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Abstract

Realized volatility, which is the sum of squared intraday returns over a certain interval such as a day, has recently
attracted the attention of financial economists and econometricians as an accurate measure of the true volatility.
In the real market, however, the presence of non-trading hours and market microstructure noise in transaction
prices may cause the bias in the realized volatility. On the other hand, daily returns are less subject to the noise
and therefore may provide additional information on the true volatility. From this point of view, modeling realized
volatility and daily returns simultaneously based on well-known stochastic volatility model is proposed. Empirical
studies using intraday data of Tokyo stock price index show that this model can estimate realized volatility biases and
parameters simultaneously. Bayesian approach is taken and an efficient sampling algorithm is proposed to implement
the Markov chain Monte Carlo method for our simultaneous model. The result of the model comparison between the
simultaneous models using both naive and scaled realized volatilities indicates that the effect of non-trading hours is
more essential than that of microstructure noise and that asymmetry is crucial in stochastic volatility models. Our
Bayesian approach provides an estimate of the entire conditional predictive distribution of returns under consideration
of the uncertainty in estimation of both biases and parameters. Hence common risk measures, such as value-at-risk
and expected shortfall, can be easily estimated.

Key words: Asymmetry; Bias correction; Markov chain Monte Carlo; Multi-move sampler; Realized volatility; Stochastic
volatility

1. Introduction

The financial return volatility, defined as the variance or the standard deviation of returns, plays a central
role in the modern finance such as the option pricing and the evaluation of risk measures, e.g. value-at-risk
(VaR) and expected shortfall. Realized volatility, which is the sum of squared intraday returns over a certain
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interval such as a day, has recently attracted the attention of financial economists and econometricians as
an accurate measure of the true volatility. The realized volatility, proposed by Andersen and Bollerslev
(1998) and Barndorff-Nielsen and Shephard (2001) independently, would provide a consistent estimator of
the latent volatility in the ideal market assumption.

In the real market, however, there are two problems in measuring daily realized volatility from high
frequency return data. One problem is the presence of non-trading hours and the other is the presence of
the market microstructure noise in transaction prices. Stock markets are open only for a part of a day.
For example, Tokyo Stock Exchange (TSE) is open only for 4.5 hours a day. The realized volatility may
underestimate the latent one-day volatility if we define the latent one-day volatility for day t as the volatility
from the market closing time for day t — 1 to that for day ¢ as usual and calculate the realized volatility as
the sum of squared intraday returns only when the market is open. To avoid this underestimation, Hansen
and Lunde (2005) scale realized volatility using daily returns so that the mean of the realized volatility
equals to the variance of the daily return.

On the other hand, the market microstructure noise has various sources, including discrete trading and
bid-ask spread (see e.g., O’Hara (1995) and Hasbrouck (2007) for details). Due to the noise, the realized
volatility can be a biased estimator of the latent volatility (see, e.g., McAleer and Medeiros (2006) for a
review of the realized volatility and effects of the microstructure noise). As the time interval approaches to
zero, the variance of the true price process independent of the market microstructure noise decreases and
then the effect of the microstructure noise becomes more significant. This means that there is a trade-off
between the variance and bias of the realized volatility. Considering this trade-off, Bandi and Russell (2005)
derive a simple formula to produce the optimal time interval of intraday returns used for calculating the
realized volatility. Zhang, Mykland, and Ait-Sahalia (2005) also propose the way to correct the bias by
combining two realized volatilities calculated from returns with different frequencies.

While the intraday returns are heavily contaminated by the microstructure noise, the daily returns are
less subject to the noise. Thus the daily returns may provide additional information on the latent volatility.
From this perspective, this article models the daily returns and realized volatility simultaneously by extend-
ing stochastic volatility models with or without asymmetry between today’s daily return and tomorrow’s
volatility.

We assume that the realized volatility includes the microstructure noise but still contains much information
on the latent volatility. On the other hand, daily returns have less such noises but do not include the sufficient
information on the latent volatility. Therefore, the model can correct the bias using all the available high
frequency data. This feature is shared basically only by the two-scale estimator of Zhang et al. (2005) while
all other volatility estimators are inefficiet in the sense that they discard a large amount of available data for
correcting the bias. Additionally, the model can estimate the biases due to both the microstructure noise and
non-trading hours simultaneously without an additional calculation to determine the optimal time interval
using the formula of Bandi and Russell (2005), to compute several realized volatilities for calculating the two-
scale estimator of Zhang et al. (2005), or to scale realized volatility as in Hansen and Lunde (2005). Further,
modeling returns and realized volatility simultaneously has a certain advantage in that our model enables us
to estimate the entire conditional predictive distribution of returns and hence common risk measures such
as VaR and expected shortfall can be easily estimated.

However, it is difficult to evaluate the likelihood of our model analytically and hence to estimate the
parameters in the model by the maximum likelihood method. Thus we develop a Bayesian method for
estimating the parameters in our model using the Markov chain Monte Carlo (MCMC) technique. To make
the estimation method efficient, we extend the block (multi-move) samplers proposed by Shephard and
Pitt (1997) and Watanabe and Omori (2004) for symmetric stochastic volatility models and by Omori and
Watanabe (2008) for asymmetric ones. The MCMC method also enables us to take account of the parameter
uncertainty in predicting the distribution of returns.

We illustrate our model and estimation method by applying them to the daily data on returns and realized
volatility of the Tokyo stock price index (TOPIX). We show that this model can estimate realized volatility
biases and parameters simultaneously. Bayesian comparison between the simultaneous models using both
two (naive and scaled) realized volatilities shows that the effect of non-trading hours is more essential than
that of microstructure noise. Further, extending the simultaneous models with asymmetry improves the
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model fitting significantly.

The paper is organized as follows. In Section 2, we first describe how to compute the realized volatility and
discuss two practical problems in such computations. Then we propose a simultaneous model and explain its
estimation method using the MCMC technique. Section 3 applies our proposed model to the TOPIX data.
Finally, Section 4 concludes.

2. Simultaneous Modeling of Stochastic Volatility and Realized Volatility
2.1. Integrated Volatility, Realized Volatility, and Microstructure Noise

We first consider a simple continuous time process,
dp(s) = a(s)dw(s), (1)

where p(s) denotes the log-price of a financial asset at time s, and o2(s) is the instantaneous or spot
volatility which is assumed to have locally square integrable sample paths and stochastically independent
of the standard Brownian motion w(s). Then, the volatility for day ¢ is defined as the integral of o2(s) over
the interval (¢,¢ + 1) where a full twenty-four-hour day is represented by the time interval 1, i.e.,

t+1
IV, :/ o?(s)ds,
t

which is called an integrated volatility.

Although the integrated volatility cannot be observed, we can estimate it using observable high frequency
asset returns. Suppose that we have n intraday returns during each day ¢, {r.;}?_,, then the precise volatility
measure, called a realized volatility, is defined as the squared sum of them over day t, i.e.,

RV, =Y rf,. (2)
i=1

In the ideal world, that is, if there were no market microstructure noise and the asset were always and
continuously traded, the realized volatility would provide a consistent estimator of the integrated volatility,
that is,

RV, = IV, n — oo.

Equivalently, the discretization noise due to dw(s) in the realized volatility disappears as the time interval
goes to zero.

In the real market, however, there are two problems in measuring the realized volatility. One problem is
the presence of non-trading hours and the other is the existence of the market microstructure noise.

