω̃
′
(σ̃(u), u)dŴu (4)

where Ŵ is a D dimensional Brownian motion under the domestic risk neutral measure and rd(u) and
rf (u) denote domestic and foreign instantaneous spot interest rates respectively; σ̄ denotes a D dimensional
constant vector satisfying ||σ̄|| = 1, and ω̃(x, u) is a function of x and u. In the model, the volatility of a
volatility process is allowed to be general time-inhomogeneous Markovian while the interest rates’ volatilities
are specified as a log-normal structure. Note that the correlations’ structure among domestic/foreign interest
rates, the spot exchange rate and its volatility can be represented by γ̃dj(t), γ̃fj(t), σ̄ and ω̃(σ̃(t), t).

Moreover, we note the following well known relations among Brownian motions under different measures;

Wu = Ŵu −
∫ u

0

σ̃dN+1(s)ds

= W f
u +

∫ u

0

{σ̃fN+1(s) − σ̃dN+1(s) + σ̃(s)σ̄}ds
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where σ̃dN+1(u) and σ̃fN+1(u) are volatilities of the domestic and foreign zero coupon bonds with the
maturity TN+1, that is,

σ̃dN+1(u) :=
∑

i∈JN+1(u)

−τifdi(u)γ̃di(u)

1 + τifdi(u)

σ̃fN+1(u) :=
∑

i∈JN+1(u)

−τiffi(u)γ̃fi(u)

1 + τiffi(u)

and Jj+1(t) = {n(t) − 1, n(t), n(t) + 1, · · · , j}. Because γfj(t) = 0 and γdj(t) = 0 for all j such that Tj ≤ t,
the set of indices Jj+1(t) can be changed into Ĵj+1 := {0, 1, · · · , j}, which does not depend on t.

Using above equations, we can unify expressions of those processes under different measures into ones
under the same measure, the domestic terminal measure:

ffj(t) = ffj(0) +

∫ t

0

ffj(u)γ̃
′
fj(u)

 ∑
i∈Ĵj+1

τiffi(u)γ̃fi(u)

1 + τiffi(u)
−

∑
i∈ĴN+1

τifdi(u)γ̃di(u)

1 + τifdi(u)

 du

−
∫ t

0

ffj(u)γ̃
′
fj(u)σ̃(u)σ̄du +

∫ t

0

ffj(u)γ̃
′
fj(u)dWu (5)

σ̃(t) = σ̃(0) +

∫ t

0

µ(u)du +

∫ t

0

ω̃
′
(σ̃(u), u)dWu (6)

where µ(u) is defined as

µ(u) := µ̂(σ̃(u), u) + ω̃
′
(σ̃(u), u)σ̃dN+1(u).

Next, we consider the process of the forex forward FN+1(t). Since FN+1(t) can be expressed as

FN+1(t) := S(t)
Pf (t, TN+1)

Pd(t, TN+1)
, (7)

we easily notice that it is a martingale under the domestic terminal measure, and we can obtain its process
under that measure by applying Itô’s formula to (7):

FN+1(t) = FN+1(0) +

∫ t

0

[σ̃fN+1(u) − σ̃dN+1(u) + σ̃(u)σ̄]
′
FN+1(u)dWu

= FN+1(0)

+

∫ t

0

 ∑
j∈ĴN+1

−τjffj(u)γ̃fj(u)

1 + τjffj(u)
−

∑
j∈ĴN+1

−τjfdj(u)γ̃dj(u)

1 + τifdj(u)
+ σ̃(u)σ̄

′

FN+1(u)dWu. (8)

3 An Approximation Scheme based on an Asymptotic Ex-
pansion Approach

An asymptotic expansion approach describes the processes of forward rates and that of a foreign exchange
rate’s volatility as f

(ϵ)
dj (t), f

(ϵ)
fj (t) and σ(ϵ)(t) respectively, all of which explicitly depend upon a parameter ϵ ∈

(0, 1], and expands the processes around ϵ = 0, that is asymptotic expansions are made around deterministic
processes.

First, the processes of f
(ϵ)
dj (t), f

(ϵ)
fj (t) and σ(ϵ)(t) are redefined as follows; for j = n(t) − 1, n(t), n(t) +

1, · · · , N ,

f
(ϵ)
dj (t) = fdj(0) + ϵ2

∫ t

0

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du + ϵ

∫ t

0

f
(ϵ)
dj (u)γ

′
dj(u)dWu (9)

f
(ϵ)
fj (t) = ffj(0) + ϵ2

∫ t

0

{
−f

(ϵ)
fj (u)γ

′
fj(u)

N∑
i=j+1

τif
(ϵ)
fi (u)γfi(u)

1 + τif
(ϵ)
fi (u)

}
du + ϵ

∫ t

0

f
(ϵ)
fj (u)γ

′
fj(u)dW f

u (10)

σ(ϵ)(t) = σ(0) +

∫ t

0

µ̂(σ(ϵ)(u), u, ϵ)du + ϵ

∫ t

0

ω
′
(σ(ϵ)(u), u)dŴu (11)
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where γ̃dj(t), γ̃fj(t), σ̃(t) and ω̃(σ(ϵ)(t), t) in the previous section are replaced by ϵγdj(t), ϵγfj(t), ϵσ(t), and
ϵω(σ(ϵ)(t), t) respectively.

Hence, the processes of f
(ϵ)
fj (t), σ(ϵ)(t) and F

(ϵ)
N+1(t) under the domestic terminal measure are expressed

as follows:

f
(ϵ)
fj (t) = f

(ϵ)
fj (0) + ϵ2

∫ t

0

f
(ϵ)
fj (u)γ

′
fj(u)

 ∑
i∈Ĵj+1

τif
(ϵ)
fi (u)γfi(u)

1 + τif
(ϵ)
fi (u)

−
∑

i∈ĴN+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

 du

−ϵ2
∫ t

0

f
(ϵ)
fj (u)γ

′
fj(u)σ(ϵ)(u)σ̄du + ϵ

∫ t

0

f
(ϵ)
fj (u)γ

′
fj(u)dWu (12)

σ(ϵ)(t) = σ(0) +

∫ t

0

µ(ϵ)(u)du + ϵ

∫ t

0

ω
′
(σ(ϵ)(u), u)dWu (13)

F
(ϵ)
N+1(t) = FN+1(0) + ϵ

∫ t

0

[σϵ
fN+1(u) − σϵ

dN+1(u) + σ(ϵ)(u)σ̄]
′
F

(ϵ)
N+1(u)dWu

= FN+1(0)

+ ϵ

∫ t

0

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

+ σ(ϵ)(u)σ̄

′

F
(ϵ)
N+1(u)dWu.(14)

Under certain appropriate conditions on µ(ϵ)(t) and ω(σ(ϵ)(t), t), the system of SDEs (9), (12), (13) and (14)

have their unique solutions f
(ϵ)
dj (t), f

(ϵ)
fj (t), σ(ϵ)(t) and F

(ϵ)
N+1(t).

Next, we expand forward rates’ and volatility’s processes up to the second order of ϵ(ϵ2-order) around ϵ = 0

to obtain the third order asymptotic expansion of forex forward rate F
(ϵ)
N+1(t). These expansions can be

obtained by differentiating the right hand sides of the equations (9), (12), (13) and (14) with respect to ϵ at
ϵ = 0. The result is stated as the following lemma after some notes.

We notice that the mappings ϵ → f
(ϵ)
dj (t), ϵ → f

(ϵ)
fj (t), ϵ → σ(ϵ)(t) and ϵ → F

(ϵ)
N+1(t) are all smooth

under the additional assumptions that µ(ϵ)(t) and ω(σ(ϵ)(t), t) are smooth and that their derivatives of any
order are bounded. Moreover, the validity of asymptotic expansions appearing in what follows is justified
by Watanabe Theory(Watanabe[1987]) in Malliavin calculus. However, since this paper concentrates on the
practical applications of an asymptotic expansion, the details are omitted (See Bichteler, Gravereaux and
Jacod[1987], Yoshida[1992a,1992b], Lütkebohmert[2004a,b], Kunitomo and Takahashi[2003] or Takahashi
and Yoshida[2005]).

Lemma 1 The asymptotic expansions of domestic/foreign forward rates and the spot exchange rate’s volatil-
ity are given as follows:

f
(ϵ)
dj (t) = fdj(0) + ϵA

(1)
dj (t) + ϵ2A

(2)
dj (t) + o(ϵ2) (15)

f
(ϵ)
fj (t) = ffj(0) + ϵA

(1)
fj (t) + ϵ2A

(2)
fj (t) + o(ϵ2) (16)

σ(ϵ)(t) = σ(t) + ϵA(1)
σ (t) + ϵ2A(2)

σ (t) + o(ϵ2) (17)

where

A
(1)
dj (t) :=

∂f
(ϵ)
dj (t)

∂ϵ
|ϵ=0 = fdj(0)

∫ t

0

γ
′
dj(u)dW (u),

A
(2)
dj (t) :=

1

2

∂2f
(ϵ)
dj (t)

∂ϵ2
|ϵ=0 = fdj(0)

∫ t

0

γ
′
dj(u)

N∑
i=j+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(u)du +

∫ t

0

A
(1)
dj (u)γ

′
dj(u)dWu,
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A
(1)
fj (t) :=

∂f
(ϵ)
fj (t)

∂ϵ
|ϵ=0 = ffj(0)

∫ t

0

γ
′
fj(u)dW (u),

A
(2)
fj (t) :=

1

2

∂2f
(ϵ)
fj (t)

∂ϵ2
|ϵ=0

= ffj(0)

∫ t

0

γ
′
fj(u)

 ∑
i∈Ĵj+1

−
(

−τiffi(0)

1 + τiffi(0)

)
γfi(u) +

∑
i∈ĴN+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(u)

 du

−ffj(0)

∫ t

0

γ
′
fj(u)σ(u)σ̄du +

∫ t

0

A
(1)
fj (u)γ

′
fj(u)dWu,

A(1)
σ (t) :=

∂σ(ϵ)(t)

∂ϵ
|ϵ=0 = Yt

∫ t

0

Y −1
u [∂ϵµ(u)du + ω

′
(u)dWu],

A(2)
σ (t) :=

1

2

∂2σ(ϵ)(t)

∂ϵ2
|ϵ=0 =

1

2
Yt

∫ t

0

Y −1
u [∂2

ϵ µ(u) + ∂2
σµ(u)(A(1)

σ (u))2 + 2∂ϵ∂σµ(u)A(1)
σ (u)]du

+Yt

∫ t

0

Y −1
u A(1)

σ (u)∂σω
′
(u)dWu

and

Yt := e
∫ t
0 ∂σµ(u)du.

