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Abstract

We provide a detailed summary of the large and vibrant emerging literature that
deals with the multivariate modeling of conditional volatility of financial time series
within the framework of stochastic volatility. The developments and achievements in
this area represent one of the great success stories of financial econometrics. Three
broad classes of multivariate stochastic volatility models have emerged, one that is
a direct extension of the univariate class of stochastic volatility model, another that
is related to the factor models of multivariate analysis, and a third that is based
on the direct modeling of time-varying correlation matrices via matrix exponential
transformations, Wishart processes and other means. We discuss each of the various
model formulations, provide connections and differences and show how the models
are estimated. Given the interest in this area, further significant developments can
be expected, perhaps fostered by the overview and details delineated in this paper,
especially in the fitting of high dimensional models.

Contents

1 Introduction 2

2 Basic MSV model 5
2.1 No Leverage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1



2.2 Leverage effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Heavy-tailed measurement error models . . . . . . . . . . . . . . . . . . . . . . . 13

3 Factor MSV model 16
3.1 Volatility factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2 Mean factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.3 Bayesian analysis of mean factor MSV model . . . . . . . . . . . . . . . . . . . . 21

4 Dynamic correlation MSV model 25
4.1 Modeling by reparameterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2 Matrix exponential transformation . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.3 Wishart Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.1 Standard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.3.2 Factor model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 Conclusion 33

1 Introduction

A considerable recent literature in financial econometrics has emerged on the modeling of con-

ditional volatility, spurred by the demand for such models in areas such as portfolio and risk

management. Much of the early interest centered on multivariate versions of univariate GARCH

models. These generalizations have been ably summarized in recent surveys, for example,

Bauwens, Laurent, and Rombouts (2006). More recently, a large and prolific (parallel) liter-

ature has developed around generalizations of the univariate stochastic volatility (SV) model.

A number of mutlivariate SV (MSV) models are now available along with clearly articulated

estimation recipes. Our goal in this paper is to provide the first detailed summary of these

various model formulations, along with connections and differences, and discuss how the models

are estimated. We aim to show that the developments and achievements in this area represent

one of the great success stories of financial econometrics.

To fix notation and set the stage for our discussion, the univariate SV model that forms the

basis for many MSV models is given by (Ghysels, Harvey, and Renault (1996), Broto and Ruiz

(2004) and Shephard (2004))

yt = exp(ht/2)εt, t = 1, . . . , n, (1)

ht+1 = µ + φ(ht − µ) + ηt, t = 1, . . . , n− 1, (2)

h1 ∼ N (
µ, σ2

η/(1− φ2)
)
, (3)(

εt

ηt

)
|ht ∼ N2(0,Σ), Σ =

(
1 0
0 σ2

η

)
, (4)
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where yt is a univariate outcome, ht is a univariate latent variable and N (µ, σ2) and Nm(µ,Σ)

denote respectively a univariate normal distribution with mean µ and variance σ2, and an m-

variate normal distribution with mean vector µ and variance-covariance matrix Σ. In this

model, conditioned on the parameters (µ, φ, σ2
η), the first generating equation represents the

distribution of yt conditioned on ht, and the second generating equation represents the Markov

evolution of ht+1 given ht. The conditional mean of yt is assumed to be zero because that

is a reasonable assumption in the setting of high frequency financial data. The SV model is

thus a state-space model, with a linear evolution of the state variable ht but with a non-linear

measurement equation (because ht enters the outcome model non-linearly). Furthermore, from

the measurement equation we see that Var(yt|ht) = exp(ht), which implies that ht may be

understood as the log of the conditional variance of the outcome. To ensure that the evolution

of these log-volatilities is stationarity, one generally assumes that |φ| < 1. Many other versions

of the univariate SV model are possible. For example, it is possible let the model errors have

a non-Gaussian fat-tailed distribution, to permit jumps, and incorporate the leverage effect

(through a non-zero off-diagonal element in Σ). The estimation of the canonical SV model

and its various extensions was at one time considered difficult since the likelihood function of

these models is not easily calculable. This problem has fully resolved by the creative use of

Monte Carlo methods, primarily Bayesian Markov chain Monte Carlo (MCMC) methods (for

example, Jacquier, Polson, and Rossi (1994), Kim, Shephard, and Chib (1998), Chib, Nardari,

and Shephard (2002) and Omori, Chib, Shephard, and Nakajima (2007)).

In the multivariate context, when one is dealing with a collection of financial time series

denoted by yt = (y1t, . . . , ypt)′, the main goal is to model the time-varying conditional covariance

matrix of yt. There are several ways in which this can be done within the SV context (see Asai,

McAleer, and Yu (2006) for a brief recent outline). A typical starting point is the assumption

of series-specific log-volatilites htj (j ≤ p) whose joint evolution is governed by a first-order

stationary vector autoregressive process

ht+1 = µ + Φ(ht − µ) + ηt, ηt|ht ∼ Np(0,Σηη), t = 1, . . . , n− 1

h1 ∼ Np (µ,Σ0) ,

where ht = (h1t, . . . , hpt)′. To reduce the computational load, especially when p is large, the log

volatilities can be assumed to be conditionally independent. In that case,

Φ = diag(φ11, ..., φpp) and

Σηη = diag(σ1,ηη, ..., σp,ηη)

are both diagonal matrices. We refer to the former specification as the VAR(1) model and
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the latter as the IAR(1) (for independent AR) model. Beyond these differences, the various

models primarily differ in the way in which the outcomes yt are modeled. In one formulation,

the outcomes are assumed to be generated as

yt = V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2)) , t = 1, . . . , n,

with the additional assumptions that
(

εt

ηt

)
|ht ∼ N2p(0,Σ), Σ =

(
Σεε O
O Σηη

)

and Σεε is a matrix in correlation (with units on the main diagonal). Thus, conditioned on ht,

Var(yt) = V1/2
t ΣεεV

1/2
t is time-varying (as required), but the conditional correlation matrix is

Σεε which is not time-varying. In the sequel we refer to this model as the basic MSV model.

A second approach for modeling the outcome process is via a latent factor approach. In this

case, the outcome model is specified as

yt = Bf t + V1/2
t εt, V1/2

t = diag (exp(h1t/2), . . . , exp(hpt/2))

where B is a p×q matrix (q ≤ p) called the loading matrix, and ft = (f1t, ..., fqt) is a q×1 latent

factor at time t. For identification reasons, the loading matrix is subject to some restrictions

(that we present later in the paper), and Σεε is the identity matrix. The model is closed by

assuming that the latent variables are distributed independently across time as

ft|ht ∼ Nq(0,Dt)

where

Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t))

is a diagonal matrix that depends on additional latent variables hp+k,t. The full set of log-

volatilities, namely

ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t),

are assumed to follow a VAR(1) or IAR(1) process. In this model, the variance of yt conditional

on the parameters and ht is

Var(yt|ht) = Vt + BDtB′

and as a result the conditional correlation matrix is time-varying.

Another way to model time-varying correlations is by direct modeling of the variance matrix

Σt = Var(yt). One such model is the Wishart process model proposed by Philipov and Glickman
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(2006b) who assume that

yt|Σt ∼ Np(0,Σt),

Σt|ν,St−1 ∼ IWp(ν,St−1),

where IWp(ν0,Q0) denotes a p-dimensional inverted Wishart distribution with parameters

(ν0,Q0), and St−1 is a function of Σt−1. Several models along these lines have been proposed

as we discuss in Section 4.

The rest of the article is organized as follows. In Section 2, we first discuss the basic MSV

model along with some of its extensions. Section 3 is devoted to the class of factor MSV models

while Section 4 deals with models in which the dynamics of the covariance matrix are modeled

directly and Section 5 has our conclusions.

2 Basic MSV model

2.1 No Leverage model

As in the preceding section, let yt = (y1t, . . . , ypt)′ denote a set of observations at time t on

p financial variables and let ht = (h1t, . . . , hpt)′ be the corresponding vector of log volatilities.

Then one approach to modeling the conditional covariance matrix of yt is to assume that

yt = V1/2
t εt, t = 1, . . . , n, (5)

ht+1 = µ + Φ(ht − µ) + ηt, t = 1, . . . , n− 1, (6)

h1 ∼ Np (µ,Σ0) , (7)

where

V1/2
t = diag (exp(h1t/2), . . . , exp(hpt/2))

µ = (µ1, . . . , µp)′ and
(

εt

ηt

)
|ht ∼ N2p(0,Σ), Σ =

(
Σεε 0
0 Σηη

)

Of course, for identification purposes, the diagonal elements of Σεε must be one which means

that the matrix Σεε is a correlation matrix.

Analyzes of this model are given by Harvey, Ruiz, and Shephard (1994), Dańıelsson (1998),

Smith and Pitts (2006) and Chan, Kohn, and Kirby (2006). Actually, Harvey, Ruiz, and Shep-

hard (1994) dealt with a special case of this model in which Φ = diag(φ1, . . . , φp). To fit the

model, the measurement equation (5) is linearized by letting wit = log y2
it. Because

E(log ε2
it) = −1.27, Var(log ε2

it) = π2/2, (8)
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one now has (a non-Gaussian) linear measurement equation

wt = (−1.27)1 + ht + ξt, (9)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, ξit = log ε2
it + 1.27 and 1 = (1, . . . , 1)′. Although

the new state error ξt does not follow a normal distribution, approximate or quasi ML estimates

can be obtained by assuming Gaussianity. Calculation of the (mis-specified) Gaussian likelihood

also requires the covariance matrix of ξt. Harvey, Ruiz, and Shephard (1994) showed that the

(i, j)-th element of the covariance matrix of ξt = (ξ1t, . . . , ξpt)′ is given by (π2/2)ρ∗ij where ρ∗ii = 1

and

ρ∗ij =
2
π2

∞∑

n=1

(n− 1)!
{∏n

k=1(1/2 + k − 1)}nρ2n
ij (10)

The model was applied to four daily foreign exchange rates (Pound/Dollar, Deutschemark/Dollar,

Yen/Dollar and Swiss Franc/Dollar). As mentioned in Harvey, Ruiz, and Shephard (1994), the

preceding fitting method cannot be extended to the leverage model considered below.