Stock markets are open only during a part of a day. For example, Tokyo Stock Exchange (TSE) is open
only for four and a half hours a day. The realized volatility may underestimate the integrated volatility if
we calculate the realized volatility as the sum of squared intraday returns only when the market is open.
To avoid this underestimation, one may include returns on the non-trading hours (overnight and/or lunch
time interval) but this can make the realized volatility noisy because such returns have much discretization
noise. Thus, Hansen and Lunde (2005) propose scaling realized volatility for the market open period as

T D)2
SRV, = cRV;, o= =il = )
>—1 BV

)

where R; is the daily return, 7" is the daily sample size, and R = 7! Zthl R;. This ensures that the mean
of the scaled realized volatility (SRV) is equal to the variance of daily returns.

On the other hand, to deal with the market microstructure noise, we denote the observed intraday log
price as p;,; and suppose that the observed log price can be written as

*
Dti = P T €t
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where pj ; is the true intraday log price and e ; is the microstructure noise. Then we can write the observed
intraday return as the true intraday return r;, = p;; — p;,_; plus the disturbance vy ; = €;; —¢,i—1, i.€.,

*
Tti = Dt,i — Pryi—1 = Ty; + Vi (3)

Therefore, the realized volatility is given by

RVt:Z +22r“1/“+21/“
i=1

From this expression, we observe that the realized volatility can be a biased estimator of the integrated
volatility. If the true log price pj ; follows the equation (1), the mean of Y ', (r};)* converges in probability
to the integrated volatility as the time interval approaches to zero (equivalently, n goes to infinity). On
the other hand, the expected value of Y77, v7; increases. For example, if £;; has a constant, variance o?
independent of the time interval and no autocorrelation, the expected value of Y . | 1/21» is equal to 2no?>.
This means that the bias caused by the microstructure noise increases as the time interval approaches to
zero. Considering this trade-off between the variance and the bias of the realized volatility, Bandi and Russell
(2005) derive a simple formula to produce the optimal time interval.

Bandi and Russell (2005) also show that RV, — oo in the case that £, ; has zero mean and is a covariance
stationary stochastic process; the variance of v ; is O(1). Additionally, when the noise ¢, ; is an independently
and identically distributed random variable and is independent of the price process, Zhang et al. (2005) show
that RV; has a bias and a larger variance due to the noise. They also propose a way to correct the bias
by combining two realized volatilities calculated from returns with different frequencies, which is called
two-scaled realized volatility (TSRV).

To calculate TSRV, first the original return series, {r;;}? ,, is partitioned into subsamples, {rtﬂ'}(l),
l=1,...,L, where n/L — oo as n — oo. For example, for {rtﬂ'}(l) start at the first observation and take an
observation every 5 minutes; for {rt,i}@), start at the second observation and take an observation every 5

minutes, etc. Calculating realized volatility for each subsample, which we denote RVt(l), and averaging them
give rise to the estimator

RV, 8 = 7 Z JrATAR

For independent noise, &, the bias of this estimator is 2ic2, where i = n/L, the average size of sub-

samples. The variance o2 can be consistently approximated using realized volatility computed with all the

observations:
. 1 (all)
2
= —RYV, .
UE 2n t
Then we obtain TSRV as
TSRV, = RV*™® — 2Ry, (4)

which is an asymptotic unbiased estimator of integrated volatility. Zhang et al. (2005) and Ait-Sahalia and
Mancini (2007) show the theoretical and empirical effectiveness of TSRV, respectively.

Furthermore, in the case of the dependent noise structure, Zhang (2006) and Ait-Sahalia, Mykland, and
Zhang (2006) show that RV; has a bias and a larger variance due to the noise. See, e.g., McAleer and
Medeiros (2006) for a review of the effects of the microstructure noise.

Suppose that r;; and v ; in the equation (3) are uncorrelated. Then, taking the variance of the both sides
of the equation (3), we have

var(re,;) = var(ry ;) + var(v ;).

If the true price pj ; follows the equation (1), var(r} ;) increases as the time interval increases. On the other
hand, var(v; ;) remains the same (2072 if £, ; has a constant variance o2 independent of the time interval and
no autocorrelation). This means that the effect of the microstructure noise decreases as the time interval
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increases. Hence, daily returns are less subject to the microstructure noise than intraday returns. But daily
returns suffer from another source of noise due to the discretization while the realized volatility is less subject
to the discretization noise, which shows that daily returns and realized volatility can complement each other.
This motivates us to model daily returns and realized volatility simultaneously as in the next subsection,
which allows us to avoid additional calculations for adjusting the realized volatility.

2.2. Model

2.2.1. Stochastic Volatility
In this subsection, we propose a new model which utilizes daily returns and the realized volatility simul-
taneously. The model is an extension of the well-known stochastic volatility (SV) model (see for example
Taylor (1986), Shephard (1996), and Ghysels, Harvey, and Renault (1996)). A simple SV model is written
as,
R, :exp(ht/2)6t7 €t NN(O)]-): t= ]-7"'7T>
hiyr = p+ ¢lhe — p) + e, me ~N(0,07), t=1,...,T -1, (5)

and

0,2
hi = ~ N _n
1=K+ Mo 0,1_¢2 ;

where h, is the latent log volatility (log integrated volatility) at time ¢. We denote the disturbance term in
the equation of hyt1 in (5) as 7, following the literature on stochastic volatility models although it might
be natural to denote it as 7,41 because it is the disturbance to h¢y1. Notice that even if we denote it as 7,
it is unobserved at time t. It is only R; that is observed at time ¢.
For notational convenience, let y;; and y»; denote a daily return and a logarithm of realized volatility
respectively. We extend the SV model as
y1,e = exp(hy/2)e;, € ~N(0,1),
Yo,0 = hy + g,  up ~ N(O,Ui)a (6)
hevr = p+ dlhe —p) + e, ne ~ N(0,073),

and

0,2
hi = ~ N _n
1=K+ Mo 0,1_¢2 ;

which we call SV-RV model. Moreover, since the realized volatility can be biased due to the non-trading
hours and microstructure noise, we modify the SV-RV model by adding the bias-correction term ¢ in the
second observation equation of (6), i.e.,

Y1, = exp(he/2)er, € ~ N(0,1),

Yo, = E+ he +ug,  ug ~N(0,02), (7)

higr = p+ ¢(he —p) +me, e ~ N(0,02),
and

o2
hy = ~N[0,—"=|.
1=+, Mo T- g

If £ is positive, realized volatility has an upward bias that may be due to the market microstructure noise
and if £ is negative, it has a downward bias due to the non-trading hours. Therefore, we may observe the
strength of effects of the microstructure noise and non-trading hours from the sign of £&. We also call this

model SV-RVC (SV-RV Corrected with respect to the bias due to the microstructure noise and non-trading
hours) model.



The SV-RVC model can estimate the biases due to the both microstructure noise and non-trading hours
simultaneously without the prior or two-step calculation for determining optimal time-interval of Bandi and
Russell (2005), subsampling of Zhang et al. (2005), or scaling of Hansen and Lunde (2005). Further, SV-RV
and SV-RVC models have a certain advantage in that they enable us to estimate the entire conditional
predictive distribution of returns and hence common risk measures such as VaR and expected shortfall
easily.

2.2.2. Asymmetric Stochastic Volatility

It is well known in stock markets that there is a negative correlation between today’s return and tomorrow’s
volatility (see e.g. Black (1976) and Christie (1982)). To describe this asymmetry in volatility, we extend our
model to the asymmetric stochastic volatility (ASV) model. The asymmetric SV-RVC (ASV-RVC) model
is written as

Y1,e = exp(h¢/2)eq,
Y2, = &+ hy +uy,

hiv1 = p+ d(he — p) + me, (8)
0,2
hi = p+ 10, 770~N<0,j>,
and
€t 0 1 0 poy
w | ~N|{of|.] o o2 0 : (9)
M 0 poy 0O 0727

The additional parameter p captures the correlation between y; ; and hypr. If p < 0, it is consistent with
the above volatility asymmetry in stock markets.