Here, the following notations are used;

σ(u) ≡ σ(0)(u), ∂ϵµ(u) ≡ ∂ϵµ
(ϵ)(u)|ϵ=0,

∂2
ϵ µ(u) ≡ ∂2

ϵ µ(ϵ)(u)|ϵ=0, ∂σµ(u) ≡ ∂σµ(ϵ)(u)|ϵ=0,

∂2
σµ(u) ≡ ∂2

σµ(ϵ)(u)|ϵ=0, ∂ϵ∂σµ(u) ≡ ∂ϵ∂σµ(ϵ)(u)|ϵ=0,

ω(u) ≡ ω(σ(0)(u), u), ∂σω(u) ≡ ∂σω(σ(ϵ)(u), u)|ϵ=0.

(18)

(Proof)
Only (15) is shown. (16) and (17) are obtained similarly. Differentiating the equation (9) with respect to ϵ
once and twice, we have:

∂f
(ϵ)
dj (t)

∂ϵ
= 2ϵ

∫ t

0

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du

+ ϵ2
∫ t

0

∂

∂ϵ

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du

+

∫ t

0

f
(ϵ)
dj (u)γ

′
dj(u)dWu + ϵ

∫ t

0

{
∂

∂ϵ
f

(ϵ)
dj (u)

}
γ

′
dj(u)dWu

and

∂2f
(ϵ)
dj (t)

∂ϵ2
= 2

∫ t

0

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du

+ 4ϵ

∫ t

0

∂

∂ϵ

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du

+ ϵ2
∫ t

0

∂2

∂ϵ2

{
−f

(ϵ)
dj (u)γ

′
dj(u)

N∑
i=j+1

τif
(ϵ)
di (u)γdi(u)

1 + τif
(ϵ)
di (u)

}
du

+ 2

∫ t

0

{
∂

∂ϵ
f

(ϵ)
dj (u)

}
γ

′
dj(u)dWu + ϵ

∫ t

0

{
∂2

∂ϵ2
f

(ϵ)
dj (u)

}
γ

′
dj(u)dWu.

Then, setting ϵ = 0, we obtain A
(1)
dj (t) and A

(2)
dj (t). 2

6



Next, the following variables are defined:

σX(u) := FN+1(0)[
∑

i∈ĴN+1
g
(0)
fi (u) −

∑
i∈ĴN+1

g
(0)
di (u) + σ(u)σ̄ ]

g
(0)
fi (u) :=

(
−τiffi(0)

1+τiffi(0)

)
γfi(u)

g
(0)
di (u) :=

(
−τifdi(0)
1+τifdi(0)

)
γdi(u)

g
(1)
fi (u) :=

(
−τi

(1+τiffi(0))
2

)
γfi(u)

g
(1)
di (u) :=

(
−τi

(1+τifdi(0))
2

)
γdi(u)

g
(2)
fi (u) :=

(
2τ2

i
(1+τiffi(0))

3

)
γfi(u)

g
(2)
di (u) :=

(
2τ2

i
(1+τifdi(0))

3

)
γdi(u)

(19)

Then, the asymptotic expansion of a foreign exchange forward rate up to the third order of ϵ(ϵ3-order) can
be derived.

Proposition 1 The asymptotic expansion of F
(ϵ)
N+1(t) up to the third order is expressed as follows:

F
(ϵ)
N+1(t) = FN+1(0) + ϵA

(1)
t + ϵ2A

(2)
t + ϵ3A

(3)
t + o(ϵ3) (20)

where

A
(1)
t :=

∫ t

0

σX(u)
′
dWu, (21)

A
(2)
t := FN+1(0)

∫ t

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A

(1)
fi (u) (22)

−
∑

i∈ĴN+1

g
(1)
di (u)A

(1)
di (u) + A(1)

σ (u)σ̄]
′
dWu

+
1

FN+1(0)

∫ t

0

A(1)
u σX(u)

′
dWu,
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and

A
(3)
t := FN+1(0)

∑
i∈ĴN+1

∫ t

0

A
(2)
fi (u)(g

(1)
fi (u))

′
dWu (23)

+
FN+1(0)

2

∑
i∈ĴN+1

∫ t

0

(A
(1)
fi (u))2(g

(2)
fi (u))

′
dWu

− FN+1(0)
∑

i∈ĴN+1

∫ t

0

A
(2)
di (u)(g

(1)
di (u))

′
dWu

− FN+1(0)

2

∑
i∈ĴN+1

∫ t

0

(A
(1)
di (u))2(g

(2)
di (u))

′
dWu

+ FN+1(0)

∫ t

0

A(2)
σ (u)σ̄

′
dWu

+
∑

i∈ĴN+1

∫ t

0

(g
(1)
fi (u))

′
A

(1)
fi (u)A(1)

u dWu

−
∑

i∈ĴN+1

∫ t

0

(g
(1)
di (u))

′
A

(1)
di (u)A(1)

u dWu

+

∫ t

0

A(1)
σ (u)A(1)

u σ̄
′
dWu

+
1

FN+1(0)

∫ t

0

σ
′
X(u)A(2)

u dWu.

(Proof)
We first note that

F
(ϵ)
N+1(t) = FN+1(0) + ϵ

∂F
(ϵ)
N+1(t)

∂ϵ
|ϵ=0 +

ϵ2

2

∂2F
(ϵ)
N+1(t)

∂ϵ2
|ϵ=0 +

ϵ3

6

∂3F
(ϵ)
N+1(t)

∂ϵ3
|ϵ=0 + o(ϵ3),

and set A
(1)
t :=

∂F
(ϵ)
N+1(t)

∂ϵ
|ϵ=0, A

(2)
t := 1

2

∂2F
(ϵ)
N+1(t)

∂ϵ2
|ϵ=0 and A

(3)
t := 1

6

∂3F
(ϵ)
N+1(t)

∂ϵ3
|ϵ=0. As for (21), differentiating

the equation (14) with respect to ϵ once, we have:

∂F
(ϵ)
N+1(t)

∂ϵ
=

∫ t

0

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

+ σ(ϵ)(u)σ̄

′

F
(ϵ)
N+1(u)dWu

+ ϵ

∫ t

0

∂

∂ϵ

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

+ σ(ϵ)(u)σ̄

′

F
(ϵ)
N+1(u)dWu

+ ϵ

∫ t

0

 ∑
j∈ĴN+1

−τjf
(ϵ)
fj (u)γfj(u)

1 + τjf
(ϵ)
fj (u)

−
∑

j∈ĴN+1

−τjf
(ϵ)
dj (u)γdj(u)

1 + τif
(ϵ)
dj (u)

+ σ(ϵ)(u)σ̄

′

∂

∂ϵ

{
F

(ϵ)
N+1(u)

}
dWu.

Then, setting ϵ = 0, and noting the definitions of g
(0)
fi (u), g

(0)
di (u), σ(u) and σX(u) in (18) and (19), we

obtain the expression of A
(1)
t , that is (21).

Although tedious calculations are required, (22) and (23) can be obtained in the similar manner; we first
differentiate the equation (14) with respect to ϵ twice and three times. Then, setting ϵ = 0, substituting

the expressions of A
(1)
dj (t), A

(2)
dj (t), A

(1)
fj (t), A

(2)
fj (t), A

(1)
σ (t) and A

(2)
σ (t) given in Lemma 1, and noting the

definitions of g
(1)
fi (u), g

(1)
di (u), g

(2)
fi (u), g

(2)
di (u) and σX(u) in (19), we obtain the expressions of A

(2)
t and A

(3)
t .

2

With the expression of F
(ϵ)
N+1(t) in Proposition 1, we now focus on pricing options. Hereafter, we will consider

a call option with strike rate Kϵ where Kϵ is defined for some arbitrary y ∈ R as

Kϵ := FN+1(0) − ϵy.

8



Then, the discounted value of the option is given by

V (0; TN+1, Kϵ)

Pd(0, TN+1)
= E[(F

(ϵ)
N+1(TN+1) − Kϵ)

+]

= E[ϵ(X(ϵ) + y)+] (24)

where

X(ϵ) :=
F

(ϵ)
N+1(TN+1) − FN+1(0)

ϵ
. (25)

Note that X(ϵ) are expanded up to the third order as follows:

X(ϵ) = g1 + ϵg2 + ϵ2g3 + o(ϵ2), (26)

where

g1 := A
(1)
TN+1

=

∫ TN+1

0

σX(u)
′
dWu, (27)

g2 := A
(2)
TN+1

= FN+1(0)

∫ TN+1

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A

(1)
fi (u) (28)

−
∑

i∈ĴN+1

g
(1)
di (u)A

(1)
di (u) + A(1)

σ (u)σ̄]
′
dWu

+
1

FN+1(0)

∫ TN+1

0

A(1)
u σX(u)

′
dWu,

(29)

and

g3 := A
(3)
TN+1

= FN+1(0)
∑

i∈ĴN+1

∫ TN+1

0

A
(2)
fi (u)(g

(1)
fi (u))

′
dWu

(30)

+
FN+1(0)

2

∑
i∈ĴN+1

∫ TN+1

0

(A
(1)
fi (u))2(g

(2)
fi (u))

′
dWu

− FN+1(0)
∑

i∈ĴN+1

∫ TN+1

0

A
(2)
di (u)(g

(1)
di (u))

′
dWu

− FN+1(0)

2

∑
i∈ĴN+1

∫ TN+1

0

(A
(1)
di (u))2(g

(2)
di (u))

′
dWu

+ FN+1(0)

∫ TN+1

0

A(2)
σ (u)σ̄

′
dWu

+
∑

i∈ĴN+1

∫ TN+1

0

(g
(1)
fi (u))

′
A

(1)
fi (u)A(1)

u dWu

−
∑

i∈ĴN+1

∫ TN+1

0

(g
(1)
di (u))

′
A

(1)
di (u)A(1)

u dWu

+

∫ TN+1

0

A(1)
σ (u)A(1)

u σ̄
′
dWu

+
1

FN+1(0)

∫ TN+1

0

σ
′
X(u)A(2)

u dWu.