So, Li, and Lam (1997) provide a similar analysis but unlike Harvey, Ruiz, and Shephard

(1994) the non-diagonal elements of Φ are not assumed to equal zero. Estimation of the param-

eters is again by the quasi-ML method which is implemented through a computationally efficient

and numerically well-behaved EM algorithm. The asymptotic variance-covariance matrix of the

resulting estimates is based on the information matrix. Another related contribution is that of

Dańıelsson (1998) where the model

yt = V1/2
t εt, εt ∼ Np(0,Σεε),

ht+1 = µ + diag(φ1, . . . , φp)(ht − µ) + ηt, ηt ∼ Np(0,Σηη),

is analyzed. The parameters of this model are estimated by the simulated maximum likelihood

(SML) method. The model and fitting method is applied in the estimation of a bivariate model

for foreign exchange rates (Deutschemark/Dollar, Yen/Dollar) and stock indices (S&P500 and

Tokyo stock exchange). Based on the log-likelihood values they concluded that the MSV model

is superior to alternative GARCH models such as the vector GARCH, diagonal vector GARCH

(Bollerslev, Engle, and Woodridge (1988)), Baba-Engle-Kraft-Kroner (BEKK) model (Engle

and Kroner (1995)) and the constant conditional correlation (CCC) model (Bollerslev (1990)).

Smith and Pitts (2006) considered a bivariate model without leverage that is similar to the

model of Dańıelsson (1998). The model is given by

yt = V1/2
t εt, V1/2

t = diag(exp(h1t/2), exp(h2t/2)), εt ∼ N2(0,Σεε),

ht+1 = Ztα + diag(φ1, φ2)(ht − Zt−1α) + ηt, ηt ∼ N2(0,Σηη),

h1 ∼ N2(Z1α1,Σ0),
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where the (i, j)-th element of Σ0 is the (i, j)-th element of Σηη divided by 1 − φiφj to enforce

the stationarity of ht − Ztα. To measure the effect on daily returns in the Yen/Dollar foreign

exchange of intervention by the Bank of Japan, they included in Zt a variable that represents

central bank intervention which they modeled by a threshold model. The resulting model was

fit by Bayesian Markov chain Monte Carlo (MCMC) methods. To improve the efficiency of

the MCMC algorithm, they sampled ht’s in blocks, as in Shephard and Pitt (1997) (see also

Watanabe and Omori (2004)). For simplicity, we describe their algorithm without the thresh-

old specification and without missing observations. Let Yt = {y1, . . . ,yt} denote the set of

observations until time t. Then the Smith and Pitts (2006) MCMC algorithm is given by:

1. Sample {ht}n
t=1|ρ12, φ1, φ2,α,Σηη, Yn. Divide {ht}n

t=1 in to several blocks, and sample a

block at a time given other blocks. Let ha:b = (h′a, . . . ,h′b)
′ To sample a block ha:b given

other hj ’s, we conduct a M-H algorithm using a proposal density of the type introduced

by Chib and Greenberg (1994) and Chib and Greenberg (1998),

ha:b ∼ N2(b−a+1)

(
ĥa:b,

[
− ∂l(ha:b)

∂ha:b∂h′a:b

]−1

ha:b=ĥa:b

)

where

l(ha:b) = const− 1
2

b∑
t=a

(
1′ht + y′tV

−1/2
t Σ−1

εε V−1/2
t yt

)

− 1
2

b+1∑
t=a

{ht − Ztα−Φ(ht−1 − Zt−1α)}′Σ−1
ηη {ht − Ztα−Φ(ht−1 − Zt−1α)} .

The proposal density is a Gaussian approximation of the conditional posterior density

based on a Taylor expansion of the conditional posterior density around the mode ĥa:b.

The mode is found numerically by the Newton-Raphson method.

2. Sample ρ12|{ht}n
t=1, φ1, φ2, α,Σηη, Yn using the M-H algorithm.

3. Sample φ1, φ2|{ht}n
t=1, ρ12, α,Σηη, Yn using the M-H algorithm.

4. Sample α|{ht}n
t=1, ρ12, φ1, φ2,Σηη, Yn ∼ N2(δ,Σ) where

δ = Σ
n∑

t=2

(Zt −ΦZt−1)′Σ−1
ηη (ht −Φht−1) + Z′1Σ

−1
0 h1,

Σ−1 =
n∑

t=2

(Zt −ΦZt−1)′Σ−1
ηη (Zt −ΦZt−1) + Z′1Σ

−1
0 Z1,
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5. Sample Σηη|{ht}n
t=1, ρ12, φ1, φ2, α, Yn using the M-H algorithm.

Bos and Shephard (2006) considered a similar model but with the mean in the outcome

specification driven by an r × 1 latent process vector αt

yt = Ztαt + Gtut,

αt+1 = Ttαt + Htut,

ut = V1/2
t εt, V1/2

t = diag(exp(h1t/2), . . . , exp(hqt/2)), εt ∼ Nq(0, I),

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ Nq(0,Σηη), ht = (h1t, . . . , hqt)′,

where Gtut and Htut are independent and the off-diagonal element of Φ may be non-zero.

Given {ht}n
t=1, this is a linear Gaussian state space model,

yt = Ztαt + u∗t , u∗t ∼ Np(0,GtVtG′
t),

αt+1 = Ttαt + v∗t , v∗t ∼ Nr(0,HtVtH′
t),

where u∗t and v∗t are independent. Bos and Shephard (2006) take a Bayesian approach and

conduct the MCMC simulation in two blocks. Let θ = (ψ, λ) where ψ indexes the unknown

parameters in Tt,Zt,Gt,Ht, and λ denotes the parameter of the stochastic volatility process of

ut.

1. Sample θ, {αt}n
t=1|{ht}n

t=1, Yn.

(a) Sample θ|{ht}n
t=1, Yn using a M-H algorithm or a step from the adaptive rejection

Metropolis sampler by Gilks, Best, and Tan (1995) (see Bos and Shephard (2006)).

(b) Sample {αt}n
t=1|θ, {ht}n

t=1, Yn using a simulation smoother for a linear Gaussian state

space model (see e.g.de Jong and Shephard (1995), Durbin and Koopman (2002))).

We first sample disturbances of the linear Gaussian state space model and obtain

samples of αt recursively.

2. Sample {ht}n
t=1|θ, {αt}n

t=1, Yn. For t = 1, . . . , n, we sample ht one at a time by the M-H

algorithm with the proposal distribution

ht|ht−1,ht+1, θ ∼ Nq(µ + QΦ′Σ−1
ηη {(ht+1 − µ) + (ht−1 − µ)} ,Q), t = 2, . . . , n− 1,

hn|hn−1, θ ∼ Nq(µ,Σηη),

where Q−1 = Σ−1
ηη + Φ′−1Φ.
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Although the sampling scheme which samples ht at a time is expected to produce highly

autocorrelated MCMC samples, the adaptive rejection Metropolis sampling of θ seems to over-

come some of the inefficiencies. Yu and Meyer (2006) provide a survey of MSV models that

proceed along these lines and illustrate how the Bayesian software program WinBUGS can be

used to fit bivariate models.

It is worth mentioning that it is possible to relax the assumption that the volatility process is

VAR of order 1. In one notable attempt, So and Kwok (2006) consider a multivariate stochastic

volatility model where the volatility vector ht − µ follows a stationary vector autoregressive

fractionally integrated moving average process, ARFIMA(p,d, q) such that

Φ(B)D(B)(ht+1 − µ) = Θ(B)ηt, ηt ∼ Np(0,Σ””), (11)

D(B) = diag((1−B)d1 , . . . , (1−B)dp), |di| < 1/2, (12)

Φ(B) = I−Φ1B − · · · −ΦpB
p, (13)

Θ(B) = I + Θ1B + · · ·+ ΘqB
q, (14)

where B is a backward operator such that Bjht = ht−j . The εt and ηt are assumed to be

independent. So and Kwok (2006) investigated statistical properties of the model and proposed

a QML estimation method as in Harvey, Ruiz, and Shephard (1994). They linearized the

measurement equation by taking the logarithm of the squared returns and considered the linear

state space model

wt = (−1.27)1 + ht + ξt,

Φ(B)D(B)(ht+1 − µ) = Θ(B)ηt,

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′, wit = log y2
it, and ξit = log ε2

it for i = 1, . . . , n. The

covariance matrix of ξt can be obtained as in Harvey, Ruiz, and Shephard (1994). To conduct

the QML estimation, So and Kwok (2006) assumed that ξt follows a normal distribution and

obtained estimates based on the linear Gaussian state space model. However, since ht − µ

follows a vector ARFIMA(p,d, q) process, the conventional Kalman filter is not applicable as

the determinant and inverse of large covariance matrix is required to calculate the quasi-log-

likelihood function. To avoid this calculation, So and Kwok (2006) approximated the quasi-log-

likelihood function by using a spectral likelihood function based on a Fourier transform.

