
CIRJE Discussion Papers can be downloaded without charge from:

http://www.e.u-tokyo.ac.jp/cirje/research/03research02dp.html

Discussion Papers are a series of manuscripts in their draft form. They are not intended for

circulation or distribution except as indicated by the author. For that reason Discussion Papers may

not be reproduced or distributed without the written consent of the author.

CIRJE-F-479

The asymptotic variance of the
pseudo maximum likelihood estimator

Jan R. Magnus
Tilburg University

March 2007



The asymptotic variance of the pseudo

maximum likelihood estimator

Jan R. Magnus∗

Department of Econometrics & OR, Tilburg University

and Department of Economics, University of Tokyo

March 1, 2007

Abstract:

We present an analytical closed-form expression for the asymptotic variance
matrix in the misspecified multivariate regression model.

Keywords:

Misspecification, Robustness, Multivariate regression.

Author’s address:

Jan R. Magnus, Department of Econometrics & Operations Research, Tilburg
University, P.O. Box 90153, 5000 LE Tilburg, The Netherlands. E-mail:
magnus@uvt.nl.

∗I am grateful to Hamparsum Bozdogan of the University of Tennessee for bringing the

idea of the sandwich variance matrix within the context of the misspecified multivariate

regression model to my attention, and to two referees for their constructive and useful

comments.

1



1 Introduction

Since the classic papers of Akaike (1973), White (1982), and Vuong (1989),
there exists a growing literature devoted to the study of misspecified models.
Furthermore, during the last decade, the “sandwich” variance matrix (also
known as the “robust” variance matrix) has been shown to be the proper
variance matrix in misspecified models and has been widely used. The sand-
wich variance matrix estimation procedure was introduced by Huber (1967)
and White (1982), and it yields consistent variance matrix estimators, also
(and in particular) when the assumed model is misspecified.

The objective of this paper is to derive the analytical closed-form expres-
sion of the sandwich variance matrix within the context of the misspecified
multivariate regression model. We also derive scalar measures of the asymp-
totic variance, in particular the trace, determinant, and norm, which play
a role in the construction of information criteria. An example of such an
application is provided in Bozdogan (2007), where the information complex-
ity (ICOMP) criterion is used to extend Bozdogan and Haughton’s (1998)
results from the univariate misspecified regression model to the multivariate
case.

2 Multivariate normal regression

Consider a set of n vectors y1, . . . , yn, each of order p × 1, whose first two
moments are given by

E(yi) = B′xi, var(yi) = Σ,

where B is a k × p matrix of unknown coefficients, X := (x1, . . . , xn)′ is a
nonrandom n × k matrix of full column rank k, and Σ = (σij) is a positive
definite unknown p × p matrix. The full set of coefficients is thus θ :=
((vec B)′, (vech(Σ))′)′, of order (kp + 1

2
p(p + 1)) × 1, where vech(·) denotes

the half-vec operator defined in the Appendix. Assume that yi and yj are
uncorrelated for all i 6= j, and let Y := (y1, . . . , yn)

′, of order n × p. Finally,
let n ≥ p+ k; this is a necessary condition without which the estimator Σ̂ in
(3) below would be singular. These assumptions imply that

E(Y ) = XB, var(vec Y ) = Σ ⊗ In.

If, in addition, we assume normality, then the log-likelihood function of the
sample y1, . . . , yn is given by