Note also that the first order term g1 follows normal distribution with mean 0 and variance Σ:

Σ :=

∫ TN+1

0

σ
′
X(u)σX(u)du. (31)
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With the following theorem, an approximation of the density function of F
(ϵ)
N+1(TN+1) will be obtained.

Theorem 1 Let ϕ
(ϵ)
X (x) denote the probability density function of X(ϵ). Then, under the assumption of

Σ > 0, an asymptotic expansion of ϕ
(ϵ)
X (x) is given by

ϕ
(ϵ)
X (x) =

[
1 + D

(ϵ)
1

(
x2

Σ2
− 1

Σ

)
+ D

(ϵ)
2

(
x3

Σ3
− 3x

Σ2

)
+ D

(ϵ)
3

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ D

(ϵ)
4

(
x5

Σ5
− 10x3

Σ4
+

15x

Σ3

)
+ D

(ϵ)
5

(
x6

Σ6
− 15x4

Σ5
+

45x2

Σ4
− 15

Σ3

)]
× ϕ0,Σ(x)

+ o(ϵ2) (32)

where

ϕµ,Σ(x) :=
1√
2πΣ

e
−(x−µ)2

2Σ

and

D
(ϵ)
1 := ϵC2,1 + ϵ2C3,1 +

1

2
ϵ2C4,0

D
(ϵ)
2 := ϵC2,2 + ϵ2C3,2 +

1

2
ϵ2C4,1

D
(ϵ)
3 := ϵ2C3,3 +

1

2
ϵ2C4,2

D
(ϵ)
4 :=

1

2
ϵ2C4,3

D
(ϵ)
5 :=

1

2
ϵ2C4,4.

All of C2,1, C2,2, C3,1, C3,2, C3,3, C4,0, C4,1, C4,2, C4,3, and C4,4 are constants and are defined in Appendix A.

(Proof)
Substituting d = 1, ϕ(ϵ)(x) ≡ 1, and B = (−∞, x] in Theorem 3.4 of Kunitomo and Takahashi[2003], we can
obtain an asymptotic expansion of the probability distribution function of X(ϵ):

P
(
{X(ϵ) ≤ x}

)
=

∫ x

−∞
ϕ0,Σ(z)dz

+ϵ

∫ x

−∞
− ∂

∂z
{E[g2|g1 = z]ϕ0,Σ(z)} dz

+ϵ2
∫ x

−∞
− ∂

∂z
{E[g3|g1 = z]ϕ0,Σ(z)} dz

+
1

2
ϵ2
∫ x

−∞

∂2

∂z2

{
E[g2

2 |g1 = z]ϕ0,Σ(z)
}

dz + o(ϵ2).

Then, by differentiating both sides of the equation above with respect to x, we have:

ϕ
(ϵ)
X (x) = ϕ0,Σ(x)

−ϵ
∂

∂x
{E[g2|g1 = x]ϕ0,Σ(x)}

−ϵ2
∂

∂x
{E[g3|g1 = x]ϕ0,Σ(x)}

+
1

2
ϵ2

∂2

∂x2

{
E[g2

2 |g1 = x]ϕ0,Σ(x)
}

+ o(ϵ2).
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Finally, noting that E[g2|g1 = x],E[g3|g1 = x], and E[g2
2 |g1 = x] are the following polynomials of x(see

Appendix A for details.);

E[g2|g1 = x] = C2,1
x

Σ
+ C2,2(

x2

Σ2
− 1

Σ
) (33)

E[g3|g1 = x] = C3,1
x

Σ
+ C3,2(

x2

Σ2
− 1

Σ
) + C3,3(

x3

Σ3
− 3x

Σ2
) (34)

E[g2
2 |g1 = x] = C4,0 + C4,1

x

Σ
+ C4,2(

x2

Σ2
− 1

Σ
)

+C4,3(
x3

Σ3
− 3x

Σ2
) + C4,4(

x4

Σ4
− 6x2

Σ3
+

3

Σ2
), (35)

we obtain the result. 2

Remark 1 In the following section, we set ϵ = 1 for numerical examples. In that case, we easily notice
F

(1)
N+1(TN+1) = X(1) + FN+1(0). Thus, the probability density function of F

(1)
N+1(TN+1) is approximated as

follows;

ϕ
(1)
F (x) :=

[
1 + D

(1)
1

{
(x − FN+1(0))2

Σ2
− 1

Σ

}
(36)

+ D
(1)
2

{
(x − FN+1(0))3

Σ3
− 3(x − FN+1(0))

Σ2

}
+ D

(1)
3

{
(x − FN+1(0))4

Σ4
− 6(x − FN+1(0))2

Σ3
+

3

Σ2

}
+ D

(1)
4

{
(x − FN+1(0))5

Σ5
− 10(x − FN+1(0))3

Σ4
+

15(x − FN+1(0))

Σ3

}
+ D

(1)
5

{
(x − FN+1(0))6

Σ6
− 15(x − FN+1(0))4

Σ5
+

45(x − FN+1(0))2

Σ4
− 15

Σ3

}]
× ϕFN+1(0),Σ(x) .

Finally, an approximation formula for valuation of the European call option written on F
(ϵ)
N+1(TN+1) are

stated.

Theorem 2 We define Kϵ := FN+1(0) − ϵy for some arbitrary y ∈ R and suppose that Σ > 0.
Then, an asymptotic expansion of V (0; TN+1, Kϵ), the value of the option with strike rate Kϵ is given as
follows:

V (0; TN+1, Kϵ) = Pd(0, TN+1)

[
ϵy

∫ ∞

−y

ϕ0,Σ(x)dx + ϵ

∫ ∞

−y

xϕ0,Σ(x)dx

+ ϵ2
∫ ∞

−y

E[g2|g1 = x]ϕ0,Σ(x)dx

+ ϵ3
∫ ∞

−y

E[g3|g1 = x]ϕ0,Σ(x)dx +
ϵ3

2
(E[g2

2 |g1 = x]ϕ0,Σ(x))x=−y

]
+ o(ϵ3), (37)

where E[g2|g1 = x], E[g3|g1 = x], and E[g2
2 |g1 = x] are given in equations (33),(34), and (35).

(Proof)

11



With the equation in the proof of Theorem 1, we obtain:

V (0; TN+1, Kϵ)

Pd(0, TN+1)
= E[ϵ(X(ϵ) + y)+]

= ϵ

∫ ∞

−y

(x + y)ϕ
(ϵ)
X (x)dx

= ϵ

∫ ∞

−y

(x + y)ϕ0,Σ(x)dx

−ϵ2
∫ ∞

−y

(x + y)
∂

∂x
{E[g2|g1 = x]ϕ0,Σ(x)} dx

−ϵ3
∫ ∞

−y

(x + y)
∂

∂x
{E[g3|g1 = x]ϕ0,Σ(x)} dx

+
1

2
ϵ3
∫ ∞

−y

(x + y)
∂2

∂x2

{
E[g2

2 |g1 = x]ϕ0,Σ(x)
}

dx + o(ϵ3).

By applying integration-by-parts to the second, third and fourth terms of the right hand of the equation
above and noting E[g2|g1 = x], E[g3|g1 = x] and E[g2

2 |g1 = x] are the polynomials of x (see Appendix A for
details.), we obtain the theorem. 2

Remark 2 Moreover, the following relations can be used to evaluate the integrals in the equation (37) of
Theorem 2. ∫ ∞

−y

xϕ0,Σ(x)dx = Σϕ0,Σ(y)∫ ∞

−y

x2ϕ0,Σ(x)dx = ΣN

(
y√
Σ

)
− yΣϕ0,Σ(y)∫ ∞

−y

x3ϕ0,Σ(x)dx = (2Σ2 + Σy2)ϕ0,Σ(y)∫ ∞

−y

x4ϕ0,Σ(x)dx = 3Σ2N

(
y√
Σ

)
− (3Σ2y + Σy3)ϕ0,Σ(y)

Remark 3 In practice, we are often interested in the accuracy of our formulas for the prices of options whose
underlying variables follow the SDEs (2), (5) and (6) with a particular set of parameters such as γ̃dj(t), γ̃fj(t),
σ̃(0) , µ(t) and ω̃(σ̃(t), t). From this point of view, given some particular value of ϵ, γdj(t), γfj(t), σ(0), µ(ϵ)(t)
and ω(σ(ϵ)(t), t) in (9), (12) and (13) should be scaled so that ϵγdj(t) = γ̃dj(t), ϵγfj(t) = γ̃fj(t), ϵσ(0) = σ̃(0),
ϵµ(ϵ)(t) = µ(t) and ϵω(σ(t), t) = ω̃(σ̃(t), t) for an arbitrary t ∈ [0, T ]. For instance, γ(t) is defined as

γ(t) := γ̃(t)
ϵ

where ϵ is fixed at a pre-specified constant through our procedure of expansions. Moreover, it
can be shown that the approximated prices are unchanged whatever ϵ ∈ (0, 1] is taken in evaluation, as long
as above conditions are met. We here see this briefly.

Suppose we rewrite the system of SDEs (9), (12), (13) and (14) not with ϵ but with another constant
parameter δ ∈ (0, 1]. In order to guarantee that the above conditions are satisfied, δ must be written as δ = kϵ

for some constant k > 0 or equivalently, γdj(t), γfj(t), σ(0), µ(ϵ)(t) and ω(σ(ϵ)(t), t) are replaced by
γdj(t)

k
,

γfj(t)

k
, σ(0)

k
, µ(ϵ)(t)

k
, and ω(σ(ϵ)(t),t)

k
, respectively. Then, C

(k)
2,1 , C

(k)
2,2 , C

(k)
3,1 , C

(k)
3,2 , C

(k)
3,3 , C

(k)
4,0 , C

(k)
4,1 , C

(k)
4,2 , C

(k)
4,3 ,

C
(k)
4,4 and Σ(k) , the coefficients newly obtained and dependent on k, are given1 by

C
(k)
2,1 =

C2,1
k3 , C

(k)
2,2 =

C2,2
k4 ,

C
(k)
3,1 =

C3,1
k4 , C

(k)
3,2 =

C3,2
k5 ,

C
(k)
3,3 =

C3,3
k6 ,

C
(k)
4,0 =

C4,0
k4 , C

(k)
4,1 =

C4,1
k5 ,

C
(k)
4,2 =

C4,2
k6 , C

(k)
4,3 =

C4,3
k7 ,

C
(k)
4,4 =

C4,4
k8 ,

Σ(k) = Σ
k2 .

