
CIRJE Discussion Papers can be downloaded without charge from:

http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-478

On the estimation of a large sparse Bayesian
system: the Snaer program

Dmitry Danilov
Eurandom, Eindhoven University of Technology

Jan R. Magnus
Tilburg University

February 2007

On the estimation of a large sparse Bayesian

system: the Snaer program∗

Dmitry Danilov
Eurandom, Eindhoven University of Technology

Jan R. Magnus

Department of Econometrics & OR, Tilburg University

and Department of Economics, University of Tokyo

February 26, 2007

∗An early version of this paper was presented at the 3rd IASC World Conference

on Computational Statistics & Data Analysis, Cyprus, October, 2005. We thank the

participants for their constructive comments. We are grateful to Jan van Tongeren for his

long-term support in this project.

1

AMS Subject Classifications: 62F15, 65F50, 93A15, 62F30.

Key words: Bayesian linear estimation, sparse matrices, large-scale op-
timization, nonlinear constraints.

Abstract: The Snaer program calculates the posterior mean and variance
of variables on some of which we have data (with precisions), on some we
have prior information (with precisions), and on some prior indicator ratios
(with precisions) are available. The variables must satisfy a number of exact
restrictions. The system is both large and sparse. Two aspects of the sta-
tistical and computational development are a practical procedure to solve a
linear integer system, and a stable linearization routine for ratios. We test
our numerical method to solve large sparse linear least-squares estimation
problems, and find that it performs well, even when the n× k design matrix
is large (nk ≈ 227.5).

Corresponding author: Jan R. Magnus, CentER and Department of
Econometrics & OR, Tilburg University, P.O. Box 90153, 5000 LE Tilburg,
The Netherlands. Phone: +31-13-466-3092, fax: +31-13-466-3066, e-mail:
magnus@uvt.nl.

2

1 Introduction

Suppose we are given a system of latent variables to be estimated. The
information consists of incomplete data (with precisions), priors on a subset
of the variables or linear combinations thereof (with precisions), and exact
linear restrictions. Some of the priors are so-called indicator ratios, hence
nonlinear.

The system that we are going to be interested in is large and sparse. In
this context, a system with 26 variables and 212 observations, thus giving
218 ≈ 260,000 entries in the design matrix is not considered to be large. On
the other hand, a system with 211 variables and 213 observations, thus giving
224 ≈ 16.8 million entries in the design matrix is considered large.

Our system is sparse, because information is often available on one vari-
able at a time, and restrictions are often definitions involving only a small
number of variables. A matrix is sparse when it has many structural zeros. If
a p×n matrix possesses s structural zeros, then the matrix can be stored as a
(pn−s)×3 matrix, where the i-th row contains the row-index, column-index,
and value of the i-th nonzero entry. This is often useful if storage space is
more important than access speed. The number s/(pn) is called the sparsity
of the matrix.

In this paper we analyze how we can estimate such a large and sparse
system efficiently and accurately. The analysis contains both statistical and
computational aspects. The statistical problem was first considered by Mag-
nus, Van Tongeren, and De Vos (2000), but the sparse and large-dimension
aspects were not considered in that paper. In addition, a number of their
proposed solutions — especially for the treatment of indicator ratios — do
not work well in large dimensions. Also, the Bayesian solution involves dif-
ficult inversions that can be avoided by rewriting the system in a different
format. The purpose of this paper is to describe both the statistical and the
computational aspects, and to perform tests for the stability, accuracy, and
speed of the proposed routines.

The concept of sparsity is now widespread in modern numerical meth-
ods, and huge sparse matrices often appear in science and engineering when
solving problems of mathematical physics and computational chemistry. Re-
cently, large sparse matrices have become important in economics, for exam-
ple in studying longitudinal samples of over one million workers from more
than 500,000 employing firms; see Abowd, Kramarz, and Margolis (1999) and
Abowd, Creecy, and Kramarz (2002), using an algorithm due to Dongarra,
Duff, Sorenson, and Van der Vorst (1991). There exists a large literature
on sparse matrices. Some recent references can be found in Björck (1996,
Chapters 6 and 7) and Pauletto (1997).

3

The search for accurate and fast software for large and sparse linear es-
timation problems was driven by the difficulties encountered in estimating
national accounts data, especially in developing countries, where one may
encounter 5000 or more variables and 20,000 observations. The relevant ma-
trices in such applications are sparse but not structured, that is they do not
have a Kronecker, Toeplitz, or other well-known structure. The literature on
solving models with structured matrices utilizes the fact that iterative algo-
rithms — which require only matrix-vector products — can provide storage
or computational advantages, but since we only consider general (nonstruc-
tured) large and sparse matrices we cannot benefit from these advantages.

The Snaer (Software for National Accounts Estimation and Reconcilia-
tion) program, developed for this purpose, thus calculates the posterior mean
and variance of variables, some of which are given as data (with precisions),
on some we have prior information (with precisions) or prior indicator ratios
(with precisions), and exact restrictions apply.

Our new theory for the estimation of national accounts has a number of
characteristics:

• It specifies data and their precisions, in addition to priors and their
precisions;

• It allows indicator ratios (with precisions) as input priors;

• It takes full account of all accounting identities;

• Solutions are continuous rather than discrete;

• It allows for multiple priors on variables or linear combinations of vari-
ables;

• The posterior estimates take all prior and data input into account and
come with precisions;

• The system is transparent, flexible, and fast;

• Sensitivity analysis is easy to perform, and alternative scenarios may
be analyzed;

• It can be applied without major alterations in existing compilation
methods.

A first major application of the methodology and the software will be in St
Vincent; see Magnus, Van Tongeren, Giesberts, and Danilov (2007). But also
applications in developed countries are now underway. These applications

4

concern not only large economic data sets for national accounts, but also
input-output analysis, flow-of-funds analysis, and the integration of quarterly
and annual accounts.

There are many other potential applications of the proposed method, out-
side national accounting, for example in large employment matrices, material
flow analysis in environmental accounting, socio-economic and other satellite
accounts, integration of quarterly and annual accounts, business accounting,
and demographic projections.

The plan of this paper is as follows. We formally describe the set-up in
Section 2. In Sections 3 and 4 we present two solutions. First a Bayesian
solution to a Bayesian problem. Then an equivalent least-squares solution,
which involving less inversions and is much easier to estimate. The imple-
mentation of the theory together with some extensions and refinements is
discussed in Section 5. An important aspect of our theory is the possibility
to include indicator ratios as priors. These ratios must be linearized, but
this can be done in many ways. Two solutions and their merits are presented
in Section 6. In Sections 7 and 8 we perform Monte Carlo experiments to
test the accuracy and speed of our proposed sparse least-squares routine
(which also calculates variances). Section 9 concludes and discusses possible
extensions.