2.3. Markov Chain Monte Carlo Simulation

We describe the estimation methods for the models without asymmetry in this subsection (see Appendix
B for the models with asymmetry). Because of the nonlinear relation between the daily return and the log
latent volatility in equations (5), (6), and (7), we cannot compute the likelihood of these models by Kalman
filter. But given h = (hy, ..., hr), we can compute the conditional likelihood of the SV-RVC model as

f(yl 1, Y2,15---,Y1, TayQvah)

H 1 exp 4 — Yie o 1 exp {_ (Y2 — &= T)? }
L2 exp(hi/2) 2exp(hy) [~ V2ron, 207, ’

where 6 denotes the parameters. Hence, we take a Bayesian approach and estimate the posterior distribution
of parameters in the SV, SV-RV, and SV-RVC models by considering h as additional latent variables. In this
setup, the most important is how to sample h efficiently. Therefore, we first describe the sampling algorithm
for h.

2.3.1. Efficient Sampler for the Latent Volatilities

There are various sampling methods for h such as the single-move sampler proposed by Jacquier, Polson,
and Rossi (1994) or the mixture sampler by Kim, Shephard, and Chib (1998). But the single-move sampler
is extremely inefficient and the mixture sampler requires us to approximate the distribution of log(e?) by a
mixture of normal distributions. In this article, we use the block (multi-move) sampler proposed by Shephard
and Pitt (1997) and Watanabe and Omori (2004).



To illustrate their block sampler, we consider the SV-RVC model. The observation equations of the model
are

Yt = exp(ht/Q)et, €t ~ N(07 1)7

and
Yo =&+ he +ug, up ~N(0,02), (10)
while state equations are written as
hipr = (L= @)p+ Shs + 1, e ~ N(0,07), (11)
and
o2
hi=p+m, no~N (&j) :

To sample h from the posterior distribution, we divide (hy,. .., hr) into K +1 blocks, (Ar;—141,---,hk,+1)’,
for j =0,...,K + 1, with kg = 0 and kx11 = T. The selection of K knots, (ki,...,kx), is implemented
randomly and independently as

By =int{T x (j+Up)/(K+2)}, j=1,...,K,

where Uj’s are independent uniforms in [0,1] and “int” denotes integer part. Since we sample each block
given parameters = (£, 05, i, ¢, 0,), other blocks, and observations Y = (y1, . .., yr) where y: = (y1,1,y2,1),
this sampling method is called a block sampler or multi-move sampler (e.g. Shephard and Pitt (1997)).

Suppose that k;_; =¢—1 and k; =t + k. Then we sample R = (hiyhig1,-- -, hiyr) given volatilities in
other blocks, (hy,...,hi 1, hiskst, ..., hr), 0, and Y. Since b)) only depends on hy 1, heyrit, Wty .- Yisr)
and @, it is enough to consider sampling from the posterior distribution,

f(h(j)|ht71, ht+k+17yt> e ’ytJFk’a)'

Given hy—1, higvrr1, Yty ..., Ye+k) and 6, we can compute h9) from n(j) = (M—1,-.,Mi+k—1) USIng equa-
tion (11). Thus, we consider sampling 5¥) from the posterior distribution,
OO 1, by i1, Y, - Yo, 0).- (12)

To construct a proposal distribution for the Metropolis-Hastings (MH) algorithm, we approximate this
posterior density by the corresponding density of the linear Gaussian state space model (see Appendix A
for details) given by

gl,s = hs + é\l,sa é\l,s ~ N(Oavs)a
Y2,s = f + hs +Uus, Us~ N(O; Ui); (13)

and
hs+1 =pu+ ¢(hs - /1') +Nsy,  Ns o~ N(O, 0'727)’

where g s and v, are defined as,
(i) ifs=t,t+1,....t+k—1lors=t+k="T,

N N 1
As:hs+vsllhsa Vs = — ~
i, (hs) )
(i) if s=t+k<T,
~ o o ¢ ~ 0727
— U _ gy — _ — L S
Ys = hs + vs |:l (hs) + 0_727 {ht+k+1 1% ¢(hs ,LL)} y  Us ¢2 _ (f%l”(i],s)’



for (S())me hs. We denote the posterior density of the ) from this linear Gaussian state space model by
9(n'?).

We sample /) from the posterior density ¢ using the simulation smoother of de Jong and Shephard (1995)
and Durbin and Koopman (2002). But since g is the approximate density for the posterior density f, we use
the acceptance-rejection Metropolis-Hasting (ARMH) algorithm proposed by Tierney (1994) (see also Chib
and Greenberg (1995)) for sampling from f. We choose hs as the posterior mode, which is calculated from
the mode of n¥). In order to calculate the mode, 7¢7), we first apply the disturbance smoother of Koopman
(1993) with a starting value of /). Using the obtained 7/), we apply the disturbance smoother again. After
some iterations, we can obtain the approximate mode of /) (see e.g. Shephard and Pitt (1997)).

2.3.2. Sampling Parameters
For the SV-RVC model in (7), we set priors as

dy 1 d
&~ N(mg,sg), o2 ~1G <— 7) , e~ N(mu,si), %(b ~ Beta(a,b), 0’ ~ IG <777 %)
Then, denoting Y7 = (y1.1,...,y1,7) and Y> = (y2.1,...,¥y21), the posterior density for § = (¢, 02, pu, gb,a%)
and h becomes

‘ -

T
F(8,h|¥1,Y2) o< exp [—% > {he—yi, exp(—ht)}] (02)~T/2 exp {

t=1

T
Zym—f ht }

t=1

ﬂm
i~ ]

X V= (o )T/Qexp{—;7<1—¢2><h1— by’ - (ht+1—(1—¢)u—¢ht)2}

n

(€ = me)” 2)—(nu/2+1) _p=my)?
X exp { 23? (o)~ exp exp 252

a—1 b—1
(5 (5 ().

To implement the Markov chain Monte Carlo simulation, we sample from the posterior distribution as
follows:
Simulate h from f(h|p, ¢,07,Y1,Y).
Simulate ¢ from f(&|o2, h Yg)
Simulate o2 from f(o u|§ h,Yg).
Simulate p from f(u|¢), oz, h).
Simulate o from f(o7|p, (b h).
. Simulate ¢ from f(¢|,u,a h).
We note that ¢ and o2 only depend on the observation equation (10) given h while u, ¢, and 0’ only depend
on the volatility equation (11) given h.
In the first step, we conduct the multi-move sampler described in the previous subsection. In the second
and third steps, we sample from the conditional posterior distributions of & and 0727,

o~

O Gt W=

. dy,
€lo, Yo, h ~ N, 33),  o|€, Yo, h ~ 1G <_ 7) ,
where
s2(yae — he) + 02m 202 . T
- e\Y2,t t whe 9 £0u R ,
3 TS? + 0‘% ’ SE ng + O'%, n +n + ;(yQ,t é— t)

In the fourth and fifth steps, we generate samples from the conditional posterior distributions of u and



. d
,U|Q5,0’727,h ~ N(mﬂ’si)a 0'727|,LL,¢, ~1G <_ _W) s

2

where

R 1 _ ¢2 T—l

mu = SH ( 02 )hl + Z ht+1 ¢ht S

n t=1 H
. st
K sﬁ{(T—l)(l ®)? +1—¢2}+U%’

Ny =T + ny,

and

T-1
dy = dy+ (h1 —p)* (1= ¢°) + Y {uss — p— (e — )}

t=1

In the final step, the logarithm of the posterior density is

T—
log f(¢lu, 05, hn, - ., h) = const. + log{p(¢ Z {hisr = p = d(he — )},

where |¢] < 1 and
(h1 —p)*(1 - ¢2)

log o(6) = (a = 1)log(1 +¢) + (b — 1) log(1 — ) - L2 5 log(1 - 7).

