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Abstract

This article introduces a new efficient simulation smoother and disturbance
smoother for asymmetric stochastic volatility models where there exists a correla-
tion between today’s return and tomorrow’s volatility. The state vector is divided
into several blocks where each block consists of many state variables. For each
block, corresponding disturbances are sampled simultaneously from their condi-
tional posterior distribution. The algorithm is based on the multivariate normal
approximation of the conditional posterior density and exploits a conventional
simulation smoother for a linear and Gaussian state space model. The perfor-
mance of our method is illustrated using two examples (1) simple asymmetric
stochastic volatility model and (2) asymmetric stochastic volatility model with
state-dependent variances. The popular single move sampler which samples a
state variable at a time is also conducted for comparison in the first example. It
is shown that our proposed sampler produces considerable improvement in the

mixing property of the Markov chain Monte Carlo chain.

Key words: Asymmetric stochastic volatility model; Bayesian analysis; Distur-
bance smoother; Kalman filter; Markov chain Monte Carlo; Metropolis-Hastings

algorithm; Simulation smoother.

1 Introduction

It is well known in financial markets that return volatility changes randomly with a
high persistence. It has also long been recognized in stock markets that there is a
negative correlation between today’s return and tomorrow’s volatility (Black (1976)
and Christie (1982)). This phenomenon is called “leverage effect” or “asymmetry”.
We use the term “asymmetry” in this artcile since some researchers show that this

phenomenon cannot be attributed to financial leverage (Avramov et al. (2006)).
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The asymmetric stochastic volatility model is well-known to describe these phe-
nomena for stock returns (alternative models are, e.g., GJR (Glosten et al. (1993)),
EGARCH (Nelson (1991)) and APGARCH (Ding et al. (1993)) models). This article
proposes an efficient Bayesian method using Markov chain Monte Carlo (MCMC) for
the estimation of asymmetric stochastic volatility models. In the previous literature,
simple estimation procedures are proposed. For example, Melino and Turnbull (1990)
use the GMM (generalized methods of moments) and Harvey and Shephard (1996)
use the QML (quasi-maximum likelihood method) via the Kalman filter for the es-
timation of asymmetric stochastic volatility models. However, they are less efficient
than the MCMC-based Bayesian method (Jacquier et al. (1994)).

This method requires us to sample state variables as well as parameters from their
joint posterior distribution, which is possible by using Gibbs sampler, i.e., sampling
them from their full conditional distributions iteratively. The most important is how
to sample the state variables from their full conditional distribution. A simple method
is the single-move sampler that generates a single state variable at a time given the
rest of the state variables and other parameters. It is usually easy to construct such
a sampler, but the obtained samples are known to be highly autocorrelated. This
implies that we need to generate a huge number of samples to conduct a statistical
inference and hence the sampler is inefficient.

Two methods have been proposed to reduce sample autocorrelations effectively.
One method is mixture samplers proposed by Kim et al. (1998) for a symmetric
stochastic volatility model and extended by Omori et al. (2007) for an asymmetric
stochastic volatility model. This method transforms the model into a linear state-
space model and approximates the error distribution by a mixture of normal distribu-
tions. The mixture samplers is fast and highly efficient, but instead its use is limited
to the models that can be transformed into a linear state-space form. For example,
it is not applicable to the stochastic volatility model with risk premium because it
cannot be represented by a linear state-space model.

The other methods are block samplers (also called multi-move samplers) proposed
by Shephard and Pitt (1997) and Watanabe and Omori (2004), which generate a block
of state variables. This method can be applied to the model directly without trans-
forming into a linear state-space form. However, the block samplers proposed by
Shephard and Pitt (1997) and Watanabe and Omori (2004) assume that an observa-
tion vector and a state vector are conditionally independent. Thus they cannot be
applied to asymmetric stochastic volatility models.

In this article, we develop a block sampler for asymmetric stochastic volatility
models. First, we derive a recursive algorithm to find a posterior mode of the state
vector for a non-Gaussian measurement model with a linear state equation using

Taylor expansion of the logarithm of the conditional posterior density for the dis-



turbances. Second we define an approximating linear and Gaussian measurement
equation based on the obtained posterior mode.

Since our method can be applied to more general models, we also apply our method
to an extended asymmetric stochastic volatility model where the variance of the dis-
turbance in the volatility equation is state-dependent. Stroud et al. (2003) considered
a block sampler for models with state-dependent variances (but without asymmetry)
using an auxiliary mixture model to generate a state proposal for Metropolis-Hastings
algorithms. The block samplers proposed by Shephard and Pitt (1997) and Watan-
abe and Omori (2004) cannot be applied to such a model because they assume that a
state equation is linear. For this model, we construct an auxiliary linear state equa-
tion to derive an approximating linear and Gaussian state space model. Then we
generate a candidate for a state variable in Metropolis-Hastings algorithm using this
approximating linear and Gaussian state space model.

We compare the performance of our method with the single move sampler which
samples a state variable at a time using a simple asymmetric stochastic volatility
model. We find that our proposed sampler produces considerable improvement in
the mixing property of the Markov chain Monte Carlo chain. We also estimate the
asymmetric stochastic volatility model with state-dependent variances using stock
returns data.

The organization of the article is as follows. In Section 2, we introduce a simple
asymmetric stochastic volatility model. Section 3 describes a simulation smoother
and a disturbance smoother for this model. Section 4 extends our method for an
asymmetric volatility model with state-dependent variance. In Section 5, we illustrate
our method using simulated data and stock returns data. Section 6 concludes the

article.