2 Set-up: data, priors, and restrictions

We consider a vector x of n latent variables to be estimated. Data are
available on p components (or linear combinations of components) of x. Let
d1 denote the p × 1 data vector, generated by the measurement equation

d1|x ∼ Np(D1x, Σ1). (1)

Typically, the p×n matrix D1 is a selection matrix, say D1 = (Ip, 0), so that
D1x is a subvector of x, but this is not required. Neither is it required that the
matrix D1 has full row-rank; in fact, p may be larger than n. Measurements
are unbiased in the sense that E(d1|x) = D1x. The p × p matrix Σ1 denotes
a positive definite (hence nonsingular) variance matrix, typically (but not
necessarily) diagonal.

In addition to the p data, we have access to two further pieces of infor-
mation: prior views concerning the latent variables or linear combinations
thereof, and deterministic (accounting) constraints. In particular, we have
m1 random priors:

A1x ∼ Nm1(h1, H1) (2)

5

and m2 exact restrictions:

A2x = h2 (a.s.), (3)

in total m := m1 + m2 pieces of prior information.
We shall assume that the m1 × m1 matrix H1 is positive definite (hence

nonsingular) and that the m2×n matrix A2 has full row-rank m2. This guar-
antees that the exact restrictions are linearly independent and thus form a
consistent set of equations. Neither of these two restrictions constitutes any
loss of generality, because if H1 is singular some of the priors can be inter-
preted as exact restrictions, and if A2 does not have full row-rank, we simply
throw away the redundant restrictions, obviously without loss of information.

In order to identify all n variables from the information (data and priors)
we need at least n pieces of information: m + p ≥ n. But this is not suffi-
cient for identification, because some of the information may be on the same
variables. The condition

rk




D1

A1

A2



 = n (4)

is necessary and sufficient for identification.

3 Bayesian solution

In order to estimate the n latent variables x, we define

A :=

(
A1

A2

)
, h :=

(
h1

h2

)
, H :=

(
H1 0
0 0

)
,

and we make the additional assumption that

rk(A) = m,

which, of course, implies that both A1 and A2 have full row-rank. In fact,
as shown in Danilov and Magnus (2006), the rank condition on A is not a
binding restriction, because we can always move priors to data (and vice
versa). This condition will be dropped in the next section.

Since rk(A) = m we have m ≤ n. If m = n, then all variables are
identified. If m < n, we define a semi-orthogonal n× (n−m) matrix L such
that AL = 0 and L′L = In−m. The condition

rk(D1L) = n − m.

6

is then an alternative and equivalent identifiability condition to (4), because
the definition of L implies that

rk

(
A
D1

)
= rk(A) + rk(D1L).

From Theorem 1 of Magnus, Van Tongeren, and De Vos (2000), we know
that the posterior distribution of x is given by

x|d1 ∼ Nn(µ, V),

where
µ = A+h − (A+HA+′

+ CK)D′

1Σ
−1
0 (D1A

+h − d1) (5)

and
V = A+HA+′ − A+HA+′

D′

1Σ
−1
0 D1A

+HA+′

+ CKC ′, (6)

and the following definitions have been employed:

Σ0 := Σ1 + D1A
+HA+′

D′

1, C := In − A+HA+′

D′

1Σ
−1
0 D1,

and

K :=

{
L(L′D′

1Σ
−1
0 D1L)−1L′ if m < n,

0 if m = n.

The matrix A+ := (A′A)−1A′ denotes the Moore-Penrose inverse of A.
This is a useful theoretical result, but Equations (5) and (6) do not lend

themselves well to applications where the dimensions are large. Hence we
seek an alternative but equivalent formulation which allows us to tackle large-
dimensional problems.

4 Least-squares solution

Because of the normality assumption for both data and priors, there is no
mathematical or statistical difference between them (although there is a con-
ceptual difference); see Danilov and Magnus (2006). We may therefore move
all random priors to the data and consider a new “data” vector

d :=

(
d1

h1

)
.

Defining

D :=

(
D1

A1

)
, Σ :=

(
Σ1 0
0 H1

)
,

7

we may write the new measurement equation as

d|x ∼ Np+m1(Dx, Σ)

together with the priors (exact restrictions)

A2x = h2 (a.s.).

The Bayesian problem is then equivalent to the constrained least-squares
estimation problem of estimating x from

d = Dx + ε, ε ∼ Np+m1(0, Σ),

under the restriction A2x = h2.
In many cases, an unconstrained problem is easier to solve in large di-

mensions than a constrained problem. Thus, let

A2 = (A21 : A22),

where A21 is an m2 × (n − m2) matrix and A22 is a nonsingular m2 × m2

matrix. Partitioning x accordingly, we write the restriction as

A21x1 + A22x2 = h2,

so that

x =

(
x1

x2

)
=

(
I

−A−1
22 A21

)
x1 +

(
0

A−1
22 h2

)
≡ Qx1 + q.

Let

B := Σ−1/2D =

(
Σ

−1/2
1 D1

H
−1/2
1 A1

)
, b := Σ−1/2d =

(
Σ

−1/2
1 d1

H
−1/2
1 h1

)
.

Then the constrained problem of minimizing (d−Dx)′Σ−1(d−Dx) subject
to A2x = h2 is equivalent to the unconstrained problem

minimize ||(b − Bq) − BQx1||

with respect to x1. The solution, say µ1, is our estimator for x1 with associ-
ated variance var(µ1) = (Q′B′BQ)−1. Since x2 is a linear function of x1 we
can estimate the complete x-vector and obtain the full variance matrix V .

8

5 Implementation

Our information thus consists of p data:

d1|x ∼ Np(D1x, Σ1),

m1 random priors:
A1x ∼ Nm1(h1, H1),

and m2 exact priors:
A2x = h2 (a.s.).

We need to estimate this system taking into account that the dimensions
may be very large and that the matrices are sparse. We proceed as follows.

Step 1: Rank. Two rank-conditions need to be satisfied:

rk(A2) = m2, rk




D1

A1

A2



 = n.

If the rank condition on A2 is not satisfied, then there are redundant rows in
A2 which should be deleted. But if the second rank condition is not satisfied,
then there is insufficient information in the data and priors to estimate the
whole system, and more information needs to be acquired. The computation
of the rank of a (sparse) matrix is no trivial exercise. Several good routines
are available, for example in the NAG (2006) or Harwell (2004) libraries. Our
routine Snaer-RANK has two special features. First, it performs a prelimi-
nary (iterative) dimension reduction by looking for rows and columns with a
single nonzero entry. Second, it provides information about where rank de-
ficiencies (if any) occur, which is of great practical use in repairing the inputs.

Step 2: Scaling. The matrices Σ1 and H1 must be nonsingular. We scale by
defining

B :=

(
Σ

−1/2
1 D1

H
−1/2
1 A1

)
, b :=

(
Σ

−1/2
1 d1

H
−1/2
1 h1

)

of orders (p + m1) × n and p + m1, respectively.

Step 3: Re-ordering. If necessary, we re-order the x-variables such that the
matrix A22 in the restriction

A2x = A21x1 + A22x2 = h2

9

is a nonsingular m2 × m2 matrix. We re-order the columns of the matrices
A2 and B accordingly. There is no unique way to select m2 linearly inde-
pendent columns of A2. But some selections are more robust than others
computationally. Also, some selections require less covariances than others
in the computation of the diagonal elements of the variance matrix (Step 8).
These considerations are taken into account at the selection stage.

