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Duality-Based Bayesian Analysis of Residential Gas Demand

under Decreasing Block Rate Pricing

Koji Miyawaki,∗ Yasuhiro Omori†

Abstract

This paper discusses a novel Bayesian estimation method for the residential gas demand function
in Japan where the price per unit decreases as the demand exceeds certain thresholds. Such a price
system is known as decreasing block rate pricing. The demand function under decreasing block rate
pricing is derived by using the well-known discrete/continuous choice approach. However, because
of the nonconvex budget set, the conventional approach imposes highly nonlinear constraints on the
model parameters, thus making the maximization of the likelihood function under such constraints
difficult to implement. To overcome this difficulty, we first apply the duality relationship in consumer
theory, and approximate the conditional expenditure in order to linearize these nonlinear constraints.
Then, we adopt a Bayesian approach with the Markov chain Monte Carlo simulation in order to
estimate the model parameters under linear constraints. Our proposed method is illustrated by a
numerical example and is adopted to analyze the demand for residential gas in Japan.

JEL classification: C11, D12, Q41
keyword: Block rate pricing, Discrete/continuous choice approach, Duality, Bayesian analysis,

Markov chain Monte Carlo

1 Introduction

Energy resources are often supplied under block rate pricing, in which case the price per unit changes as
the consumption exceeds certain thresholds. Further, when the unit price decreases as the consumption

increases, such a system is called decreasing block rate pricing. The price system followed by the gas
services in Japan is an example of this decreasing block rate pricing. On the other hand, when the unit

price increases as the consumption increases, such a system is called increasing block rate pricing. The
water and electricity services in Japan follow this increasing block rate pricing. Under block rate pricing

systems, consumers need to choose both price and consumption simultaneously. The discrete/continuous
(D/C) choice approach commonly deals with such a simultaneous decision based on microeconomic

theory.
Under increasing block rate pricing, this D/C choice approach is directly applicable to derive demand

functions that are used to conduct model parameter estimation because its budget set is convex (see He-
witt and Hanemann 1995; Olmstead, Hanemann, and Stavins 2007; Reiss and White 2005; Miyawaki,
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Omori, and Hibiki 2006). In contrast, under decreasing block rate pricing, its budget set becomes noncon-

vex, as will be seen in the next section, and prevents the direct application of this D/C choice approach.
The D/C choice approach with decreasing block rate pricing requires consumers to compare utility

levels conditional on every block choice in order to decide their optimal block. The resulting demand
function inherits this comparison as nonlinear constraints that are mostly a set of nonlinear functions of

prices and income, and the maximum likelihood estimation of such demand functions becomes compu-
tationally prohibitive as the number of block increases. In fact, empirical analyses have been limited

to the case where there are only two decreasing blocks (see, e.g., Hausman 1980; Burtless and Moffitt
1985; de Jong 1990).

At a practical level, however, gas services are supplied under three or more blocks in Japan. Thus, to
overcome the difficulty in fitting the D/C choice approach, we first apply the idea of duality in consumer

theory, and approximate the conditional expenditure in order to linearize constraints. Then, we take a
Bayesian approach with the Markov chain Monte Carlo (MCMC) simulation in order to estimate the

model parameters under linear constraints.
The advantages of our duality-based approach are as follows. First, because nonlinear constraints

are all approximated by linear constraints, it is straightforward to derive the demand function under
multiple-block decreasing block rate pricing as a multinomial extension of the Type II Tobit model. Sec-

ond, as a result of the approximation with duality, the model is relatively insensitive to the consumer
preference change and specific consumer preferences. As a result, provided the demand function condi-

tional on the block choice is linear in its parameters, we have relatively robust parameter estimates of the
demand function regardless of consumer preferences. Third, in contrast to the nonparametric approach

proposed by Blomquist and Newey (2002), our approach is parametric, and thus, the model parameters
have economic implications in terms of the price and income elasticities.

The estimation of demand functions under decreasing block rate pricing plays an important role
in policy making. Theoretically, among block rate pricing systems, decreasing block rate pricing can

attain the second-best optimality (see, e.g., Chapter 7 of Train 1991). Thus, we can discuss whether
the current price system is desirable in terms of economic efficiency. Furthermore, from the viewpoint

of environmental economics, it is substantial for policy makers to estimate the residential gas demand
function and its price elasticity to discuss the second-best taxation on the monopolistic or oligopolistic

gas market (see, e.g., Chapter 6 of Baumol and Oates 1988 and Chapter 5 of Xepapadeas 1997).
This paper is organized as follows. Section 2 derives the demand function under decreasing block

rate pricing. In Section 3, we derive the likelihood function, posterior distribution, and Gibbs sampler for

the Bayesian analysis of the D/C choice model based on duality. Then, we apply our proposed method to
the simulated data in Section 4 and conduct an empirical analysis using Japanese residential gas demand

data in Section 5. Section 6 concludes the paper.

2 Demand Function under Decreasing Block Rate Pricing

2.1 Model Setting

We first describe the decreasing block rate pricing system for a good, the demand of which is denoted by
Y . The other goods are treated as a numeraire commodity, and their price is normalized as one. In the
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Figure 1: Budget Constraint: The Three-Block Case.

block rate pricing system, the consumption is divided into K blocks. Each block’s upper limit is called

the threshold, and the k-th threshold is denoted by Ȳk (k = 0, . . . ,K). In this paper, we set Ȳ0 ≡ 0 and
ȲK ≡ ∞ for convenience. Associated with each thresholds, there are unit prices denoted by Pk, which

is constant provided the consumption is more than Ȳk−1 but less than or equal to Ȳk (k = 1, . . . ,K). The
price system follows decreasing block rate pricing when its price per unit decreases as k increases, that

is, Pk > Pk+1 for k = 1, . . . ,K −1. Finally, there is a basic connection charge, FC, which is treated as a
fixed cost.

Let Ya and I be the expenditure for the other goods except Y and the total income, respectively, and let
U(Y,Ya) denote the well-defined utility function. Then, we organize the consumer’s utility maximization

problem of the two goods as below.

V = max
Y,Ya

U(Y,Ya) subject to Ya + c(Y ) ≤ I, (1)

where c(Y ) is the cost function for consuming Y and is given by

c(Y ) = FC +Pk(Y − Ȳk−1)+
k−1

∑
j=1

Pj(Ȳj − Ȳj−1), if Ȳk−1 < Y ≤ Ȳk. (2)

Figure 1 illustrates the budget constraint under three-block decreasing block rate pricing. As we can

see from Figure 1, the budget constraint becomes piecewise linear in the consumption Y ; furthermore,
because of the decreasing block rate pricing system, consumers face a nonconvex budget set.

In order to derive the demand function, we define the conditional demands, Yk, and the corresponding
conditional indirect utility functions, Vk, for each block (k = 1, . . . ,K). This pair of conditional values

(Yk,Vk) denote the maximizer and solution, respectively, to the k-th conditional utility maximization
problem given below.