2 Asymmetric stochastic volatility model

In this article, we first consider the following asymmetric stochastic volatility model.

Yy = eocexp(ay/2), t=1,...,n, (1)
iyl = (bOét—i-ntUn, ‘¢| <l, t=1,...,n—1, (2)
ar ~ N(0,05/(1—¢%), 3)

(o)~ ((0)(01)

where oy is the unobserved state variable, o exp(ay/2) stands for the volatility of the
response, y¢, and (p, oc, 0y, @) are parameters. We assume [¢| < 1 for the stationarity

of a. The state equation (2) is linear and Gaussian, while the measurement equation



(1) is nonlinear. (4) assumes that error terms ¢; and 7 follow a bivariate normal
distribution. A correlation between these errors is considered to explain asymmetry.
The symmetric stochastic volatility model (p = 0) has been widely used to explain
time varying variances of the response in the analysis of financial time series data
such as stock returns and foreign exchange rate data. However, it is well known in
stock markets that the fall of the stock return is followed by the high volatility (Black
(1976) and Christie (1982)). Thus we expect a negative correlation, p < 0, between
€; and n; rather than p = 0 in stock markets.

Jacquier et al. (2004) considered a correlation between ¢ and 7;—1. Harvey and
Shephard (1996) and Yu (2005) point out that y; is a martingale difference sequence
if €, and 7 are correlated whereas it is not so and inconsistent with the efficient
market hypothesis if €, and 7,1 are correlated. Moreover, Yu (2005) shows that the
model with the correlation between €; and 7 fits the data better than that with the

correlation between ¢; and 7;_1.

3 Block sampler and posterior mode estimation

In our block sampler, we divide (a1, ..., a;) into K +1 blocks, (ag, ,+1,--.,ax,) for
i=1,...,K+1, with kg = 0 and kx 41 = n, where k; — k;—1 > 2. Following Shephard
and Pitt (1997), we select K knots, (ki,...,kx), randomly (see Section 5.1.1 for
the detail). We sample the error term (ng, _,,...,nk,—1) instead of (ag,_,41,..., ;)
simultaneously from their full conditional distribution.

Suppose that k;_1 = s and k; = s + m for the i-th block. Then (7s,...,Ns4m—1)

are sampled simultaneously from the following full conditional distribution.

F(Mss oo s Msm—1]Qss Qs mi 1, Yss - -+ Ystm)
s+m s+m—1
X H f(yt|at7at+1) H f(nt)v s+m<mn, (5)
t=s t=s
f(7787 sy 775+m71|055; Ysyo o ays+m)
s+m—1 s+m—1
x [ fwlova)f@alow) T[] fon), s+m=n. (6)
t=s t=s

The conditional distribution of y; given oy and ay41 for t < n and that given oy for

t = n are normal with mean p; and variance o? where

-1
Mt — { po-eo-n (at+1 - Qsat) exp(at/2)7 t < n? (7)
0, l=n,
2 (1 - p*)oZexp(ar), t<nm,
It 2 (8)
ofexp(ay), t=n.



The logarithm of f(y¢|cat, art1) or f(yn|an) in equations (5) and (6) (excluding con-

stant term) is given by

Q (yt —Mt)2
lp=——t P 9
T 2072 ©)

Then the logarithm of (5) or (6) is — >25™ ' 12/2 + [ (excluding a constant term)

where

20
S, s+m =n.

L { 28+ml as+m+1 ¢as+m) , S+m < n7

Further define

oL
d = ({9+1""7d;+m),’ dt:aiat’ t:s—l—l,...,s—I—m, (10)
A5+1 B.’S+2 O . e O
BS+2 AS+2 B;+3 e O
0*L . )
@ =-F dada | — O  Bsis Asts " : )
O ... O Bgm Asim
%L }
Ay = —E|———|, t=s+1,...,s+m, 11
t [80@804 ( )
B E [ O°L } t=s+2 +m, B 0 (12)
= —F|lm—F—F—1|, t=5+2,...,8+m, Bgy1=0.
! dadal,_, i

As for the asymmetric stochastic volatility model, the first derivative of L with respect

to oy is given by

(1 (ye—p)® | (e — ) O | (W1 — pu—1) Opea
-5t 2 + 2 9., 2 ’
2 20} lop ooy ;4 ooy
4 - oL t=s+1,....,s+m—1, or t=s+m=n,
R I | n (ye — p1e)® n (yr — pe) O n (Y1—1 — pu—1) Op—1 n a1 — day)
2 207 o Oy o2 | 0oy O'% ’
t=s+m<n,
(13)
where
PO (ary1 — poy) (at)
— -_ — t=1,... -1
O _ 0,7{ o+ 2 “P\% ) T ()
O 0 t=mn



Ot 0, t=1,

Oy - poe exp (at_1> , t=2,...,n. (15)
oy 2

Taking expectations of second derivatives multiplied by —1 with respect to y;’s, we

obtain the A;’s and B;’s as follows.