Step 4: Solving. The inverse of A22 appears in the formulae, but in fact
we only need the expressions A−1

22 A21 and A−1
22 h2. Hence, we solve the sparse

matrix equation
A22X = (−A21 : h2)

and we write the resulting m2 × (n − m2 + 1) matrix X as X = (Q1 : q1).
There exist a number of sparse routines to solve linear equations. Our

sparse subroutine Snaer-SOLVE builds on the existing routines, but it con-
tains two special features.

First, not only the left-hand side matrix A22 but also the right-hand side
matrix (−A21 : h2) is (or can be) sparse.

Second, there is an integer refinement possibility in the routine, based on
the fact that the matrix A22 is often an integer matrix, that is, all nonzero
elements of A22 are integers. The reason for this is that in many applications
the restrictions are in fact definitions, such as x1 = x2 +x3 +x4. The nonzero
entries in A22 are then ±1. In the case when A22 is an integer matrix, the
determinant |A22| will be an integer, and the determinant of every submatrix
of A22 will also be an integer. Hence, the adjoint A#

22 of A22 is an integer
matrix.

Now let c be a column of (−A21 : h2), all of whose nonzero elements are
integers, and let x be the corresponding column of the solution matrix X, so
that A22x = c. Then,

x = A−1
22 c =

A#
22c

|A22|
,

each element of which is the ratio of two integers. We know |A22| (integer)
and x (real) and we can improve on the solution for x using the integer fea-
ture, as follows:

(a) Compute ∆1 := |A22| and z1 := A#
22c = ∆1x;

(b) Use the fact that ∆1 and the elements of z1 are all integers, and obtain
“exact” integer solutions ∆2 and z2;
(c) Now obtain an improved solution for x = z2/∆2, each element of which
is a rational number.

10

The new solution is “exact”. This “integer smoothing” can be done for
all integer columns of the matrix (−A21 : h2).

Step 5: Multiplication. Compute the matrix and vector

Q :=

(
In−m2

Q1

)
, q :=

(
0
q1

)
,

and the matrix and vector

R := BQ, r := b − Bq.

Step 6: Minimization. We need to minimize the norm

||r − Rx1||,

the solution of which we call µ1. Notice that the matrix R has full column-
rank n − m2. The least-squares problem

min
x1

(r − Rx1)
′(r − Rx1)

can be rewritten as

min
x1

(r′r − 2r′Rx1 + x′

1R
′Rx1) ,

which in turn is equivalent to the quadratic minimization problem

min
x1

(
1

2
x′

1Hx1 − c′x1

)
,

where H := R′R and c := R′r. There are many libraries that offer routines
dealing with sparse least-squares, in particular Matlab (2002), NAG (2006),
and Harwell (2004), but they are all quite different. We offer a brief compari-
son of these routines in Sections 7 and 8. Our Snaer-OLS routine is based on
the Gould-Nocedal (1998) algorithm, which also underlies the Harwell (2004)
approach. This matrix H is decomposed as H = PLDL′P ′, where P is a
permutation matrix, L is unit lower triangular, and D is block-diagonal with
blocks of dimension one or two.

Least-squares routines typically do not compute (elements of) the vari-
ance matrix, but the Snaer-OLS routine does, in the following way. Let
e(j) denote the j-th unit vector, that is, the j-th column of In−m2 . The
j-th column v(j) of the matrix V11 := (R′R)−1 can be found by minimizing
‖e(j)−Hv(j)‖2 for all j, that is by solving the quadratic minimization problem

min
v(j)

(
1

2
v(j)′H2v(j) − e(j)′Hv(j)

)
, j = 1, . . . , n − m2,

11

whose value at the minimum should be −1/2. It is, however, faster and more
accurate to obtain the columns of V11 by minimizing ‖H−1/2e(j) −H1/2v(j)‖2

for all j, that is by solving the quadratic minimization problem

min
v(j)

(
1

2
v(j)′Hv(j) − e(j)′v(j)

)
, j = 1, . . . , n − m2,

using the Snaer-OLS algorithm. The value at the minimum equals −v
(j)
j /2.

In practice we will not need to calculate (or store) all elements of v(j). To
store all elements is a physical impossibility in large dimensions. We have
to indicate in advance which elements need to be stored. These typically
include all diagonal elements of V11 (the variances) and a selection of co-
variances. The selected covariances are either of direct interest or they are
required to calculate the diagonal (or other) elements of V22 := var(µ2). For
example, if x21 = x11 + x12, where x21 is an element of x2 and x11 and x12

are elements of x1, then we need cov(µ11, µ12) in order to calculate var(µ21).

Step 7: Completion of µ. We compute

µ2 = Q1µ1 + q1.

Step 8: Completion of V . The variance of µ is given by

V = var(µ) =

(
I
Q1

)
(R′R)−1(I, Q′

1).

But only selected elements of V are required and only selected elements of
V11 = (R′R)−1 are stored in Step 6. The subroutine Snaer-OLS automatically
selects which elements of V11 need to be stored in order to calculate the
required elements of V .

6 The treatment of ratios

One of the features of our program is that also ratios can be used as pri-
ors. This is of much practical use, for example in the estimation of national
accounts, where many ratios are used as indicators and are assumed to be
relatively stable, hence predictable.

Let x and y be two latent variables and assume information is available
on the ratio R := y/x. If this ratio is part of an otherwise linear system,
then we can either transform the linear system into a nonlinear one, or we
can linearize the ratio. Especially if the system is large, the latter option is
often more practical.

12

Thus, we consider a linearization y− rx for some suitably chosen value of
r. If information is available on the first two moments of R, the question then
becomes how to transform these moments into moments of the linearization.

Consider first the following special case. Let r denote the expected value
of R, if it exists, and suppose that R and x are independent. Then we write
y − rx = (R − r)x, so that

E(y − rx) = E(R − r) E(x) = 0

and

var(y − rx) = E(y − rx)2 = E(R − r)2 E(x2) = var(R) · (var(x) + (E x)2).

Hence, in this special case, we easily obtain the moments of the linearization.
In general, however, this is less straightforward.

6.1 Bayesian solution

Suppose we have data: d|x ∼ (x, σ2) and a prior on R = y/x,

π : R ∼ (r, τ 2).

We wish to replace the prior on the ratio by a prior on its linearization, so
we consider

π′ : y − rx ∼ (0, ω2).

The question is how to choose ω2. Let us calculate the posterior moments of
y|d based on π and π′ respectively. Based on the linearization π′ we obtain
the posterior moments of y given d as

y|d ∼ (rd, r2σ2 + ω2). (7)

Notice that the two pieces of information x ∼ N(d, σ2) and y−rx ∼ N(0, ω2)
yield y ∼ N(rd, r2σ2 + ω2) if and only if x and y − rx are uncorrelated, that
is, if and only if r = cov(x, y)/ var(x).

Next we calculate the posterior moments of y|d based on π. Following
the arguments in Magnus, Van Tongeren, and De Vos (2000), we obtain

E(y|x) = rx, var(y|x) = τ 2x2.