Vk = max
Y,Ya

U(Y,Ya) subject to Ya +PkY ≤ Qk, (3)

where Qk is the virtual income defined as Qk = I−FC−∑k−1
j=1(Pj−Pj+1)Ȳj. We assume QK to be positive

such that this conditional problem can be well defined.1

1When QK′+1 ≤ 0, we cut down the model to K′-block decreasing block rate pricing.
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Further, this paper focuses on the following linear structure on the conditional demand Yk.

lnYk = β1 lnPk +β2 lnQk (4)

because it is one of the most popular forms in the demand analysis. In this log-linear model, β1 and
β2 represent the price and income elasticity, respectively, conditional on the block choice. In order to

avoid tedious notations, we set (y,yk, ȳk, pk,qk) = (lnY, lnYk, lnȲk, lnPk, lnQk). Then, the k-th conditional
demand is rewritten as

yk = β1 pk +β2qk ≡ xxx′kβββ , (5)

where xxxk = (pk,qk)′ and βββ = (β1,β2)′. Finally, we have the demand function with the D/C choice
approach.

y = yk, if Vk = max
j

Vj, (6)

(see, e.g., Section 2 of Moffitt 1986 for the discussion on the two-block rate pricing model).
We mention three points relating with this demand model. First, the model implicitly assumes that

there is only one optimal block. Under decreasing block rate pricing, the nonconvex budget set can yield
multiple solutions. However, as we will discuss in Section 3, such a case can be excluded in our statistical

modeling.
Second, the model would be sensitive to the underlying consumer preference. In other words, even

when consumer preferences change infinitesimally, thereby resulting in a new but similar indifference
curve, the new optimal block would neither remain the same as before nor change in the neighborhood

of the previously optimal block. While this is consistent with the rational consumer, such extreme block
change is impractical. As can be shown in Subsection 2.3, this paper introduces an approximation of

consumer preferences into the model, which leads to a less sensitive model with the preference change
than the original one. Theoretical modification, however, would remain a challenge for a future research.

Third, this demand model is not concerned with the effect of the supply structure because in most
cases, goods or services under block rate pricing are provided by regionally monopolistic companies,

and such companies are obliged to supply as much of the goods and services as the consumer needs. It
would be possible to introduce the supply system into this model by utilizing the so-called disequilibrium

model (see, e.g., Chapter 10 of Maddala 1983), which is also an issue for future studies.

2.2 Conventional Approach

In general, the structural demand analysis assumes a certain consumer preference behind the utility

maximization problem and requires that the demand functions be consistent with this preference. For
this purpose, there are three major methods to determine the functional form of the demand functions.

• Specify the direct utility function to derive its demand function.

• Specify the indirect utility to derive its demand function.
• Specify the demand function and recover its indirect utility.

The third method is often selected for the block rate pricing problem because of its flexibility in fitting

the demand function to the data (see, e.g., Hausman 1985). However, when we consider more than two-
block decreasing block rate pricing, this approach reveals its limitation. Under the assumption of the
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log-linear conditional demand function, Roy’s identity recovers the corresponding conditional indirect

utility, which is given by

Vk = −
P1+β1

k
1+β1

+
Q1−β2

k
1−β2

, k = 1, . . . ,K. (7)

The conventional approach directly plugs these nonlinear conditional indirect utilities into the demand

function (6) and estimates its model parameters. It is, however, difficult to evaluate the parameters’
space satisfying Vk = max j Vj when K > 2. Thus, the next subsection explains an improved duality-

based approach for demand functions under decreasing block rate pricing.

Remark 1. Even when K = 2, the conventional approach takes much more computational time in estimat-
ing the model parameters than the duality-based approach. Bayesian estimation with the conventional

approach was conducted with the same set of parameters and data as described in Section 4. Further, we
impose some conditions on the data set to reduce the computational burden: the logarithm of the price

and virtual income for the first block is negative, such that the difference of the indirect utilities between
the first and second block is monotonically decreasing in terms of β j ( j = 1,2) given βk (k 6= j, k = 1,2).

Then, the conventional approach takes more than seven times as much time as does the duality approach
does and requires more samples to converge to their posterior distribution.

2.3 Duality Approach

This subsection proposes the duality-based approach for the estimation of the demand functions under
decreasing block rate pricing. First, suppose that the k-th block is optimal, that is, Vk = max j Vj. Next,

we define the j-th conditional expenditure E j ( j = 1, . . . ,K) as the solution to the conditional expenditure
minimization problem given below.

E j = min
Y,Ya

Ya +PjY subject to U(Y,Ya) ≤V, (8)

where V is the solution to the original utility maximization problem (1). This Problem (8) is the dual
problem to Problem (3).

Thanks to duality in consumer theory, there is a relationship between conditional expenditures and
indirect utilities: E j = Q j if and only if Vj = V , and E j > Q j if and only if Vj < V .2 Figure 2 illustrates

two cases when the second block is both optimal and suboptimal under three-block decreasing block
rate pricing. Because the D/C choice model assumes that V = Vk = max j Vj, we have the relationship

between conditional indirect utilities and conditional expenditures, which is stated as below.

Vk = max
j

Vj ⇐⇒

Ek = Qk,

E j > Q j, for j 6= k.
(9)

It is still difficult to jointly estimate the parameters of conditional expenditure and demand function,

and thus, we approximate E j by Taylor expansion around Pk evaluated at Pj. The Envelope Theorem in
consumer theory yields

E j ≈ Qk +Yk (Pj −Pk) . (10)
2See Figure 2.8 on p.38 of Deaton and Muellbauer (1980) for a general relationship between the indirect utility and expen-

diture function.
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Figure 2: The Three-Block Case; the Second Block is Optimal (left) and Suboptimal (right).

A proof for this approximation is given below.
Proof of Eq. (10). Suppose that the k-th block is optimal. Let E(P) be the solution to the minimization

problem below.
E (P) = min

Y,Ya
Ya +PY subject to U(Y,Ya) ≤V. (11)

It is straightforward that E(Pj) = E j. Then, we approximate E(P) by Taylor expansion around Pk.

E (P) = Ek +
∂E (P)

∂P

∣∣∣∣
P=Pk

(P−Pk)+R1 = Ek +Yk (P−Pk)+L1, (12)

where L1 is the first-order Lagrange reminder. The second equality holds from the Envelope Theorem
with respect to the expenditure function.3 Evaluation at Pj yields

E (Pj) = E j ≈ Qk +Yk (Pj −Pk) . (13)

We use the optimality at the k-th block, which implies that Ek = Qk. ¤
There are two additional comments on this approximation. First, the approximation of E j − Ek,

Qk +Yk(Pj −Pk)−Ek, can be interpreted as that of the compensating variation. Suppose Y is supplied
with a uniform price Pk and the consumer attains the indirect utility level V . Then, the price changes

from Pk to Pj. In this setting, we can define the expenditure minimization problems for Pk and Pj as being
identical form to Eq. (8), and E j becomes the expenditure for a consumer to maintain the indirect utility

level at V , which was achieved under the previous price Pk. Then, by definition, the E j −Ek amount
becomes the compensating variation.