1 o (om\ | 5 (0w’
2 + ot <8at + Tt-1 60415
0*L t=s+1,....,s+m—1, or t=s+m=n,
A= -F da2 )~ 1 ou 2 ou 2
t —2 t -2 t—1 2 _—2
5 T o <8at> +Ut1< Doy ) +¢70, ",
L t=s+m<n,

0*L Opg—1 Opr—1
t <8at6at1 > Tt-1 Ooy_1 Oy ’ ’ "

Applying the second order Taylor expansion to (5) will produce the approximating

normal density f*(ns,. .., Ns+tm—1|Cs, ¥stm+1,Yss - - -, Ys+m) as follows (see Appendix
Al).
108; f(nsa s 7ns+m—1|a57 Astm+15Ysy - - - 7ys+m)
1! . L 1 O
< comst—3 > am+ Lt 50| -y B ()| -
2 t=s on' n=1 2 Onon’ n=1
s+m—1
= const—2 3 wm+L+d(a—a) - (a-a)Qla—a) (16)
2 — 2
= COHSt+10gf*(7757. -~7775+m—1’0487045+m+173157- -'7y8+m) (17)

where d, L,Q denote d, L,Q evaluated at o = & (or, equivalently, at n = 7). The
expectations are taken with respect to y;’s conditional on a;’s We use an informa-
tion matrix for ) because we require that @ is everywhere strictly positive definite.
However, other matrices such as a numerical negative Hessian matrix may be used to
construct a positive definite matrix ). Similarly, we can obtain the normal density

which approximates (6).

Posterior mode estimation. Next we describe how to find a mode, 7, of the conditional
posterior density of n (see Appendix A2 for a derivation of Algorithm 1.1). We repeat

the following algorithm until ) converges to to the posterior mode.

Algorithm 1.1 (Posterior mode disturbance smoother):
1. Initialize /) and compute & at n = 7 using (2) recursively.

2. Evaluate d;’s, A;’s, and By’s using (10)-(12) at a = .



3. Compute the following Dy, J; and b; for t = s+ 2,...,s + m recursively.

Dy = A-— BtDt__lléé, Dyy1 = Agya,
Jt = Kt__lllét, Js+1 = O, Js+m+1 = O,
by = di— S K b1, by = dsy1,

where K; denotes a Choleski decomposition of D; such that D, = K, Kj.

4. Define auxiliary variables §; = 4; + D, 1y, where

’A}/t = CAMt—f—K;_lJéJrlOA(H_l, t:s+1,...,5+m,

5. Consider the linear Gaussian state-space model given by

gt = Ztat+Gt£t7 t:S+17"'78+m7 (18)
gyl = qﬁat—i—Ht&, t=s,s+1,...,5+m, (19)
gt = (6:577]7/5), ~ N(071)7

where
Zo= 1+ K700, Go=K L0, H=[0.0,.

Apply Kalman filter and a disturbance smoother (e.g. Koopman (1993)) to the

linear Gaussian system (18) and (19) and obtain the posterior mode 7 and &.
6. Goto 2.

In the MCMC implementation, the current sample of  may be taken as an initial value
of the 7. It can be shown that the posterior density of n;’s obtained from (18) and (19)
is the same as f* in (17). Thus, applying Kalman filter and a disturbance smoother
to the linear Gaussian system (18) and (19), we first obtain a smoothed estimate of 7,
and then substitute it recursively to the linear state equation (2) to obtain a smoothed
estimate of ay. Then we replace 7, &; by obtained smoothed estimates. By repeating
the procedure until the smoothed estimates converge, we obtain the posterior mode
of 1, ay. This is equivalent to the method of scoring to maximise the logarithm of the
conditional posterior density.

Fahrmeir and Wagenpfeil (1997) and Fahrmeir and Tutz (2001) proposed a closely
related algorithm for the non-Gaussian dynamic regression models assuming the expo-
nential family distribution for the measurement equations. However, their algorithm
assumed the independence between the measurement error ¢; and 7;, and hence can-

not be applied to the asymmetric stochastic volatility models. Our algorithm can be



applied to the models with more general distribution family and correlated errors.

Sampling from the posterior density of n. To sample 7 from the conditional posterior
density, we propose a candidate sample from the density ¢(n) which is proportional to
min(f(ny),cf*(ny)) and conduct the Metropolis-Hastings algorithm (see e.g. Tierney
(1994), Chib and Greenberg (1995)).

Algorithm 1.2 (Simulation smoother):

1. Given the current value 7, find the mode 7 using Algorithm 1.1. Since it is
enough to find an approximate value of the mode for a purpose of generating a

candidate, we usually need to repeat Algorithm 1.1 only several times.

2. Proceed Step 2—4 of Algorithm 1.1 to obtain the approximate linear Gaussian
system (18)—(19).

3. Propose a candidate 7, by sampling from ¢(n,) oc min(f(ny), cf*(n,)) using the
Acceptance-Rejection algorithm where the logarithm of ¢ can be constructed

from a constant term and L in (16).

(i) Generate 1, ~ f* using the multimove simulation smoother (e.g. de Jong
and Shephard (1995), Durbin and Koopman (2002)) for the approximating

linear Gaussian state-space model (18)—(19).

(ii) Accept 1, with probability

min(f(ny),

Cf*(ny))
Cf*(ny) '

If it is rejected, go back to (i).

4. Conduct the MH algorithm using the candidate 7,. Given the current value 7,
we accept 7, with probability

uin {1, o ). (1)
Fnmin( 7oy e () S

where a proposal density proportional to min(f(ny),cf*(ny)). If it is rejected,

accept 7, as a sample.