Let z := y|x. Then the posterior moments of y|d are

E(y|d) = Ez E(d|d, z) = Ez E(y|d, x)

= Ez E(y|x) = Ez(rx) = rd (8)

13

and

var(y|d) = Ez var(y|d, z) + varz(E(y|d, z))

= Ez var(y|x) + varz(E(y|x))

= Ez(τ
2x2) + varz(rx)

= τ 2(d2 + σ2) + r2σ2. (9)

In order to reconcile (7) with (8) and (9) we must have

ω2 = τ 2(d2 + σ2). (10)

In a practical situation, we know r and τ 2, but we do not necessarily know
d and σ2 (the moments of x). If we would know the mean and variance of x,
then we could replace the prior on R by a prior on y − rx. Since we don’t
know the moments of x, we may use a simple iterative procedure, based on
the assumption that some reasonable starting values for E(x) and var(x) are
available. We use these as proxies for d and σ2 and obtain posterior moments
of all latent variables, in particular E(x) and var(x). Next, we set d = E(x)
and σ2 = var(x), recalculate the prior variance of y−rx from (10), and obtain
posterior moments again. We may continue this process until convergence.
In practice we will have not one but many indicator ratios. The iteration
procedure is then applied to all of them simultaneously.

The iterative procedure is justified by the fact that it leads to the correct
first two posterior moments. The process does not, however, always converge,
and it turns out to be rather unstable. Therefore we outline an alternative
approach, based on a different philosophy, below.

6.2 Invariance

Suppose again that the ratio y/x has a prior mean or median r, so that

Pr
(r

a
<

y

x
< br

)
= 1 − α,

where a and b are determined by the assumed prior standard deviation τ1 of
the ratio y/x. The associated confidence region is given by

C1 = k
(
br − r

a

)
= kr (b − 1/a)

for some constant k. Let us assume that y and x are positive (almost surely)
and that a > 1, b > 1, and r > 0. This gives

Pr (−(1 − 1/a)rx < y − rx < (b − 1)rx) = 1 − α

14

with associated confidence region

C2 = k ((b − 1)rx + (1 − 1/a)rx) = krx (b − 1/a) = C1x.

We wish to “translate” the prior information on the ratio into prior informa-
tion on its linearization. Motivated by the comparison of the two confidence
bands, we assume that y− rx is distributed around zero with some standard
deviation ω1 = τ1x.

Although we have written the prior information in terms of the ratio
y/x, we could equally well have written it in terms of x/y. Two different lin-
earizations do not, in general, yield the same result. The invariance approach
demands that we obtain the same answer irrespective whether we start from
y/x or x/y.

Thus motivated, we rewrite the ratio as

Pr

(
1

br
<

x

y
<

a

r

)
= 1 − α.

with confidence region

C3 = k

(
a

r
− 1

br

)
=

k

r
(a − 1/b) .

We obtain the linearization

Pr
(
−(1 − 1/b)

y

r
< x − (1/r)y < (a − 1)

y

r

)
= 1 − α,

with associated confidence interval

C4 = k
(
(a − 1)

y

r
+ (1 − 1/b)

y

r

)
=

ky

r
(a − 1/b) = C3y.

Let τ2 be the prior standard deviation of x/y. Using the same argument as
above, we assume that the linearization x− (1/r)y is distributed around zero
with some standard deviation ω2 = τ2y.

Since ω1 = rω2, we obtain τ1x = rτ2y. If the prior values for y and x
satisfy y/x = r exactly, then this gives

τ1

r
=

τ2

1/r
,

in other words: we must choose the relative precisions of the prior ratios to
be the same.

However, the prior values for y and x will almost certainly not satisfy
y/x = r exactly. Hence, we must massage the priors y and x in such a way
that y/x = r.

15

Let y0 and x0 be the given prior values, and assume that at least one of
them is available. Now define

A :=






1
1+r2 x0 + r2

1+r2 (y0/r) if both x0 and y0 are available;

x0 if only x0 is available;

y0/r if only y0 is available.

Instead of x0 and y0, we use x̄ := A and ȳ := rA, which obviously satisfy
ȳ = rx̄. Then, letting ω1 := τ1x̄ and ω2 := τ2ȳ, the procedure will be
invariant to whether we choose y/x or x/y as our starting point. The weights
1/(1 + r2) and r2/(1 + r2) are “optimal” in the sense that if x0 and y0 are
unbiased estimates of x and y, if E(y0 − rx0) = 0, and if x0 and y0 are
uncorrelated with equal variances, then A is also an unbiased estimate of x
and its variance is minimized.

One can look at the problem in a different way. If we think of the problem
as minimizing a weighted sum of squares, then the relevant term in the
objective function is

φ1 :=
(y/x − r)2

τ 2
1

=

(
y − rx

τ1x

)2

or

φ2 :=
(x/y − 1/r)2

τ 2
2

=

(
y − rx

τ2ry

)2

.

Instead of φ1 or φ2, we use the term

φ :=

(
y − rx

τ1x̄

)2

=

(
y − rx

τ2rȳ

)2

,

where, as above, τ1 = r2τ2, and ȳ and x̄ are chosen from the “priors” such
that ȳ = rx̄. This provides further justification of the above method.

Summarizing, we start from a prior y/x ∼ (r, τ 2) and reference data x0

and y0 (only one of them needs to be available). The invariant linearization
is y − rx ∼ (0, ω2), where ω = τA. Notice that no iterations are required in
this approach. This procedure works well in practice, because it forces the
linearization to be accurate in precisely the region where it matters most.

At the end of the estimation process we obtain estimates µx for x and µy

for y, and also estimates for var(µx), var(µy), and cov(µx, µy). The posterior
moments of the ratio R = y/x are then estimated by

E(R) =
µy

µx
, var(R) =

var(µy − rµx)

A2
≤ ω2

A2
= τ 2,

where we notice that the posterior variance of R is never larger than the
prior variance, in accordance to standard Bayesian theory.

16

7 Simulation set-up for the Snaer-OLS rou-

tine

In the next two sections we describe some Monte Carlo experiments con-
cerning the Snaer-OLS routine, which we consider the most critical of the
program. Our framework is the standard linear regression model

y = Xβ + ε, ε ∼ N(0, σ2In),

from which we obtain the ordinary least-squares (OLS) estimates and their
variance matrix as

β̂ = (X ′X)−1X ′y, var(β̂) = σ2(X ′X)−1.

We shall be concerned with the situation when the n × k design matrix
X is of “large” dimension and is “sparse”. (Notice that in Sections 7 and
8 we write the dimensions of the (p + m1) × (n − m2) design matrix as
n× k, which is more common and provides and easier link to least squares.)
The two questions are whether our method, based on the Gould-Nocedal
(1998) algorithm, performs the task which it is supposed to perform, and
also whether it compares favorably to other available methods.