1Replace γdj(t), γfj(t), σ(ϵ)(t), µ(ϵ)(t) and ω(σ(ϵ)(t), t) in derivations of these coefficients in Appendix A by
γdj(t)

k
,

γfj(t)

k
,

σ(ϵ)(t)
k

,
µ(ϵ)(t)

k
and

ω(σ(ϵ)(t),t)
k

, respectively.
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Table 1: Initial domestic/foreign forward interest rates and their volatilities

fd γ∗
d ff γ∗

f

case (i) 0.05 0.2 0.05 0.2

case (ii) 0.02 0.5 0.05 0.2

case (iii) 0.05 0.2 0.02 0.5

case (iv) 0.02 0.5 0.02 0.5

Substituting these coefficients into (33),(34), and (35), and replacing ϵ in (37) by δ, we can easily confirm
that the approximations of the prices of the call options with strike prices Kϵ and Kδ (Kϵ = Kδ) in Theorem
2 will be the same. For instance,

δ2

∫ ∞

−y(δ)
E[g

(δ)
2 |g(δ)

1 = x̂]ϕ0,Σ(k)(x̂)dx̂ = δ2

∫ ∞

−y(δ)

(
C

(k)
2,1

x̂

Σ(k)
+ C

(k)
2,2 (

x̂2

(Σ(k))2
− 1

Σ(k)
)

)
ϕ0,Σ(k)(x̂)dx̂

= (kϵ)2
∫ ∞

−y

(
C2,1

k3

x

k

k2

Σ
+

C2,2

k4
(
x2

k2

k4

Σ2
− k2

Σ
)

)
ϕ0,Σ(x)dx

= ϵ2
∫ ∞

−y

(
C2,1

x

Σ
+ C2,2(

x

Σ
− 1

Σ
)

)
ϕ0,Σ(x)dx

= ϵ2
∫ ∞

−y

E[g2|g1 = x]ϕ0,Σ(x)dx,

where y(δ) = y/k and g
(δ)
i is an analogous variables gi, i = 1, 2 in this section. This relationship for other

terms in (37) can be shown similarly.

4 Numerical Examples

This section examines the effectiveness of our method through some numerical examples. First, the ap-
proximate probability density functions and option prices by our method are compared with their estimates
by Monte Carlo simulations. Second, our pricing formula are applied to calibration of volatility surfaces
observed in the JPY/USD currency option market.

4.1 Probability Densities and Option Prices

First of all, the processes of domestic and foreign forward interest rates and a volatility of the spot exchange
rate are specified. We suppose D = 4, that is the dimension of Brownian motion is set to be four; it
represents the uncertainty of domestic and foreign interest rates, the spot exchange rate, and its volatility.
In particular, correlations among all factors are allowed.

Next, the volatility process (11) of the spot exchange rate under the domestic risk neutral measure are
specified as follows;

σ(ϵ)(t) = σ(0) + κ

∫ t

0

(θ − σ(ϵ)(u))du + ϵω
′
∫ t

0

√
σ(ϵ)(u)dŴu (38)

where θ and κ represent the level and speed of its mean-reversion respectively, and ω denotes a volatility
on the volatility. In this section the parameters are set as follows. ϵ = 1, σ(0) = θ = 0.1, and κ = 0.1;
ω = ω∗Vσ where ω∗ = 0.1 and Vσ denotes a four dimensional constant vector given below.
It is further supposed that initial term structures of domestic and foreign forward interest rates are flat, and
their volatilities have flat structures and are constant over time: that is, for all j, fdj(0) = fd, ffj(0) = ff ,
γdj(t) := γ∗

dVd1[0,Tj)(t) and γfj(t) := γ∗
fVf1[0,Tj)(t). Here, γ∗

d and γ∗
f are constant scalars, and Vd and Vf

denote four dimensional constant vectors. Four cases for fd, γ∗
d , ff and γ∗

f as in Table 1 are considered.
Moreover, given a correlation matrix C among all four factors, the constant vectors Vd, Vf , VS and Vσ can
be determined to satisfy ||Vd|| = ||Vf || = ||VS || = ||Vσ|| = 1 and V ′V = C where V := (Vd, Vf , VS , Vσ), and
VS ≡ σ̄; σ̄ was defined right after the equation (4).

Finally, we make an assumption that γdn(t)−1(t) and γfn(t)−1(t), volatilities of the domestic and foreign
interest rates applied to the period from t to the next fixing date Tn(t), are set to be zero for arbitrary
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t ∈ [t, Tn(t)].

Figures 1-15 present probability density functions of F
(ϵ)
N+1(TN+1), the terminal value of the underlying

asset, estimated by Monte Carlo simulations and our approximation formulas of the first, second and third
orders with different maturities of 1, 2, 3, 4 and 5 years and with different correlation parameters: each
estimate based on the Monte Carlo simulation is obtained by 1,000,000 trials with antithetic variables method.
The three sets of correlation parameters are considered: In the case ”Corr.1”, all the factors are independent;
In the case ”Corr.2”, there exists the correlation between the spot exchange rate and its volatility while there
are no correlations among the others; In the case ”Corr.3”, the correlation between interest rates and the
spot exchange rate are allowed while there are no correlations among the others. We also set ff = 0.05,
γ∗

f = 0.2, fd = 0.02, and γ∗
d = 0.5 for interest rates as in the case (ii) of Table 1. Although experiments for

the cases (i), (iii) and (iv) of Table 1 have been made, they are omitted because of similar results.

We notice that the approximations for the shorter maturities and the higher order approximations are
closer to the probability density functions estimated by Monte Carlo simulations. While even the third order
approximation tends to deviate in the tails of the densities for the longer maturities except for ”Corr.2”,
in the region of high densities we can still observe the better fitness of the third order approximation than
those of the approximations up to the second order. This may suggest that the higher order approximations
increase the accuracy of our method.

Next, we show numerical examples for call option prices calculated by Monte Carlo simulations and
our approximation formulas of the second and third orders with maturities of 1,2,3,4 and 5 years and with
different correlation parameters as in the density functions. Moreover, the results of four different scenarios
(i)-(iv) in table 1 for term structures of interest rates are shown. We set K ∼ FN+1(0) ±

√
Σ where Σ was

defined in (31), and then moneyness, K
FN+1(0)

for OTM and ITM are approximately given by 1 ±
√

Σ
FN+1(0)

respectively. Thus, in the longer maturities the prices of the deeper OTM/ITM options are given in the
tables, and especially the deepest OTM and ITM options are considered for the case ”Corr.3” because the
underlying forex forward is more volatile in that case than in the other cases. The summaries of the results
are given in tables 2-5 and figures 16-33.

Tables 2-5 show the largest differences between the second(tables 2-3) or third(tables 4-5) orders approx-
imations in the cases ”Corr.1-3” and the estimates by Monte Carlo: Both the largest differences(indicating
”diff.”) and the largest relative(indicating ”relative diff.”) differences are listed, where ”difference” and ”rel-
ative difference” are defined by (the approximate value)-(the estimate by Monte Carlo) and (difference)/(the
estimate by Monte Carlo)× 100(%), respectively. As for the largest relative differences, their levels(that is,
”differences”) are also given in tables 3 and 5.

Clearly, it can be observed that the third order approximations improve the second ones substantially;
while the largest differences and the largest relative differences are -0.044(1y,”Corr.2”) ∼ -0.502(5y,”Corr.1”)
and -5.29%(1y,”Corr.3”) ∼ -18.13%(5y,”Corr.1”) respectively in the second order, in the third order they
are 0.008(1y,”Corr.3”) ∼ -0.177(5y,”Corr.2”) and 0.22%(1y,”Corr.3”) ∼ -5.26%(3y,”Corr.2”) respectively,
where we also note in the table 5 that the level of -5.26%(3y,”Corr.2”) is just -0.060. Moreover, it can be
seen that the second order approximations undervalue the option prices, which seems corrected by the third
order terms. Of course, in the other cases the deviations from the estimates by Monte Carlo simulations are
smaller, which are not reported in the tables 2-5. (The details of the results will be given upon request.)

Figures 16-33 show the absolute values of the differences and relative differences between the third order
approximations and the estimates by Monte Carlo simulations for the cases (i)-(iv) of ”Corr. 1-3” in each
ITM, ATM and OTM option. We note that the differences increase with longer maturities except for OTM
options in relative differences while we can not observe particular patterns for the differences when interest
rates’ volatilities become high(low) as in the case (iv) (case (i)).

Further, it may be desirable in practice that the errors of approximations are smaller than bid-ask spreads
observed in a currency option market. Hence, we examine whether our third order approximations satisfy
this condition in the JPY/USD option market assuming that the estimates by Monte Carlo simulations are
true option prices. The bid-ask spreads for ATM options in Feb. 19, 2007, Nov. 19, Aug. 19, and Feb.
19, 2006 are provided by Mizuho-DL Financial Technology Co., Ltd. as 0.07-0.11 for one year, 0.09-0.18 for
two year and 0.12-0.42 for five year maturities, respectively. On the other hand, the absolute values of the
deviations of the third order approximations from estimates by Monte Carlo simulations for ATM options
are 0.000-0.012 for one year, 0.000-0.015 for two year and 0.010-0.063 for five year maturities, respectively.
Thus, we can see that our third order approximations provide satisfactory results.
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In addition to the experiments reported above, the accuracy of our method was also examined in a
variety of cases for correlation parameters. Although these results are omitted due to their similarities to
the previous ones, they will be given upon request.

4.2 Calibration to the Market

In this subsection, we calibrate our model parameters with the third order asymptotic expansion formula
to observed volatilities with maturities from one to five years in the JPY/USD currency option market.
Market makers in OTC currency option markets usually provide quotes on Black-Scholes implied volatilities
and the moneyness of an option which is expressed in terms of Black-Scholes delta, rather than its strike
price. The data of volatility surfaces on Jun 26 and July 5, 2006 are used, which consist of 25 delta put,
10 delta put, at-the-money, 10 delta call, and 25 delta call with their maturities of 1, 2, 3 and 5 years. We
also construct term structures of domestic/foreign forward interest rates and volatilities using the data of
swap rates and cap volatilities in each market (All data used in this subsection are provided by Mizuho-DL
Financial Technology Co., Ltd.) .