Note that the independence between ¢; and 7; implies B, = O for all ¢, and equations
(18) and (19) reduce to

g = at—l—K;*let, ee~N(,1I), t=s+1,...,s+m,
a1 = ooy +oyn, M~ N(O,I). t=ss5+1,...,54+m,

Whereg)t:ézt—kflt_lcit fort=s+1,...,s+m—1and Js4+m = Qstm-



4 Extension

It is straightforward to extend our method for more general models. Thus, we also
consider an asymmetric stochastic volatility models with state-dependent variances.

Stroud et al. (2003) considered state-dependent variance models (but without
asymmetry) to explain such fat-tailed errors using a square-root stochastic volatility
model with jumps in the analysis of Hong Kong interest rates. We may instead
consider a simple extension of the asymmetric stochastic volatility model. Specifically,

we replace state equations (2) and (3) by

= 1+ —— <1l, t=1,...,n—1, (20
Q41 ¢at+ntan{ +1+6Xp(—04t)}7 ‘¢| ) ) T ) ( )

a1 ~ N(0,03), (02: known). (21)

The variance of the error in the state equation depends on the level of the state
variable. Thus the conditional variance tends to be larger for the large positive value
of the state variable, a;, while it becomes small for the negative value. We use this

model to illustrate a state equation which is a nonlinear function of a; and 7.

Normal approzimation of the conditional posterior density. To construct a proposal
density, we expand the logarithm of the conditional posterior density of 1 around
7 given ag, asym+1, as in the previous section, but further introduce the following

auxiliary linear state equation

Biy1 = TiBi+ Ry, ne ~ N(0,1), (22)
. Doy ~ Oy
t = 8&—5 ’ t = 9 —l_ ) (23)
t In=7 e In=n
fort=s,...,s+m — 1 with an initial condition s = Bs. When the state equation is
linear and Gaussian, we have 3y = a4 fort = s+1,...,s+m and s = ay. Otherwise,

we shall take 85 = Bs = 0 for convenience sake.

As for the state equation (20), T} and R, in the auxiliary state equation (22) are

o exp(—dy)
T =
! ¢+77t0n{1 + exp(—dy) 2’

« 1

R = opdlp— "\

t K { 1+ exp(—dy) }
t:]_,...,n—l, RUZO'(),

respectively. Given a;’s, y; follows normal distribution with mean p; and variance o?



(yelow ~ N (e, 07)) where

-1
] } exp(at/2), (24)

Ht = pPOe0. (at""l ¢at){ m

and o} given by (8). The logarithm of conditional likelihood of y; (excluding constant
term) is the same as in (9).
To sample a block (@gy1,. .., Qstm) given ag, asim+1 and other parameters, we
consider the log conditional posterior for n; (t = s,s + 1,...,5s +m — 1) given by
— S5l p2 /9 4 I (excluding a constant term) where

_ 2 .
Zs—&-ml —log {1 + 1+6Xp(1 } - (Qstm+1—PQstm) if s+m <n,

—Qlg4 ) 1 2
L = o A e |

St if s+m=n.

The dy, first derivative of the L, is the same as in (13) but replacing (14) (15) by

8,ut 1 1
-0+ (& — QU - — )
a,ut - 8Ozt+1 [ ¢ ( 1 — @ t) {2 3+ 2€Xp(at) + exp(—at) }] 925
6704,5 - t=1,...,n—1, (25)
0, t =n,
0 t=1
Opt—1 ' 1 ’
— 1 - 26
Oay p06{1+ } exp(%), t=2,...,n, (26)
oy 1+ exp(—ay—1) 2

and the A;’s and By’s are given by

1 o (Ot 2 —o [ Op—1 2
+ 9 +O't <8at> +O—t71 8C¥t 5 ) , 1,

_o Optg—1 Opre—1
B, = 2 t=2,...,n.
t O-tfl 80&,1 aat 9 ) ,

Let L=>7""1, and n = (n},..., 71 pn_1)"- Then

10g f(n’ag, Qstm+1,Ysy - - - 7y8+m)
s+m—1

= const — > i+ L+ log p(as pmt 1] s m)
t=s
1 s+m—1

A const — = Z m+L+d(3-5) - *(ﬁ BYQ(B — B) + log p(atsm 1| tm)
= const + log f (7]|oz57 Qstm+1,Yss - - - ays+m) + lng(as—&-m-kl|OA‘S-&-m)7 (27)

We separate the term log p(astm+1|as+m) to construct the approximating normal

proposal density since its Hessian matrix 0% log p(asim+1|sim)/Ots mOal 4 May

10



not be negative definite. However, when it is negative definite, we would include this

term in L as in Algorithm 1.1.

Posterior mode estimation. Algorithm 2.1 describes how to find a mode, 7, of

L—-1/2 Zfism_l nine by repeating it until 7 converges (see Appendix A2 for the

derivation).

Algorithm 2.1:

1.

2.

Initialize 7.
Evaluate Tt’s, Rt’s in (23) at n = 7 and compute d&;’s and ﬁt’s recursively.
A P&t + 1) 1+ L
& = ok o _
t+1 t T Ntoy 1+ exp(—dq) |’
Bt—i—l = Tif+ Rtﬁt,

fort=s,s+1,...,s+m— 1.

. Evaluate d;’s, Ay’s, and By’s using (10)—(12) at a = a.

. Compute the following Dy, J; and b; for t = s+ 2,...,s + m recursively.

A

Dy = A— BtDt__llB% Dgi1 = Asia,
Ji = K 4Bi, Je1=0, Jeymi1 =0,

by = dy— JK b1, bsi1 = dsya,

where K; denotes a Choleski decomposition of D, such that Dy = K Kj.