Second, in the study of welfare economics, we sometimes find that the expenditure function is ap-
proximated by Taylor expansion up to the second order (see, e.g., Eq. 2 of Irvine and Sims 1998). In

our case, however, the parameter estimation becomes difficult with such a second-order approximation.

3See Proposition 3.G.1 on p.68 of Mas-Colell, Whinston, and Green (1995) for details regarding the Envelope Theorem
with respect to the expenditure function.
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Thus, this paper considers the first-order approximation with log-linear conditional demand. Section 4

will evaluate this approximation with simulated data.
Approximation Eq. (10) transforms Condition (9) intoEk = Qk,

E j > Q j, for j 6= k,
⇐⇒

Yk > H j, if j < k,

Yk < H j, if j > k,
(14)

where H j = (Q j −Qk)/(Pj −Pk). Therefore, the demand function under decreasing block rate pricing is
given by

Y = Yk, if


Ȳk−1 < Yk < Ȳk,

Yk > H j, for j < k,

Yk < H j, for j > k,

(15)

where the additional interval condition Ȳk−1 <Yk < Ȳk is needed to guarantee that the conditional demand
is restricted in its corresponding block. Finally, under the log-linear conditional demand assumption,

y = yk, if


ȳk−1 < yk < ȳk,

yk > h j, for j < k,

yk < h j, for j > k,

(16)

where yk = xxx′kβββ and h j = lnH j.

The duality-based approach has the following three advantages. First, in contrast to the conventional
approach, nonlinear constraints are all approximated by linear constraints such that it is straightforward

to extend the demand function under multiple-block decreasing block rate pricing. Further, the demand
function becomes a multinomial extension of the Type II Tobit model. The parameters of the Type II

Tobit model can be estimated using the Bayesian approach with the MCMC simulation (see the next
section for details). Second, the model is, to some extent, free of the consumer preference change and

specific consumer preferences in exchange for this approximation. Consumer preferences that produce
nonlinear constraints are approximately included in linear constraints. Thus, the model is relatively

independent of consumer preferences, and we have robust parameter estimates of the demand function.
Third, in recent years, the nonparametric approach has been proposed by Blomquist and Newey (2002)

that is robust with distributional misspecification. Our approach, in contrast, is parametric and has an
advantage over their nonparametric approach because model parameters have economic implications in

terms of the price and income elasticities.

3 Bayesian Analysis of Duality-Based Demand Functions

3.1 Posterior Distribution

We assume the log conditional demand yik for each observation i, and it is observed with two additive

disturbances: consumer heterogeneity w∗
i and measurement error ui (i = 1, . . . ,n).

Consumer heterogeneity is an unobserved variable, which is assumed to have a linear structure, as
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follows.

y∗i = yik +w∗
i , w∗

i = zzz′iδδδ + vi, vi ∼ i.i.d. N(0,σ 2
v ), (17)

where zzzi and δδδ represent a d × 1 explanatory vector and its coefficient vector, respectively, and vi is a
random variable that is independently and identically distributed as the normal distribution with mean 0

and variance σ 2
v . This paper names y∗i the unobserved demand in contrast to the observed demand yi.

The role of this heterogeneity w∗
i is explained below. First, it represents the consumer’s characteris-

tics. Further, the continuous random variable vi included in this heterogeneity excludes multiple solutions
to the original utility maximization problem, Problem (1), or more precisely, assigns a zero probability

for these multiple solutions. Thus, it is sufficient to consider the single-solution case as we referred to in
Subsection 2.1.

By introducing consumer heterogeneity, we can interpret the D/C choice model as one where hetero-
geneity is the fundamental factor in deciding the optimal consumption. In Eq. (16), each block’s condi-

tional demands decide the optimal block and demand. After heterogeneity is included in this model, it is
heterogeneity that controls the consumer’s optimal choice. More precisely, we replace three conditions

in Eq. (16) with another equivalent condition using the heterogeneity interval Rik (k = 1, . . . ,Ki).
ȳk−1 < y∗i < ȳk,

y∗i > h j, for j < k,

y∗i < h j, for j > k,

⇐⇒ w∗
i ∈ Rik =

{
max

(
ȳi,k−1,max

j<k
hi j

)
− yik,min

(
ȳik,min

j>k
hi j

)
− yik

}
, (18)

where hi j = lnHi j = ln{(Qi j −Qik)/(Pi j −Pik)}.

In addition to the heterogeneity, we assume that the demand is observed with the following measure-
ment error.

yi = y∗i +ui, ui ∼ i.i.d. N(0,σ 2
u ). (19)

This error term has two purposes. First, as noted at the end of Section 3 of Moffitt (1986), ui gives positive
probabilities on regions (RUik,RLi,k+1) for k = 1, . . . ,Ki −1, which are often nonempty depending on the

data. We use (RLik,RUik) as the lower and upper bounds of the heterogeneity interval Rik defined above.
Second, ui allows the consumer to select the different block from the one which is indicated by the

unobserved demand, y∗i ; that is, while yi is observed in the l-th block, y∗i is in the k-th block (k 6= l).
Because the block choice based on y∗i is free of measurement error and is ideal, it is natural to allow such

a difference between the observed and unobserved block choice.
Finally, we have the model of the demand function under decreasing block rate pricing.

yik = xxx′ikβββ , k = 1, . . . ,Ki,

w∗
i = zzz′iδδδ + vi, vi ∼ i.i.d. N(0,σ 2

v ),

r∗i = k, if w∗
i ∈ Rik and k = 1, . . . ,Ki,

yi = y∗i +ui = yir∗i +w∗
i +ui, ui ∼ i.i.d. N(0,σ2

u ),

(20)

where r∗i is a discrete latent variable indicating the block that is selected by observation i depending on the

8



heterogeneity. As stated in the previous subsection, the model falls into a multinomial extension of the

Type II Tobit model. The mechanism of this model is summarized as follows: consumer heterogeneity,
which is unobserved, determines the optimal block, and hence, the unobserved demand. Given this

unobserved demand, we can observe the demand with some measurement error.
Next, we derive the augmented likelihood function for observation i. Because there are two unob-

served components, heterogeneity w∗
i and state r∗i , the likelihood function is augmented with these latent

variables and is given by

f
(
yi,r∗i ,w

∗
i | βββ ,δδδ ,σ 2

u ,σ2
v
)

∝ (σuσv)
−1 exp

[
−1

2

{
σ−2

u (yi − y∗i )
2 +σ−2

v
(
w∗

i − zzz′iδδδ
)2

}]
I
(
w∗

i ∈ Rir∗i

)Ki−1

∏
k=1

I (RUik ≤ RLi,k+1) , (21)

where I(A) is the indicator function taking the value 1 if A is true, and 0 otherwise.