ℓ(θ) = −
np

2
log 2π −

n

2
log |Σ| −

1

2
tr(Y − XB)Σ−1(Y − XB)′, (1)
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see, for example, Magnus and Neudecker (1988, p. 321). The first differential
of the log-likelihood is

d ℓ = −
n

2
trΣ−1 d Σ +

1

2
tr(Y − XB)Σ−1(dΣ)Σ−1(Y − XB)′

+ trX(d B)Σ−1(Y − XB)′

=
1

2
tr
(

Σ−1(Y − XB)′(Y − XB)Σ−1 − nΣ−1
)

d Σ

+ trΣ−1(Y − XB)′X d B, (2)

leading to the first-order conditions

Σ−1(Y − XB)′(Y − XB)Σ−1 = nΣ−1, X ′(Y − XB)Σ−1 = 0,

and hence to the maximum likelihood estimators

B̂ = (X ′X)−1X ′Y, Σ̂ =
(Y − XB̂)′(Y − XB̂)

n
=

Y ′MY

n
, (3)

where M := In − X(X ′X)−1X ′ is the usual idempotent matrix.
Taking the differential of (2), we obtain the second differential of the

log-likelihood as

d2 ℓ = tr(d Σ−1)(Y − XB)′(Y − XB)Σ−1 d Σ −
n

2
tr(d Σ−1) dΣ

+ 2 tr(dΣ−1)(Y − XB)′X d B − tr Σ−1(d B)′X ′X dB.

Then, using the fact that E(Y −XB) = 0 and E(Y −XB)′(Y −XB) = nΣ,
we find

−E d2 ℓ =
n

2
trΣ−1(dΣ)Σ−1 dΣ + trΣ−1(dB)′X ′X d B

=
n

2
(d vech(Σ))′D′

p(Σ
−1 ⊗ Σ−1)Dp dvech(Σ)

+ (d vec B)′(Σ−1 ⊗ X ′X) d vec B, (4)

where Dp denotes the p2 × 1
2
p(p + 1) duplication matrix, defined in the Ap-

pendix. Hence we obtain

Theorem 1: In the correctly specified case, the information matrix is given
by

I =

(

Σ−1 ⊗ X ′X 0
0 n

2
D′

p(Σ
−1 ⊗ Σ−1)Dp

)

,
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and its inverse by

I−1 =

(

Σ ⊗ (X ′X)−1 0
0 2

n
D+

p (Σ ⊗ Σ)D+
p
′

)

,

where D+
p = (D′

pDp)
−1D′

p. Furthermore,

trI−1 = (trΣ)(tr(X ′X)−1) +
1

2n

(

tr Σ2 + (trΣ)2 + 2

p
∑

j=1

σ2
jj

)

and
|I−1| = 2pn− 1

2
p(p+1)|Σ|p+k+1|X ′X|−p.

Proof: The information matrix I follows from the fact that we can write (4)
as −E d2 ℓ = (d θ)′I(d θ). Its inverse follows from Magnus and Neudecker
(1988, Theorem 3.13(d), p. 50), and the trace and determinant follow from
Lemma A1 in the Appendix.

The inverse I−1 of the information matrix provides the asymptotic vari-
ance of the ML estimator in the correctly specified case. Its trace and deter-
minant provide scalar measures of the asymptotic variance, and they play a
role, inter alia, in the construction of information criteria.

3 Multivariate regression under misspecifica-

tion

We next assume the same model as in Section 2, except that we do not
assume normality. The first two moments of Y are still given by E(Y ) = XB
and var(vec Y ) = Σ ⊗ In, but the third and fourth moments of Y are not
necessarily equal to the moments that would have been implied by normality.

We estimate the unknown parameters by pseudo maximum likelihood
(PML), that is, we take the normal log-likelihood function (1) as our starting
point. The PML estimators are given by (3). The expectation of the first
differential is still zero (first-order regularity), but it is no longer true that
E(d ℓ)2 = −E d2 ℓ (second-order regularity). This is because the evaluation
of E(d ℓ)2 involves third and fourth moments.

Let us standardize Y by defining V := (Y − XB)Σ−1/2, so that

E(V ) = 0, var(vec V ) = Ipn.

Let us also introduce matrix generalizations of the usual skewness and kur-
tosis measures by defining

Γ1 := E(vec V )(vec(V ′V − nIp))
′, Γ2 := E(vec V ′V )(vec V ′V )′.
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In the special case of correct specification, this specializes to

Γ1 = 0, Γ2 = 2nNp + n2(vec Ip)(vec Ip)
′,

where Np denotes the p2 × p2 symmetrizer matrix defined in the Appendix.
If n = p = 1, the kurtosis further specializes to Γ2 = 3, as expected.