. Define auxiliary variables §; = % + D; 'b;, where

Y o= B+ KV, t=s+1,...,5s+m,

. Consider the linear Gaussian state-space model with the auxiliary state equation

given by
:gt = Ztﬂt—i_Gt&fa t:S+17"'78+m7 (28)
/3t+1 - ﬁﬁt+Ht§t7 t:S73+17"'7S+m_17 (29)
&= (627772)/ ~ N<07I)7
where

N

Zi =1+ K, YT, Gy=K,\[1,J . R], H =]0,Ry.

11



Apply Kalman filter and a disturbance smoother to the linear Gaussian system
(28) and (29) and obtain the posterior mode 7.

7. Goto 2.

Note that the above algorithm produces the posterior mode of n when we include the
term log p(@stm+1|@st+m) in L. If ¢, and 1, are independent, the approximating linear

Gaussian state-space model reduces to

g = B+ K, e, e ~N(0,I),
By = TiBi+ Ry, me ~ N(0,1).
To generate n from the conditional posterior density, we conduct the Metropolis-
Hastings algorithm using a proposal density f*(n,).

Algorithm 2.2 (Simulation smoother):

1. Given the current value 7., find the approximate value of mode, 7}, using Algo-
rithm 2.1.

2. Proceed Step 2-5 of Algorithm 2.1 to obtain the approximate linear Gaussian
system (28)—(29).

3. Generate a candidate n, from f*(n,) using a simulation smoother for the ap-
proximating linear Gaussian state-space model (28)—(29). Given the current

value 7., we accept 1, with probability

min{l f(ny)f*(nx)}
Cfe) fr(ny) S

If it is rejected, accept 7, as a sample.

5 Illustrative examples

We illustrate how to implement our block sampler of state variables a;’s using simu-
lated data and stock returns data. We show that our method attains a considerable
improvement in the estimation efficiency compared with results from using a single

move sampler (which samples one oy at a time given av—y = (1, ..., 0—1, g1, -, Qp)).

12



5.1 Asymmetric stochastic volatility model
5.1.1 MCMC algorithm

Let y, Y denote y = (y1,...,yn) and

5 o2 poeoy,
pPocOy 0727
respectively. We first initialize {oy}}_, ¢, ¥ and proceed an MCMC implementation

in 3 steps.
1. Sample {a:}1 4|0, 2, y.

(a) Generate K stochastic knots (ki,...,kx) and set kg = 0, kx11 = n.

(b) Sample {o}y, oy H{ault <kioyt >k}, ¢, S,y fori=1,..., K +1.
2. Sample ¢|{as}i 1,2, y.

3. Sample X[{o}} 4, ¢, y.

/

Step 1. We construct blocks by dividing (o, . . ., a;,) into K+1 blocks, (o, 41, .., ;)
using (k1,...,kx) with kg = 0 and kx1 = n where k; —k;—qy >2fori=1,..., K+1.
The K knots, (ki,...,kk), are generated randomly using

ki =intlnx i+ U;)/(K+2)], i=1,...,K,

where U;’s are independent uniform random variables on (0,1) (see e.g. Shephard
and Pitt (1997), Watanabe and Omori (2004)) . As discussed in Shephard and Pitt
(1997), these stochastic knots have advantages to allow the points of conditioning to
change over the MCMC iterations and are expected to accelerate the convergence of
the distribution of MCMC samples to the posterior distibution. We control the single
tuning parameter K to obtain the efficient sampler. For each block, use Algorithm

1.1 and 2.1 to generate state variables (ag, ,+1,...,0k,) i =1,..., K+ 1.

Step 2. Let m(¢) denote a prior probability density for ¢. The logarithm of the

conditional posterior density for ¢ (excluding a constant term) is given by

n—1
2 2 Z {o1 = day — poyo! eXP(—Oét/2)yt}2
lo 7r(¢)+110 (1_¢2)_ ai(l—¢7) _t=1

We propose a candidate for the MH algorithm using a truncated normal distribution

on (—1,1), with mean 14 and variance aé (which we denote by ¢ ~ T'N(_; 1)(pg, a;))

13



where

(1-p*)o;

22 n—1_29°
P 0‘1"’21&:2 Qy

Z?z_ll o (Oét+1 - panagle*atﬂyt)

2.2 n—1 9
prag + Zt:2 oy

M¢: s 0‘;:

Given the current sample ¢, generate ¢, ~ TN(—l,l)(H@Ugs) and accept it with

77(¢y)\/ 1- ¢32, )

ﬂ-(gbx) V 1- QZ)%,

probability

min

Step 3. We assume that a prior distribution of £~! follows Wishart distribution
(which we denote by X~! ~ W (1, %)). Then the logarithm of the conditional

posterior density of ¥ (excluding a constant term) is

of(l-¢%) wn

1 C1a—
st Mog |l - e (5157,

—log oy —
where

n—1
vi=w+n—1, I =%+ thx:‘,v xr = (yrexp(—az/2), a1 — o).
=1

We sample ¥ using MH algorithm with a proposal ¥=! ~ W (v, %;). Given the
current value ¥ 1, generate Xy L'~ W(v1,%1) and accept it with probability

2 2
-1 ai(l - ¢%)
Ty P =775 3
min 2 777y 2 ,
-1 ai(l—¢ )
O, . eXp —

5.1.2 TIllustration using simulated data

To simulate the daily financial data, we set ¢ = 0.97,0. = 1,0,y = 0.1,p = —0.5 and
generate n = 1,000 observations. We take a beta distribution with parameters 20 and
1.5 for the (1 + ¢)/2 and hence the prior mean and standard deviation of ¢ are 0.86
and 0.11 respectively. For a prior distribution of ¥~!, we assume a less informative
distribution and take a Wishart distribution with vy = 0.01 and X L equal to the
true value of 0.01 x 3. The computational results were generated using Ox version
4.04 (Doornik (2002)) throughout.