The last truncation
Ki−1

∏
k=1

I(RUik ≤ RLi,k+1), (22)

is termed the separability condition, which guarantees a disjoint parameter space of w∗
i , that is, a disjoint

heterogeneity interval. When we estimate the demand function under increasing block rate pricing, the

separability condition becomes
Ki−1

∏
k=1

I(yi,k+1 ≤ yik), (23)

which is more restrictive than Eq. (22): because min(ȳik,min j>k hi j) ≤ max(ȳik,max j<k+1 hi j), yi,k+1 ≤
yik is the sufficient condition for RUik ≤ RLi,k+1. Such a difference in above two separability conditions
between increasing and decreasing block rate pricing cases comes from the comparison of indirect util-

ities among blocks that is additional to the demand function under decreasing block rate pricing. In
spite of its different restriction from Eq. (23), the role of the separability condition for the decreasing

block rate pricing case, Eq. (22), is the same as the one for the increasing block rate pricing case. (see
Miyawaki et al. 2006 for a detailed discussion of this condition on the estimation of the demand function

under increasing block rate pricing).
Finally, let π(βββ ,δδδ ,σ2

u ,σ 2
v ) denote the prior density, and we have the posterior distribution of the

demand function under decreasing block rate pricing as follows.

π
(
βββ ,δδδ ,σ 2

u ,σ2
v ,rrr∗,www∗ | yyy

)
∝ π

(
βββ ,δδδ ,σ 2

u ,σ 2
v
)

(σuσv)
−n exp

[
−1

2
{

σ−2
u (yyy− yyy∗)′ (yyy− yyy∗)+σ−2

v (www∗−ZZZδδδ )′ (www∗−ZZZδδδ )
}]

n

∏
i=1

I
(
w∗

i ∈ Rir∗i

)Ki−1

∏
k=1

I (RUik ≤ RLi,k+1) , (24)

where yyy = (y1,y2, . . . ,yn)′, yyy∗ = (y∗1,y
∗
2, . . . ,y

∗
n)

′, rrr∗ = (r∗1,r
∗
2, . . .r

∗
n)

′, www∗ = (w∗
1,w

∗
2, . . .w

∗
n)

′ and ZZZ =
(zzz1,zzz2, . . . ,zzzn)

′.
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Remark 2. The alternative functional form of the conditional demands is the following linear function.

Yik = β1Pik +β2Qik. (25)

When this linear function is used, Taylor expansion of the conditional expenditure function up to the
third order yields the exact equation.

Ei j = Qik +Yik (Pi j −Pik)+
1
2

(β1 +β2Yik)(Pi j −Pik)
2 +

1
6

β1β2 (Pi j −Pik)
3 . (26)

Further, instead of the interval condition and separability condition, we need the positivity condition
given below.

Yik +w∗
i ≥ 0 for k = 1, . . . ,Ki, i = 1, . . . ,n. (27)

The posterior distribution remains identical to Eq. (24) when we redefine the heterogeneity interval Rik

in accordance with Eqs. (26) and (27).

3.2 Gibbs Sampler

We assume the proper prior densities on model parameters (βββ ,δδδ ,σ 2
u ,σ2

v ) such that βββ and δδδ conditional

on σ 2
u and σ 2

v follow multivariate normal distributions, and σu and σv follow inverse gamma distributions.
More precisely,

βββ | σ2
u ∼ N2

(
µµµβββ j,0

,σ2
u ΣΣΣβββ ,0

)
, δδδ | σ2

v ∼ Nd
(
µµµδδδ ,0,σ

2
v ΣΣΣδδδ ,0

)
,

σ 2
u ∼ IG

(
nu,0

2
,
Su,0

2

)
, σ 2

v ∼ IG
(

nv,0

2
,
Sv,0

2

)
,

(28)

where µµµβββ j,0
is a 2× 1 known vector; ΣΣΣβββ ,0 = diag(σ 2

β1,0
,σ2

β1,0
) is a known diagonal 2× 2 covariance

matrix; pµµµδδδ ,0 is a d ×1 known vector; ΣΣΣδδδ ,0 is a known d ×d covariance matrix; and nv,0, Sv,0, nu,0, and

Su,0 are some known positive constants. The subscript to the normal distribution indicates its dimension.
Then, we can implement the MCMC simulation by the Gibbs sampler in the following seven steps.

Algorithm 1: MCMC algorithm for the cross-section model
Step 1. Initialize βββ ,δδδ ,rrr∗,www∗,σ 2

u , and σ2
v .

Step 2. Generate β1 given β2,rrr∗,www∗,σ2
u .

Step 3. Generate β2 given β1,rrr∗,www∗,σ2
u .

Step 4. Generate
(
σ 2

v ,δδδ
)

given www∗.

(a) Generate σ2
v given www∗.

(b) Generate δδδ given www∗,σ 2
v .

Step 5. Generate (r∗i ,w
∗
i ) given βββ ,δδδ ,σ 2

u ,σ 2
v for i = 1, . . . ,n.

(a) Generate r∗i given βββ ,δδδ ,σ 2
u ,σ 2

v .

(b) Generate w∗
i given βββ ,δδδ ,r∗i ,σ2

u ,σ2
v .

Step 6. Generate σ2
u given βββ ,rrr∗,www∗.

Step 7. Go to Step 2.
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In Step 4, the blocking technique in (σ 2
v ,δδδ ) is used to accelerate the convergence of MCMC samples to

their posterior distribution. On the other hand, in Step 5, we again use the blocking technique to avoid
the relationship where w∗

i determines r∗i as well as to obtain the convergence acceleration for MCMC

samples to their posterior distribution. All full conditional distributions are standard distributions, and
are provided in the next subsections following each steps of Algorithm 1.

In order to explain full conditionals, we introduce two notations and one assumption only for this
Section 3.2. First, T NA(µ,σ2) denotes a truncated normal distribution with mean µ and variance σ 2

and truncated region A. Second, we define a new nonnegative variable ȳ+
ik (k = 1, . . . ,Ki − 1) related to

thresholds.

ȳ+
ik = max

(
ȳik, max

l<k+1
hil

)
−min

(
ȳik,min

l>k
hil

)
. (29)

Thirdly, without loss of generality, we assume piKi and qiKi for all i to be strictly positive.

3.2.1 Step 2. Generate β1 given β2,rrr∗,www∗,σ2
u .

Draw β1 from the truncated normal distribution T NR1(µβ1,1,σ
2
u σ 2

β1,1
), where

σ−2
β1,1

= σ−2
β1,0

+
n

∑
i=1

(
pir∗i

)2
,

µβ1,1 = σ 2
β1,1

[
σ−2

β1,0
µβ1,0 +

n

∑
i=1

pir∗i

(
yi −β2qir∗i −w∗

i
)]

,

R1 =
{

max
i,k

(
−β2 (qi,k+1 −qik)+ ȳ+

ik
pi,k+1 − pik

,RL1i

)
,min

i
(∞,RU1i)

}
.