In order to sample from this density, we employ MH algorithm (Chib and Greenberg (1995)). We construct
the proposal density h(¢) as an approximation to the conditional posterior density by omitting the term

log p(¢), i.e

log f(¢|,u,afl, hi,...,hr) &~ const. — 357 Z{htﬂ p— d(he — p)}¥?

77 t=1

= const. — w
23¢

= counst. + log h(¢),

where
XS e (=), o
Mme = T-1 2 v 8o T ST >
=1 (he — p) =1 (he — )

If ¢;_; is a current sample of ¢, we propose a candidate ¢ for ¢; by sampling from N(m, si) truncated
n (—1,1) and accepting it with probability

= G nior ' =

3. Application to Stock Return Data
3.1. Data and Realized Volatility

We use the high frequency data of Tokyo stock price index (TOPIX) obtained from the Nikkei NEEDS
MT tick data during the period from April 1, 1996 to March 31, 2005 (2216 trading days). For this period,
the highest frequency at which the price is preserved is one minute. TSE is open for 9:00-11:00 (morning
session) and 12:30-15:00 (afternoon session) in usual trading days and only for 9:00-11:00 in the first and
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Fig. 1. Realized volatilities calculated from 1-minute intraday returns (RV'!, top left), 5-minute (RV3, top right), and 10-minute
(RV10 and two-scale realized volatility (T'SRV, bottom right) during the period from April 1, 1996 to March 31, 2005 (2216
trading days).

75[—r¥] 75[—r]
5.0 so-
25 250

ohabblbagalag,

L 1 L A i L
0 350 700 1050 1400 1750 2100 0 350 700 1050

1 L i
1400 1750 2100

75H{—RV™] 7.5H{—TsRY]

5.0 s.o-

25 250

1 X 1
0 350 700 1050 1400 1750 2100 0 350 700 1050 1400 1750 2100

last trading days in every year. Excluding the overnight and lunch time intervals, we obtain 119 intraday
returns in the morning session and 149 returns in the afternoon session.

To confirm that SV-RVC model can correct the bias due to market microstructure noise and non-trading
hours, we use the realized volatilities calculated from 1-, 5-, and 10-minute intraday returns when the market
is open. We compute RV;™ by omitting the overnight and lunch time interval return (we also compute RV,™
in the first and last trading days in every year using only morning session returns), where m = 1,5, 10 denote
the time interval used for calculating realized volatilities. Additionally, we compute TSRV in (4) using RV}

as RVt(aH) and RVEU) ( =1,...,5) as subsample realized volatilities. Following Hansen and Lunde (2005),
we calculate scaled realized volatilities as,

T D2
SRV, = cRV,, c= Zt:lT(R—tR)
Zt:lRVYt

Values of ¢ are 3.6711, 2.9645, 2.7881, and 4.0720 for RV,', RV,?, RV,!°, and T'SRV}, respectively. Since all
these values are smaller than 24/4.5 = 5.3333, we confirm that non-trading hours contribute to the increase
in volatility less than trading hours, which is consistent with previous findings (Fama (1965), French and
Roll (1986), and Nelson (1991)).

Figures 1 - 4 are the realized volatilities at the time interval m = 1,5,10 (minute) and TSRV using
intraday returns only when the market is open (RV'), scaled ones (SRV'), and their logarithms (log(RV),
log(SRV)). Figure 5 plots daily return (R), its absolute value (|R|), squared return (R?), and its logarithm
(log R?). They show that the variation of realized volatilities is smaller than that of squared daily return,
which is due to the discretization noise in daily returns.

Tables 1 - 3 show descriptive statistics. We observe four interesting results from this table. First, the mean
of RV™ (m = 1,5,10) and T'SRV is smaller than that of the squared daily return, which implies there is
a negative bias in the realized volatility due to non-trading hours. We also observe that the mean of RV™
(m = 1,5,10) decreases as the sampling frequency increases from 10- to 1-minute, which is opposite to our
expectation that RV™ increases as the sampling frequency increases due to microstructure noise. But this
results may happen as in the volatility signature plots in Hansen and Lunde (2006). For example, in the
upper right of Figure 1 of Hansen and Lunde (2006), average realized volatility decreases as the sampling
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Fig. 2. Scaled realized volatilities calculated from 1-minute intraday returns (SRV'!, top left), 5-minute (SRV?, top right), and
10-minute (SRV1?, and scaled two-scale realized volatility (STSRV, bottom right) during the period from April 1, 1996 to
March 31, 2005 (2216 trading days).
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Fig. 3. Logarithm of realized volatilities calculated from 1-minute intraday returns (log(RV'!), top left), 5-minute (log(RV?),
top right), and 10-minute (log(RV1?), and that of two-scale realized volatility (log(T'SRV), bottom right) during the period
from April 1, 1996 to March 31, 2005 (2216 trading days).
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frequency increases from 10- to 1-minute and turns to increase from 30- to 1-second. Therefore, we consider
that this phenomenon is due to the limited frequency of our data. The standard deviation of the realized
volatilities is much smaller than the squared return as we expected from Figures 1 and 5.

Second, the standard deviation of RV™ becomes larger as the time interval m increases, which confirms
the intraday return becomes noisy due to the discretization effect as the interval increases. These results
suggest that the more precise estimate of the true volatility may be obtained by correcting the bias due to

11



Table 1

Descriptive statistics for realized volatilities for the market open period (RV™, TSRV') and scaled realized volatilities (SRV™,
STSRV), at frequency m = 1,5, 10 (minute) during the period from 1 April 1996 to 31 March 2005 (2216 trading days). LB(10)
is the heteroskedasticity-corrected Ljung-Box statistics of Diebold (1988) with 10 lags. The critical values for LB are: 15.99
(10%), 18.31 (5%), and 23.21 (1%).

RV RV® RVI0O TSRV

Mean 0.4424 0.5478 0.5825 0.3988
Stdev 0.3089 0.4923 0.5722 0.3756
Skewness 4.6566 4.3165 4.7976 4.6667
Kurtosis 64.2218 38.3029 42.8742 43.1197
Max 6.2472 6.7510 7.7187 5.0358
Min 0.0665 0.0367 0.0332 0.0194
LB(10) 1294.09 1095.32 751.79 1000.46

SRV SRV® SRV10 STSRV

Mean 1.6240 1.6240 1.6240 1.6240
Stdev 1.1340 1.4595 1.5955 1.5295
Skewness 4.6566 4.3165 4.7976 4.6667
Kurtosis 64.2218 38.3029 42.8742 43.1197
Max 22.9340 20.0133 21.5208 20.5057
Min 0.2440 0.1087 0.0927 0.0788
LB(10) 1294.09 1095.32 751.79 1000.46

Table 2

Descriptive statistics for logarithm of realized volatilities for the market open period (log(RV™), log(T'SRV)) and scaled
realized volatilities (log(SRV™), log(STSRV')), at frequency m = 1,5,10 (minute) during the period from 1 April 1996 to 31
March 2005 (2216 trading days). LB(10) is the heteroskedasticity-corrected Ljung-Box statistics of Diebold (1988) with 10 lags.
The critical values for LB1g are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).

log(RV!) log(RV?®) log(RV1?) log(TSRV)