2.2 Leverage effects

Another extension of the basic MSV model is to allow for correlation between εt and ηt by

letting Σεη 6= O. This extension is important because at least for returns on stocks there is
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considerable evidence that the measurement and volatility innovations are correlated (e.g. Yu

(2005), Omori, Chib, Shephard, and Nakajima (2007)). That this correlation (the leverage effect)

should be modeled is mentioned by Dańıelsson (1998) but this suggestion is not implemented in

his empirical study of foreign exchange rates and stock indices. One compelling work on a type

of leverage model is due to Chan, Kohn, and Kirby (2006) who consider the model

yt = V1/2
t εt,

ht+1 = µ + diag(φ1, . . . , φp)(ht − µ) + Ψ1/2ηt,

h1 ∼ Np(µ,Ψ1/2Σ0Ψ1/2),

where the (i, j) element of Σ0 is the (i, j) element of Σηη divided by 1 − φiφj satisfying a

stationarity condition such that

Σ0 = ΦΣ0Φ + Σηη

and

V1/2
t = diag (exp(h1t/2), . . . , exp(hpt/2)) ,

Ψ1/2 = diag
(√

ψ2
1, . . . ,

√
ψ2

p

)
,

(
εt

ηt

)
∼ N2p(0,Σ), Σ =

(
Σεε Σεη

Σηε Σηη

)
.

Actually, the model considered in Chan, Kohn, and Kirby (2006) had correlation between εt

and ηt−1 which is not correctly a model of leverage. Our discussion therefore modifies their

treatment to deal with the model just presented, where εt and ηt are correlated. Note that Σ

is a 2p× 2p correlation matrix with Σεη 6= O. Now, following Wong, Carter, and Kohn (2003)

and Pitt, Chan, and Kohn (2006), reparameterize Σ such that

Σ−1 = TGT, T = diag
(√

G11, . . . ,
√

Gpp
)

,

where G is a correlation matrix and Gii denotes the (i, i)-th element of the inverse matrix of G.

Under this parameterization, we can find the posterior probability that the strict lower triangle

of the transformed correlation matrix G is equal to zero. Let Jij = 1 if Gij 6= 0 and Jij = 0

if Gij = 0 for i = 1, . . . , 2p, j < i and S(J) denote the number of elements that are ones in

J = {Jij , i = 1, . . . , 2p, j < i}. Further let G{J=k} = {Gij : Jij = k ∈ J} (k = 0, 1) and

A denote a class of 2p × 2p correlation matrices. Wong, Carter, and Kohn (2003) proposed a
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hierarchical prior for G

π(dG|J) = V (J)−1dG{J=1}I(G ∈ A), V (J) =
∫

G∈A
dG{J=1},

π(J|S(J) = l) =
V (J)∑

J∗:S(J∗)=l

V (J∗)
,

π(S(J) = l|ϕ) =
(

p(2p− 1)
l

)
ϕl(1− ϕ)p(2p−1)−l.

If we assume ϕ ∼ U(0, 1), the marginal prior probability π(S(J) = l) = 1/(p(2p − 1) + 1)

(see Wong, Carter, and Kohn (2003) for the evaluation of V (J)). Let φ = (φ1, . . . , φp)′ and

ψ = (ψ1, . . . , ψp)′ (ψj > 0, j = 1, . . . , p).

1. Sample φ|µ, {ht}n
t=1, ψ,Σ, Yn where Yn = {y1, . . . ,yn}. Let Σij denote the (i, j)-th block

of the 2p× 2p matrix Σ−1 and d be a vector consists of the diagonal elements

n−1∑

t=1

Ψ−1/2(ht − µ)
(
y′tV

−1/2
t Σ12 + Ψ−1/2(ht+1 − µ)′Σ22

)
.

Propose a candidate

φ ∼ T NR(µffi,Σffi), R = {φ : φj ∈ (−1, 1), j = 1, . . . , p},

Σ−1
ffi = Σ22 ¯

{
n−1∑

t=1

Ψ−1/2(ht − µ)(ht − µ)′Ψ−1/2

}
,

µffi = Σffid,

where ¯ is the element-by-element multiplication operator (Hadamard product) and apply

the M-H algorithm.

2. Sample µ|φ, {ht}n
t=1, ψ,Σ, Yn ∼ Np(µ∗,Σ∗) where

Σ−1
∗ = (n− 1)(I−Φ)Ψ−1/2Σ22Ψ−1/2(I−Φ) + Ψ−1/2Σ−1

0 Ψ−1/2,

µ∗ = Σ∗

[
(I−Φ)Ψ−1/2

n−1∑

t=1

{
Σ21V−1/2

t yt + Σ22Ψ−1/2(ht+1 −Φht)
}

+ Ψ−1/2Σ−1
0 Ψ−1/2h1

]
.

3. Sample ψ|φ, µ, {ht}n
t=1,Σ, Yn. Let v = (ψ−1

1 , . . . , ψ−1
p ) and l(v) denote the logarithm of

the conditional probability density of v and v̂ denote the mode of l(v). Then conduct
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M-H algorithm using a truncated multivariate t-distribution on the region R = {v : vj >

0, j = 1, . . . , p} with 6 degrees of freedom, location parameter v̂ and a covariance matrix

−{∂2l(v)/∂v∂v′}−1
v=v̂.

4. Sample {ht}n
t=1|φ, µ, ψ,Σ, Yn. We divide {ht}n

t=1 in to several blocks, and sample a block

at a time given other blocks as in Smith and Pitts (2006). Let ha:b = (h′a, . . . ,h′b)
′ To

sample a block ha:b given other hj ’s, we conduct a M-H algorithm using a Chib and

Greenberg (1994) proposal,

ha:b ∼ Np(b−a+1)

(
ĥa:b,

[
− ∂l(ha:b)

∂ha:b∂h′a:b

]−1

ha:b=ĥa:b

)

l(ha:b) = const− 1
2

b∑
t=a

1′ht − 1
2

b+1∑
t=a

r′−1
t rt

rt =

(
V−1/2

t yt

Ψ−1/2{ht+1 − µ−Φ(ht − µ)}

)

a Gaussian approximation of the conditional posterior density based on Taylor expansion of

the conditional posterior density around the mode ĥa:b. The mode is found using Newton-

Raphson method numerically. The analytical derivatives can be derived similarly as in the

Appendix of Chan, Kohn, and Kirby (2006).

5. Sample Σ|φ,µ, ψ, {ht}n
t=1, Yn. Using the parsimonious reparameterization proposed in

Wong, Carter, and Kohn (2003), each element Gij is generated one at a time using the

M-H algorithm.

Chan, Kohn, and Kirby (2006) applied the proposed estimation method to equities at three

levels of aggregation: (i) returns for eight different markets (portfolios of stocks in NYSE,

AMEX, NASDAQ and S&P500 index), (ii) returns for eight different industries (portfolios of

eight well-known and actively traded stocks in petroleum, food products, pharmaceutical, banks,

industrial equipment, aerospace, electric utilities, and department/discount stores) (iii) returns

for individual firms within the same industry. They found strong evidence of correlation between

εt and ηt−1 only for the returns of the eight different markets and suggested that this correlation

is mainly a feature of market-wide rather than firm-specific returns and volatility.

Asai and McAleer (2006) also analyzed a MSV model with leverage effects letting

Φ = diag(φ1, . . . , φp),

Σεη = diag (λ1σ1,ηη, . . . , λpσp,ηη) .
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The cross asset leverage effects are assumed to be 0 (Corr(εit, ηjt) = 0, for i 6= j). As in Harvey

and Shephard (1996), they linearized the measurement equations and considered the following

state space model conditional on st = (s1t, . . . , spt)′ where sit = 1 if yit is positive and sit = −1

otherwise:

log y2
it = hit + ζit, ζit = log ε2

it, i = 1, . . . , p, t = 1, . . . , n,

ht+1 = µ̃ + µ∗t + diag(φ1, . . . , φp)ht + η∗t ,

µ∗t =

√
2
π
ΣεηΣ−1

εε st, η∗t ∼ Np(0,Ση∗t η∗t ),

where E(ζit) = −1.27, and Cov(ζit, ζjt) = (π2/2)ρ∗ij given in (10). The matrix Ση∗t η∗t and E(η∗t ζ
′
t)

are given in Asai and McAleer (2006). They also considered an alternative MSV model with

leverage effects and size effects given by

ht+1 = µ̃ + Γ1yt + Γ2|yt|+ Φht + ηt,

Γ1 = diag(γ11, . . . , γ1p), Γ2 = diag(γ21, . . . , γ2p),

|yt| = (|y1t|, . . . , |ypt|)′, Φ = diag(φ1, . . . , φp),

Σεη = O.

This model is a generalization of a univariate model given by Dańıelsson (1994). It incorporates

both leverage effects and the magnitude of the previous returns through their absolute values.

Asai and McAleer (2006) fit these two models to returns of three stock indices - S&P500 Com-

posite Index, the Nikkei 225 Index, and the Hang Seng Index - by an importance sampling Monte

Carlo maximum likelihood estimation method. They find that the MSV model with leverage

and size effects is preferred in terms of the AIC and BIC measures.

2.3 Heavy-tailed measurement error models

It has by now quite well established that the tails of the distribution of asset returns are heavier

than those of the Gaussian. To deal with this situation it has been popular to employ the

Student t distribution as a replacement for the default Gaussian assumption. One reason for

the popularity of the Student t distribution is that it has a simple hierarchical form as a scale

mixture of normals. Specifically, if T is distributed as standard Student t with ν degrees of

freedom then T can be expressed as

T = λ−1/2Z, Z ∼ N (0, 1), λ ∼ G(ν/2, ν/2).