Tables 6-7 and Figures 34-37 show the data on volatility surfaces and our calibrated parameters under
the assumption of σ(0) = θ in (38); we make this assumption in order to avoid any paticular bias for θ,
the level of a mean-reversion of the stochastic volatility, since forecasting θ is a usually difficult task (See
the section 13.7 of Rebonato[2004] for the detail). Note that so-called a volatility skew can be found in the
market, which may suggest a negative correlation between the spot exchange rate and its volatility. The
parameters obtained by our calibration reflect this feature and seem to draw sufficiently accurate volatility
surfaces on each date. The largest difference in these two dates is 0.19% and most of absolute values of
differences are less than 0.15% where ”difference” is defined by (the implied volatility calibrated by our
formula)-(the implied volatility observed in the market).
Consequently, we conclude that our formula is flexible enough for the calibration of observed surfaces, and
that we may use the calibrated parameters for valuation of illiquid options and more complex currency
derivatives. Because calibrations are very time consuming by numerical methods such as Monte Carlo
simulation, our closed-form formula seems quite useful in practice.

5 Conclusion

In this paper, we proposed approximation formulas based on an asymptotic expansion to evaluate currency
options with a libor market model of domestic and foreign interest rates and stochastic volatility processes of
spot exchange rates. We also provided numerical examples to investigate the accuracy of the approximations
for the probability densities of currency forwards and option prices with maturities from one year to five
years; in general, satisfactory results were obtained for the third order approximation up to five year maturity.
Moreover, we applied the formula to the calibration of the JPY/USD currency option market and had
successful results in reconstructing observed volatility surfaces.

Finally, our research plans are stated as follows: Similar methods will be applied to valuation and
calibration of options with longer maturities; higher order asymptotic expansions or/and different types
of expansions may be used. Asymptotic expansion formulas will be utilized for extended models where
stochastic volatility structures of interest rates are allowed or/and a jump component is added to the volatility
process of the spot exchange rate. In fact, some results will appear in a subsequent paper(Takahashi and
Takehara[2008]).
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6 Appendix

A Coefficients in the Asymptotic Expansion

This section presents the expressions of coefficients C2,1, C2,2, C3,1, C3,2, C3,3, C4,0, C4,1, C4,2, C4,3 and
C4,4 in Theorem 1. First, they are shown as relatively compact forms:

C2,1 := c2

C2,2 :=
[∑

i∈ĴN+1

(
af
2i − ad

2i

)]
+ b2 + d2

C3,1 :=
[∑

i∈ĴN+1

{
(af

3i + cf
3i + if3i) − (ad

3i + cd
3i + id3i)

}]
+ e3 + k3

C3,2 := f3 + l3 + o3

C3,3 :=
[∑

i∈ĴN+1

{
(bf

3i + df
3i + jf

3i + nf
3i) − (bd

3i + dd
3i + jd

3i + nd
3i)
}]

+ h3 + m3 + p3 + q3

C4,0 :=
[∑

i,j∈ĴN+1
(cf

4i,j + cd
4i,j)

]
+ e4 + k4 + n4

−
[∑

i,j∈ĴN+1
q4i,j

]
+
[∑

i∈ĴN+1

{
(vf

4i + yf
4i) − (vd

4i + yd
4i)
}]

+ ad4

C4,1 := h4 −
[∑

i∈ĴN+1

(
sf
4i − sd

4i

)]
+ aa4

C4,2 :=
[∑

i,j∈ĴN+1

(
bf
4i,j + bd

4i,j

)]
+ d4 + j4 + m4

−
[∑

i,j∈ĴN+1
p4i,j

]
+
[∑

i∈ĴN+1

{
(uf

4i + xf
4i) − (ud

4i + xd
4i)
}]

+ ac4

C4,3 := f4 −
[∑

i∈ĴN+1

(
rf
4i − rd

4i

)]
+ z4

C4,4 :=
[∑

i,j∈ĴN+1

(
af
4i,j + ad

4i,j

)]
+ i4 + l4

−
[∑

i,j∈ĴN+1
o4i,j

]
+
[∑

i∈ĴN+1

{
(tf

4i + wf
4i) − (td

4i + wd
4i)
}]

+ ab4

(39)

Subsections A.1 and A.2 below provide the expressions for the terms on the right hand side of (39); the
expressions for the terms with superscript “f ” such as af

2i, af
3i or af

4i,j explicitly are not shown because they
are obtained in the same manner as those for the terms with superscript “d ” .(The details will be given
upon request.)
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Next, Let q1, q2, q3, q4 and q5 denote the Rd-valued functions on t and q1 be q1t := σX(t). Then, the
following functionals are defined:

I1
1 (q2; T ) :=

∫ T

0

q′2tq1tdt

I2
2 (q2, q3; T ) :=

∫ T

0

q′3tq1t

∫ t

0

q′2uq1ududt

I3
0 (q2, q3; T ) :=

∫ T

0

q′2tq3tdt

I3
2 (q2, q3; T ) :=

(∫ T

0

q′2tq1tdt

)(∫ T

0

q′3tq1tdt

)
I4
3 (q2, q3, q4; T ) :=

∫ T

0

q′4tq1t

∫ t

0

q′3uq1u

∫ u

0

q′2sq1sdsdudt

I5
1 (q2, q3, q4; T ) :=

∫ T

0

q′4tq1t

∫ t

0

q′2uq3ududt

I5
3 (q2, q3, q4; T ) :=

∫ T

0

q′4tq1t

(∫ t

0

q′2uq1udu

)(∫ t

0

q′3uq1udu

)
dt

I6
1 (q2, q3, q4; T ) :=

∫ T

0

q′3tq1t

∫ t

0

q′2uq4ududt +

∫ T

0

q′3tq4t

∫ t

0

q′2uq1ududt

I6
3 (q2, q3, q4; T ) :=

(∫ T

0

q′3tq1t

∫ t

0

q′2uq1ududt

)(∫ T

0

q′4tq1tdt

)
I7
0 (q2, q3, q4, q5; T ) :=

∫ T

0

q′3tq5t

∫ t

0

q′2uq4ududt

I7
2 (q2, q3, q4, q5; T ) :=

∫ T

0

q′3tq1t

∫ t

0

q′5uq1u

∫ u

0

q′2sq4sdsdudt

+

∫ T

0

q′5tq1t

∫ t

0

q′3uq1u

∫ u

0

q′2sq4sdsdudt

+

∫ T

0

q′3tq1t

∫ t

0

q′2uq5u

∫ u

0

q′4sq1sdsdudt

+

∫ T

0

q′3tq5t

(∫ t

0

q′2uq1udu

)(∫ t

0

q′4uq1udu

)
dt

+

∫ T

0

q′5tq1t

∫ t

0

q′3uq4u

∫ u

0

q′2sq1sdsdudt

I7
4 (q2, q3, q4, q5; T ) :=

(∫ T

0

q′3tq1t

∫ t

0

q′2uq1ududt

)(∫ T

0

q′5tq1t

∫ t

0

q′4uq1ududt

)
Il

k, with its superscript l and subscript k, corresponds to the coefficient of the kth order polynomial of x in
Formula l given in Appendix B.

It is stressed that most coefficients are expressed as linear combinations of only a dozen of different
functionals defined above, and that this seems to make it easy to implement our method.
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A.1 The Second Order

In this subsection, we concentrate on the second order scheme. First, we note that g1 and g2 are expressed
as

g1 = A
(1)
TN+1

=

∫ TN+1

0

σX(u)
′
dWu

g2 = A
(2)
TN+1

= FN+1(0)

∫ TN+1

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A

(1)
fi (u)

−
∑

i∈ĴN+1

g
(1)
di (u)A

(1)
di (u) + A(1)

σ (u)σ̄]
′
dWu

+
1

FN+1(0)

∫ TN+1

0

A(1)
u σX(u)

′
dWu.

Let T ≡ TN+1, F (0) ≡ FN+1(0) and define Iµ(t) :=
∫ t

0
Y −1

u ∂ϵµ(u)du to avoid complex expressions.
Then,

E[g2|g1 = x] = F (0)E

∫ T

0

∑
i∈ĴN+1

A
(1)
fi (u)(g

(1)
fi (u))

′
dWu|g1 = x


− F (0)E

∫ T

0

∑
i∈ĴN+1

A
(1)
di (u)(g

(1)
di (u))

′
dWu|g1 = x


+ F (0)E

[∫ T

0

A(1)
σ (u)σ̄

′
dWu|g1 = x

]
+

1

F (0)
E

[∫ T

0

A(1)
u σX(u)

′
dWu|g1 = x

]
.

To evaluate the right hand side of the equation above, we utilize some formulas associated with conditional
expectations of Gaussianity: The formulas are listed in Appendix B. In particular, applying (1) and (2) in
Appendix B, we can evaluate each term in E[g2|g1 = x] with I1

1 (·; T ) and I2
2 (·, ·; T ) as follows:

1.

F (0)E

[∫ T

0

A
(1)
di (u)(g

(1)
di (u))

′
dWu|g1 = x

]
= F (0)

(
−τifdi(0)

(1 + τifdi(0))2

)
I2
2 (γdi, γdi; T ) ×

(
x2

Σ2
− 1

Σ

)
=: ad

2i

(
x2

Σ2
− 1

Σ

)
2.

1

F (0)
E

[∫ T

0

A(1)
u σX(u)

′
dWu|g1 = x

]
=

1

F (0)
I2
2 (σX , σX ; T ) ×

(
x2

Σ2
− 1

Σ

)
=: b2

(
x2

Σ2
− 1

Σ

)
3.