We now evaluate E(d ℓ)2. Squaring Equation (2) gives

(d ℓ)2 =

(

1

2
tr
(

Σ−1/2V ′V Σ−1/2 − nΣ−1
)

d Σ + tr Σ−1/2V ′X d B

)2

.

Then, letting ∆ := D′
p(Σ

−1/2 ⊗ Σ−1/2)Dp, we find

E(d ℓ)2 =
1

4
E
(

tr
(

Σ−1/2V ′V Σ−1/2 − nΣ−1
)

d Σ
)2

+ E
(

trΣ−1/2V ′X dB
)2

+ E
(

tr
(

Σ−1/2V ′V Σ−1/2 − nΣ−1
)

d Σ
) (

tr Σ−1/2V ′X d B
)

=
1

4
(d vec Σ)′(Σ−1/2 ⊗ Σ−1/2) var(vec V ′V )(Σ−1/2 ⊗ Σ−1/2) d vec Σ

+ (d vec B)′(Σ−1/2 ⊗ X ′) var(vec V )(Σ−1/2 ⊗ X) d vec B

+ (d vec Σ)′(Σ−1/2 ⊗ Σ−1/2)Γ ′
1(Σ

−1/2 ⊗ X) d vec B

=
1

4
(d vech(Σ))′∆D+

p (Γ2 − n2(vec Ip)(vec Ip)
′)D+

p
′
∆ d vech(Σ)

+ (d vec B)′(Σ−1 ⊗ X ′X) d vec B

+ (d vech(Σ))′∆D+
p Γ ′

1(Σ
−1/2 ⊗ X) d vec B. (5)

Thus we obtain

Theorem 2: In the misspecified case, we have

−E(d2 ℓ) = (d θ)′I d θ, E(d ℓ)2 = (d θ)′R d θ,

where I is given in Theorem 1,

R :=

(

Σ−1 ⊗ X ′X 1
2
(Σ−1/2 ⊗ X ′)Γ1D

+
p
′
∆

1
2
∆D+

p Γ ′
1(Σ

−1/2 ⊗ X) 1
4
∆D+

p Γ ∗
2 D+

p
′
∆

)

,

and Γ ∗
2 := Γ2 − n2(vec Ip)(vec Ip)

′.

Proof: The expression −E(d2 ℓ) is not affected by the misspecification, be-
cause it uses the first two moments only. Hence the matrix I is the same as
in Theorem 1. In contrast, Equation (5) implies the expression for R.

The matrix R is sometimes called the “outer-product form” of the infor-
mation matrix, because it is based on E(d ℓ)2. The “Hessian form” I is based
on −E(d2 ℓ). In the correctly specified case where Γ1 = 0 and Γ ∗

2 = 2nNp,
one verifies that R = I.
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4 Asymptotic variance of the PML estimator

We have seen that, in the presence of misspecification, second-order regularity
does not hold and that therefore I and R are not the same. The asymptotic
variance of the PML estimator θ̂ is therefore not given by either I−1 or R−1,
but by V := I−1RI−1. This important result was implied or proved in pa-
pers by Huber (1967), Jennrich (1969), Malinvaud (1970), Gallant and Holly
(1980), Burguete, Gallant, and Souza (1982), White (1982), and Gouriéroux,
Monfort, and Trognon (1984), and more recently by Gouriéroux and Mon-
fort (1995a, p. 237), Gouriéroux and Monfort (1995b, p. 170), Hendry (1995,
p. 391), and White (1996).