This representation can be exploited in the fitting, especially in the Bayesian context. One early

example of the use of the Student t distribution occurs in Harvey, Ruiz, and Shephard (1994)
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who assumed that in connection with the measurement error εit that

εit = λ
−1/2
it εit, εt ∼ i.i.d. Np(0,Σεε), λit ∼ i.i.d. G(νi/2, νi/2),

where the mean is 0 and the elements of the covariance matrix are given by

Cov(εit, εjt) =





νi

νi − 2
, i = j,

E(λ−1/2
it )E(λ−1/2

jt )ρij , i 6= j,

and E(λ−1/2
it ) =

(νi/2)1/2Γ((νi − 1)/2)
Γ(νi/2)

.

Alternatively, the model can now be expressed as

yt = V1/2
t Λ−1/2

t εt, Λ−1/2
t = diag

(
1/

√
λ1t, . . . , 1/

√
λpt

)

Taking the logarithm of squared εit one gets

log ε2it = log ε2
it − log λit.

They derived the QML estimators using the a mean and covariance matrix of (log ε2it, log ε2jt)

using

E(log λit) = ψ′(ν/2)− log(ν/2), Var(log λit) = ψ′(ν/2),

and (8) (10) where ψ and ψ′ are the digamma and trigamma functions. On the other hand,

Yu and Meyer (2006) considered a multivariate Student t distribution for εt in which case the

measurement error has the form

T = λ
−1/2
t εt, εt ∼ Np(0, I), λt ∼ G(ν/2, ν/2).

They mentioned that this formulation was empirically better supported than the formulation in

Harvey, Ruiz, and Shephard (1994). The model was fit by Bayesian Markov chain Monte Carlo

methods.

Another alternative to the Gaussian distribution is the generalized hyperbolic distribution

(GH) introduced by Barndorff-Neilsen (1977). This family is also a member of the scale mixture

of normals family of distributions. In this case, the mixing distribution is a generalized inverse

Gaussian distribution. The generalized hyperbolic distribution is a rich class of distributions that

includes the normal, normal inverse Gaussian, reciprocal normal inverse Gaussian, hyperbolic,

skewed Student’s t, Laplace, normal gamma, and reciprocal normal hyperbolic distributions (e.g.

Barndorff-Neilsen and Shephard (2001)). Aas and Haff (2006) have employed the univariate

GH distributions (normal inverse Gaussian distributions and univariate GH skew Student’s t
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distributions) and estimated in the analysis of the total index of Norwegian stocks (TOTX),

the SSBWG hedged bond index for international bonds, the NOK/EUR exchange rate (NOK

is Norwegian kroner), and the EURIBOR 5-year interest rate. They found that the GH skew

Student’s t distribution is superior to the normal inverse Gaussian distribution for heavy-tailed

data, and superior to the skewed t distribution proposed by Azzalini and Capitanio (2003) for

very skewed data.

The random variable x ∼ GH(ν, α,β,m, δ,S) follows a multivariate generalized hyperbolic

distribution with density

f(x) =
(γ/δ)νKν− p

2

(
α
√

δ2 + (x−m)′S−1(x−m)
)

exp{β′(x−m)}

(2π)
p
2 Kν(δγ)

{
α−1

√
δ2 + (x−m)′S−1(x−m)

} p
2
−ν

, (15)

γ ≡
√

α2 − β′Sβ ≥ 0, α2 ≥ β′Sβ,

ν, α ∈ R, β,m ∈ Rn, δ > 0,

where Kν is a modified Bessel function of the third kind, and S is a p×p positive-definite matrix

with determinant |S| = 1 (see e.g. Protassov (2004), Schmidt, Hrycej, and Stützle (2006)). It

can be shown that x can be expressed as

x = m + ztSβ +
√

ztS
1/2εt,

where S1/2 is a p × p matrix such that S = S1/2S1/2′ and ε ∼ Np(0, I) and zt ∼ GIG(ν, δ, γ)

follows a generalized inverse Gaussian distribution which we denote z ∼ GIG(ν, δ, γ) whose

density is given by

f(z) =
(γ/δ)ν

2Kν(δγ)
zν−1 exp

{
−1

2
(
δ2z−1 + γ2z

)}
, γ, δ ≥ 0, ν ∈ R, z > 0,

where the range of the parameters given by

δ > 0, γ2 ≥ 0, if ν < 0,
δ > 0, γ2 > 0, if ν = 0,
δ ≥ 0, γ2 > 0, if ν > 0,

(for a generation of a random sample from GIG(ν, a, b), see e.g. Dagpunar (1989), Doornik

(2002) and Hörmann, Leydold, and Derflinger (2004)). The estimation of such a multivariate

distribution would be difficult and Protassov (2004) relied on the EM algorithm with ν fixed and

fitted the five dimensional normal inverse Gaussian distribution to a series of returns on foreign

exchange rates (Swiss franc, Deutschemark, British pound, Canadian dollar, and Japanese yen).

Schmidt, Hrycej, and Stützle (2006) proposed an alternative class of distributions, called the
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multivariate affine generalized hyperbolic class, and applied it to bivariate models for various

asset returns data (Dax, Cac, Nikkei and Dow returns). Other multivariate skew densities have

also been proposed for example in Arellano-Valle and Azzalini (2006), Bauwens and Laurent

(2005), Dey and Liu (2005) Azzalini (2005), Gupta, González-Faŕıas, and Domı́nguez-Molina

(2004), and Ferreira and Steel (2004).

3 Factor MSV model

3.1 Volatility factor model

A weakness of the preceding MSV models is that the implied conditional correlation matrix does

not vary with time. One approach for generating time-varying correlations is via factor models

in which the factors follow a stochastic volatility process. One type of factor SV model (that

however does not lead to time-varying correlations) is considered by Quintana and West (1987),

and Jungbacker and Koopman (2006) who utilized a single factor to decompose the outcome into

two multiplicative components, a scalar common volatility factor and a vector of idiosyncratic

noise variables, as

yt = exp
(

ht

2

)
εt, εt ∼ Np(0,Σεε),

ht+1 = µ + φ(ht − µ) + ηt, ηt ∼ N (0, σ2
η),

where ht is a scalar. The first element in Σεε is assumed to be one for identification reasons. By

construction, the positivity of the variance of yt is ensured. In comparison with the basic MSV

model, this model has fewer parameters, which makes it more convenient to fit. The downside

of the model, however, is that unlike the mean factor MSV model which we discuss below, the

conditional correlations in this model are time-invariant. Moreover, the correlation between in

log-volatilities is 1, which is clearly limiting.

In order to estimate the model, Jungbacker and Koopman (2006) applied a Monte Carlo

likelihood method to fit data on exchange rate returns of the British pound, the Deutschemark,

and the Japanese yen against the U.S. dollar. They found that the estimate of φ is atypically

low, indicating that the model is inappropriate for explaining the movements of multivariate

volatility.

A more general version of this type is considered by Harvey, Ruiz, and Shephard (1994) who

introduced a common factor in the linearized state space version of the basic MSV model by
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letting

wt = (−1.27)1 + Θht + h + ξt, (16)

ht+1 = ht + ηt, ηt ∼ Nq(0, I), (17)

where wt = (w1t, . . . , wpt)′, ξt = (ξ1t, . . . , ξpt)′ and ht = (h1t, . . . , hqt)′ (q ≤ p). Furthermore,

one assumes that

Θ =




θ11 0 · · · 0

θ21 θ22
. . .

...
...

. . . . . . 0
θq1 · · · θq,q−1 θqq
...

...
...

θp,1 · · · θp,q−1 θp,q




, h =




0
hq+1

...
hp


 .

Harvey, Ruiz, and Shephard (1994) estimate the parameters by the QML method. To make

the factor loadings interpretable, the common factors are rotated such that Θ∗ = ΘR′ and

h∗t = Rht where R is an orthogonal matrix.

Tims and Mahieu (2006) consider a similar but simpler model for the logarithm of the range

of the exchange rates in the context of an application involving four currencies. Let wij denote

a logarithm of the range of foreign exchange rate of the currency i relative to the currency j,

and w = (w12, w13, w14, w23, w24, w34). Now assume that

wt = c + Zht + ξt, ξt ∼ Np(0,Σξξ),

ht+1 = diag(φ1, . . . , φq)ht + ηt, ηt ∼ Nq(0,Σηη),

where c is a 6× 1 mean vector, Σηη is diagonal, ht = (h1t, . . . , h4t)′ and hjt is a latent factor for

the j-th currency at time t and

Z =




1 1 0 0
1 0 1 0
1 0 0 1
0 1 1 0
0 1 0 1
0 0 1 1




Since this is a linear Gaussian state space model, the estimation of the parameters is straight-

forward by Kalman filtering methods.

Ray and Tsay (2000) introduced long range dependence into the volatility factor model by

supposing that ht follows a fractionally integrated process such that

yt = V1/2
t εt, V1/2

t = diag(exp(z′1ht/2), . . . , exp(z′qht/2)),

(1− L)dht = ηt, εt ∼ Np(0,Σεε), ηt ∼ Nq(0,Σηη),
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where zi (i = 1, . . . , q) are q × 1 vectors with q < p. In the fitting, the measurement equation is

linearized as in Harvey, Ruiz, and Shephard (1994).