Estimation results. We set K = 40 so that each block contains 25 a4’s on the
average. The initial 5,000 iterations are discarded as burn-in period and the following
50,000 iterations are recorded. Table 1 summarises the posterior means, standard

deviations, 95% credible intervals, inefficiency factors and p values of convergence
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diagnostic tests by Geweke (1992) for the parameters ¢, o¢, 0, and p. The posterior
means are close to true values and true values of all parameters are covered in 95%
credible intervals. All p values of convergence diagnostic (CD) tests are greater than
0.05, suggesting that there is no significant evidence against the convergence of the

distribution of MCMC samples to the posterior distribution.

Number of blocks = 40
Parameter  True Mean Stdev  95% interval  Inefficiency CD

0] 0.97 0.984 0.011  [0.957, 0.997] 260.1 0.94
Oc 1.0 0.930 0.084 [0.756, 1.105] 279.0 0.13
oy 0.1 0.080 0.026  [0.040, 0.140] 432.7 0.83
p —-0.5 —0.387 0.206 [—0.729,0.058] 68.7 0.42

Table 1: Summary statistics. The number of MCMC iterations is 50,000, and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and

CD (p value of convergence diagnostic test).

The inefficiency factor is defined as 1 + 2> .2, ps where p is the sample auto-
correlation at lag s, and are computed to measure how well the MCMC chain mixes
(see e.g. Chib (2001)). It is the ratio of the numerical variance of the posterior sam-
ple mean to the variance of the sample mean from uncorrelated draws. The inverse
of inefficiency factor is also known as relative numerical efficiency (Geweke (1992)).
When the inefficiency factor is equal to m, we need to draw MCMC samples m times
as many as uncorrelated samples.

Comparison with a single move sampler. To show the efficiency of our proposed
block sampler using inefficiency factors, we also conducted a single move sampler
which samples one a; at a time. We employ the algorithm of the single move sampler
proposed by Jacquier et al. (2004) with a slight modification since they modeled
the asymmetry in a different manner (where they considered the correlation between
e, and 1;—1). The initial 25,000 iterations are discarded as burn-in period and the
following 250, 000 iterations are recorded since obtained MCMC samples are highly
autocorrelated and a large number of draws need to be taken to obtain stable and
reliable estimation results.

Table 2 shows summary statistics of the experiment using a single move sampler.
The inefficiency factors of the sampler are between 100 and 3510, while those of the
block sampler are between 60 and 440. This implies that our proposed sampler reduces
sample autocorrelations considerably and that it produces more accurate estimation

results than the single move sampler.
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Single move sampler

Parameter  True Mean Stdev  95% interval  Inefficiency CD
10) 0.97 0.973  0.015  [0.937, 0.994] 2199.2 0.30
Oc 1.0 0.918 0.078 [0.763, 1.058] 103.1 0.39
oy 0.1 0.099 0.025 [0.060, 0.420] 3506.6 0.09
p —0.5 —0.324 0.172 [-0.595,0.064] 1038.0 0.47

Table 2: Summary statistics for the single move sampler. The number of MCMC
iteration is 250,000 and sample size is 1,000. The bandwidth 25,000 is used to compute

the inefficiency factors and CD (p value of convergence diagnostic test).
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Figure 1: Sample autocorrelation functions of MCMC samples.
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Figure 2: Sample path of ¢’s using first 50,000 MCMC samples.
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In Figure 1, we can see clear reductions in the sample autocorrelation functions
for the block sampler in all parameters. Figure 2 shows sample paths of ¢’s using first
50,000 MCMC draws. The sample path of the single move sampler does not move
as fast as the block sampler in the state space. These results clearly show that our

method produces great improvement in the mixing property of MCMC chains.

Selection of a number of blocks. To investigate the effect of block sizes on the
speed of convergence to the posterior distribution, we repeated our experiments using
different number of blocks varying from 5 blocks to 200 blocks. The inefficiency factors
of MCMC samples are shown in Table 3. They tend to be larger as the number of
blocks increases from 40 to 200, while the small number of blocks such as 5 blocks
would also lead to high inefficiency factors. The latter is a result of low acceptance

rates in MH algorithm for the a;’s in the block sampler as shown in Table 4.

Parameter Number of blocks

5 10 20 30 40 50 100 200
10) 314.1  329.0 220.8 254.4 260.1 185.6 347.0 599.4
O 526.7 153.8 312.3 4494 279.0 680.9 684.4 1897.7
on 465.3  538.9 394.6 452.6 432.7 3225 524.7 6874
P 172.8 178.7 266.6 251.5 68.7 301.7 235.3 193.4
Qas00 264.2 134.4 1425 237.3 138.7 305.3 394.4 1183.3

Table 3: Inefficiency factors of MCMC samples using various number of blocks.