(30)

The RL1i and RU1i denote the lower and upper intervals of R1i, respectively, which is defined below.

R1i =

{
max

(
ȳi,r∗i −1,maxl<r∗i hil

)
−β2qir∗i −w∗

i

pir∗i
,
min

(
ȳir∗i ,minl>r∗i hil

)
−β2qir∗i −w∗

i

pir∗i

}
. (31)

3.2.2 Step 3. Generate β2 given β1,rrr∗,www∗,σ2
u .

Draw β2 from the truncated normal distribution T NR2(µβ2,1,σ
2
u σ 2

β2,1
), where

σ−2
β2,1

= σ−2
β2,0

+
n

∑
i=1

(
qir∗i

)2
,

µβ2,1 = σ2
β2,1

[
σ−2

β2,0
µβ2,0 +

n

∑
i=1

qir∗i

(
yi −β1 pir∗i −w∗

i
)]

,

R2 =
{

max
i,k

(
−β1 (pi,k+1 − pik)+ ȳ+

ik
qi,k+1 −qik

,RL2i

)
,min

i
(∞,RU2i)

}
.

(32)

The RL2i and RU2i are the lower and upper intervals of R2i, respectively, which is defined below.

R2i =

{
max

(
ȳi,r∗i −1,maxl<r∗i hil

)
−β1 pir∗i −w∗

i

qir∗i
,
min

(
ȳir∗i ,minl>r∗i hil

)
−β1 pir∗i −w∗

i

qir∗i

}
. (33)
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Remark 3. The full conditional distributions utilized in Steps 2 and 3 are both interchangeable with each

other, when we replace the regression coefficients (β j, j = 1,2), regressors (the price and virtual income),
and hyperparameters of prior densities.

3.2.3 Step 4. Generate
(
σ 2

v ,δδδ
)

given www∗.

The blocking strategy is adopted to generate samples of (σ 2
v ,δδδ ). Draw σ 2

v from IG(nv,1
2 ,

Sv,1
2 ), and δδδ from

N(µµµδδδ ,1,σ 2
v ΣΣΣδδδ ,1), where nv,1 = nv,0 +n,

ΣΣΣ−1
δδδ ,1 = ΣΣΣ−1

δδδ ,0 +ZZZ′ZZZ,

µµµδδδ ,1 = ΣΣΣδδδ ,1

(
ΣΣΣ−1

δδδ ,0µµµδδδ ,0 +ZZZ′www∗
)

,

Sv,1 = Sv,0 + µµµ ′
δδδ ,0ΣΣΣ−1

δδδ ,0µµµδδδ ,0 +www∗′www∗−µµµ ′
δδδ ,1ΣΣΣ−1

δδδ ,1µµµδδδ ,1.

(34)

3.2.4 Step 5. Generate (r∗i ,w
∗
i ) given βββ ,δδδ ,σ2

u ,σ 2
v for i = 1, . . . ,n.

By marginalizing over w∗
i , we have the full conditional distribution for r∗i as the multinomial distribution,

which is given by

π
(
r∗i = r | βββ ,δδδ ,σ 2

u ,σ 2
v
)

∝ τ
[
Φ

{
τ−1 (RUir −θir)

}
−Φ

{
τ−1 (RLir −θir)

}]
exp

(
−mir

2

)
, (35)

for s = 1, . . . ,Ki where τ2 = (σ−2
u +σ−2

v )−1. The pair (mir,θir) are given by

(mir,θir) =

(
(σuσv)

−2 (yi − yir − zzz′iδδδ )2

σ−2
u +σ−2

v
,

σ−2
u (yi − yir)+σ−2

v zzz′iδδδ
σ−2

u +σ−2
v

)
. (36)

Given r∗i = r, it is straightforward to derive the full conditional distribution for w∗
i , which is the truncated

normal distribution T NRir(θir,τ2).

3.2.5 Step 6. Generate σ2
u given βββ ,rrr∗,www∗.

The full conditional distribution for σ2
u is IG(nu,1

2 ,
Su,1

2 ), where nu,1 = nu,0 +2+n and

Su,1 = Su,0 +
(

βββ −µµµβββ ,0

)′
ΣΣΣ−1

βββ ,0

(
βββ −µµµβββ ,0

)
+(yyy− yyy∗)′ (yyy− yyy∗) . (37)

3.3 Predictive Distribution

As analyzed in Section 8 of Reiss and White (2005), the estimated demand function can be utilized

to predict future demand according to the change in the price system. The ordinary Bayesian tool for
prediction is the predictive distribution, namely, a conditional distribution of future dependent variables

given the presently observed data and model, and marginalized over the model parameters. This subsec-

tion describes the predictive distribution of our D/C choice model, and its sampling algorithm based on
the Gibbs sampler derived in the previous subsection.
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Let ζζζ = (βββ ,δδδ ,σ2
u ,σ 2

v ), ΨΨΨ∗ = (rrr∗,www∗), and let (ỹyy,Ψ̃ΨΨ∗
) be the predicted values of demand and latent

variables, respectively. Then, the predictive distribution is given by

f (ỹyy | yyy) =
∫

f
(

ỹyy | yyy,Ψ̃ΨΨ∗
,ζζζ ,ΨΨΨ∗

)
g
(

Ψ̃ΨΨ∗ | yyy,ζζζ ,ΨΨΨ∗
)

π (ζζζ ,ΨΨΨ∗ | yyy)dΨ̃ΨΨ∗
dζζζ dΨΨΨ∗

=
∫

f
(

ỹyy | Ψ̃ΨΨ∗
,βββ ,σ 2

u

)
g
(

Ψ̃ΨΨ∗ | yyy,ζζζ
)

π (ζζζ ,ΨΨΨ∗ | yyy)dΨ̃ΨΨ∗
dζζζ dΨΨΨ∗, (38)

where

f
(

ỹyy | Ψ̃ΨΨ∗
,βββ ,σ 2

u

)
=

n

∏
i=1

N
(
yir̃∗i + w̃∗

i ,σ
2
u
)
, (39)

g
(

Ψ̃ΨΨ∗ | yyy,ζζζ
)

∝
n

∏
i=1

exp
[
−1

2

{
σ−2

u
(
yi − yir̃∗i − w̃∗

i
)2 +σ−2

v (w̃∗
i − zzz∗i δδδ )2

}]
I
(
w̃∗

i ∈ Rir̃∗i

)
, (40)

and π(ζζζ ,ΨΨΨ∗ | yyy) is the posterior distribution, Eq. (24). The first equality of Eq. (38) is the definition of

the predictive distribution, and the second follows from the D/C choice model. We point out that Eqs.
(39) and (40) are evaluated at a new price system, and the latter conditional distribution, Eq. (40), is

proportional to the product of the full conditional distribution of (r∗i ,w
∗
i ) used in Step 5 of Algorithm 1

over all observations.
In order to obtain samples from this predictive distribution, Section 9 of Chib (2001) suggests the

method of composition that makes use of the MCMC samples previously drawn by the Gibbs sampler
described in the previous subsection. The method of composition in our case is implemented in the

following four steps.