We wish to test our method in terms of precision and speed as a function
of the dimensions (n and k), the sparsity, and the ill-conditioning of the
problem. To conduct the simulations within the framework of the linear
regression model, we need values for the parameters β1, . . . , βk, and σ2, and
for the n × k design matrix X. Throughout the simulation experiment we
set σ2 = 1 and β = 0. Given β and σ2, we generate ε1, . . . , εn as independent
draws from a N(0, 1) distribution, and obtain y = Xβ + ε = ε. The only
difficulty in the set-up is the choice of X, because we wish to assess the
precision of the method, and hence require an X-matrix such that (X ′X)−1

is known analytically, and where the sparsity and the ill-conditioning can be
controlled.

The sparsity ds of a matrix X is defined as

ds(X) :=
number of structural zeros in X

number of elements in X
,

which is a number between 0 (full matrix, no sparsity) and 1 (null matrix,
complete sparsity). For example, the sparsity of a diagonal k × k matrix is
1− 1/k. The sparsity ds of our problem is defined as the sparsity of X. The
ill-conditioning of the problem is defined by the condition number c:

c :=

√
largest eigenvalue of X ′X

smallest eigenvalue of X ′X
.

17

Since X has full column-rank k, we can write

X =
(
X(X ′X)−1/2

)
(X ′X)

1/2 ≡ ST,

where S is a semi-orthogonal n × k matrix such that S ′S = Ik and T is a
symmetric nonsingular k × k matrix. We now construct S and T in such a
way that T (and hence X ′X) has an analytically known inverse.

7.1 Construction of T

Let T0 be the tridiagonal symmetric k × k matrix

T0 =
1

4




2 −1 0 . . . 0 0
−1 2 −1 . . . 0 0
0 −1 2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 2 −1
0 0 0 . . . −1 2




.

From Grenander and Szegö (1958, p. 67) and Samarsky (1971, p. 53), we
know that the eigenvalues λ01 > λ02 > · · · > λ0k of T0 are given by

λ0j = sin2

(
(k + 1 − j)π

2(k + 1)

)
, j = 1, . . . , k,

and the corresponding eigenvectors u1, u2, . . . , uk by

uij =

√
2

k + 1
sin

(
i(k + 1 − j)π

k + 1

)
,

where uij denotes the i-th component of uj . Let Λ0 denote the diagonal
matrix containing λ01, λ02, . . . , λ0k, and let U denote the orthogonal matrix
U = (u1, u2, . . . , uk). Then,

T0 = UΛ0U
′, T−1

0 = UΛ−1
0 U ′.

Now consider two positive numbers 0 < cmin < cmax < 1, and define the
k × k matrix T as

T := αT0 + βIk,

where

α :=
cmax − cmin

λ01 − λ0k
, β :=

λ01cmin − λ0kcmax

λ01 − λ0k
.

18

The eigenvalues λ1 > λ2 > · · · > λk of T are then given by

λj = αλ0j + β, j = 1, . . . , k,

so that, by construction, λ1 = cmax and λk = cmin. Moreover, T possesses
the same set of eigenvectors as T0, so that

T = UΛU ′, T−1 = UΛ−1U ′,

where
Λ = diag (λ1, λ2, . . . , λk) .

Note that T is a sparse matrix (tridiagonal), T 2 is also sparse (five-diagonal),
but that T−1 is a full matrix for any dimension.

7.2 Construction of S

All dimensions are integer powers of 2:

k := 2j , n := 2i+j, nk := n/k = 2i.

Let s be an integer satisfying 0 ≤ s ≤ nk. We construct the n × k matrix S
as

S :=
1√
nk




S0
...

S0

Ik
...
Ik




}
s times

}
nk − s times

where the orthogonal k × k matrix S0 is constructed as

S0 := A1A2 · · ·Ak∗ , 1 ≤ k∗ ≤ k − 1,

with

Aj :=




Ij−1 0 0
0 Q(θj) 0
0 0 Ik−j−1



 , j = 1, . . . , k∗,

and

Q(θ) =

(
cos θ − sin θ
sin θ cos θ

)
, θj =

π

2(k∗ − j + 1)
.

The sparsity of S is a weighted average of the sparsity of S0 and the sparsity
of Ik. Since the number of nonzeros in S0 is k + k∗(k∗ + 3)/2, the sparsity of
S is given by

ds(S) = 1 − 1

k
− k∗(k∗ + 3)s

2nk
,

19

which depends on the parameters s and k∗. In most simulations we choose
k∗ = k−1. For s = 0, we have maximal sparsity ds(S) = 1−1/k; for s = nk,
we have minimal sparsity ds(S) = ds(S0) = 1 − 1/k − k∗(k∗ + 3)/(2k2).

7.3 Analytical solution

Given S and T , and the definition X = ST , we find

X ′X = T ′S ′ST = T 2, (X ′X)−1 = T−2 = UΛ−2U ′ =
k∑

j=1

1

λ2
j

uju
′

j,

and

β̂ = (X ′X)−1X ′y = T−2T ′S ′y = T−1(S ′y) =
k∑

j=1

1

λj

uju
′

jz,

where z := S ′y. The estimator for σ2 can be found as

σ̂2 =
1

n − k
y′(In − X(X ′X)−1X ′)y =

1

n − k
(y′y − z′z)

and the condition number is

c :=

√
λ1(X ′X)

λk(X ′X)
=

√
λ1(T 2)

λk(T 2)
=

λ1(T)

λk(T)
=

cmax

cmin
.

Throughout the simulation experiment we set cmax = 0.9. The simulations
are then controlled by five parameters: i, j, c, s, and k∗, thus providing the
dimensions k = 2j and n = 2i+j, the bounds cmax = 0.9 and cmin = cmax/c,
and the sparsity ds (as a function of s and k∗). The condition number c can
be fully controlled, the sparsity ds can be approximately controlled.

8 Simulation results

8.1 Methods considered

We are concerned with accuracy and speed. We consider six sparse meth-
ods. The first four methods use various sparse Matlab functions. The next
method is also a sparse method, but not used in Matlab. The final method
is our Snaer-OLS routine.

20

Method 1: Exact numerical inversion (Matlab). The standard way to calcu-
late the OLS solution is to apply the explicit formulae β̂ = (X ′X)−1X ′y and
v̂ar(β̂) = σ̂2(X ′X)−1 with σ̂2 = (y−Xβ̂)′(y−Xβ̂)/(n−k), where the matrix
(X ′X)−1 is obtained by applying the Matlab matrix inversion function.

Method 2: QR decomposition (Matlab). Matlab provides another way to cal-
culate the OLS solution for linear regression through the “economy-size” QR
decomposition available as part of the regress algorithm. We write X = QR,
where Q is semi-orthogonal (Q′Q = Ik) and R is an upper triangular k × k
matrix with positive diagonal elements; see Chatterjee and Hadi (1986), and
Draper and Smith (1998, p. 94). The formulae now depend on the inversion
of the triangular matrix R and are given by

β̂ = R−1Q′y, v̂ar(β̂) = σ̂2R−1(R−1)′, σ̂2 =
y′(In − QQ′)y

n − k
.