Mean —0.9940 —0.8739  —0.8395 —1.2087
Stdev 0.5937  0.7350 0.7643 0.7606
Skewness  0.0157  —0.0256 0.0250 ~0.0756
Kurtosis 3.1601  3.2047 3.2493 3.3252
Max 1.8321 19097 2.0436 1.6166
Min —2.7111  —3.3061  —3.4043 —3.9448
LB(10) 4875.28  4044.76  3359.10 3730.37

log(SRV!) log(SRV?) log(SRV'?) log(STSRV')
Mean 0.3065  0.2128 0.1859 0.1954
Stdev 0.5937  0.7350 0.7643 0.7606
Skewness  0.0157  —0.0256 0.0250 —0.0756
Kurtosis 3.1601  3.2047 3.2493 3.3252
Max 3.1326  2.9964 3.0690 3.0207
Min —1.4106 —2.2194  —2.3789 —2.5407
LB(10) 4875.28  4044.76  3359.10 3730.37
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Fig. 4. Logarithm of scaled realized volatilities calculated from 1-minute intraday returns (log(SRV'!), top left), 5-minute
(log(SRV®), top right), and 10-minute (log(SRV1?), and that of scaled two-scale realized volatility (log(ST'SRV), bottom
right) during the period from April 1, 1996 to March 31, 2005 (2216 trading days).
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Fig. 5. daily return (R, top left), its absolute value (| R|, top right), squared return (R?, bottom left), and its logarithm (log R?,
bottom right) during the period from April 1, 1996 to March 31, 2005 (2216 trading days).
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non-trading hours and microstructure noise in RV'!.

Third, the skewness and kurtosis indicate that the realized volatilities are not Gaussian but their log-
arithms are nearly Gaussian, which motivates us to model the logarithm of realized volatilities instead of
the realized volatilities. Finally, LB(10), the heteroskedasticity-corrected Ljung-Box statistic including 10
lags calculated following Diebold (1988), shows that daily return is not autocorrelated while volatilities,
especially the log realized volatilities, are autocorrelated significantly at the one percent level. This result is
consistent with the well-known phenomenon of volatility clustering.
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Table 3

Descriptive statistics daily return (R), its absolute value (| R|), squared return (R?), and log of them (log |R|, log R?) during the
period from 1 April 1996 to 31 March 2005 (2216 trading days). LB(10) is the heteroskedasticity-corrected Ljung-Box statistics
of Diebold (1988) with 10 lags. The critical values for LB1g are: 15.99 (10%), 18.31 (5%), and 23.21 (1%).

R IR| R?  log|R| logR?
Mean  —0.01470.9573 1.6242 —0.5046 —1.0091
Stdev 1.2744 0.8413 3.2096 1.1353  2.2707

Skewness —0.1084 1.7813 6.0007 —1.2009 —1.2009
Kurtosis ~ 4.9005 8.2747 57.9221 5.6049  5.6049
Max 6.5993 6.5993 43.5513 1.8870  3.7739
Min —6.5736 0.0006 0.0000 —7.3682 —14.7364
LB(10) 20.42 189.96 100.81  73.45 73.45

These findings are in accordance with previous studies: Andersen, Bollerslev, Diebold, and Labys (2001b)
for exchange rates; Andersen, Bollerslev, Diebold, and Ebens (2001a) for stocks; Martens (2002) for stock
index futures; and Watanabe (2007) for Japanese stock index (Nikkei 225).

3.2. Estimation Results

Tables 4 - 7 summarize MCMC estimation results of SV, SV-RV, and SV-RVC models obtained by 5000
samples recorded after discarding 1000 samples from MCMC iterations (all calculations in this paper are
done by using Ox (Doornik (2002))). We apply the latter two models to both realized volatilities for the
market open period (RV™, TSRV) and scaled one (SRV™, STSRV) at each time interval (m = 1,5,10)
and denote models using scaled realized volatilities as SV-SRV and SV-SRVC models. CD is the p-value of
the convergence diagnostic (CD) test by Geweke (1992). The inefficiency factor is defined as 1+ 2> | ps,
where ps is the sample autocorrelation at lag s, and is computed to measure how well the MCMC chain
mixes (see e.g. Chib (2001)). It is the ratio of the numerical variance of the posterior sample mean to the
variance of the posterior sample mean from uncorrelated draws. The inverse of inefficiency factor is also
known as relative numerical efficiency (Geweke (1992)). When the inefficiency factor is equal to z, we need
to draw MCMC samples z times as many as uncorrelated samples to obtain the same accuracy.

Table 4 shows that ¢ is estimated relatively lower in the SV-RV models using RV™ and TSRV although
¢ is expected to be close to one as a result of the strong autocorrelations of log realized volatilities. Since ¢
is close to one in the SV-RVC, SV-SRV, and SV-SRVC models in Tables 5, 6, and 7, this is probably because
the bias is not corrected appropriately for the non-trading hours.

In Table 5, the posterior means of ¢ in the SV-RVC models are all negative. This implies that the effect
of non-trading hours is stronger than that of microstructure noise. We note that the posterior mean of
¢ = —1.2334 in the SV-RVC model using RV is larger than the scaling factor, —log(c) = —1.3005, and,
further, the posterior probability that ¢ is positive is greater than 0.95 in the SV-SRVC model using SRV!
in Table 7. From these results, we observe that the bias due to the microstructure noise still exists even
after scaling, which means that correcting the bias due to non-trading hours is not sufficient for adjusting
the total bias in the realized volatility. We also note that the difference between —1.2334 and —1.3005 is
0.0671 which is almost equal to the posterior mean of £ = 0.0670 in SV-SRVC model in Table 7.

Table 7 shows that 95% credible intervals of ¢ contain zeros for the SV-SRVC models using SRV?> and
SRV10. This result shows that the bias due to the microstructure noise disappears as the time interval
m increases. On the contrary, the variances of realized volatility (02) increases as m increases. This bias-
variance trade-off is consistent with previous studies such as Bandi and Russell (2005) and Hansen and
Lunde (2006). While these studies suggest taking the optimal time interval for dealing with this trade-off,
our SV-RVC model can correct the bias without considering a selection of such a time interval. Additionally,
we observe from Table 7 that TSRV can adjust the bias due to the microstructure noise but the variances,
02, is larger than that of RV'. Therefore, the model provides volatility estimator with the least variation

uw?
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Table 4

Estimation results of SV-RV model using realized volatilities. The last two columns are p-value of Geweke’s convergence
diagnostic (CD) test and inefficiency factor, respectively. Priors are set as o2 ~ IG(5/2,0.05/2), u ~ N(0,1), (1 + ¢)/2 ~
Beta(20, 1.5), and o2 ~ IG(5/2,0.05/2).

Mean Stdev 95% interval CD Inef.

SV-RV o2 0.0769 0.0056 [0.0661, 0.0876] 0.91 14.4
(RVY) p —0.9206 0.0478 [—1.0129, —0.8260] 0.47 0.9
¢ 0.87990.0151 [0.8490, 0.9079] 0.82 12.9
o2 0.07220.0071 [0.0591, 0.0869] 0.49 23.2
SV-RV o2 0.13440.0085 [0.1181, 0.1512] 0.38 7.6
(RV3) p —0.7763 0.0566 [—0.8865, —0.6642] 0.80 0.8
¢ 0.87350.0148 [0.8442, 0.9022] 0.83 7.1
o2 0.10860.0101 [0.0894, 0.1290] 0.76 13.8
SV-RV o2 0.19390.0108 [0.1724, 0.2150] 0.95 12.4
(RV10) 1 —0.7097 0.0579 [-0.8237, —0.5948] 0.32 1.7
¢ 0.88090.0151 [0.8509, 0.9090] 0.81 13.0
o2 0.10220.0108 [0.0829, 0.1255] 0.73 21.7

(S

SV-RV o, 0.24990.0145 [0.2227, 0.2789] 0.13 10.1
(TSRV) p —0.9652 0.0628 [—1.0886, —0.8395] 0.81 1.0
¢ 0.88680.0152 [0.8559, 0.9147] 0.77 15.4

0’% 0.1019 0.0115 [0.0813, 0.1266] 0.66 27.4

by using the realized volatility calculated from intraday returns of the shortest interval (one minute).