Algorithm 2: sampling from predictive distribution
Step 1. Pick ζζζ ( j) = (βββ ( j),δδδ ( j),σ2( j)

u ,σ 2( j)
v ), the j-th MCMC sample drawn from π (ζζζ ,ΨΨΨ∗ | yyy).

Step 2. Generate (r̃∗i , w̃
∗
i ) given ζζζ ( j) for i = 1, . . . ,n.

(a) Generate r̃∗i given ζζζ ( j).
(b) Generate w̃∗

i given ζζζ ( j) and r̃∗i .

Step 3. Generate ỹi given r̃∗i , w̃∗
i , βββ ( j), σ 2( j)

u for i = 1, . . . ,n.
Step 4. Set j → j +1 and go to Step 1.

To generate (r̃∗i , w̃
∗
i ) and ỹi, we use the same distributions used in Step 5 of Algorithm 1 and normal

distribution N(yir̃∗i + w̃∗
i ,σ 2

u ), respectively.

4 Numerical Example Using Simulated Data

This section presents a numerical example to illustrate our estimation procedure using the simulated data

and evaluates the accuracy of our approximation.
We generate 100 observations under two-block decreasing block rate pricing. For a single threshold,

we set Ȳi1 = 3.5 for all observations. As for price, the second block’s price is distributed as |N(0.9,0.32)|,
the absolute value of a normal random number with mean 0.9 and variance 0.32. The price of the first

block is generated by adding |N(0.3,0.22)| to that of the second block. The basic connection charge is

13
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Figure 3: Estimated Marginal Posterior Distributions with Simulated Data.

Table 1: Results with Simulated Data∗

Parameter True Mean SD 95% interval p > 0 INEF CD

β1 −.1 .23 .23 [− .23 .65] .84 4.7 .254
β2 .5 .82 .41 [ .052 1.65] 1.00 176.3 .166
δ0 (constant) .1 − .16 .75 [−1.68 1.29] .42 6.3 .079
δ1 .1 .013 .27 [− .51 .55] .52 36.8 .243
σu (measurement error) .4 .40 .030 [ .35 .47] — 1.0 .107
σv (heterogeneity) .1 .087 .024 [ .049 .14] — 1.8 .640

∗ ”p > 0”, “INEF”, and “CD” denote the marginal posterior probability above zero, inefficiency factor,
and convergence diagnostic, respectively.

considered to be zero for simplicity. We generate the income Ii and explanatory variable zi2 for hetero-

geneity, using Ii ∼ |N(3.0,0.32)| and zzz′i = (zi1,zi2) =
(
1.0, |N(3.0,0.12)|

)
, respectively.

The prior densities are assumed to be as follows.

βββ | σ 2
u ∼ N2

(
000,100σ2

u III
)
, δδδ | σ2

v ∼ N2
(
000,100σ 2

v III
)
,

σ 2
u ∼ IG(0.01,0.01) , σ 2

v ∼ IG(0.01,0.01) .
(41)

After deleting 3×104 samples as the burn-in period, the subsequent 3×105 MCMC samples are drawn

by Algorithm 1, and every 30-th sample is selected to obtain 104 samples, which are used for Bayesian
inferences. The results are found in Figure 3 and Table 1. Table 1 reports the true parameter value, esti-

mated posterior mean, posterior standard deviation, 95% credible interval, marginal posterior probability
above zero, inefficiency factor, and convergence diagnostic.

The inefficiency factor is an index defined as 1+2∑∞
j=1 ρ( j), where ρ( j) is the sample autocorrela-

tion at lag j, and indicates the estimated loss of MCMC samples as compared to independent ones (see

Section 3.2 of Chib 2001). When the inefficiency factor is close to one, sampling is almost as efficient as

independent draw. The convergence diagnostic, on the other hand, is the p-value of the test statistic that
tests the equality of two means of the first nA and last nB draws (see Subsection 3.2 of Geweke 1992). If

the null hypothesis that two means are equal is rejected, we conclude that there is a significant evidence
against the convergence of MCMC samples to their posterior distribution. To calculate the convergence
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Figure 4: Sample Paths (upper) and Sample Autocorrelation Functions (lower) for β1 and β2.

diagnostic, we take the first 10% for nA and the last 50% for nB of MCMC samples, respectively, as

suggested by Geweke (1992).
From Figure 3 and Table 1, we can observe that our estimation method effectively estimates the

true values because true parameter values are included around the modes of marginal posterior distribu-
tions. There are two other features in our MCMC estimation. First, the MCMC samples of β2 converge

slowly to its marginal posterior distribution. Figure 4 shows the sample paths and sample autocorrelation
functions for β1 and β2. This figure reveals that β2’s sample path is more correlated and its sample auto-

correlation function decays slower than those of β1. Furthermore, the inefficiency factor for β2 is much
larger than those of the other parameters. Thus, we conclude that β2 slowly converges to its marginal

posterior distribution. A similar tendency was also found in the estimation of the demand function under
increasing block rate pricing (see Table 1 of Miyawaki et al. 2006). One possible reason for this slow

convergence is the use of the virtual income. Further analysis of the virtual income to accelerate the
convergence of the MCMC chain to its posterior distribution would be necessary in future work.

Second, two variance parameters (σ 2
u ,σ2

v ) are identified in this numerical example. As explained
in the previous section, when, for example, heterogeneity intervals are separated from each other, that

is, when (RUik,RLi,k+1) (k = 1, . . . ,Ki − 1) is nonempty, ui has its own information from the data so
that variance parameters can be identified. In some cases, however, the data seem to fail in providing

sufficient information for ui in order to identify these two variance parameters, and the estimates of
these variance parameters are strongly influenced by their prior densities. Thus, we should pay careful

attention to whether the data set includes information on the variance parameters to be identified with
each other.

At the end of this numerical example, we evaluate the accuracy of the expenditure function approxi-
mation, Eq. (10). Hausman (1981) derived the exact expenditure function recovered from the log-linear

demand (see Eq. 22). Using Hausman (1981)’s equation, we compute the approximation loss of Ei j −Eik

( j 6= k, j = 1,2, . . . ,Ki and i = 1,2, . . . ,100) where the k-th block is the true selected block calculated
from the true heterogeneity. As noted in Subsection 2.3, the difference Ei j −Eik is virtually interpreted

as being the compensating variation in the hypothetical uniform price system so that the approximation
error of this difference is regarded as that of the compensating variation.
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Table 2: Gas Service in Japan

Gas type No. of companies Rate admission Consumption percentage∗

natural gas around 200 regulated 19%
LP gas over 20,000 not regulated 13%
∗ Percentage in total energy use measured by Joule in 2004.