Method 3: Least-squares minimization (Matlab). The next method considers
the numerical minimization problem

min
β

1

2
‖y − Xβ‖2.

and uses the Matlab function mldivide (\) for the optimization. More specif-
ically, the Matlab command X\y uses Householder reflections to compute
an orthogonal-triangular factorization XP = QR, where P is permutation
matrix, Q is semi-orthogonal, and R is upper triangular. Then,

β̂ = X\y = (X ′X)−1X ′y = (PR′Q′QRP ′)−1PR′Q′y

= P (R′R)−1R′Q′y = P (R\(Q′y)).

This method is thus closely related to the QR decomposition.
In order to compute the variance matrix, we require elements of the in-

verse of the matrix X ′X. Using the same Matlab algorithm mldivide, the
j-th column v(j) of V := (X ′X)−1 can be found by considering the matrix
equation (X ′X)V = Ik and solving the minimization problem

min
v(j)

1

2
‖e(j) − X ′Xv(j)‖2, j = 1, . . . , k,

where e(j) denotes the j-th unit vector, that is the j-th column of Ik. For
the calculation of β̂, methods 2 and 3 give the same numerical results, but
for the calculation of the elements of the variance matrix, the method of
computation and hence the numerical results are different.

21

Method 4: Conjugate gradient method (Matlab). Here we consider the normal
equations

X ′Xβ = X ′y.

The Matlab procedure pcg finds a nonsingular matrix P such that P ′X ′XP =
Λ (diagonal). This implies that (X ′X)−1 = PΛ−1P ′ and hence

β̂ = PΛ−1P ′X ′y = Pa,

where the j-th element of a is given by

aj =
p′jX

′y

p′jX
′Xpj

, j = 1, . . . , k.

This is the so-called direct method. In practice, if we choose the conjugate
vectors pj carefully, we may not need to compute all of them to obtain a good

approximation of β̂. Another Matlab function, the generalized minimum
residual method (gmres), is also based on solving the normal equations, and
its performance will be briefly discussed when we present the results for the
pcg method.

The variance matrix is obtained by considering the equations

X ′Xv(j) = e(j), j = 1, . . . , k,

and applying the pcg routine.

Method 5: The iterative Lanczos algorithm. The Numerical Algorithms
Group (NAG, 2006) library provides the subroutine f04qaf for solving large
sparse OLS problems. This is an iterative method, based on the bidiagonal-
ization procedure of Golub and Kahan (1965) and the Lanczos (1950) itera-
tion. In essence it is the lsqr method of Paige and Saunders (1982a, 1982b)
belonging to the family of Krylov methods; see Broyden and Vespucci (2004).

The Lanczos scheme requires a symmetric matrix, and hence we write
our system as (

I X
X ′ 0

)(
r
β

)
=

(
y
0

)
,

where r denotes the residual vector. Similarly, the variance matrix is obtained
by considering the symmetric system

X ′Xv(j) = e(j), j = 1, . . . , k.

The time taken by the routine is likely to be principally determined by the
time taken in APROD, which is called twice on each iteration. APROD

22

performs a matrix-vector product, where the sparsity is explicitly taken into
account. Although the Lanczos process will usually converge more quickly
if some form of preconditioning is employed (Broyden and Vespucci, 2004,
Chapter 11), we do not use preconditioners because we are investigating the
performance of methods for general sparsity patterns, while preconditioners
are structure-dependent.

Method 6: Snaer-OLS. This is our method, based on the Gould-Nocedal
algorithm, and described before.

All computations were performed on a desktop personal computer, Intel Pen-
tium 4 processor, 2.66 GHz speed, 2 GB RAM, and endowed with Microsoft
Windows XP Professional (SP2). The Matlab results were obtained using
Matlab version 6.5, release 13. The Fortran programs were compiled using
the Compaq Visual Fortran 6.6 compiler.

8.2 Accuracy

In the first two experiments, we set

n = 2k, k = 2j , c = 100,000,

and we let j = 5, . . . , 12. The total number of elements in X thus equals
nk = 22j+1, which ranges from 211 (about two thousand) to 225 (over 33
million). Since nk = n/k = 2, we have 0 ≤ s ≤ 2. We consider the two
extremes s = 0 and s = 2, both for k∗ = k − 1.

The accuracy of the various solutions is controlled by the average relative
deviation

ARD =

√√√√1

k

k∑

j=1

(v̂jj/vjj − 1)2,

where v̂jj denotes the j-th diagonal element of V̂ := σ̂2(X ′X)−1 in one of
the six algorithms, and vjj denotes its true value. The ARD measure thus

takes into account both the accuracy of β̂ (through σ̂2) and the accuracy
of (X ′X)−1. We have chosen the diagonal elements of the variance matrix
for simplicity, but also because of their obvious practical importance. In the
national accounts applications we always calculate the diagonal elements of
(X ′X)−1, but only occasionally some of the offdiagonal elements. Controlling
the accuracy of the variances is therefore our primary concern.

The accuracies are reported in Table 1 for very sparse systems (s = 0)
in the top panel and less sparse systems (s = 2) in the bottom panel. In

23

Matlab NAG Snaer-OLS
j 1 2 3 4 5 6 sparsity

5 2.24 0.000015 2.24 2.38 4.58 2.32 0.9082
6 2.49 0.000004 2.49 2.51 22.4 2.51 0.9536
7 1.57 0.000070 1.57 1.56 174 1.76 0.9767
8 1.42 0.000006 1.42 1.38 9,984,000 1.40 0.9883
9 4.05 0.000031 4.05 4.01 — 3.97 0.9941
10 2.42 0.000015 2.42 2.43 — 2.39 0.9971
11 0.81 0.000056 0.81 0.80 — 0.63 0.9985
12 — — — — — 1.45 0.9993
5 0.56 0.000015 0.56 0.45 859,670 0.14 0.4248
6 0.28 0.000031 0.28 0.17 7,622,500 0.61 0.4617
7 0.07 0.000025 0.07 0.05 9,670,600 0.14 0.4807
8 0.03 0.000006 0.03 0.02 — 0.26 0.5419
9 0.06 0.000029 0.06 0.06 — 0.21 0.7435
10 0.08 0.000016 0.08 0.07 — 0.16 0.8744
11 0.07 0.000008 0.08 0.08 — 0.36 0.9412

Table 1 — Relative accuracy ARD (×10−7), n = 2k, k = 2j,
c = 100,000, and s = 0 (top panel) and s = 2 (bottom panel).

the top panel the sparsity increases from 90.8% to 99.9% as the dimension
increases. Methods 2 (QR) is the most accurate, while the Lanczos algorithm
(method 5) is very inaccurate and has not been calculated for j > 8. (The
related Matlab lsqr function behaves similarly and does not reach acceptable
accuracy for any reasonable choice of tolerances and number of iterations.)
An analysis of the breakdown causes of the Lanczos method can be found
in Broyden and Vespucci (2004, pp. 24–26). The other methods (1, 3, 4,
and 6) are all of the same degree of accuracy, indicating that on average
v̂jj/vjj ≈ 1.0000001, which seems sufficiently accurate. If the system becomes
large, all methods except Snaer-OLS break down due to memory allocation
restrictions. The accuracy of the gmres function, related to pcg (method 4),
is comparable with pcg.