Figure 6 is the plots of posterior means with 95% credible intervals of the estimated h;’s under SV-RV
and SV-SRVC models using RV'!. From the figure, we confirm that the bias due to non-trading hours largely
affects the estimate of h;. The results using the other realized volatilities are omitted because they are similar
to the result using RV!. Table 8 is the summary statistics of the estimated h;’s for t = 0.2T (January 20,
1998) under SV-RV, SV-RVC, SV-SRV, and SV-SRVC models. We confirm from this table that SV-RV
models underestimate h; due to non-trading hours and that correcting the bias due to microstructure noise
slightly affects the estimates. We obtain the same results for other several dates and thus omit the results.

We also compute the simultaneous model with asymmetry. Since we have already observed that the bias
correction term is essential for our simultaneous model, we only estimate ASV-RVC models. Tables 9 and
10 show summary statistics of MCMC samples. Since 95% credible interval for p is below 0 for all models,
the posterior probability that p is negative is greater than 0.95. It shows the importance of asymmetry in
the stochastic volatility model, which is consistent with many previous studies.

To investigate the effect of lunch time non-trading hours, we also estimate the models using realized
volatilities and scaled ones calculated from intraday returns including the lunch time interval. The results
are the same as those when we used realized volatilities calculated without the lunch time interval and hence
are omitted.
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Table 5
Estimation results of SV-RVC model using realized volatilities. The last two columns are p-value of Geweke’s convergence
diagnostic (CD) test and inefficiency factor, respectively. Priors are set as & ~ N(0,10), 02 ~ IG(5/2,0.05/2), u ~ N(0, 1),

(14 ¢)/2 ~ Beta(20,1.5), and o7 ~ 1G(5/2,0.05/2).

Mean Stdev

95% interval

CD Inef.

SV-RVC ¢ —1.23340.0307 [—1.2908, —1.1725] 0.59 35.6

(RVY) o2 0.09310.0047 [0.0841, 0.1026] 0.06 39.8
p o 0.22850.0795 [0.0703, 0.3840] 0.86 5.5
¢ 0.95170.0097 [0.9307, 0.9701] 0.11 39.7
o2 0.02590.0040 [0.0187,0.0347] 0.11 76.1
SV-RVC ¢ —1.0707 0.0324 [—1.1341, —1.0057] 0.25 33.4
(RV5) o2 0.14670.0080 [0.1317,0.1627] 0.27 20.5
p o 0.18990.0785 [0.0375, 0.3478] 0.11 6.7
¢ 0.92940.0118 [0.9053, 0.9509] 0.22 20.7
o2 0.05600.0078 [0.0418, 0.0717] 0.17 33.6
SV-RVC ¢ —1.04250.0342 [—1.1102, —0.9761] 0.84 22.7
(RV10) 42 0.18640.0099 [0.1675, 0.2064] 0.40 15.5
o 0.1954 0.0752 [0.0459, 0.3441] 0.58 4.8
¢ 0.91930.0129 [0.8931, 0.9440] 0.60 20.2
o2 0.06410.0088 [0.0472, 0.0816] 0.61 32.2
SV-RVC ¢ —1.4178 0.0309 [—1.4809, —1.3610] 0.46 21.0
(TSRV) a2 0.17090.0093 [0.1526, 0.1891] 0.28 40.9
p 0.1996 0.0798 [0.0418, 0.3552] 0.65 3.1
¢ 0.93080.0122 [0.9053, 0.9533] 0.38 34.4
o2 0.05630.0084 [0.0408, 0.0739] 0.31 61.0

Fig. 6. Plots of posterior means with 95% credible intervals of the estimated h¢’s under SV-RV (left) and SV-SRVC (right)

models using RV'! during the period from April 1, 1996 to March 31, 2005 (2216 trading days).
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Table 6

Estimation results of SV-SRV model using scaled realized volatilities. The last two columns are p-value of Geweke’s convergence
diagnostic (CD) test and inefficiency factor, respectively. Priors are set as o2 ~ IG(5/2,0.05/2), u ~ N(0,1), (1 + ¢)/2 ~
Beta(20, 1.5), and o2 ~ 1G(5/2,0.05/2).

Mean Stdev 95% interval CD Inef.

SV-SRV  ¢2 0.0949 0.0046 [0.0858, 0.1041] 0.59 14.7
(SRVY) 1 0.29150.0760 [0.1414, 0.4418] 0.95 0.8
¢ 0.9549 0.0090 [0.9370, 0.9715] 0.52 14.8
a% 0.0241 0.0037 [0.0169, 0.0318] 0.53 33.9

SV-SRV 2 0.1464 0.0082 [0.1309, 0.1630] 0.89 30.8
(SRV5)  p 0.2043 0.0728 [0.0616, 0.3467] 0.97 0.5
¢ 0.9292 0.0122 [0.9042, 0.9510] 0.75 27.8

SV-SRV 42 0.1871 0.0106 [0.1661, 0.2081] 0.54 40.3
(SRV1®) 1 0.1803 0.0694 [0.0440, 0.3160] 0.31 0.6
¢ 0.9205 0.0146 [0.8892, 0.9471] 0.75 45.2

U% 0.0632 0.0104 [0.0450, 0.0865] 0.74 65.7

SV-SRV 2 0.1686 0.0089 [0.1509, 0.1861] 0.60 38.5
(STSRV) p 0.1897 0.0737 [0.0445, 0.3349] 0.06 1.1
¢ 0.9282 0.0120 [0.9039, 0.9504] 0.25 37.9

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
2 0.0561 0.0083 [0.0419, 0.0739] 0.75 48.6
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
02 0.0589 0.0081 [0.0446, 0.0768] 0.29 70.0
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Table 7

Estimation results of SV-SRVC model using scaled realized volatilities. The last two columns are p-value of Geweke’s convergence
diagnostic (CD) test and inefficiency factor, respectively. Priors are set as & ~ N(0,10), 02 ~ 1G(5/2,0.05/2), u ~ N(0,1),
(14 ¢)/2 ~ Beta(20,1.5), and o2 ~ 1G(5/2,0.05/2).

Mean Stdev  95% interval ~ CD Inef.

SV-SRVC ¢  0.0670 0.0307 0.59 35.5
(SRVY) o2 0.09310.0047

[0.0097, 0.1279]
[ ]
0.2286 0.0795 [0.0703, 0.3842] 0.86 5.5
[ ]
[ ]

0.0841, 0.1026] 0.06 39.8
0.9517 0.0097 [0.9307, 0.9701
0.0187, 0.0347

0.11 39.7

0.0259 0.0040 0.11 76.1

M| s x

SV-SRVC
(SRV3)

0.0132 0.0350 [—0.0513, 0.0808] 0.55 61.6

0.1483 0.0083 0.75 42.5

Q
2

0.1316, 0.1642

0.9314 0.0122 [0.9056, 0.9531

[ ]

0.1908 0.0811 [0.0323, 0.3521] 0.59 12.4
[ ] 0.66 49.1
[ ]

0.0540 0.0084 [0.0397, 0.0731] 0.99 77.0

m| s x

SV-SRVC
(SRV10)

—0.0215 0.0339 [—0.0883, 0.0435] 0.44 20.6
0.1889 0.0101

2

0.81 28.1

Q

0.1696, 0.2092

0.9231 0.0129 [0.8968, 0.9474] 0.94 29.9

0.0609 0.0089 [0.0445, 0.0788

[ ]

0.1987 0.0767 [0.0451, 0.3527] 0.96 3.9
[ ]
[ ] 0.97 49.2

m| s x

SV-SRVC
(STSRV)

—0.0127 0.0333 [—0.0792, 0.0509] 0.20 21.5
0.1696 0.0094

2

0.99 24.8

Q

0.1510, 0.1880

0.9290 0.0127 0.96 25.4

S =

0.9020, 0.9521

0.0580 0.0090 0.93 38.7

Q
S

[ ]

0.1986 0.0803 [0.0437, 0.3534] 0.14 6.3
[ ]
[0.0418, 0.0777]
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Table 8
Summary statistics of estimated h¢’s for ¢ = 0.27 (January 20, 1998) under SV-RV, SV-RVC, SV-SRV, and SV-SRVC models.
The last three columns are 2.5th percentile, median, and 97.5th percentile of sampled h¢’s.