F (0)E

[∫ T

0

A(1)
σ (u)σ̄

′
dWu|g1 = x

]
= F (0)

[
I1
1 (IµY σ̄; T ) × x

Σ
+ I2

2

(
Y −1ω, Y σ̄; T

)
×
(

x2

Σ2
− 1

Σ

)]
=: c2

x

Σ
+ d2

(
x2

Σ2
− 1

Σ

)
Then, C2,1 and C2,2 are defined by

C2,1 = c2

C2,2 =

 ∑
i∈ĴN+1

(
af
2i − ad

2i

)+ b2 + d2.
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A.2 The Third Order

A.2.1 Computation of E[g3|g1 = x]

We first note that

g3 = A
(3)
T = F (0)

∫ T

0

∑
i∈ĴN+1

A
(2)
fi (u)(g

(1)
fi (u))

′
dWu

+
F (0)

2

∫ T

0

∑
i∈ĴN+1

(A
(1)
fi (u))2(g

(2)
fi (u))

′
dWu

− F (0)

∫ T

0

∑
i∈ĴN+1

A
(2)
di (u)(g

(1)
di (u))

′
dWu

− F (0)

2

∫ T

0

∑
i∈ĴN+1

(A
(1)
di (u))2(g

(2)
di (u))

′
dWu

+ F (0)

∫ T

0

A(2)
σ (u)σ̄

′
dWu

+

∫ T

0

∑
i∈ĴN+1

(g
(1)
fi (u))

′
A

(1)
fi (u)A(1)

u dWu

−
∫ T

0

∑
i∈ĴN+1

(g
(1)
di (u))

′
A

(1)
di (u)A(1)

u dWu

+

∫ T

0

A(1)
σ (u)A(1)

u σ̄
′
dWu

+
1

F (0)

∫ T

0

σ
′
X(u)A(2)

u dWu

Define C
(2)
dj (u) and C

(2)
fj (u) as

C
(2)
dj (u) := fdj(0)

∫ u

0

γ
′
dj(s)

N∑
i=j+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(s)ds,

C
(2)
fj (u) := ffj(0)

∫ u

0

γ
′
fj(s)

 ∑
i∈Ĵj+1

−
(

−τiffi(0)

1 + τiffi(0)

)
γfi(s) +

∑
i∈ĴN+1

(
−τifdi(0)

1 + τifdi(0)

)
γdi(s)

 ds

− ffj(0)

∫ u

0

γ
′
fj(s)σ

(0)(s)σ̄ds.

Then, we take the expectation of each term of g3 conditional to g1 = x. To evaluate each expectation, we
use formulas in Appendix B, again. Results are reported below;

1. Apply formulas 1,4.

F (0)E

[∫ T

0

A
(2)
di (u)(g

(1)
di (u))

′
dWu|g1 = x

]
= F (0)

(
−τi

(1 + τifdi(0))2

)[
I1
1 (C

(2)
di × γdi; T ) × x

Σ
+ fdi(0)I4

3 (γdi, γdi, γdi; T ) ×
(

x3

Σ3
− 3x

Σ2

)]
=: ad

3i
x

Σ
+ bd

3i

(
x3

Σ3
− 3x

Σ2

)
2. Apply formula 5.

F (0)

2
E

[∫ T

0

(A
(1)
di (u))2(g

(2)
di (u))

′
dWu|g1 = x

]
=

F (0)

2
(fdi(0))2

(
2τ2

i

(1 + τifdi(0))3

)[
I5
1 (γdi, γdi, γdi; T ) × x

Σ
+ I5

3 (γdi, γdi, γdi; T ) ×
(

x3

Σ3
− 3x

Σ2

)]
=: cd

3i
x

Σ
+ dd

3i

(
x3

Σ3
− 3x

Σ2

)
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3. Apply formulas 1,2,4,5.

F (0)E

[∫ T

0

A(2)
σ (u)σ̄dWu|g1 = x

]
= F (0)

[{
1

2

∫ T

0

(∫ u

0

Y −1
s ∂2

ϵ µsds

)
Yuσ̄

′
σX(u)du

}
× x

Σ

]
+ F (0)

[{
1

2

∫ T

0

(∫ u

0

Ys∂
2
σµs

(∫ s

0

Y −1
τ ∂ϵµτdτ

)2

ds

)
Yuσ̄

′
σX(u)du

}
× x

Σ

+

{∫ T

0

(∫ u

0

Ys∂
2
σµs

(∫ s

0

Y −1
τ ∂ϵµτdτ

)(∫ s

0

Y −1
τ ω

′
(τ)σX(τ)dτ

)
ds

)
Yuσ̄

′
σX(u)du

}
×
(

x2

Σ2
− 1

Σ

)
+

1

2

{∫ T

0

(∫ u

0

Ys∂
2
σµs

(∫ s

0

Y −2
τ ω

′
(τ)ω(τ)dτ

)
ds

)
Yuσ̄

′
σX(u)du

}
x

Σ

+
1

2

{∫ T

0

(∫ u

0

Ys∂
2
σµs

(∫ s

0

Y −1
τ ω

′
(τ)σX(τ)dτ

)2

ds

)
Yuσ̄

′
σX(u)du

}(
x3

Σ3
− 3x

Σ2

)]

+ F (0)

[{∫ T

0

(∫ u

0

∂ϵ∂σµs

(∫ s

0

Y −1
τ ∂ϵµτdτ

)
ds

)
Yuσ̄

′
σX(u)du

}
x

Σ

+

{∫ T

0

(∫ u

0

∂ϵ∂σµs

(∫ s

0

Y −1
τ ω

′
(τ)σX(τ)dτ

)
ds

)
Yuσ̄

′
σX(u)du

}(
x2

Σ2
− 1

Σ

)]
+ F (0)

[{∫ T

0

(∫ u

0

(∫ s

0

Y −1
τ ∂ϵµτdτ

)
∂σω

′
(s)σX(s)ds

)
Yuσ̄

′
σX(u)du

}(
x2

Σ2
− 1

Σ

)
+

{∫ T

0

(∫ u

0

(∫ s

0

Y −1
τ ω

′
(τ)σX(τ)dτ

)
∂σω

′
(s)σX(s)ds

)
Yuσ̄

′
σX(u)du

}(
x3

Σ3
− 3x

Σ2

)]
=: e3

x

Σ
+ f3

(
x2

Σ2
− 1

Σ

)
+ h3

(
x3

Σ3
− 3x

Σ2

)
4. Apply formula 5.

E

[∫ T

0

(g
(1)
di (u))

′
A

(1)
di (u)A(1)

u dWu|g1 = x

]
=

(
−τifdi(0)

(1 + τifdi(0))2

)
×[

I5
1 (γdi, σX , γdi; T ) × x

Σ
+ I5

3 (γdi, σX , γdi; T ) ×
(

x3

Σ3
− 3x

Σ2

)]
=: id3i

x

Σ
+ jd

3i

(
x3

Σ3
− 3x

Σ2

)
5. Apply formulas 2,5.

E

[∫ T

0

A(1)
σ (u)A(1)

u σ̄
′
dWu|g1 = x

]
= I2

2 (σX , IµY σ̄; T ) ×
(

x2

Σ2
− 1

Σ

)
+I5

1 (Y −1ω, σX , Y σ̄; T ) × x

Σ
+ I5

3 (Y −1ω, σX , Y σ̄; T ) ×
(

x3

Σ3
− 3x

Σ2

)
=: k3

x

Σ
+ l3

(
x2

Σ2
− 1

Σ

)
+ m3

(
x3

Σ3
− 3x

Σ2

)
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6. We first note that 1
F (0)

∫ T

0
σ

′
X(u)A

(2)
u dWu is expressed as follows:

1

F (0)

∫ T

0

σ
′
X(u)A(2)

u dWu

=
∑

j∈ĴN+1

∫ T

0

(∫ u

0

A
(1)
fi (s)(g

(1)
fi (s))

′
dWs

)
σ

′
X(u)dWu

−
∑

j∈ĴN+1

∫ T

0

(∫ u

0

A
(1)
di (s)(g

(1)
di (s))

′
dWs

)
σ

′
X(u)dWu

+

∫ T

0

(∫ u

0

A(1)
σ (s)σ̄

′
dWu

)
σ

′
X(u)dWu

+
1

F (0)2

∫ T

0

(∫ u

0

A(1)(s)σ
′
X(s)dWs

)
σ

′
X(u)dWu

Then,

• Apply formula 4.

E

[∫ T

0

(∫ u

0

A
(1)
di (s)(g

(1)
di (s))

′
dWs

)
σ

′
X(u)dWu|g1 = x

]
=

(
−τifdi(0)

(1 + τifdi(0))2

)
I4
3 (γdi, γdi, σX ; T ) ×

(
x3

Σ3
− 3x

Σ2

)
=: nd

3i

(
x3

Σ3
− 3x

Σ2

)
• Apply formulas 2,4.

E

[∫ T

0

(∫ u

0

A(1)
σ (s)σ̄

′
dWu

)
σ

′
X(u)dWu|g1 = x

]
= I2

2 (IµY σ̄, σX ; T ) ×
(

x2

Σ2
− 1

Σ

)
+I4

3 (Y −1ω, Y σ̄, σX ; T ) ×
(

x3

Σ3
− 3x

Σ2

)
=: o3

(
x2

Σ2
− 1

Σ

)
+ p3

(
x3

Σ3
− 3x

Σ2

)
• Apply formula 4.

1

F (0)2
E

[∫ T

0

(∫ u

0

A(1)(s)σ
′
X(s)dWs

)
σ

′
X(u)dWu|g1 = x

]
=

1

F (0)2
× I4

3 (σX , σX , σX ; T ) ×
(

x3

Σ3
− 3x

Σ2

)
=: q3

(
x3

Σ3
− 3x

Σ2

)
Finally, coefficients of C3,1, C3,2, and C3,3 can be defined as follows;

C3,1 =

 ∑
i∈ĴN+1

{
(af

3i + cf
3i + if3i) − (ad

3i + cd
3i + id3i)

}+ e3 + k3

C3,2 = f3 + l3 + o3

C3,3 =

 ∑
i∈ĴN+1

{
(bf

3i + df
3i + jf

3i + nf
3i) − (bd

3i + dd
3i + jd

3i + nd
3i)
}+ h3 + m3 + p3 + q3.
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A.2.2 Computation of E[g2
2 |g1 = x]

First, note that g2
2 is expressed as

g2
2 =

F (0)

∫ T

0

[
∑

i∈ĴN+1

g
(1)
fi (u)A

(1)
fi (u) −

∑
i∈ĴN+1

g
(1)
di (u)A

(1)
di (u) + A(1)

σ (u)σ̄]
′
dWu

+
1

F (0)

∫ T

0

A(1)
u σX(u)

′
dWu

)2

.

Next, we easily notice that E[g2
2 |g1 = x] consists of the following terms.

1. Apply formula 7.

F (0)2E

[(∫ T

0

g
(1)
di (u)A

(1)
di (u)dWu

)(∫ T

0

g
(1)
dj (u)A

(1)
dj (u)dWu

)
|g1 = x

]
= F (0)2

(
−τifdi(0)

(1 + τifdi(0))2

)(
−τjfdj(0)

(1 + τjfdj(0))2

)
×[

I7
4 (γdi, γdi, γdj , γdj ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (γdi, γdi, γdj , γdj ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (γdi, γdi, γdj , γdj ; T )
]

=: ad
4i,j

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ bd

4i,j

(
x2

Σ2
− 1

Σ2

)
+ cd

4i,j

2.