Parameter Number of blocks

5 10 20 30 40 50 100 200
a (AR) 0.820 0.878 0.926 0.946 0.954 0.964 0.981 0.990
o 0.817 0.886 0.935 0.955 0.962 0972 0.98 0.993
0] 0.793 0.798 0.792 0.793 0.813 0.797 0.800 0.794
by 0.984 0.983 0.985 0.985 0.985 0.984 0.984 0.985

Table 4: Acceptance rates in MH algorithm. «(AR) corresponds to the acceptance

rate in acceptance-rejection algorithm.

When the number of blocks is equal to 5, the acceptance rate of ay’s is 81.7%.
This is relatively smaller than those obtained with larger number of blocks since high
dimensional probability density of oy would be more difficult to be approximated by
multivariate normal density. In this example, the optimal number of blocks with
small inefficiency factors would be between 20 and 40 where average block sizes are
between 25 and 50.
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5.1.3 Stock returns data

We next apply our method to the daily Japanese stock returns. Using TOPIX (Tokyo
Stock Price Index) from 1 August 1997 to 31 July 2002, the stock returns are computed
as 100 times the difference of the logarithm of the series. The times series plot is shown

in Figure 3 where the number of observations is 1,230.

TOPIX Return 1997/8/1 — 2002/ 7/31
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Figure 3: TOPIX return data. 1997/8/1 — 2002/7/31.

Number of blocks = 40
Parameter ~ Mean Stdev 95% interval Inefficiency CD

0] 0.945 0.019 [0.902, 0.974] 118.2 0.24
Oe¢ 1.259  0.070 [1.121, 1.398] 20.8 0.06
oy 0.193 0.033 [0.138, 0.267] 206.7 0.32
P —0.442 0.103 [-0.630,—0.231] 92.7 0.89

Table 5: Summary statistics. The number of MCMC iteration is 50,000. The band-
width 5,000 is used to compute the inefficiency factors and CD.

The prior distribution of parameters, the number of blocks, the number of iter-
ations and the burn-in period are taken as in the simulated data example. Table 5
shows summary statistics of MCMC samples. The results are similar to those obtained
in the previous subsection. Since 95% credible interval for p is (—0.630, —0.231) with
the posterior mean —0.442, the posterior probability that p is negative is greater than
0.95. It shows the importance of asymmetry in the stochastic volatility model as we
expected. Although the acceptance rates of a;’s in Metropolis-Hastings algorithm are
relatively small as shown in Table 6, inefficiency factors of obtained samples are found
to be small. This is because the sample size is larger than that of previous examples

and the average block size becomes larger accordingly.
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Parameter Acceptance rates

o (AR) 0.852
o 0.856
¢ 0.955
5 0.990

Table 6: TOPIX data. Acceptance rates in MH algorithm. «(AR) corresponds to the

acceptance rate in acceptance-rejection algorithm.
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Figure 4: Sample autocorrelation functions of MCMC samples.

Figure 4 shows sample autocorrelation functions, sample paths and the posterior
densities. The sample autocorrelations decay quickly and MCMC samples move fast

over the state space.

5.2 Asymmetric stochastic volatility model with state-dependent

variances

This subsection illustrates our method using simulated data generated by the stochas-
tic volatility model in (20) and (21). The MCMC algorithm proceed in 3 steps as

in Section 4.1. We use Algorithm 2.1 and 2.2 to generate (qsii,...,Qstm) given
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sy stm+1 (s when s +m = n) and other parameters. Then, given «y’s, we sample
from conditional posterior distribution of ¢ and ¥ as in previous subsection.

We set ¢ = 0.95,0. = 1,0, = 0.1, p = —0.5 and generate n = 1,000 observations.
The distribution of the initial state «; is assumed to be N(0,0.1). The prior distri-
bution of other parameters are taken as in the previous example. We set K = 30 and
the initial 20,000 iterations are discarded as burn-in period and the following 50, 000
iterations are recorded.

Table 7 summarises the posterior means, standard deviations, 95% credible inter-
vals, inefficiency factors and p values of convergence diagnostic tests for the parameters
¢,0¢,0y and p. The posterior means are close to true values and true values of all pa-
rameters are covered in 95% credible intervals. All p values of convergence diagnostic
tests are greater than 0.05, suggesting that there is no significant evidence against

the convergence of the distribution of MCMC samples to the posterior distributions.

Number of blocks = 30
Parameter  True Mean Stdev 95% interval Inefficiency CD

¢ 0.95 0.944 0.019 [0.900, 0.975] 192.9 0.55
Oc 1.0 0.994 0.056 [0.887, 1.111] 86.2 0.32
oy 0.1 0.129 0.025 [0.088, 0.184] 332.4 0.53
p —-0.5 —0.415 0.117 [-0.624,—0.172] 116.3 0.15

Table 7: Summary statistics. The number of MCMC iterations is 50,000 and sample
size is 1,000. The bandwidth 5,000 is used to compute the inefficiency factors and
CD.

Table 8 shows the effect of block sizes on the mixing property of chains. As shown
in Section 4.1, the larger the number of blocks becomes (from 40 to 200), the larger
the inefficiency factors become. On the other hand, very small number of blocks such

as 5 blocks resulted in high inefficiency factors.