Calvet, Fisher, and Thompson (2006) generalize the univariate Markov-switching multifrac-

tal (MSM) model proposed by Calvet and Fisher (2001) to the multivariate MSM and factor

MSM models. The univariate model is given by

yt = (M1,tM2,t · · ·Mk,t)1/2εt, εt ∼ N (0, σ2),

where Mj,t (j ≤ k) are random volatility components, satisfying E(Mj,t) = 1. Given Mt =

(M1,t,M2,t, . . . , Mk,t), the stochastic volatility of return yt is given by σ2M1,tM2,t · · ·Mk,t. Each

Mj,t follows a hidden Markov chain as follows;

Mj,t drawn from distribution M, with probability γj ,

Mj,t = Mj,t−1, with probability 1− γj ,

where γj = 1 − (1 − γ)(b
j−k), (0 < γ < 1, b > 1) and the distribution of M is binomial giving

values m or 2−m (m ∈ [1, 2]) with equal probability. Thus the MSM model is governed by four

parameters (m,σ, b, γ), which is estimated by the maximum likelihood method.

For the bivariate MSM model, we consider the vector of random volatility component Mj,t =

(M1
j,t,M

2
j,t)

′ (j ≤ k). Then, the bivariate model is given by

yt = (M1,t ¯M2,t ¯ · · · ¯Mk,t)
1/2 ¯ εt, εt ∼ N2(0, V ),

where ¯ denotes the element-by-element product. For each component Mj,t in the bivariate

model, Calvet, Fisher, and Thompson (2006) assume that volatility arrivals are correlated but

not necessarily simultaneous. For details, let si
j,t (i = 1, 2) denote the random variable equal to 1

if there is an arrival on M i
j,t with probability γj , and equal to 0 otherwise. Thus, each si

j,t follows

the Bernoulli distribution. At this stage, Calvet, Fisher, and Thompson (2006) introduced the

correlation coefficient λ, giving the conditional probability P (s2
j,t = 1|s1

j,t = 1) = (1− λ)γj + λ.

They showed that arrivals are independent if λ = 0, and simultaneous if λ = 1. Given the

realization of the arrival vector s1
j,t and s2

j,t, the construction of the volatility components Mj,t

is based on a bivariate distribution M = (M1, M2). If arrivals hit both series (s1
j,t = s2

j,t = 1),

the state vector Mj,t is drawn from M. If only one series i (i = 1, 2) receives an arrival, the

new component M i
j,t is sampled from the marginal M i of the bivariate distribution M. Finally,

Mj,t = Mj,t−1 if there is no arrival (s1
j,t = s2

j,t = 0). They assume that M has a bivariate

binomial distribution controlled by m1 and m2, in parallel fashion to the univariate case. Again,

the closed form solution of the likelihood function is available. This approach can be extended

to a general multivariate case. As the number of parameter therefore grows at least as fast as a
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quadratic function of p, Calvet, Fisher, and Thompson (2006) proposed not only the multivariate

MSM model but also the factor MSM model.

The factor MSM model based on q volatility factors f l
t = (f l

1,t, . . . , f
l
k,t)

′, (f l
j,t > 0) (l =

1, 2, . . . , q) is given by

yt = (M1,t ¯M2,t ¯ · · · ¯Mk,t)
1/2 ¯ εt, εt ∼ N2(0, V ),

Mj,t = (M1
j,t,M

2
j,t, . . . , M

p
j,t)

′, (j ≤ k),

M i
j,t = Ci

(
f1

j,t

)wi
1
(
f2

j,t

)wi
2 · · ·

(
f q

j,t

)wi
q (

ui
j,t

)wi
q+1 ,

where the weights are non-negative and add up to one, and the constant Ci is chosen to guarantee

that E(M i
j,t) = 1, and is thus not a free parameter. Calvet, Fisher, and Thompson (2006)

specified the model as follows. For each vector f l
t , f l

j,t follows a univariate MSM process with

parameters (b, γ, ml). The volatility of each asset i is also affected by an idiosyncratic shock

ui
t = (ui

1,t, . . . , u
i
k,t)

′, which is specified by parameters (b, γ,mq+i). Draws of the factors f l
j,t and

idiosyncratic shocks ui
j,t are independent, but timing of arrivals may be correlated. Factors and

idiosyncratic components thus follow univariate MSM with identical frequencies.

3.2 Mean factor model

Another type of MSV factor model is considered by Pitt and Shephard (1999), who following a

model proposed in Kim, Shephard, and Chib (1998), worked with the specification

yt = Bft + V1/2
t εt, εt ∼ Np(0, I), (18)

ft = D1/2
t γt, γt ∼ Nq(0, I), (19)

ht+1 = µ + Φ(ht − µ) + ηt, ηt ∼ Np+q(0,Σηη) (20)

where

Vt = diag(exp(h1t), . . . , exp(hpt)), (21)

Dt = diag (exp(hp+1,t), . . . , exp(hp+q,t)) , (22)

Φ = diag(φ1, . . . , φp+q) (23)

Σηη = diag(σ1,ηη, ..., σp+q,ηη) (24)

and ht = (h1t, . . . , hpt, hp+1,t, ..., hp+q,t). For identification purpose, the p× q loading matrix B

is assumed to be such that bij = 0 for (i < j, i ≤ q) and bii = 1 (i ≤ q) with all other elements

unrestricted. Thus, in this model, each of the factors and each of the errors evolve according

to univariate SV models. A similar model is also considered by Jacquier, Polson, and Rossi
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(1999) and Liesenfeld and Richard (2003) but under the restriction that Vt is not time-varying.

Jacquier, Polson, and Rossi (1999) estimate their model by MCMC methods, sampling hit one

at a time from its full conditional distribution, whereas Liesenfeld and Richard (2003) show how

the MLE can be obtained by the Efficient Importance Sampling method. For the more general

model above, Pitt and Shephard (1999) also employ a MCMC based approach, now sampling ht

along the lines of Shephard and Pitt (1997). An even further generalization of this factor model

was developed by Chib, Nardari, and Shephard (2006) who allowed for jumps in the observation

model and a fat-tailed t-distribution for the errors εt. The resulting model and its fitting is

explained later in Section 3.3.

Lopes and Carvalho (2006) have considered a general model which nests the models of Pitt

and Shephard (1999) and Aguilar and West (2000), and extended it in two directions by (i) letting

the matrix of factor loadings B to be time dependent, and (ii) allowing Markov switching in the

common factors volatilities. The general model is given by equations (19)–(22) with

yt = Btft + V1/2
t εt, εt ∼ Np(0, I),

hf
t+1 = µf

st
+ Φfhf

t + ηf
t , ηf

t ∼ Nq

(
0,Σf

ηη

)
,

where hf
t = (hp+1,t, . . . , hp+q,t)′, µf = (µp+1, . . . , µp+q)′, Φf = diag(φp+1, . . . , φp+q), and Σf

ηη

is the non-diagonal covariance matrix. Letting the pq − q(q + 1)/2 unconstrained elements of

vec(Bt) be bt = (b21,t, b31,t, . . . , bpq,t)′, they assumed that each element of bt follows an AR(1)

process. Following So, Lam, and Li (1998), where the fitting was based on the work of Albert and

Chib (1993), µst was assumed to follow a Markov switching model, where st follows a multi-state

first order Markovian process. Lopes and Carvalho (2006) applied this model to two datasets:

(i) returns on daily closing spot rates for six currencies relative to US dollar (Deutschemark,

British pound, Japanese yen, French franc, Canadian dollar, Spanish peseta), and returns on

daily closing rates for four Latin American stock markets indices. In the former application,

they used q = 3 factors and in the latter case q = 2 factors.

Han (2006) modified the model of Pitt and Shephard (1999) and Chib, Nardari, and Shephard

(2006) by allowing the factors to follows an AR(1) process

ft = c + Aft−1 + D1/2
t γt, γt ∼ Nq(0, I). (25)

The model was fit by adapting the approach of Chib, Nardari, and Shephard (2006) and applied

to a collection of 36 arbitrarily chosen stocks to examine the performance of various portfolio

strategies.
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3.3 Bayesian analysis of mean factor MSV model

We describe the fitting of factor models in the context of the general model of Chib, Nardari,

and Shephard (2006). The model is given by

yt = Bft + Ktqt + V1/2
t Λ−1

t εt, εt ∼ Np(0, I), (26)

where Λt = diag(λ1t, . . . , λpt), qt is p independent Bernoulli “jump” random variables, and

Kt = diag(k1t, . . . , kpt) are jump sizes. Assume that each element qjt of qt takes the value one

with probability κj and the value zero with probability 1 − κj , and that each element ujt of

ut = V1/2
t Λ−1

t εt follows an independent Student-t distribution with degrees of freedom νj > 2,

which we express in hierarchical form as

ujt = λ
−1/2
jt exp(hjt/2)εjt, λjt

i.i.d.∼ G
(νj

2
,
νj

2

)
, t = 1, 2, . . . , n. (27)

The εt and ft are assumed to be independent and
(

V1/2
t εt

ft

)
|Vt,Dt,Kt,qt ∼ Np+q

{
0,

(
Vt O
O Dt

)}

are conditionally independent Gaussian random vectors. The time-varying variance matrices Vt

and Dt are defined by equations (20)–(21). Chib, Nardari, and Shephard (2006) assumed that

the variable ζjt = ln(1 + kjt), j ≤ p, are distributed as N (−0.5δ2
j , δ

2
j ), where δ = (δ1, . . . , δp)′

are unknown parameters.