While the sandwich matrix V̂ := V(θ̂) evaluated at the ML estimator θ̂

provides a consistent estimator of the variance of θ̂, it is not the only con-
sistent estimator. An alternative would be to evaluate minus the Hessian
matrix H (instead of I) and the sample variance of the score contributions
R (instead of R), and to use these in constructing V := H−1RH−1, as in

White (1982). The estimator V̂ := V (θ̂) is also consistent and hence an
alternative to V̂. It is difficult to judge, in general, which estimator is to be
preferred. In our case, the alternative estimator V̂ allows for heteroskedas-
ticity and “hetero-skewness” which is excluded by our model assumptions,
and this might be one reason to prefer V̂ over V̂ . Our main result is

Theorem 3: The sandwich matrix V is given by

V =

(

Σ ⊗ (X ′X)−1 1
n
(Σ1/2 ⊗ (X ′X)−1X ′)Γ1Dp∆

−1

1
n
∆−1D′

pΓ
′
1(Σ

1/2 ⊗ X(X ′X)−1) 1
n2 ∆

−1D′
pΓ

∗
2 Dp∆

−1

)

.

The trace and determinant of V are

tr(V) = (trΣ)(tr(X ′X)−1)

+
1

n2
tr D+

p (Σ1/2 ⊗ Σ1/2)Γ ∗
2 (Σ1/2 ⊗ Σ1/2)D+

p
′

and

|V| = 2−p(p−1)n−p(p+1)|Σ|p+k+1|X ′X|−p

× |D′
p(Γ

∗
2 − Γ ′

1(Ip ⊗ X(X ′X)−1X ′)Γ1)Dp|,

and the norm of V, defined as ‖V‖ :=
√

tr(V2), is the square root of

tr(V2) = tr(Σ2) tr((X ′X)−2) +
1

n4
tr(Γ ∗

2 Q)2

+
2

n2
tr
[

(Σ ⊗ X(X ′X)−2X ′)(Γ1QΓ ′
1)
]

,
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where

Q :=
1

2
Np(Σ ⊗ Σ)Np +

1

2
(Σ1/2 ⊗ Σ1/2)Ξp(Σ

1/2 ⊗ Σ1/2)

and Ξp :=
∑p

i=1(eie
′
i ⊗ eie

′
i). The vectors ei are unit vectors, that is, so that

ei denotes the i-th column of the identity matrix Ip.

Proof: From Theorems 1 and 2 it follows that the matrix I−1R is equal
to
(

Ipk
1
2
(Σ1/2 ⊗ (X ′X)−1X ′)Γ1D

+
p
′
∆

1
n
D+

p (Σ ⊗ Σ)D+
p
′
∆D+

p Γ ′
1(Σ

−1/2 ⊗ X) 1
2n

D+
p (Σ ⊗ Σ)D+

p
′
∆D+

p Γ ∗
2 D+

p
′
∆

)

,

so that the expression for V follows from the properties of Np and Dp and
the fact that D+

p
′
∆D+

p (Σ ⊗ Σ)D+
p
′
= Dp∆

−1. Furthermore,

tr(V) = tr Σ ⊗ (X ′X)−1 +
1

n2
tr ∆−1D′

pΓ
∗
2 Dp∆

−1

= (tr Σ)(tr(X ′X)−1)

+
1

n2
trD+

p (Σ1/2 ⊗ Σ1/2)Γ ∗
2 (Σ1/2 ⊗ Σ1/2)D+

p
′
,

and

|V| = |Σ ⊗ (X ′X)−1| · |
1

n2
∆−1D′

p

(

Γ ∗
2 − Γ ′

1(Ip ⊗ X(X ′X)−1X ′)Γ1

)

Dp∆
−1|

= 2−p(p−1)n−p(p+1)|Σ|p+k+1|X ′X|−p

× |D′
p(Γ

∗
2 − Γ ′

1(Ip ⊗ X(X ′X)−1X ′)Γ1)Dp|.

Next we compute tr(V2). Denote the four blocks of V by Vij (i, j = 1, 2).
Then,

tr(V2) = tr(V2
11) + tr(V2

22) + 2 tr(V12V21).