Parameter Number of blocks

5 10 20 30 40 50 100 200
10) 207.1 396.4 199.2 1929 2524 273.0 243.6 191.5
Oec 94.6 47.0 80.3 86.2 60.2 1323 71.5 267.8
oy 372.4 618.4 347.1 332.4 427.0 433.2 434.8 403.3
p 2249 934 1711 1163 91.1  96.1 1458 126.4
as00 15.1 10.0 15.0 12.1 14.2  20.5 8.7 36.0

Table 8: Inefficiency factors of MCMC samples using various number of blocks.
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In Table 9, acceptance rates of the Metropolis-Hastings algorithm are shown. The
acceptance rates of a are much smaller than those in the previous section due to
dropping the terms log p(@sim+1|@s+m) in (27). The appropriate number of blocks

for this particular example would be from 20 to 40.

Parameter Number of blocks

5 10 20 30 40 50 100 200
« 0.307 0.383 0.428 0.450 0.460 0.470 0.501 0.534
10) 0.986 0.985 0.987 0.987 0.986 0.985 0.985 0.987
by 0.993 0.993 0.993 0.992 0.993 0.993 0.992 0.993

Table 9: Acceptance rates in MH algorithm. «(AR) corresponds to the acceptance

rate in acceptance-rejection algorithm.

6 Conclusion

In this article, we described a disturbance smoother and a simulation smoother for a
general state-space model with a non-Gaussian measurement equation and a nonlinear
and non-Gaussian state equation. The dependent variable and the state variable are
allowed to be correlated. The high performance of our proposed method is shown
in estimation efficiencies using illustrative numerical examples in comparison with a

single move sampler.
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Appendix Al
Suppose that a state equation is nonlinear such that
a1 = g(ag,me), me~N(0,I), t=s,....,s+m—1,
(as : given). Consider an auxiliary state equation given by
Big1 =T+ Ry, t=s,...,s+m—1,

with 85 = f3s, where

s Oagqn

5 Jo 1
T, = —
T

-
on;

M
n=rn n=n

For a linear Gaussian state equation, we replace 3; by «; and set ay1 = Ty + Rymy.

Using
Oajyo Oy .
oL _ N oLbay  u _{ B a oy 12T
/T / /0 r .
anj v oy 877]' 877]' 0 t<7,
and
t—1
foJel .
By = ailt n; + Ty T s,
j=s i ly=s
we obtain
oL| i I AL o )
o =) = D> > ool S (=)
M n=p = t=j1 Ytla=a T n=A
s+m
= > dB-B)=d(B-B). (30)
t=s+1
where a = (o, .,y ,)s B = (Bist,- -1 Berrm)’s On the other hand, the second
derivative of log likelihood is given by
or* i" Zp: il zf’: OL Do, auy | | OL Doy,
anllanjm 8at1k1 aatQkQ 87711 877]771 6at2k2 anllan]m’

to=j+1ko=1 t1=i+1k1=1

and its expected value is

OL2 PG OL2 Ocvg ke, Ovs g
g% _ Z Z Z 2 : E 1k1 2ka
(877ila77jm> (aatlkl aatsz >

ony  On;
t1=i+1to=j+1 ki =1 ko=1 it Mjm
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Thus the (4, 7) block of the information matrix is

OL2 E1d Hay OL2 Aoy
El-Z | = L 2.
(aﬁi3n§-> 22 M g (3%15042) on;

t1=i+1to=j+1

Therefore, we obtain

oL?
A /E o o
(n—1n) (8n8n’) - (n—n)
s+m st+m ti1—1tx—1
., Oa OL? Oa R

= Y Y Y m-w G| P(arr )| Gl mew

ti=s+1ty=s+1 i=s j=s i In=4 9% =i 9 =

s+m s+m

. OL? .

= Z Z (Br, — Bn) E <M> (Bey — Bty)

ti=s+1to=s+1 1Y%t / In=n
= —(B-P)Q(B-B). (31)

The results are obtained from equations (30) and (31).

Appendix A2

Since Q is assumed to be a positive definite matrix, there exists a lower triangular

matrix U such that Q = UU’ using a Choleski decomposition where

K1 O @) @)
Jsy2 Kepo O 0]
U = [0) Js+3 Ks+3 s
: . ‘ @)
0 O Jsom Ksim
so that
Ay = JJ+ KK, t=s+1,...,s+m,
B, = LK, |, t=8+2,...,5+m,

and Bsi1 = Js41 = O. Denote Cy = JiJ;, Dy = Ky K| and we obtain
C; = Bi(K: 1K, ,)"'B,=B.D; B,
D, = A—-C =A— BtDt__11327

A~

fort =s4+2,...,54+m,and Dsy1 = Agy1. The matrix Ky is a Choleski decomposition
of Dy and J; = K;liét. Let K = diag(Ksy1,..., Ksym), D = diag(Dst1, ..., Dstm),
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b=KU'd, v=K~'U'S, and 4 = K'~'U’j3. Then

A 1 N - 1

d(B=7)-5B-0QB-B) = V-9 -50-9Dlr-4)
= 5D ) (32)

where §§ = 4 4+ Db, 9 = 4 + D;lbt. On the other hand, since d = UK, and
v=K"U's,

v o= B+ K, Bt =s+1,...,5+m, Jspmp1 = O,
by = dt—Jth__llbt_l, t=s+2,....,5s+m, bs+1 = dgst1-

Thus, given §; (t = s,s+1,...,8+ m), the equation (32) is a likelihood function for

g = B+ K, N8 + K, e = ZuBy + Gik, (33)
ft = (62’771/5)/ ~ N(O7I)'

where Z; = I+ K, 'J/ Ty and Gy = K, '[I,J/,  Ry).
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