We may calculate the number of parameters and latent variables as follows. Let β denote

the free elements of B after imposing the identifying restrictions. Let Σηη = diag(σ2
1, . . . , σ

2
p)

and Σf
ηη = diag(σ2

p+1, . . . , σ
2
p+q). Then there are pq − (q2 + q)/2 elements in β. The model has

3(p + q) parameters θj = (φj , µj , σj) (1 ≤ j ≤ p + q) in the autoregressive processes (20) of

{hjt}. We also have p degrees of freedom ν = (ν1, . . . , νp), p jump intensities κ = (κ1, . . . , κp),

and p jump variances δ = (δ1, . . . , δp). If we let ψ = (β, θ1, . . . ,θp,ν, δ,κ) denote the entire

list of parameters, then the dimension of ψ is 688 when p = 50 and q = 8. Furthermore, the

model contains n(p + q) latent volatilities {ht} that appears non-linearly in the specification of

Vt and Dt, 2np latent variables {qt} and {kt} associated with the jump component, and np

scaling variables {λt}.
To conduct the prior-posterior analysis of this model, Chib, Nardari, and Shephard (2006)

focus on the posterior distribution of the parameters and the latent variables

π
(
β, {ft}, {θj}, {hj.}, {νj}, {λj.}, {δj}, {κj}, {ζj.}, {qj.}|Yn

)
, (28)

where the notation zj. is used to denote the collection (zj1, . . . , zjn). They sample this distribu-

tion by MCMC methods through the following steps.
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1. Sample β. The full conditional distribution of β is given by

π(β|Yn, {hj.}, {ζj.}, {qj.}, {λj.}) ∝ p(β)
n∏

t=1

Np(yt|Ktqt,Ωt),

where p(β) is the normal prior,

Ωt = V∗
t + BDtB′ and V∗

t = Vt ¯ diag(λ−1
1t , . . . , λ−1

pt ).

To sample from this density, Chib, Nardari, and Shephard (2006) employed the Metropolis-

Hastings (M-H) algorithm (Chib and Greenberg (1995)), following Chib and Greenberg

(1994) and taking the proposal density to be multivariate-t, T (β|m,Σ, v), where m is the

approximate mode of l = ln{∏n
t=1Np(yt|Ktqt,Ωt)}, and Σ is minus the inverse of the

second derivative matrix of l; the degrees of freedom v is set arbitrarily at 15. Let us

denote the ij-th free element of B be denoted by bij and define ỹt = yt −Ktqt. We have

that

l =
n∑

t=1

lnNp(yt|Ktqt,Ωt) = const− 1
2

n∑

t=1

ln |Ωt| − 1
2

n∑

t=1

(yt −Ktqt)′Ω−1
t (yt −Ktqt)

and

∂l

∂bij
=

1
2

n∑

t=1

{
ỹ′tΩ

−1
t

∂Ωt

∂bij
Ω−1

t ỹt − tr
(
Ω−1

t

∂Ωt

∂bij

)}

=
n∑

t=1

{
s′t

∂B
∂bij

DtB′st − tr
(
Et

∂B′

∂bij

)}
,

where st = Ω−1
t ỹt, Et = Ω−1

t BDt, and

Ω−1
t = (V∗

t )
−1 − (V∗

t )
−1B

{
D−1

t + B′(V∗
t )
−1B

}−1
B(V∗

t )
−1.

With these derivatives, (m,Σ) can be found by a sequence of Newton-Raphson itera-

tions. Then the M-H step for sampling β is implemented by drawing a value β∗ from

the multivariate-t distribution, namely T (m,Σ, v), and accepting the proposal value with

probability

α(β,β∗|ỹ, {hj.}, {λj.})

= min
{

1,
p(β∗)

∏n
t=1Np (ỹt|0,V∗

t + B∗DtB∗′) T (β|m,Σ, v)
p(β)

∏n
t=1Np ((ỹt|0,V∗

t + BDtB′)T (β∗|m,Σ, v)

}
,

where β is the current value. If the proposal value is rejected, the next item of the chain

is taken to be the current value β.
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2. Sample {ft}. The distribution {ft}|Ỹn,B,h, λ can be divided into the product of the distri-

butions ft|ỹt,ht,h
f
t , λt,B, which have Gaussian distribution with mean f̂t = FtB′(V∗

t )
−1ỹt

and variance Ft =
{
B′(V∗

t )
−1B + D−1

t

}−1.

3. Sample {θj} and {hj.}. Given {ft} and the conditional independence of the errors in (20),

the model separates into q conditionally Gaussian state space models. Let

zjt =
{

ln(yjt − αjt − exp(ζjt)− 1)qjt + c)2 + ln(λjt), j ≤ p,
ln(f2

j−p,t), j ≥ p + 1,

where c is an “offset” constant that is set to 10−6. Then from Kim, Shephard, and Chib

(1998) it follows that the p + q state space models can be subjected to an independent

analysis for sampling the {θj} and {hj.}. In particular, the distribution of zjt, which is hjt

plus a log chi-squared random variable with one degree of freedom, may be approximated

closely by a seven component mixture of normal distributions, allowing us to express the

model as

zjt|sjt, hjt ∼ N
(
hjt + msjt , v

2
sjt

)
,

hj,t+1 − µj = φj (hj,t − µj) + ηjt, j ≤ p + q,

where sjt is a discrete component indicator variable with mass function Pr(sjt = i) = qi,

i ≤ 7, t ≤ n, and msjt , v2
sjt

and qi are parameters that are reported in Chib, Nardari,

and Shephard (2002). Thus, under this representation, conditioned on the transformed

observations we have that

p ({sj.}, θ, {hj.}|z) =
p+q∏

j=1

p (sj., θj ,hj.|zj.) ,

which implies that the mixture indicators, log-volatilities and series specific parameters

can be sampled series by series. Now, for each j, one can sample (sj., θj ,hj.) by the

univariate SV algorithm given by Chib, Nardari, and Shephard (2002). Briefly, sj. is

sampled straightforwardly from

p (sj.|zj.,hj.) =
n∏

t=1

p (sjt|zjt, hjt) ,

where p(sjt|zjt, hjt) ∝ p(sjt)N
(

zjt|hjt + msjt , v
2
sjt

)
is a mass function with seven points

of support. Next, θj is sampled by the M-H algorithm from the density π(θj |zj., sj.) ∝
p(θj)p(zj.|sj., θj) where

p (zj.|sj., θj) = p (zj1|sj., θj)
n∏

t=2

p
(
zjt|F∗j,t−1, sj., θj

)
(29)
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and p(zjt|F∗j,t−1, sj., θj) is a normal density whose parameters are obtained by the Kalman

filter recursions, adapted to the differing components, as indicated by the component vector

sj.. Finally, hj. is sampled from [hj.|zj., sj.,θj ] by the simulation smoother algorithm of

de Jong and Shephard (1995).

4. Sample {νj}, {qj.} and {λj.}. The degrees of freedom parameters, jump parameters

and associated latent variables are sampled independently for each time series. The full

conditional distribution of νj is given by

Pr(νj |yj.,hj ,B, f ,qj., ζj.) ∝ Pr(νj)
n∏

t=1

T (yjt|αjt + {exp(ζjt)− 1}qjt, exp(hjt), νj), (30)

and one can apply the Metropolis-Hastings algorithm in a manner analogous to the case

of β. Next, the jump indicators {qj.} are sampled from the two-point discrete distribution

Pr(qjt = 1|yj.,hj.,B, f , νj , ζj., κj) ∝ κjT (yjt|αjt + {exp(ζjt)− 1}, exp(hjt), νj),

Pr(qjt = 0|yj.,hj.,B, f , νj , ζj., κj) ∝ (1− κj)T (yjt|αjt, exp(hjt), νj),

followed by the components of the vector {λj.} from the density

λjt|yjt, hjt,B, f , νj , qjt, ψjt ∼ G
(

νj + 1
2

,
νj + (yjt − αjt − (exp(ζjt)− 1)qjt))2

2 exp(hjt)

)
.

5. Sample {δj} and {ζj.}. For simulation efficiency reasons, δj and ζj. must also be sampled

in one block. The full conditional distribution of δj is given by

π(δj)
n∏

t=1

N(αjt − 0.5δ2
j qjt, δ

2
j q

2
jt + exp(hjt)λ−1

jt ) (31)

by the M-H algorithm. Once δj is sampled, the vectors ζj. are sampled, bearing in mind

that their posterior distribution is updated only when qjt is one. Therefore, when qjt

is zero, we sample ζjt from N (−0.5δ2
j , δ

2
j ), otherwise we sample from the distribution

N (Ψjt(−0.5+ exp(−hjt)λjtyjt), Ψjt), where Ψjt = (δ−2
j +exp(−hjt)λjt)−1. The algorithm

is completed by sampling the components of the vector κ independently from κj |qj. ∼
beta(u0j + n1j , u1j + n0j), where n0j is the count of qjt = 0 and n1j = n− n0j is the count

of qjt = 1.

A complete cycle through these various distributions completes one transition of our Markov

chain. These steps are then repeated G times, where G is a large number, and the values beyond

a suitable burn-in of say a 1000 cycles, are used for the purpose of summarizing the posterior

distribution.
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4 Dynamic correlation MSV model

Another way to model time-varying correlations is by constructing models that model the cor-

relations (or functions of correlations) directly. We describe several such approaches in this

section.