In the bottom panel (s = 2) there is much less sparsity, ranging only
from 42.5% for j = 5 to 94.1% for j = 11. The conclusions are the same as
for the sparse system. Clearly, a sparse procedure will be very inefficient (in
terms of computing time) when employed in a nonsparse situation, but the
accuracy seems unaffected.

The chosen accuracy measure ARD is quite robust. If instead we calculate
the average squared deviation taking all elements of the variance matrix, this

24

produces only a marginal increase. For example for j = 8 and s = 0 (line 4
from the top in Table 1), the alternative measure gives 1.44 · 10−7 instead of
1.42 · 10−7 for method 1 and has essentially no effect on method 3 and other
methods.

8.3 Tolerances

In the first three Matlab routines (exact, QR, and mldivide) no tolerances
can be set, so that the defaults must be used.

The pcg algorithm was used with tolerance 1.0D-15 and the maximum
number of iterations: 5000 for j < 9, 10,000 for j = 9, 20,000 for j = 10,
and 120,000 for j = 11.

For NAG f04qaf the tolerances tol1 and tol2 were set to 1.0D-14 and
1.0D-15, respectively, and the routine accepts β̂ as a solution of X ′Xβ = X ′y
if it is estimated that one of the following two conditions is satisfied:

‖r‖ ≤ tol1‖X‖ · ‖β̂‖ + tol2‖y‖, ‖X ′r‖ ≤ tol1‖X‖ · ‖r‖,

where r := y − Xβ̂ is the residual vector. The parameter conlim is the
upper limit on condition number of X, and was set to conlim = 1.0D+12.
The parameter itnlim is the upper limit on the number of iterations and was
set to itnlim = 1,000,000. Further reduction in tolerances and increase in
iteration and condition numbers did not lead to higher accuracy.

For the Snaer-OLS functions the default tolerances have been used.

8.4 Computing time

The computing time (in seconds) that each method requires is measured as
follows. For the Matlab procedures 1–4, we employ the tic and toc functions:
tic saves the current time that toc uses later to measure the elapsed time that
Matlab takes to complete the required operations. For the NAG-Lanczos (5)
and Snaer-OLS (6) routines we use the RTC function.

Naturally, computing time grows with the dimension. In Figure 1 we
present the computing time T as a function of the dimension k in the sparse
case (s = 0). The figures are plotted on a log-log scale, where j := log k
and τ := log T are logarithms to base 2, so that k = 2j and T = 2τ . The
relationship on this scale appears to be close to linear. This suggests that
T ≈ constant × ((1 − ds)nk)δ. We expect δ > 1, because all elements of
the matrix must be evaluated at least once. A value of δ close to one thus
indicates a near-optimal slope; the lower is δ, the faster is the method. The
Gould-Nocedal method (Snaer-OLS) is the best in this sense with δ = 1.9.

25

5 6 7 8 9 10 11 12

−10

−5

0

5

10

15

20

j

lo
g

T

1

23

4

5

6

Figure 1 — Computing time, k = 2j, n = 2k, c = 100,000, and s = 0.

For large systems, say when k = 212 and n = 213, exact inversion
(method 1) and QR (method 2) break down due to memory allocation prob-
lems. The Lanczos algorithm (method 5) breaks down earlier, but for another
reason: the accuracy becomes unacceptably low, as we have seen. For large
sparse systems with j = 12 or larger (giving an X-matrix with 33.6 million
or more entries), only Snaer-OLS works. For j = 11, all methods except the
NAG routine work with reasonable and comparable accuracies except the QR
method which is much more accurate (see Table 1). However, the computing
times of the methods differ greatly. Method 4 takes 158 hours, to complete
its calculations. (For the gmres function, related to pcg of method 4, the
number of iterations required and thus the computation time is so large that
the method becomes unusable for j > 8.) In contrast, method 3 takes 78 sec-
onds, while Snaer-OLS’s Gould-Nocedal method 6 only requires 2.1 seconds,
and thus performs best for large sparse systems.

Figure 2 illustrates the performance of the methods in a less sparse situa-
tion, where s = 2. Computations have only been performed for j ≤ 11. The
exact (1) and QR (2) routines work best here, while the Lanczos method,
again, was not able to reach sufficient accuracy. Snaer-OLS’s Gould-Nocedal
method is not the favorite choice now.

Let us consider the largest system, where j = 11, so that k = 211 and
n = 212, and compare the sparse situation (Figure 1, sparsity 94.1%) with

26

5 6 7 8 9 10 11

−10

−5

0

5

10

15

20

j

lo
g

T

1

2

3

4

5

6

Figure 2 — Computing time, k = 2j, n = 2k, c = 100,000, and s = 2.

the less sparse situation (Figure 2, sparsity 99.8%). All methods take longer
in the less sparse situation. In particular, Snaer-OLS’s method requires 2
seconds in the sparse situation and 26 minutes in the less sparse situation.
Apparently, a sparsity of 94% is not sufficient for a sparse procedure to work
well. What degree of sparsity, then, is sufficient? Our experiments suggest
that a matrix should be called “sparse” when at least 98% or 99% of its
elements are structural zeros. With sparsity thus defined, a sparse method
will work well on a sparse matrix.

8.5 Dimension limitations

All methods are constrained by computer memory limitations. When a non-
sparse method is used, Matlab is unable to store an n × k matrix when
nk > 225. For example, a matrix with k = 213 (about 8000) and n = 2k or
with k = 212 (about 4000) and n = 8k can not be stored.

This upper bound also provides a limit to the number of elements in the
coordinate storage representation of a sparse matrix. Since three numbers
are required to store a sparse element (row index, column index, value), the
maximum number of elements in a sparse matrix in Matlab can not be more
than approximately 225/3. Snaer-OLS’s Gould-Nocedal routine, however,
works for dimensions even higher than this.

27

9 Conclusions and extensions

The Snaer program discussed in this paper calculates the posterior mean
and variance of variables on some of which we have data (with precisions),
on some we have prior information (with precisions), and on some prior
indicator ratios (with precisions) are available. The variables must satisfy a
number of exact restrictions. The system is both large and sparse.

Two aspects of the statistical and computational development are a prac-
tical procedure to solve a linear integer system, and a stable linearization
routine for ratios.

We tested our numerical method to solve large sparse linear least-squares
estimation problems, and found that it performs well, even when the n × k
design matrix is large (nk > 223). In fact, Snaer-OLS can handle design
matrices of dimension 16,000 × 12,000, where nk ≈ 227.5.

Our procedures work well if the system is sparse, and in this context we
call a matrix “sparse” when at least 98% or 99% of its elements are structural
zeros.

We now discuss three practical difficulties in applying our methods: how
to obtain prior precisions, how to deal with skewness, and how to include
dynamics in the system.

Prior precisions. A major advantage but also a major challenge is that we
allow priors and prior precisions. The priors themselves (that is, the means
of the priors) are based on expert opinion, historical data, neighboring infor-
mation, or otherwise. Their precisions are more difficult to obtain.