The percentage of this approximation loss for observation i is given by

(Ei j −Eik)−
{

Qik +Y ∗
i (Pi j −Pik)−Eik

}
Qik +Y ∗

i (Pi j −Pik)−Eik
×100 =

Ei j −
{

Qik +Y ∗
i (Pi j −Pik)

}
Y ∗

i (Pi j −Pik)
×100, (42)

where Ei j is the exact expenditure derived by Hausman (1981) and Y ∗
i = exp(y∗i ) = exp(yik + w∗

i ). We

use the optimality condition at the k-th block that Eik = Qik. With ui = vi = 0 for simplicity, our approx-
imation loss is calculated as around −7.55 percent on average with a standard deviation of 2.17 percent.

Irvine and Sims (1998), on the other hand, provide another numerical example with the linear demand
function in their Subsection II-B, and their error of the compensating variation with Taylor expansion

up to the second order is calculated as −2.67 percent. Thus, we expect that the estimation with our
approximated duality approach yields the relatively acceptable precision as compared to that with the

approximated compensating variation used in welfare economics.

5 Empirical Analysis

5.1 Data Description

First, we briefly describe the gas service in Japan. The residential gas service is supplied by regionally

monopolistic companies and is categorized into two by type of gas: natural gas and liquefied petroleum
(LP) gas. While natural gas is supplied through pipe to each customer, LP gas is stored in a gas cylinder

and is delivered to each consumer by truck. Thus, because of the large fixed cost to construct gas pipes,
natural gas services are limited to city areas. With regard to price, the price per one cubic meter of natural

gas is likely to be higher than that of LP gas, because a calorie of natural gas per one cubic meter is higher
than that of LP gas. The other characteristics of companies dealing in each gas type are summarized in

Table 2.
Next, the data set of residential gas demand in Japan is explained for the empirical analysis in the

next subsection. This paper uses aggregate data collected at the capitals of each Japanese prefecture for
the year 1999. The number of observations is 49. For the dependent variable yi, we select the average

gas charge of one household in one month taken from the Family Income and Expenditure Survey (FIES)
reported by the Ministry of Internal Affairs and Communications (MIAC). Gas charge is reported in the

unit of yen, so that we transform the gas charge into the amount with the unit of cubic meter by applying
the corresponding price tables, which are explained in the next paragraph.

The attributes of explanatory variables are found in Table 3. For the price and income, we choose
them in the following manner. We pick up each prefecture’s price table for residential gas use from the
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Table 3: Explanatory Variables used in Gas Demand Function

Variable Coefficient Data

price β1 price for residential use (¥103/m3)
income living expenditure (¥103)
fixed cost basic connection charge (¥103)

variables for w∗
i δ1 average no. of members (persons)

δ2 average no. of earners (persons)
δ3 average age of household head (102 years old)
δ4 average floor space (10m3)
δ5 average temperature (°C)

Gas Industry Manual published by the Japan Gas Association. Because it is often observed that there exit
several gas companies in one prefecture, we select the price table used by the gas company that includes

the prefecture’s capital as its supply area. Then, all price tables follow decreasing block rate pricing with

two or three blocks in 1999.4 For the income variable, data taken from the FIES on the average living
expenditure of one household in one month is used.

As regards the explanatory variables for heterogeneity, five variables found in Table 3 are selected.
These variables are selected such that they reflect the household characteristics and environments of

each prefecture. The average number of members and earners and the age of the household head are
taken from the FIES, the average floor space is taken from the Housing and Land Survey reported by the

MIAC, and the average temperature is reported online by the Japanese Meteorological Agency. Because
the Housing and Land Survey is reported every five years, we use 1998 data instead.

5.2 Estimation of the Japanese Residential Gas Demand Function

The same prior densities as the ones used in the previous numerical example are assumed.

βββ | σ 2
u ∼ N2

(
000,100σ2

u III
)
, δδδ | σ2

v ∼ N6
(
000,100σ 2

v III
)
,

σ 2
u ∼ IG(0.01,0.01) , σ 2

v ∼ IG(0.01,0.01) .
(43)

Then, with the log-linear conditional demand model, we estimate the Japanese residential gas demand

function by applying Algorithm 1. After discarding 4×105 samples, we draw 106 samples, and reduce
them to 104 samples by picking up every 100-th value. The results are found in Figure 5 and Table 4,

and five points are set forth with respect to these results.
First, the income elasticity β2 is estimated to be 0.54 in its posterior mean and is positive because its

95% credible interval does not include 0. Economic theory expects the income elasticity be positive in
most cases, which is consistent with our results. In contrast to the income elasticity, the price elasticity

includes 0 in its 95% credible interval, and we can conclude that the price has no effect on gas demand.
We observe that the marginal posterior density of β1 has a sharp peak at 0. One possible reason for

4Only five companies used two-block pricing in this year.
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Figure 5: Estimated Marginal Posterior Distributions.

Table 4: Gas Demand Function∗

Parameter Mean SD 95% interval p > 0 INEF CD

β1 (price) .020 .024 [− .004 .084] .85 2.50 .134
β2 (income) .54 .22 [ .13 .98 ] 1.00 185.10 .016
δ0 (constant) − .15 1.07 [−2.48 1.98 ] .44 42.25 .018
δ1 (no. of members) .13 .41 [− .65 .95 ] .62 34.31 .016
δ2 (no. of earners) − .22 .41 [−1.04 .59 ] .30 3.77 .097
δ3 (age of household head) − .50 1.24 [−3.67 1.50 ] .35 9.81 .046
δ4 (floor space) .057 .035 [− .013 .13 ] .95 .69 .174
δ5 (temperature) .033 .027 [− .021 .085] .90 1.22 .783
σu (measurement error) .35 .070 [ .12 .45 ] — 2.99 .420
σv (heterogeneity) .11 .072 [ .046 .34 ] — 5.82 .206

∗ ”p > 0”, “INEF”, and “CD” denote the marginal posterior probability above zero, inefficiency factor,
and convergence diagnostic, respectively.
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Figure 6: Contour Plot of Join Density (β1,β2).

this peak is the separability condition, which is a set of linear constraints on βββ ’s parameter space. The

β1’s marginal posterior density shows such form probably because our gas data set imposes stronger con-
straints on β1 than on β2 through the separability condition (see also Figure 6). Later in this section, the

regression model without block choice, which is inevitably a model without the separability condition, is
estimated. The estimation results of this unrestrained model demonstrate how this condition influences

the elasticity parameters, while they suffer from the model misspecification bias in the sense that block
choice is ignored.