4.1 Modeling by reparameterization

One approach is illustrated by Yu and Meyer (2006) in the context of the bivariate SV model

yt = V1/2
t εt, εt ∼ N2(0,Σεε,t), Σεε,t =

(
1 ρt

ρt 1

)
,

ht+1 = µ + diag(φ1, φ2)(ht − µ) + ηt, ηt ∼ N2

(
0,diag(σ2

1, σ
2
2)

)
,

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1),

ρt =
exp(qt)− 1
exp(qt) + 1

,

where h0 = µ and q0 = ψ0. The correlation coefficient ρt is then obtained from qt by the Fisher

transformation. Yu and Meyer (2006) estimated this model by MCMC methods with the help

of WinBUGS program and found that it was superior to other models including the mean factor

MSV model. However, the generalization of this bivariate model to the higher dimensions is not

easy because it is difficult to ensure the positive definiteness of the correlation matrix Σεε,t.

Another approach, introduced by Tsay (2005), is based on the Choleski decomposition of the

time-varying correlation matrix. Specifically, one can consider the Choleski decomposition of

the correlation matrix Σεε,t such that Cov(yt|ht) = LtVtL′t. The outcome model is then given

by yt = LtV
1/2
t εt, εt ∼ Np(0, I). As an example, when bivariate outcomes are involved we have

Lt =
(

1 0
qt 1

)
, Vt = diag(exp(h1t), exp(h2t)),

Then,

y1t = ε1t exp(h1t/2),

y2t = qtε1t exp(h1t/2) + ε2t exp(h2t/2),

which shows that the distribution of yt is modeled sequentially. We first let y1t ∼ N (0, exp(h1t))

and then we let y2t|y1t ∼ N (qty1t, exp(h2t)). Thus qt is a slope of conditional mean and the
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correlation coefficient between y1t and y2t is given by

Var(y1t) = exp(h1t),

Var(y2t) = q2
t exp(h1t) + exp(h2t),

Cov(y1t, y2t) = qt exp(h1t),

Corr(y1t, y2t) =
qt√

q2
t + exp(h2t − h1t)

As suggested in Asai, McAleer, and Yu (2006), we let qt follow an AR(1) process

qt+1 = ψ0 + ψ1(qt − ψ0) + σρvt, vt ∼ N (0, 1).

The generalization to higher dimensions is straightforward. Let

Lt =




1 0 · · · 0

q21,t 1
. . .

...
...

. . . . . . 0
qp1,t · · · qp,p−1,t 1




, Vt = diag(exp(h1t), . . . , exp(hpt)),

and

y1t = ε1t exp(h1t/2),

y2t = q21,tε1t exp(h1t/2) + ε2t exp(h2t/2),
...

ypt = qp1,tε1t exp(h1t/2) + . . . + qp,p−1,tεp−1,t exp(hp−1,t/2) + εpt exp(hpt/2)

Var(yit) =
i∑

k=1

q2
ik,t exp(hkt), qii,t ≡ 1, i = 1, . . . , p,

Cov(yit, yjt) =
i∑

k=1

qik,tqjk,t exp(hkt), i < j, i = 1, . . . , p− 1,

Corr(yit, yjt) =

i∑

k=1

qik,tqjk,t exp(hkt)

√√√√
i∑

k=1

q2
ik,t exp(hkt)

j∑

k=1

q2
jk,t exp(hkt)

, i < j,

where qit now follows the AR(1) process

qi,t+1 = ψi,0 + ψi,1(qi,t − ψ0) + σi,ρvit, vit ∼ N (0, 1),
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Jungbacker and Koopman (2006) considered a similar model with Lt = L and estimated the

parameters of the model by the Monte Carlo likelihood method. As in the one factor case, they

used the data set for the daily exchange rate returns of British pound, the Deutschemark, and

the Japanese yen against the U.S. dollar.

4.2 Matrix exponential transformation

For any p×p matrix A, the matrix exponential transformation is defined by the following power

series expansion,

exp(A) ≡
∞∑

s=0

1
s!

As,

where A0 is equal to a p×p identity matrix. For any real positive definite matrix C, there exists

a real symmetric p× p matrix A such that

C = exp(A).

Conversely, for any real symmetric matrix A, C = exp(A) is a positive definite matrix (see

e.g. Lemma 1 of Chiu, Leonard, and Tsui (1996), Kawakatsu (2006)). If At is a p × p real

symmetric matrix, there exists a p × p orthogonal matrix Bt and a p × p real diagonal matrix

Ht of eigenvalues of A such that At = BtHtB′
t and

exp(At) = Bt

( ∞∑

s=0

1
s!

Hs
t

)
B′

t = Bt exp(Ht)B′
t

Thus we consider the matrix exponential transformation for the covariance matrix Var(yt) =

Σt = exp(At) where At is a p × p real symmetric matrix such that At = BtHtB′
t (Ht =

diag(h1t, . . . , hpt)). Note that

Σt = BtVtB′
t, Vt = diag(exp(h1t), . . . , exp(hpt)),

Σ−1
t = B′

tV
−1
t Bt, |Σt| = exp

(
p∑

i=1

hit

)
,

We model the dynamic structure of covariance matrices through αt = vech(At). We may

consider a first order autoregressive process for αt

yt|At ∼ Np(0, exp(At)),

αt+1 = µ + Φ(αt − µ) + ηt, (Φ : diagonal),

αt = vech(At), ηt ∼ Np(p+1)/2(0,Σηη),
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as suggested in Asai, McAleer, and Yu (2006). The estimation of this model can be done using

MCMC or a simulated maximum likelihood estimation, but it is not straightforward to interpret

the parameters.

4.3 Wishart Process

4.3.1 Standard model

Another way to obtain a time-varying correlation matrix is by the approach of Philipov and

Glickman (2006b) and Philipov and Glickman (2006a) who assume that the conditional covari-

ance matrix Σt follows an inverted Wishart distribution with parameters that depend on the

past covariance matrix Σt−1. In particular,

yt|Σt ∼ Np(0,Σt),

Σt|ν,St−1 ∼ IWp(ν,St−1),

where IW(ν0,Q0) denotes an inverted Wishart distribution with parameters (ν0,Q0),

St−1 =
1
ν
A1/2

(
Σ−1

t−1

)d
A1/2′, (32)

A = A1/2A1/2′,

and A1/2 is a Choleski decomposition of a positive definite symmetric matrix A and −1 <

d < 1. Asai and McAleer (2007) point out that it also possible to parameterize St−1 as

ν−1
(
Σ−1

t−1

)d/2
A

(
Σ−1

t−1

)d/2′.
The conditional expected values of Σ−1

t and Σt are

E
(
Σ−1

t |ν,St−1

)
= νSt−1 = A1/2

(
Σ−1

t−1

)d
A1/2′,

E (Σt|ν,St−1) =
1

ν − p− 1
S−1

t−1 =
ν

ν − p− 1
A−1/2 (Σt−1)

d A−1/2′,

respectively. Thus the scale parameter d expresses the overall strength of the serial persistence

in the covariance matrix over time. Based on the process of the logarithm of the determinant,

and asymptotic behavior of expectation of the determinant, they assume that |d| < 1 although it

is natural to assume that 0 < d < 1. Notice that when d = 0, for example, the serial persistence

disappears and we get that

E
(
Σ−1

t |ν,St−1

)
= A,

E (Σt|ν,St−1) =
ν

ν − p− 1
A−1.
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The matrix A in this model is a measure of the inter-temporal sensitivity and determines how the

elements of the current period covariance matrix Σt are related to the elements of the previous

period covariance matrix. When A = I, we note that

E
(
Σ−1

t |ν,St−1

)
=





Σ−1
t−1, d = 1,

I, d = 0,
Σt−1, d = −1.

Philipov and Glickman (2006b) estimated this model from a Bayesian approach and proposed

an MCMC algorithm to estimate their models using monthly return data of five industry port-

folios (Manufacturing, Utilities, Retail/Wholesale, Financial and Other) in NYSE, AMEX and

NASDAQ stocks. Under the prior

A ∼ IWp(ν0,Q0), d ∼ π(d), ν − p ∼ G(α, β)

with Σ0 assumed known, the MCMC algorithm is implemented as follows:

1. Sample Σt|{Σs}s6=t,A, ν, d, Yn (t = 1, . . . , n−1) where Yn = {y1, . . . ,yn}. Given a current

sampler Σt, we generate a candidate Σ∗
t ∼ Wp(ν̃, S̃t−1) where Wp(ν̃, S̃t−1) denotes a

Wishart distribution with parameters (ν̃, S̃t−1),

ν̃ = ν(1− d) + 1,

S̃t−1 = S−1
t−1 + yty′t,

St−1 =
1
ν

(A1/2)
(
Σ−1

t−1

)d (A1/2)′,

and accept it with probability

min




|Σ∗

t |(νd−1)/2 exp
[
−1

2tr
{

νA−1 (Σ∗
t )
−d Σ−1

t+1

}]

|Σt|(νd−1)/2 exp
[
−1

2tr
{

νA−1 (Σt)
−d Σ−1

t+1

}] , 1



 .