F (0)2E

[(∫ T

0

A(1)
σ (u)σ̄

′
dWu

)2

|g1 = x

]

= F (0)2E

[(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)2

|g1 = x

]

+ 2F (0)2E

[(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)
|g1 = x

]
+ F (0)2E

[(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)2

|g1 = x

]

• Apply formula 3.

F (0)2E

[(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)2

|g1 = x

]

= F (0)2 ×
[
I3
2 (IµY σ̄, IµY σ̄; T ) ×

(
x2

Σ2
− 1

Σ2

)
+ I3

0 (IµY σ̄, IµY σ̄; T )

]
=: d4

(
x2

Σ2
− 1

Σ2

)
+ e4

• Apply formula 6.

2F (0)2E

[(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)
|g1 = x

]
= 2F (0)2 ×

[
I6
3

(
Y −1ω, Y σ̄, IµY σ̄; T

)
×
(

x3

Σ3
− 3x

Σ2

)
+ I6

1

(
Y −1ω, Y σ̄, IµY σ̄; T

)
× x

Σ

]
=: f4

(
x3

Σ3
− 3x

Σ2

)
+ h4

x

Σ
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• Apply formula 7.

F (0)2E

[(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)2

|g1 = x

]
= F (0)2 ×[

I7
4 (Y −1ω, Y σ̄, Y −1ω, Y σ̄; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (Y −1ω, Y σ̄, Y −1ω, Y σ̄; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (Y −1ω, Y σ̄, Y −1ω, Y σ̄; T )
]

=: i4

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ j4

(
x2

Σ2
− 1

Σ2

)
+ k4

3. Apply formula 7.

1

F (0)2
E

[(∫ T

0

A(1)
u σX(u)

′
dWu

)2

|g1 = x

]

=
1

F (0)2
×[

I7
4 (σX , σX , σX , σX ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (σX , σX , σX , σX ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (σX , σX , σX , σX ; T )
]

=: l4

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ m4

(
x2

Σ2
− 1

Σ2

)
+ n4

4. Apply formula 7.

2F (0)2E

[(∫ T

0

g
(1)
fi (u)A

(1)
fi (u)dWu

)(∫ T

0

g
(1)
dj (u)A

(1)
dj (u)dWu

)
|g1 = x

]
= 2F (0)2

(
−τiffi(0)

(1 + τiffi(0))2

)(
−τjfdj(0)

(1 + τjfdj(0))2

)
×[

I7
4 (γfi, γfi, γdj , γdj ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ I7

2 (γfi, γfi, γdj , γdj ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (γfi, γfi, γdj , γdj ; T )

]
=: o4i,j

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ p4i,j

(
x2

Σ2
− 1

Σ2

)
+ q4i,j

5.

2F (0)2E

[(∫ T

0

g
(1)
di (u)A

(1)
di (u)dWu

)(∫ T

0

A(1)
σ (u)σ̄

′
dWu

)
|g1 = x

]
= 2F (0)2

(
−τifdi(0)

(1 + τifdi(0))2

)
E

[(∫ T

0

γ
′
di(u)

(∫ u

0

γ
′
di(s)dWs

)
dWu

)
×{(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)
+

(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)}
|g1 = x

]
• Apply formula 6.

2F (0)2
(

−τifdi(0)

(1 + τifdi(0))2

)
×

E

[(∫ T

0

γ
′
di(u)

(∫ u

0

γ
′
di(s)dWs

)
dWu

)(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)
|g1 = x

]
= 2F (0)2

(
−τifdi(0)

(1 + τifdi(0))2

)
×
[
I6
3 (γdi, γdi, IµY σ̄; T ) ×

(
x3

Σ3
− 3x

Σ2

)
+ I6

1 (γdi, γdi, IµY σ̄; T ) × x

Σ

]
=: rd

4i

(
x3

Σ3
− 3x

Σ2

)
+ sd

4i
x

Σ

23



• Apply formula 7.

2F (0)2
(

−τifdi(0)

(1 + τifdi(0))2

)
×

E

[(∫ T

0

γ
′
di(u)

(∫ u

0

γ
′
di(s)dWs

)
dWu

)(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)
|g1 = x

]
= 2F (0)2

(
−τifdi(0)

(1 + τifdi(0))2

)
×

[
I7
4 (γdi, γdi, Y

−1ω, Y σ̄; T ) ×
(

x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (γdi, γdi, Y
−1ω, Y σ̄; T ) ×

(
x2

Σ2
− 1

Σ2

)
+ I7

0 (γdi, γdi, Y
−1ω, Y σ̄; T )

]
=: td

4i

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ ud

4i

(
x2

Σ2
− 1

Σ2

)
+ vd

4i

6. Apply formula 7.

2 × E

[(∫ T

0

g
(1)
di (u)A

(1)
di (u)dWu

)(∫ T

0

A(1)
u σX(u)

′
dWu

)
|g1 = x

]
= 2

(
−τifdi(0)

(1 + τifdi(0))2

)
×

[
I7
4 (γdi, γdi, σX , σX ; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (γdi, γdi, σX , σX ; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (γdi, γdi, σX , σX ; T )
]

=: wd
4i

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ xd

4i

(
x2

Σ2
− 1

Σ2

)
+ yd

4i

7.

2

(∫ T

0

A(1)
σ (u)σ̄

′
dWu

)(∫ T

0

A(1)
u σX(u)

′
dWu

)
= 2 × E

[(∫ T

0

(∫ u

0

σX(s)
′
dWs

)
σX(u)

′
dWu

)
×{(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)
+

(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)}
|g1 = x

]

• Apply formula 6.

2 × E

[(∫ T

0

σ
′
X(u)

(∫ u

0

σ
′
X(s)dWs

)
dWu

)(∫ T

0

Iµ(u)Yuσ̄
′
dWu

)
|g1 = x

]
= 2 ×

[
I6
3 (σX , σX , IµY σ̄; T ) ×

(
x3

Σ3
− 3x

Σ2

)
+ I6

1 (σX , σX , IµY σ̄; T ) × x

Σ

]
=: z4

(
x3

Σ3
− 3x

Σ2

)
+ aa4

x

Σ

• Apply formula 7.

2 × E

[(∫ T

0

σ
′
X(u)

(∫ u

0

σ
′
X(s)dWs

)
dWu

)(∫ T

0

(∫ u

0

Y −1
s ω

′
(s)dWs

)
Yuσ̄

′
dWu

)
|g1 = x

]
= 2 ×

[
I7
4 (σX , σX , Y −1ω, Y σ̄; T ) ×

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+I7

2 (σX , σX , Y −1ω, Y σ̄; T ) ×
(

x2

Σ2
− 1

Σ2

)
+ I7

0 (σX , σX , Y −1ω, Y σ̄; T )
]

=: ab4

(
x4

Σ4
− 6x2

Σ3
+

3

Σ2

)
+ ac4

(
x2

Σ2
− 1

Σ2

)
+ ad4

24



Consequently, C4,0, C4,1, C4,2, C4,3, and C4,4 are defined as;

C4,0 =

 ∑
i,j∈ĴN+1

(cf
4i,j + cd

4i,j)

+ e4 + k4 + n4 −

 ∑
i,j∈ĴN+1

q4i,j

+

 ∑
i∈ĴN+1

{
(vf

4i + yf
4i) − (vd

4i + yd
4i)
}+ ad4

C4,1 = h4 −

 ∑
i∈ĴN+1

(
sf
4i − sd

4i

)+ aa4

C4,2 =

 ∑
i,j∈ĴN+1

(
bf
4i,j + bd

4i,j

)+ d4 + j4 + m4 −

 ∑
i,j∈ĴN+1

p4i,j

+

 ∑
i∈ĴN+1

{
(uf

4i + xf
4i) − (ud

4i + xd
4i)
}+ ac4

C4,3 = f4 −

 ∑
i∈ĴN+1

(
rf
4i − rd

4i

)+ z4

C4,4 =

 ∑
i,j∈ĴN+1

(
af
4i,j + ad

4i,j

)+ i4 + l4 −

 ∑
i,j∈ĴN+1

o4i,j

+

 ∑
i∈ĴN+1

{
(tf

4i + wf
4i) − (td

4i + wd
4i)
}+ ab4.

B Formulas

In this section, the formulas 1.- 7. used in the previous sections are listed up for convenience. They are
derived by direct calculations using Gaussianity of the processes involved, which are straightforward, but
lengthy and hence omitted. W = {(W 1

t , · · · , W d
t ) : 0 ≤ t} denotes a d-dimensional Brownian motion. Let

qi : [0, T ] 7→ Rd, i = 1, 2, 3, 4, 5 be non-random functions and define Σ as

Σ =

∫ T

0

q
′
1vq1vdv,

where z
′

is the transpose of z. We assume that 0 < Σ < ∞ and integrability in the following formulas.

1.

E

[∫ T

0

q
′
2tdWt|

∫ T

0

q
′
1vdWv = x

]
=

(∫ T

0

q
′
2tq1tdt

)
x

Σ

2.

E

[∫ T

0

∫ t

0

q
′
2udWuq

′
3tdWt|

∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

∫ t

0

q
′
2uq1uduq

′
3tq1tdt

)(
x2

Σ2
− 1

Σ

)
3.

E

[(∫ T

0

q
′
2udWu

)(∫ T

0

q
′
3sdWs

)
|
∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
2uq1udu

)(∫ T

0

q
′
3sq1sds

)(
x2

Σ2
− 1

Σ

)
+

∫ T

0

q
′
2tq3tdt

4.

E

[∫ T

0

∫ t

0

∫ s

0

q
′
2udWuq

′
3sdWsq

′
4tdWt|

∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
4tq1t

∫ t

0

q
′
3sq1s

∫ s

0

q
′
2uq1ududsdt

)(
x3

Σ3
− 3x

Σ2

)

25



5.

E

[∫ T

0

(∫ t

0

q
′
2udWu

)(∫ t

0

q
′
3sdWs

)
q
′
4tdWt|

∫ T

0

q
′
1vdWv = x

]
={∫ T

0

(∫ t

0

q
′
2uq1udu

)(∫ t

0

q
′
3sq1sds

)
q
′
4tq1tdt

}(
x3

Σ3
− 3x

Σ2

)
+

(∫ T

0

∫ t

0

q
′
2uq3uduq

′
4tq1tdt

)
x

Σ

6.