Model Data  Mean Stdev 2.5% Median 97.5%

SV-RV  RV! —0.3647 0.1853 —0.7277 —0.3656 0.0099
RV5  —0.3008 0.2342 —0.7647 —0.3009 0.1607
RV10 —0.1863 0.2556 —0.6914 —0.1844 0.3105
TSRV —0.4161 0.2714 —0.9524 —0.4135 0.1083

SV-RVC RV!  0.81260.1557 0.5063 0.8109 1.1153
RV®  0.6978 0.2103 0.2874 0.6964 1.1072
RV10  0.72320.2264 0.2851 0.72111.1786
TSRV 0.7390 0.2205 0.3044 0.7382 1.1674

SV-SRV SRV! 0.87650.1506 0.5819 0.8746 1.1702
SRV5  0.7120 0.2022 0.3073 0.7130 1.1248
RV'0  0.7058 0.2295 0.2484 0.7032 1.1422
TSRV 0.71990.2156 0.3029 0.7169 1.1392

SV-SRVC SRV! 0.81270.1557 0.5064 0.81111.1154
SRV®  0.69710.2086 0.2870 0.6994 1.1027
RV10  0.73210.2287 0.2856 0.7359 1.1862
TSRV 0.7357 0.2180 0.3091 0.7326 1.1688
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Table 9

Estimation results of ASV-RVC model using realized volatilities. The last two columns are p-value of Geweke’s convergence
diagnostic (CD) test and inefficiency factor, respectively. Priors are set as ¢ ~ N(0,10), 02 ~ 1G(5/2,0.05/2), (1 + ¢)/2 ~
Beta(20,1.5), and £~ ~ W (5,5%)), where ¢ is constructed from oc = 1, 05, = 0.1, and p = —0.3. See Appendix B for the
definition of ¢ and X.

Mean Stdev 95% interval CD Inef.

ASV-RVC ¢ —1.2408 0.0314 [—1.3033, —1.1793] 0.47 1.6
(RVY) o2 0.09710.0044 [0.0887,0.1057] 0.79 34.9
p 0.21160.0816 [0.0368, 0.3632] 0.71 263.2

¢ 0.95900.0079 [0.9429, 0.9738] 0.19 47.9

o2 0.02200.0030 [0.0167, 0.0282] 0.27 82.4

p —0.3086 0.0435 [—0.3936, —0.2230] 0.37 25.2
ASV-RVC ¢ —1.07840.0322 [~1.1417, —1.0150] 0.71 4.1
(RV®) o2 0.15530.0077 [0.1401, 0.1704] 0.69 23.3
p 0.19490.0804 [0.0358, 0.3574] 0.15 114.8

¢ 0.93900.0103 [0.9179, 0.9580] 0.45 23.2

o2 0.04650.0064 [0.0350, 0.0600] 0.39 46.7

p —0.2611 0.0405 [—0.3397, —0.1819] 0.30 10.3
ASV-RVC ¢ —1.04930.0325 [~1.1135, —0.9864] 0.32 2.3
(RV10) 62 0.19590.0096 [0.1775,0.2159] 0.99 30.1
p o 0.19650.0701 [0.0587, 0.3344] 0.89 86.0

¢ 0.92920.0116 [0.9052, 0.9505] 0.69 34.7

o2 0.05430.0076 [0.0406, 0.0702] 0.75 58.2

p —0.23630.0411 [—0.3172, —0.1551] 0.85 18.4
ASV-RVC ¢ —1.42520.0317 [—1.4873, —1.3635] 0.25 2.4
(TSRV) o2 0.17830.0088 [0.1604, 0.1954] 0.77 32.6
p o 0.19270.0822 [0.0153, 0.3381] 0.67 146.5

¢ 0.93640.0109 [0.9134, 0.9563] 0.78 42.3

o2 0.0497 0.0071 [0.0374, 0.0654] 0.63 57.6

n

p —0.2394 0.0420 [—0.3226, —0.1576] 0.50 11.4
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Table 10

Estimation results of ASV-SRVC model using scaled realized volatilities. The last two columns are p-value of Geweke’s con-
vergence diagnostic (CD) test and inefficiency factor, respectively. Priors are set as ¢ ~ N(0,10), 02 ~ IG(5/2,0.05/2),
(14 ¢)/2 ~ Beta(20, 1.5), and =1 ~ W(5,5%), where ¥y is constructed from o = 1, a, = 0.1, and p = —0.3. See Appendix
B for the definition of ¢ and X.

Mean Stdev 95% interval CD Inef.

ASV-SRVC ¢  0.05870.0314 [—0.0035, 0.1202] 0.11 2.1
(SRVY) o2 0.09770.0045 [0.0891, 0.1067] 0.51 38.8
p 0.2018 0.0792 [0.0414, 0.3573] 0.35 220.0

¢ 0.96000.0079 [0.9436, 0.9743] 0.17 40.9

o2 0.02150.0031 [0.0161, 0.0282] 0.47 81.1

p —0.3150 0.0440 [—0.4019, —0.2283] 0.12 21.1
ASV-SRVC ¢  0.00810.0320 [—0.0547, 0.0704] 0.15 2.1
(SRV®) o2 0.15530.0078 [0.1400, 0.1707] 0.22 28.3
p 0.19390.0797 [0.0506, 0.3594] 0.75 89.3

¢ 0.93900.0104 [0.9172, 0.9580] 0.40 31.8

o2 0.04650.0065 [0.0353, 0.0608] 0.06 50.3

p —0.26350.0407 [0.3416, —0.1826] 0.45 21.4
ASV-SRVC ¢ —0.0240 0.0325 [—0.0889, 0.0398] 0.41 2.1
(SRV1®) 42 0.1956 0.0097 [0.1766, 0.2150] 0.86 27.8
p 0.18880.0773 [0.0402, 0.3474] 0.86 88.1

¢ 0.92890.0119 [0.9036, 0.9508] 0.89 43.4

o2 0.05470.0078 [0.0406, 0.0716] 0.54 57.5

p —0.23780.0415 [—0.3187, —0.1574] 0.71 17.1
ASV-SRVC ¢ —0.02130.0318 [—0.0834, 0.0414] 0.38 1.4
(STSRV) o2 0.17890.0087 [0.1619, 0.1962] 0.89 21.4
p 0.21130.0787 [0.0524, 0.3612] 0.75 64.6

¢ 0.93710.0107 [0.9150, 0.9572] 0.94 28.6

o2 0.04880.0069 [0.0361,0.0634] 0.88 41.4

p —0.23890.0410 [0.3193, —0.1583] 0.80 9.9
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Table 11
Log marginal likelihoods for SV-RV and SV-RVC models with different data set. Standard errors are in parentheses.