Now,
tr(V2

11) = tr(Σ ⊗ (X ′X)−1)2 = tr(Σ2) tr((X ′X)−2),

and, using Lemma A2 in the Appendix,

tr(V2
22) =

1

n4
tr(∆−1D′

pΓ
∗
2 Dp∆

−1)2

=
1

n4
tr
[

Γ ∗
2 (Σ1/2 ⊗ Σ1/2)(DpD

′
p)

+(Σ1/2 ⊗ Σ1/2)
]2

=
1

n4
tr(Γ ∗

2 Q)2,
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and

tr(V12V21)

=
1

n2
tr
[

(Σ1/2 ⊗ (X ′X)−1X ′)Γ1Dp∆
−2D′

pΓ
′
1(Σ

1/2 ⊗ X(X ′X)−1)
]

=
1

n2
tr
[

(Σ ⊗ X(X ′X)−2X ′)(Γ1QΓ ′
1)
]

.

This completes the proof.

The sandwich matrix V thus provides the asymptotic variance of the PML
estimator in the misspecified case. As in Theorem 1, its trace, determinant,
and norm provide scalar measures of the asymptotic variance. These mea-
sures, together with other scalars such as tr(I−1R), play a crucial role in the
construction of information criteria.

An interesting special case is obtained when the true joint distribution
belongs to the linear exponential family, giving rise to the well-known quasi-
generalized PML estimators; see Gouriéroux, Monfort, and Trognon (1984,
Section 5). We do not, however, investigate this avenue in this paper.

We notice, after a little algebra, that

tr(I−1R) = tr(Ipk) +
1

2n
tr
(

D+
p (Σ ⊗ Σ)D+

p
′
∆D+

p Γ ∗
2 D+

p
′
∆
)

= pk +
1

2n
trNpΓ

∗
2 = pk +

1

2n
trΓ ∗

2 , (6)

which simplifies to

tr(I−1R) = pk +
1

2
p(p + 1) (7)

in the special case of correct specification where Γ1 = 0 and Γ ∗
2 = 2nNp.

We also notice that, in the case of correct specification,

tr(V2) = tr(Σ2) tr((X ′X)−2) +
4

n2
tr(Q2)

= tr(Σ2) tr((X ′X)−2) +
1

2n2
(trΣ2)2 +

1

2n2
tr(Σ4)

+
1

n2

∑

ij

σ4
ij +

2

n2

∑

i

(

∑

j

σ2
ij

)2

. (8)
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Appendix: The duplication matrix—some new

results

Let A be a square matrix of order p × p. The two vectors vec A and vec A′

contain the same p2 components, but in a different order. Hence there exists
a unique permutation matrix that transforms vec A into vec A′. This p2 × p2

matrix is (a special case of) the commutation matrix and is denoted by Kp;
it is implicitly defined by the operation Kp vec A = vec A′.

Closely related to the commutation matrix is the p2 × p2 symmetrizer

matrix Np with the property Np vec A = 1
2
vec(A+A′) for every square p× p

matrix A. It is easy to see that Np = 1
2
(Ip2 + Kp).

We now introduce the half-vec operator vech(·). For any p× p matrix A,
the vector vech(A) denotes the 1

2
p(p + 1) × 1 vector that is obtained from

vec A by eliminating all supradiagonal elements of A. For example, for p = 2,

vec A = (a11, a21, a12, a22)
′ and vech(A) = (a11, a21, a22)

′,

where the supradiagonal element a12 has been removed. Thus, for symmetric
A, vech(A) only contains the distinct elements of A. Now, if A is symmetric,
the elements of vec A are those of vech(A) with some repetitions. Hence,
there exists a unique p2× 1

2
p(p+1) matrix Dp, called the duplication matrix ,

that transforms, for symmetric A, vech(A) into vec A, that is,

Dp vech(A) = vec A (A = A′).