E

[(∫ T

0

∫ t

0

q
′
2sdWsq

′
3tdWt

)(∫ T

0

q
′
4udWu

)
|
∫ T

0

q
′
1vdWv = x

]
=(∫ T

0

q
′
3tq1t

∫ t

0

q
′
2sq1sdsdt

)(∫ T

0

q
′
4uq1udu

)(
x3

Σ3
− 3x

Σ2

)
+

(∫ T

0

q
′
3tq1t

∫ t

0

q
′
2sq4sdsdt

)
x

Σ
+

(∫ T

0

q
′
3tq4t

∫ t

0

q
′
2sq1sdsdt
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diff. relative diff. diff. relative diff. diff. relative diff. diff. relative diff. diff. relative diff.
Corr.1 -0.057 -5.76% -0.149 -10.50% -0.258 -15.28% -0.354 -13.79% -0.502 -18.13%
Corr.2 -0.044 -5.70% -0.101 -9.80% -0.173 -15.21% -0.242 -12.83% -0.357 -18.05%
Corr.3 -0.056 -5.29% -0.138 -8.78% -0.229 -10.57% -0.333 -12.82% -0.444 -13.97%

relative diff. relative diff. relative diff. relative diff. relative diff.
Corr.1 -5.76% -0.057 -10.50% -0.149 -15.28% -0.258 -13.79% -0.354 -18.13% -0.502
Corr.2 -5.70% -0.044 -9.80% -0.101 -15.21% -0.173 -12.83% -0.242 -18.05% -0.357
Corr.3 -5.29% -0.056 -8.78% -0.138 -10.57% -0.226 -12.82% -0.333 -13.97% -0.427

diff. relative diff. diff. relative diff. diff. relative diff. diff. relative diff. diff. relative diff.
Corr.1 0.009 0.45% 0.026 0.49% 0.052 0.39% 0.076 0.83% 0.133 0.86%
Corr.2 0.020 -2.76% -0.038 -3.69% 0.078 -5.26% 0.115 -3.60% 0.177 -4.57%
Corr.3 0.008 0.22% 0.022 1.11% 0.050 0.78% 0.080 1.59% 0.124 1.60%

relative diff. relative diff. relative diff. relative diff. relative diff.
Corr.1 0.45% 0.004 0.49% 0.007 0.39% 0.007 0.83% 0.019 0.86% 0.133
Corr.2 -2.76% -0.022 -3.65% -0.038 -5.26% -0.060 -3.60% -0.059 -4.57% -0.078
Corr.3 0.22% 0.002 1.11% 0.017 0.78% 0.016 1.59% 0.038 1.60% 0.045

5y1y 2y 3y 4y

5y

4y

Table 5:Largest relative differences and their levels of the third order approximations. Table 5:Largest relative differences and their levels of the third order approximations. Table 5:Largest relative differences and their levels of the third order approximations. Table 5:Largest relative differences and their levels of the third order approximations. 

Table 4:Largest differences/relative differences of the third order approximations.Table 4:Largest differences/relative differences of the third order approximations.Table 4:Largest differences/relative differences of the third order approximations.Table 4:Largest differences/relative differences of the third order approximations.

Table 3:Largest relative differences and their levels of the second order approximations. Table 3:Largest relative differences and their levels of the second order approximations. Table 3:Largest relative differences and their levels of the second order approximations. Table 3:Largest relative differences and their levels of the second order approximations. 

1y 2y 3y 4y
Table 2:Largest differences/relative differences of the second order approximations.Table 2:Largest differences/relative differences of the second order approximations.Table 2:Largest differences/relative differences of the second order approximations.Table 2:Largest differences/relative differences of the second order approximations.
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Figure 1: Probability Density Function of FX(Case ii) Corr.1 1y
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Figure 2: Probability Density Function of FX(Case ii) Corr.1 2y
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Figure 3: Probability Density Function of FX(Case ii) Corr.1 3y
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Figure 4: Probability Density Function of FX(Case ii) Corr.1 4y
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Figure 5: Probability Density Function of FX(Case ii) Corr.1 5y
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Figure 6: Probability Density Function of FX(Case ii) Corr.2 1y
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Figure 7: Probability Density Function of FX(Case ii) Corr.2 2y

A.E.(1st)

-0.005000 

0.000000 

0.005000 

0.010000 

0.015000 

0.020000 

50 70 90 110 130 150 

de
n
si

ty
 f
u
n
c
ti
o
n

FX_N+1N+1N+1N+1((((T_N+1N+1N+1N+1))))

A.E.(1st)

A.E.(2nd)

A.E.(3rd)

M.C.



0.020000 

0.025000 

0.030000 

de
n
si

ty
 f
u
n
c
ti
o
n

Figure 8: Probability Density Function of FX(Case ii) Corr.2 3y
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Figure 9: Probability Density Function of FX(Case ii) Corr.2 4y
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Figure 10: Probability Density Function of FX(Case ii) Corr.2 5y
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Figure 11: Probability Density Function of FX(Case ii) Corr.3 1y
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Figure 12: Probability Density Function of FX(Case ii) Corr.3 2y
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Figure 13: Probability Density Function of FX(Case ii) Corr.3 3y
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Figure 14: Probability Density Function of FX(Case ii) Corr.3 4y
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Figure 15: Probability Density Function of FX(Case ii) Corr.3 5y
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Figure 19: Absolute Values of Relative Differences:Corr.2 ITM
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Figure 20: Absolute Values of Differences:Corr.3 ITM
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Figure 21: Absolute Values of Relative Differences:Corr.3 ITM
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Figure 24: Absolute Values of Differences:Corr.2 ATM
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Figure 25: Absolute Values of Relative Differences:Corr.2 
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Figure 26: Absolute Values of Differences:Corr.3 ATM
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Figure 27: Absolute Values of Relative Differences:Corr.3 
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Figure 30: Absolute Values of Differences:Corr.2 OTM
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Figure 31: Absolute Values of Relative Differences:Corr.2 
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Figure 32: Absolute Values of Differences:Corr.3 OTM
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Figure 33: Absolute Values of Relative Differences:Corr.3 
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Date 26-Jun-06 S(0) 116.40

Calibration(1y,2y,3y,5y)

Parameters Correlations Domestic IntForeign Int. Spot Forex Spot Forex's Vol.
σ(0)=θ 8.3% Domestic Int. 1 0.477 -0.776 -0.413
κ 1.113 Foreign Int. 1 -0.222 0.851
ω* 0.294 Spot Forex 1 -0.325

Spot Forex's Vol. 1

Market Implied Volatilities Model Implied Volatilities
Delta 10 25 50 25 10 Delta 10 25 50 25 10

1y 11.51% 9.85% 8.73% 8.20% 8.13% 1y 11.39% 9.79% 8.75% 8.20% 8.20%
2y 12.15% 10.09% 8.73% 8.01% 8.00% 2y 12.20% 10.20% 8.72% 7.95% 8.04%
3y 12.30% 10.26% 8.73% 7.91% 7.84% 3y 12.43% 10.38% 8.80% 7.83% 7.77%
5y 12.85% 10.83% 8.88% 7.78% 7.36% 5y 12.71% 10.70% 9.00% 7.72% 7.40%

Differences
Delta 10 25 50 25 10

1y -0.12% -0.06% 0.03% 0.00% 0.07%
2y 0.05% 0.11% -0.01% -0.07% 0.03%
3y 0.13% 0.12% 0.07% -0.08% -0.06%
5y -0.14% -0.12% 0.13% -0.06% 0.04%

Table 6: Calibrated parameters and Implied volatilities on Jun 26 2006.



Figure 34: Market and Model Smiles on Jun 26 2006.

Figure 35: Market surface and Model surface on Jun 26 2006.

Calibration To Market 1y

6.00%

8.00%

10.00%

12.00%

14.00%

10 25 50 25 10

Deltas:ITM-ATM-OTM for Calls

Calibration To Market 2y

6.00%

8.00%

10.00%

12.00%

14.00%

10 25 50 25 10

Deltas:ITM-ATM-OTM for Calls

Market

ae

Calibration To Market 3y

6.00%

8.00%

10.00%

12.00%

14.00%

10 25 50 25 10

Deltas:ITM-ATM-OTM for Calls

Calibration To Market 5y

6.00%

8.00%

10.00%

12.00%

14.00%

10 25 50 25 10

Deltas:ITM-ATM-OTM for Calls

Market

ae

10
25

50
25

10
1y

3y

5.00%

7.00%

9.00%

11.00%

13.00%

15.00%

I.V.

Delta Maturity

Market Implied Volatilities(I.V.)

10
25

50
25

10
1y

3y

5.00%

7.00%

9.00%

11.00%

13.00%

15.00%

I.V.

Delta Maturity

Model Implied Volatilities(I.V.)

13.00%-15.00%

11.00%-13.00%

9.00%-11.00%

7.00%-9.00%

5.00%-7.00%



Date 5-Jul-06 S(0) 115.17

Calibration(1y,2y,3y,5y)

Parameters Correlations Domestic IntForeign Int. Spot Forex Spot Forex's Vol.
σ(0)=θ 8.4% Domestic Int. 1 -0.123 -0.888 -0.443
κ 1.054 Foreign Int. 1 -0.194 0.816
ω* 0.286 Spot Forex 1 -0.372

Spot Forex's Vol. 1

Market Implied Volatilities Model Implied Volatilities
Delta 10 25 50 25 10 Delta 10 25 50 25 10

1y 11.55% 9.94% 8.78% 8.19% 8.05% 1y 11.42% 9.79% 8.74% 8.14% 8.08%
2y 12.20% 10.08% 8.70% 7.98% 8.00% 2y 12.29% 10.13% 8.63% 7.85% 7.98%
3y 12.37% 10.23% 8.70% 7.88% 7.91% 3y 12.56% 10.33% 8.71% 7.73% 7.75%
5y 13.11% 10.95% 8.90% 7.75% 7.35% 5y 12.99% 10.81% 9.06% 7.75% 7.43%

Differences
Delta 10 25 50 25 10

1y -0.13% -0.15% -0.04% -0.05% 0.03%
2y 0.10% 0.06% -0.07% -0.13% -0.02%
3y 0.19% 0.10% 0.01% -0.15% -0.16%
5y -0.13% -0.13% 0.16% 0.01% 0.08%

Table 7: Calibrated parameters and Implied volatilities on Jul 05 2006.



Figure 36: Market and Model Smiles on Jul 05 2006.

Figure 37: Market surface and Model surface on Jul 05 2006.
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