2. Sample Σn|{Σt}n−1
t=1 ,A, ν, d, Yn ∼ Wp(ν̃, S̃n−1).

3. Sample A|{Σt}n
t=1, ν, d,y ∼ IWp(γ̃, Q̃), where γ̃ = nν + ν0, and

Q̃−1 = ν

{
n∑

t=1

(
Σ−1

t

)−d/2
Σ−1

t

(
Σ−1

t−1

)−d/2

}
+ Q−1

0 ,

4. Sample d from

π(d|{Σt}n
t=1,A, ν,y) ∝ π(d) exp

[
νd

2

n∑

t=1

log |Σt| − 1
2

n∑

t=1

tr
{
S−1

t

(
Σ−1

t−1

)−d
}]

.
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To sample d, Philipov and Glickman (2006b) suggested discretizing the conditional dis-

tribution (see Appendix A.2 of Philipov and Glickman (2006b)). Alternatively, we may

conduct an independent M-H algorithm using a candidate from a truncated normal distri-

bution T N (0,1)(d̂, V̂d) where T N (a,b)(µ, σ2) denote a normal distribution with mean µ and

variance σ2 truncated on the interval (a, b), d̂ is a mode of conditional posterior probability

density π(d|{Σt}n
t=1,A, ν,y) and

V̂d =
{
− ∂2 log π(d|{Σt}n

t=1,A, ν, Yn)
∂d2

∣∣∣∣
d=d̂

}−1

.

5. Sample ν from

π(ν|{Σt}n
t=1,A, d,y) ∝ (ν − p)α−1 exp{−β(ν − p)}

{
|νA−1|ν/2

2νp
∏p

j=1 Γ(ν+j−1
2 )

}n

× exp

[
−ν

2

n∑

t=1

{
log |Qt|+ tr

(
A−1Q−1

t

)}
]

.

As in the previous step, we may discretize the conditional distribution or conduct an inde-

pendent M-H algorithm using a candidate from a truncated normal distribution T N (p,∞)(ν̂, V̂ν)

where ν̂ is a mode of conditional posterior probability density π(ν|{Σt}n
t=1,A, d,y) and

V̂ν =
{
− ∂2 log π(ν|{Σt}n

t=1,A, d, Yn)
∂ν2

∣∣∣∣
ν=ν̂

}−1

.

Asai and McAleer (2007) proposed two further models that are especially useful in higher

dimensions. Let Qt be a sequence of positive definite matrices, which is used to define correlation

matrix Σεε,t = Q∗−1/2
t QtQ

∗−1/2
t where Q∗

t is a diagonal matrix whose (i, i)-th element is the

same as that of Qt. Then the first of their Dynamic Correlation (DC) MSV model is given by:

yt = V1/2
t εt, εt ∼ Np(0,Σεε,t), Σεε,t = Q∗−1/2

t QtQ
∗−1/2
t ,

ht+1 = µ̃ + Φht + ηt, ηt ∼ Np (0,Σηη) , (Φ and Σηη : diagonal)

Qt+1 = (1− ψ)Q̄ + ψQt + Ξt, Ξt ∼ Wp(ν,Λ)

Thus, in this model the MSV shocks are assumed to follow a Wishart process, where Wp(ν,Λ)

denotes a Wishart distribution with degrees of freedom parameter ν and scale matrix Λ. The

model guarantees that Pt is symmetric positive definite under the assumption that Q̄ is positive

definite and |ψ| < 1. It is possible to consider a generalization of the model by letting Qt+1 =

(11′−Ψ)¯ Q̄+Ψ¯Qt +Ξt, which corresponds to a generalization of the Dynamic Conditional

Correlation (DCC) model of Engle (2002).
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The second DC MSV model is given by

Qt+1|ν,St ∼ IWp(ν,St), St =
1
ν
Q−d/2

t AQ−d/2
t ,

where ν and St are the degrees of freedom and the time-dependent scale parameter of the

Wishart distribution, respectively, A is a positive definite symmetric parameter matrix, d is a

scalar parameter, and Q−d/2
t is defined by using a singular value decomposition. The quadratic

expression, together with ν ≥ p, ensures that the covariance matrix is symmetric and positive

definite. For convenience, it is assumed that Q0 = Ip. Although their model is closely related to

the models of Philipov and Glickman (2006b) and Philipov and Glickman (2006a), the MCMC

fitting procedures are different. Asai and McAleer (2007) estimated these models using returns

of the Nikkei 225 Index, Hang Seng Index and Straits Times Index.

Gourieroux, Jasiak, and Sufana (2004) and Gourieroux (2006) take an alternative approach

and derived a Wishart autoregressive process. Let Yt and Γ denote respectively a stochastic

symmetric positive definite matrices of dimension p×p and a deterministic symmetric matrix of

dimension p× p. A Wishart autoregressive process of order 1 is defined to be a matrix process

(denoted by WAR(1) process) with conditional Laplace transform:

Ψt(Γ) = Et [exp{tr(ΓYt+1)}]

=
exp

[
tr

{
M′−1MYt

}]

|I− 2ΣΓ|k/2
(33)

where k is a scalar degree of freedom (k < p − 1), M is an p × p matrix of autoregressive

parameters, and Σ is a p × p symmetric and positive definite matrix such that the maximal

eigenvalue of 2ΣΓ is less than 1. Here Et denotes the expectation conditional on {Yt,Yt−1, . . . , }.
It can be shown that

Yt+1 = MYtM′ + kΣ + ηt+1,

where E(ηt+1) = O. The conditional probability density function of Yt+1 is given by

f(Yt+1|Yt) =
|Yt+1|(k−p−1)/2

2kp/2Γp(k/2)|Σ|k/2
exp

[
−1

2
tr

{
Σ−1(Yt+1 + MYtM′)

}]

×0 F1(k/2; (1/4)MYtM′Yt+1)

where Γp is the multidimensional gamma function and 0F1 is the hypergeometric function of

matrix augment (see Gourieroux, Jasiak, and Sufana (2004) for details). When K is an integer

and Yt is a sum of outer products of k independent vector AR(1) processes such that

Yt =
k∑

j=1

xjtx′jt, (34)

xjt = Mxj,t−1 + εjt, εjt ∼ Np(0,Σ),
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we obtain the Laplace transform Ψt(Γ) is given by (33). Gourieroux, Jasiak, and Sufana (2004)

also introduced a Wishart autoregressive process of higher order. They estimate the WAR(1)

using a series of intra-day historical volatility-covolatility matrices for three stocks traded on the

Toronto Stock Exchange. Finally, Gourieroux (2006) introduced the continuous time Wishart

process as the multivariate extension of the Cox-Ingersoll-Ross (CIR) model in Cox, Ingersoll,

and Ross (1985).

4.3.2 Factor model

Philipov and Glickman (2006a) propose an alternative factor MSV model that assumes that the

factor volatilities follow an unconstrained Wishart random process. Their model has close ties

to the model in Philipov and Glickman (2006b), and is given by

yt = Bft + V1/2εt, εt ∼ Np(0, I),

ft|Σt ∼ Nq(0,Σt), Σt|ν,St−1 ∼ IWq(ν,St−1),

where St−1 is defined by (32). In other words, the conditional covariance matrix Σt of the factor

ft follows an inverse Wishart distribution whose parameter depends on the past covariance matrix

Σt−1. They implemented the model with q = 2 factors on return series data of 88 individual

companies from the S&P500.

In another development, Carvalho and West (2006) proposed dynamic matrix-variate graph-

ical models, which are based on dynamic linear models accommodated with the hyper-inverse

Wishart distribution that arises in the study of graphical models (Dawid and Lauritzen (1993)

and Carvalho and West (2006)). The starting point is the dynamic linear model

y′t = X′
tΘt + u′t, ut ∼ Np(0, vtΣ),

Θt = GtΘt−1 + Ωt, Ωt ∼ Nq×p(O,Wt,Σ),

where yt is the p× 1 vector of observations, Xt is a known q× 1 vector of explanatory variables,

Θt is the q × p matrix of states, ut is the p × 1 innovation vector for observation, Ωt is the

q × p innovation matrix for states, Gt is a known q × q matrix, and Σ is the p × p covariance

matrix. Ωt follows a matrix-variate normal with mean O (q × p), left covariance matrix Wt

and right covariance matrix Σ; in other words, any column ωit of Ωt has a multivariate normal

distribution Nq(0, σiiWt), while any row ωi
t of Ωt, ωi′

t has a multivariate normal distribution

Np(0, wii,tΣ). Next, we suppose that Σ ∼ HIWp(b,D), the hyper-inverse Wishart distribution

with a degree-of-freedom parameter b and location matrix D. It should be noted that the

dynamic linear model with Σ ∼ HIWp(b,D) can be handled from the Bayesian perspective
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without employing simulation-based techniques. Finally, instead of time-invariant Σ, Carvalho

and West (2006) suggested a time-varying process given by

Σt ∼ HIWp(bt,St),

bt = δbt−1 + 1,

St = δSt−1 + vtv′t,

where vt is defined by Theorem 1 of Carvalho and West (2006). Intuitively, vt is the residual

from the observation equation. As Σt appears in both of the observation and state equations,

the proposed dynamic matrix-variate graphical model can be considered as a variation of the

“Factor MSV model with MSV error.” Setting δ = 0.97, Carvalho and West (2006) applied the

dynamic matrix-variate graphical models to two datasets; namely (i) 11 international currency

exchange rates relative to US dollar, and (ii) 346 securities from the S&P500 stock index.

5 Conclusion

We have conducted a comprehensive survey of the major current themes in the formulation

of multivariate stochastic volatility models. In time, further significant developments can be

expected, perhaps fostered by the overview and details delineated in this paper, especially in

the fitting of high dimensional models. Open problems remain, primarily in the modeling of

leverage effects, especially in relation to general specifications of cross leverage effects embedded

within multivariate heavy-tailed or skewed error distributions. We also expect that interest

in the class of factor-based MSV models and dynamic correlation models will grow as these

approaches have shown promise in the modeling of high dimensional data.
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