The matrices Dp and Np are connected through DpD
+
p = Np. The duplica-

tion matrix was introduced by Magnus and Neudecker (1980). A systematic
treatment of Kp, Np, and Dp, among others, is given in Magnus (1988).

We now present two new properties, both of which are being used in this
note.

Lemma A1: Let A = (aij) be a square matrix of order p × p. The de-
terminant and trace of the matrix D+

p (A ⊗ A)D+
p
′
are given by

|D+
p (A ⊗ A)D+

p
′
| = 2−

1

2
p(p−1)|A|p+1

and

tr
(

D+
p (A ⊗ A)D+

p
′
)

=
1

4
tr(A′A) +

1

4
(trA)2 +

1

2

p
∑

j=1

a2
jj.
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Proof: Since

D+
p (A ⊗ A)D+

p
′
= (D′

pDp)
−1D′

p(A ⊗ A)Dp(D
′
pDp)

−1,

we obtain, from Magnus (1988, Theorem 4.11(i)),

|D+
p (A ⊗ A)D+

p
′
| = |D′

pDp|
−1|D′

p(A ⊗ A)Dp||D
′
pDp|

−1

= 2−
1

2
p(p−1)2

1

2
p(p−1)|A|p+12−

1

2
p(p−1) = 2−

1

2
p(p−1)|A|p+1.

This proves the first result. To prove the second result, let δst denote the
Kronecker delta, and write uij = vech(eie

′
j), where ei denotes the i-th column

of the identity matrix Ip. Then,

tr
(

D+
p (A ⊗ A)D+

p
′
)

= tr
(

D+
p (A ⊗ A)Dp

) (

D′
pDp

)−1

=
1

2
tr

(

∑

i≥j

∑

s≥t

(aitajs + aisajt − δstaisajs)uiju
′
st

)(

I 1

2
p(p+1) +

p
∑

k=1

ukku
′
kk

)

=
1

2

∑

i≥j

(aijaji + aiiajj − δijaiiajj) +
1

2

p
∑

j=1

a2
jj

=
1

4

∑

ij

aijaji +
1

4

∑

ij

aiiajj +
1

2

p
∑

j=1

a2
jj

=
1

4
tr(A′A) +

1

4
(tr A)2 +

1

2

p
∑

j=1

a2
jj,

where the second equality follows from the proof of Theorem 4.9 and Theo-
rem 4.4(ii) in Magnus (1988).

Lemma A2: Letting Ξp :=
∑p

i=1(eie
′
i ⊗ eie

′
i) and αk := 1/2k, we have

[

(DpD
′
p)

+
]k

= αkNp + (1 − αk)Ξp (k = 1, 2, . . . ),

a weighted average of two idempotent matrices.

Proof: We prove the result first for k = 1. Let Sij := (eie
′
j + eje

′
i)/2.
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Then, using Theorem 4.6(ii) of Magnus (1988),

(DpD
′
p)

+ =
∑

i≥j

(vec Sij)(vec Sij)
′

=
1

2

p
∑

i=1

(vec Sii)(vec Sii)
′ +

1

2

p
∑

i=1

p
∑

j=1

(vec Sij)(vec Sij)
′

=
1

2

p
∑

i=1

(vec eie
′
i)(vec eie

′
i)
′ +

1

8

∑

i,j

(vec(eie
′
j + eje

′
i))(vec(eie

′
j + eje

′
i))

′

=
1

2

p
∑

i=1

(eie
′
i ⊗ eie

′
i) +

1

4

∑

i,j

(eie
′
i ⊗ ejej + eie

′
j ⊗ eje

′
i)

=
1

2
Ξp +

1

4
(Ip2 + Kp) =

1

2
(Ξp + Np),

since Kp =
∑p

i=1

∑p
j=1(eie

′
j ⊗ eje

′
i) by Theorem 3.2 in Magnus (1988). This

proves the result for k = 1. The general result follows by induction, using
the facts that both Np and Ξp are idempotent, and that NpΞp = ΞpNp = Ξp.
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