Second, as shown in the numerical example described in the previous section, the MCMC samples of

β2 converge slowly to its posterior distribution. The inefficiency factor of β2 is the highest among those
of other parameters. Figure 6 draws a contour plot of the joint density of (β1,β2). From this figure, we

can see that this joint density has a very steep slope in the south, which causes the slow convergence of
the MCMC chain to its posterior distribution. The improvement of such a deficiency in our algorithm

would constitute a topic for future research.
Third, no variable for heterogeneity has a positive or negative effect on gas demand in terms of its

95% credible interval. The probability of the marginal posterior distribution above 0, however, indicates
that the average floor space (δ4) has a positive effect on gas demand with the probability close to 0.95.

(Table 4 reports rounded values, and this probability with three decimal places is 0.946.) In Japan, one
of the main types of residential gas uses is a hot water supply for bathrooms. It is possible that the

average floor space would become a proxy for this hot water supply such that the average floor space has
a positive effect on gas demand.

Fourth, we briefly discuss the model misspecification problem. One misspecified model is a regres-
sion model with a known block choice and is given by

r∗i = k, if ȳi,k−1 < yi ≤ ȳik,

yi = x̃xx′ir∗i β̃ββ + ũi, ũi ∼ i.i.d. N(0, σ̃2
u ),

(44)

where x̃xxik = (pik,qik,zzz′i)
′ and β̃ββ = (β1,β2,δδδ ′)′. In this model, the optimal block that the consumer chooses

is assumed to be observable, and the latent variable r∗i becomes no longer unobservable. With the prior
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Table 5: Gas Demand Function with Regression Model∗

Parameter Mean SD 95% interval p > 0

β̃1 (price) − .90 .052 [−1.01 −.80 ] .00
β̃2 (income) .46 .17 [ .13 .81 ] 1.00
β̃3 (constant) −1.69 1.02 [−3.68 .33 ] .05
β̃4 (no. of members) .30 .18 [− .052 .65 ] .95
β̃5 (no. of earners) − .065 .18 [− .42 .29 ] .36
β̃6 (age of household head) − .85 .93 [−2.67 .97 ] .18
β̃7 (floor space) .009 .013 [− .017 .035] .75
β̃8 (temperature) .011 .011 [− .009 .032] .86
σ̃u (error) .13 .014 [ .11 .16 ] —

∗ ”p > 0” denotes the marginal posterior probability above zero.

Table 6: Summary Statistics of Actual Log Demand in 1999
Variable Mean SD Minimum Maximum

Actual Log Demand, yi, (logm3) 3.84 .38 2.77 4.53

densities,

β̃ββ | σ̃ 2
u ∼ N8

(
000,100σ̃2

u III
)
, σ̃ 2

u ∼ IG(0.01,0.01) , (45)

the estimation is conducted by generating 104 Monte Carlo samples. The results are found in Table 5.
The model misspecification problem particularly affects the price elasticity, which is estimated to be

−0.90 with respect to the posterior mean, in contrast to its D/C choice model estimate of 0.020.
Finally, we point out that the electricity and gas would be considered to be substitutable. These

two energy resources are the first and second largest in residential use. When the substitution effect is
considered, these results would differ.

5.3 Analysis of the Effect of a Change in the Price System

This subsection analyzes the effect of a change in the price system on the demand for residential gas

in Japan using the predictive distribution derived in Section 3.3 and its sampling algorithm, Algorithm
2. For a prospective price system, we choose the uniform price system in order to evaluate how the

block rate pricing affects the demand. The unit price, which is the only one, is selected as the price of
the block where consumption is actually made in 1999. While there is no threshold, we use the same

basic connection charge with the one in 1999. The logarithm of residential gas demand in 1999, yi, is
summarized in Table 6.

Along Algorithm 2, we draw 106 samples of predictive demand for each observation, and reduce
them to 104 samples by picking up every 100-th value. Figure 7 draws the predictive distribution of

average of log demand, ȳp = n−1 ∑n
i=1 ỹi. Summary statistics of this predictive distribution are as follows:

mean, 3.84m3; standard deviation, 0.07m3; and 95% credible interval, (3.70m3, 3.98m3). Because the

mode of the predictive distribution is almost around the actual average of log demand in 1999, ȳ99 =
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Figure 7: The Predictive Distribution of Average of Log Demand under Uniform Price System.

3.84m3, and the probability that the average log demand will increase, Pr(ȳ99 < ȳp), is calculated to
be 0.53, we can conclude that our prospective uniform price system would have a small effect on the

average of log demand.
For a further investigation, Figure 8 draws boxplots of each observation’s predictive distribution.

Each observation is sorted in ascending order of its actual log demand in 1999, and then, its predictive
distribution is summarized as the boxplot. In Figure 8, horizontal axis represents the order of each

boxplot ascending from the smallest to the largest actual log demand in 1999 and vertical axis measures
the values of log demands. As of the boxplot, each box represents the range between the lower and

upper quantiles, and the lower and upper whiskers indicate the 5-th and 95-th percentiles, respectively.

In addition to these boxplots, corresponding actual log demands, yi (i = 1, . . . ,n), are also plotted over
these boxplots by the solid line.

This figure shows that most observation suffers small influence on its log demand from our prospec-
tive uniform price system because its interquantile range includes the actual log demand. Observations

who consume close to the largest or smallest amounts in 1999, however, are affected by this price system
change, that is, they are predicted to decrease or increase their consumption, respectively. Therefore,

under the D/C choice model, it is concluded that the uniform price system would tend to yield similar
residential gas demands with each other compared to the block rate pricing.

6 Concluding Remarks

This paper proposed a duality-based analysis of the demand function under decreasing block rate pricing

and conducted an empirical analysis of the Japanese residential gas demand function.
This approach is simple enough to extend not only to multiple-block rate pricing but also to a mul-

tivariate extension of the demand function under block rate pricing. One example of the latter model is

21



2.5

3.0

3.5

4.0

4.5

5.0

0 10 20 30 40 50

(log m3) ~yi

yi 

Figure 8: Boxplot of Predictive Distributions.

the energy demand function. Electricity and gas services are supplied under increasing and decreasing
block rate pricing in Japan, respectively, and they are both substitutable goods as pointed out at the end of

Subsection 5.2. The previous literature, however, does not explicitly take block choice endogeneity into
consideration (see, e.g., Dubin and McFadden 1984, Baker, Blundell, and Micklewright 1989 and Lee

and Singh 1994). Thus, it is natural to extend the discrete/continuous choice approach to a multivariate
model, so that we can analyze this substitution effect by simultaneously dealing with block choice.

Finally, we point out an alternative estimation method proposed by Blomquist and Newey (2002).
Their approach is a nonparametric one and is therefore free of distributional misspecification. Further-

more, they does not include any approximation in consumer preferences. Thus, it is possible that their
method would yield more accurate estimates of the price and income elasticities than ours. A comparison

between parametric and nonparametric estimation is a topic for future analysis.
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