If exact precisions are available, then we can use these. But in practice we
will only have indications. For example, banking data are more precise than
survey data. For practical applications we adopt a small number (say four)
levels of precision, defined by the coefficient of variation (CV), that is, the
ratio of the standard deviation to the mean: CV = σ/µ. The coefficient of
variation is a dimensionless number that allows comparison of the variation
of populations that have significantly different mean values, and it is often
used in the context of the normal distribution when the means are positive
(as in our applications).

A problem arises when the mean is near zero, because the coefficient of
variation then becomes sensitive to changes in the standard deviation; in
that case we have to assign precisions on an ad hoc basis.

We also have to decide which values are appropriate for the four levels of
precision. This depends on the situation and requires expert knowledge of
the data.

28

Recall that the variance of µ is given by

var(µ) = σ2

(
I
Q1

)
(R′R)−1(I, Q′

1),

where, up to now, we have set σ2 = 1. In fact we may estimate σ2 by the
usual unbiased estimator as

σ̂2 =
||r − Rµ1||

p + m1 + m2 − n
.

Including σ2 implies that the prior precisions only need to be assigned in
relative terms rather than in absolute terms, thus greatly improving their
credibility.

In practical applications one will usually only define prior precisions and
not also correlations, which seems even more demanding. But there is no
theoretical constraint to include correlations if they appear to be available.

Skewness. Our data and priors are assumed to be normal, hence symmetric.
This assumption allows us to rewrite the problem in a manageable format so
that we can estimate very large systems. But there is also a cost, because a
number of data and priors are known to be skewed. Although we can find ad
hoc solutions by introducing indicator ratios which provide a one-directional
force, the general problem remains unresolved.

Dynamics. There is no problem in combining data from various years and
define the interactions. We simply think of xt and xt−1 as two different vari-
ables, linked by some ratio or linear relationship. This allows a simple form
of dynamics in the system.

Finally we briefly discuss four topics that are currently under investiga-
tion as part of the Snaer program.

Sensitivity analysis. The program make it easy to assess how small changes
in one assumption will work through the system and affect one or more key
variables and their precisions. For example, if more precise information were
available on a set of variables (say by financing a survey), then we can cal-
culate the impact of these improved precisions before the survey has in fact
taken place. The improved precisions of a subset of the data may or may not
matter for the key variables in our system — it is hard to decide in such a
large system with so many constraints. But in our program such assessments
are relatively easy to perform.

29

Aggregation and hierarchy. On the whole there is a tendency to believe
that the more data the better. Certainly this is the view in national accoun-
tants circles. But is it true? How useful is it to work with large (micro) data
sets when we are primarily interested in macro estimates? How much do the
(often not very precise) micro data help in improving the macro estimates?
Of course, it depends. But precisely on what does it depend in practical
nonlinear situations? This we don’t know yet.

Forecasting. The set-up and focus of this paper is estimation, not forecasting.
We want to estimate last year’s national accounts. In essence, however, our
procedure is a forecasting (more accurately, prediction) procedure. Given all
available information, we provide the best possible forecast at a particular
point in time. If more information becomes available a new estimate (fore-
cast) can be produced quickly. The same set-up and software can then also
be used to produce next year’s national accounts, of course primarily based
on priors because data will not yet be available. This is unusual, but it will
be useful in policy debates based on the national accounts.

Interaction between data collection and estimation. Data collection and data
analysis are typically performed by different groups of experts. Data collec-
tion is the expertise of national accountants working in national statistics
offices or in international organizations like the United Nations. Data anal-
ysis and economic modeling is the expertise of academics at universities and
other research environments. How do the data collection process and the
subsequent econometric analysis interact? The econometrician usually takes
the data as given, but in reality the data are also based on models, and
these could be closely correlated with the research question of the econome-
trician. This can have serious effects on the reliability and interpretation of
the analysis.

References

Abowd, J.M., R.H. Creecy, and F. Kramarz (2002), Computing person and
firm effects using linked longitudinal employer-employee data, Cornell
University Working Paper, Ithaca, NY.

Abowd, J.M., F. Kramarz, and D.N. Margolis (1999), High wage workers
and high wage firms, Econometrica, 67, 251–333.

Björck, Å. (1996), Numerical Methods for Least Squares Problems, SIAM,

30

Philadelphia, PA.

Broyden, C.G. and M.T. Vespucci (2004), Krylov Solvers for Linear Alge-
braic Systems, Elsevier, Amsterdam.

Chatterjee, S. and A.S. Hadi (1986), Influential observations, high leverage
points, and outliers in linear regression, Statistical Science, 1, 379–416.

Danilov, D. and J.R. Magnus (2006), Some equivalences in linear estimation,
submitted for publication.

Dongarra, J.J., I.S. Duff, D.C. Sorenson, and H.A. van der Vorst (1991),
Solving Linear Systems on Vector and Shared Memory Computers,
SIAM, Philadelphia.

Draper, N.R and H. Smith (1998), Applied Regression Analysis, third edi-
tion, John Wiley, New York.

Golub, G.H. and W. Kahan (1965), Calculating the singular values and
pseudo-inverse of a matrix, SIAM Journal on Numerical Analysis, 2,
205–224.

Gould, N.I.M. and J. Nocedal (1998), The modified absolute-value factor-
ization for trust-region minimization. In: R. De Leone, A. Murli,
P.M. Pardalos, and G. Toraldo (eds.), High Performance Algorithms
and Software in Nonlinear Optimization, Kluwer Academic Publishers,
Dordrecht, 225–241.

Grenander, U. and G. Szegö (1958), Toeplitz Forms and Their Applications,
University of California Press, Berkeley and Los Angeles.

Harwell Subroutine Library (HSL) (2004). AspenTech Ltd, Reading, UK.

Lanczos, C. (1950). An iteration method for the solution of the eigen-
value problem of linear differential and integral operators, Journal of
Research of the National Bureau of Standards, 45, 255–282.

Magnus, J.R., J.W. van Tongeren, and A.F. de Vos (2000). National account
estimation using indicator ratios, Review of Income and Wealth, 46,
329–350.

Magnus, J.R., J.W. van Tongeren, A. Giesberts, and D. Danilov (2007).
Towards a new system of national accounts estimation, with an appli-
cation to St Vincent, in progress.

31

Matlab 6.5, Release 13 (2002). The MathWorks Inc, Natick, MA, USA.

NAG Fortran Library, Mark 21 (2006). The Numerical Algorithms Group
Ltd, Oxford, UK.

Paige, C.C. and M.A. Saunders (1982a), LSQR: An algorithm for sparse
linear equations and sparse least squares, ACM Transactions on Math-
ematical Software, 8, 43–71.

Paige, C.C. and M.A. Saunders (1982b), Algorithm 583 — LSQR: Sparse
linear equations and least-squares problems, ACM Transactions on
Mathematical Software, 8, 195–209.

Pauletto, G. (1997), Computational Solution of Large-Scale Macroecono-
metric Models, Kluwer Academic Publishers, Dordrecht.

Samarsky, A.A. (1971), Introduction to the Theory of Difference Schemes
(in Russian), Nauka, Moscow.

32