Data Model Likelihood Prior Posterior Log marginal likelihood

RV! SV-RV —5597.33 —6.35  14.29 —5617.97
(0.47) (0.06) (0.47)

SV-RVC  —4479.01 218  17.77 —4494.60
(0.13) (0.07) (0.15)

ASV-RVC —3890.44 —0.91  21.96 —3913.31
(0.10) (0.06) (0.11)

RV5 SV-RV —5784.13 —10.78  13.23 —5808.14
(0.38) (0.08) (0.39)

SV-RVC  —5026.91 —4.99  16.30 —5048.20
(0.11) (0.09) (0.14)

ASV-RVC —4438.66 —4.66  20.13 —4463.45
(0.10) (0.06) (0.12)

RV10 SV-RV —5952.94 —9.94 12.91 —5975.78
(0.31) (0.04) (0.31)

SV-RVC  —5264.31 —6.41  15.83 —5286.55
(0.19) (0.08) (0.20)

ASV-RVC —4677.05 —6.26  19.59 —4702.90
(0.11) (0.06) (0.12)

TSRV SV-RV —6567.04 —10.01  12.62 —6589.67
(0.44) (0.04) (0.44)

SV-RVC  —5169.68 —5.08  16.19 —5190.95
(0.15) (0.06) (0.17)

ASV-RVC —4583.89 —5.60  19.99 —4609.49
(0.08) (0.09) (0.12)

3.3. Model Comparisons Using Marginal Likelihoods

For model comparisons, we calculate marginal likelihoods of these models. We follow Chib (1995) and Chib
and Jeliazkov (2001) to calculate the posterior ordinate and its numerical standard error. The likelihood
ordinate is computed by using the auxiliary particle filter of Pitt and Shephard (1999). We calculate the
estimate of the likelihood ordinate and its standard error as the sample mean and standard deviation of the
likelihoods from 20 iterations. Tables 11 and 12 show the logarithm of marginal likelihoods (standard errors
are in the parentheses).

From these tables, we can confirm that the bias-correction is essential for model fitting. Especially, correct-
ing the bias due to non-trading hours gives more significant improvement (see SV-RV and SV-RVC models)
than adjusting it due to the microstructure noise (see SV-SRV and SV-SRVC models). Comparing the log
marginal likelihoods of SV-SRV and SV-SRVC models also shows that the benefit for correcting the bias due
to microstructure noise disappears. This is probably because 1 minute return, which is the shortest interval
return of our data, does not suffer from the noise so much though the bias term is positively estimated in
SV-SRVC model. We also observe from these tables that considering asymmetry largely improves the model
fitting.
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Table 12
Log marginal likelihoods for SV-RV and SV-RVC models with different data set. Standard errors are in parentheses.

Data  Model Likelihood Prior Posterior Log marginal likelihood
SRV SV-SRV —4480.92 5.49 15.11 —4490.54
(0.16) (0.07) (0.18)

SV-SRVC  —4479.16 2.25 17.77 —4494.68

(0.12) (0.07) (0.14)

ASV-SRVC —3890.39 —0.83 21.97 —3913.20

(0.09) (0.07) (0.12)

SRV3 SV-SRV —5027.22 —2.56 13.72 —5043.50
(0.14) (0.06) (0.15)

SV-SRVC  —5026.85 —4.56 16.29 —5047.71

(0.16) (0.04) (0.16)

ASV-SRVC —4438.68 —4.62 20.19 —4463.49

(0.14) (0.06) (0.15)

SRV!0 SV-SRV —5264.61 —3.90  13.32 —5281.84
(0.13) (0.04) (0.14)

SV-SRVC  —5264.67 —5.82 15.82 —5286.32

(0.13) (0.07) (0.15)

ASV-SRVC —4677.33 —6.22 19.57 —4703.11

(0.10) (0.07) (0.12)

STSRV SV-SRV —5169.89 —3.06 13.52 —5186.46
(0.12) (0.06) (0.14)

SV-SRVC  —5169.54 —5.29 16.08 —5190.92

(0.15) (0.08) (0.17)

ASV-SRVC —4583.72 —5.55 19.73 —4609.00

(0.12) (0.14) (0.18)
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4. Concluding Remarks

In this paper, we proposed modeling daily returns and realized volatility simultaneously extending the well-
known stochastic volatility model and described the efficient sampling algorithm for our model to implement
Markov chain Monte Carlo simulation. We show that this model can jointly estimate the parameters and
the realized volatility bias due to both non-trading hours and the market microstructure noise. Especially,
this model allows us to use the realized volatility calculated from all available returns and thus we need not
to determine the optimal sampling frequency for calculating the realized volatility. Comparison of marginal
likelihood between the simultaneous models using both naive and scaled realized volatilities shows that
the effect of non-trading hours is more essential than that of microstructure noise. We also confirm that
asymmetry is crucial in stochastic volatility models.

Using Bayesian approach, our model can consider the uncertainty in the estimation of the biases and
parameters when we derive the predictive distribution of daily returns, which is important to evaluate the
common risk measures such as VaR or expected shortfall. The comparison of the forecasting performances
using the risk measures for various models such as the ARFIMA model would be our future work. Further,
although we use only the standard normal distribution for daily returns in this paper, our model can be
applied to other distributions for daily returns such as Student’s t, skewed-¢, and normal inverse Gaus-
sian (NIG) distributions. Especially, the NIG distribution has recently attracted the attention of financial
economists and econometricians since conditional distribution of the returns is distributed as NIG if the
realized volatility is conditionally inverse Gaussian and daily return standardized by the realized volatility
is approximately Gaussian (see e.g., Forsberg (2002) and Forsberg and Bollerslev (2002)).
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Appendix A. Approximation of the conditional posterior density of n)

In the case of t + k < T', the log of posterior density (12) is written as

lOg f(n(]) |ht—17 ht+k+1ayt7 s Ytk 0)
= const. + log f(th, . ,yl,t+k|ht; ey ht+k) + lOg f(yQ,t, . ,y27t+k|§, O'Z, ht, ey ht—‘,—k)
+10g f(he ksl &, 0, hoyr) +108 f (15 o Neri—1|07)

t+k h y2 1 t+k
= const. — Z {_S + L exp(_hs)} (y2,s - 5 - hs)2

2 2 202
s=t s=t
1 1 t+k—1
T 92 {herrtr — p— (hopr — p)}* — 292 Z . (A1)
n N s=t—1

Following Shephard and Pitt (1997), we approximate this log-posterior density by Taylor expansion of the
log of likelihood,

_ he i
l(hs) = —? — T exp(—hs),

around h, = iLs as follows;
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log f (") |he—1, hegksts Yt - - - Yok, 0)

t+k 1 AL
~ 7 7 7 7 N\271 (7 2
=~ const. + sz::t {l(hs) + (hs - hS)l,(hs) + §(hs - hS) l"(hs)} - m ;(y%s - 5 - hs)
1 t+k—1
= gon therksr = = Glhere — —55 >
UT’ 77 s=t—1
=logeg(me—1, .-, Me+k—1),
where
i _dl(hy) 1 ; 2 2 )
"(hs) = 2= 4y? —hy) -1 "(he) = L= —hy).
() = g5 = 5 {utexp(—he) 1}, () = =5 5 = = exp(—h)

On the other hand, when sampling the last block, i.e. t + k = T, the log of posterior density is written as
excluding hy4 g1 in the condition,

IOg f(n(j)|ht717yt) e )ytJrk)a)

t+k he 12, | Lk t+k—1
:const.—;{? +T’exp(—h5)} — ﬂg(ygs &—hs) s_z;
Similar to the case of t + k < T', we approximate this log-density as
log f(n(j) |Pt—1,Yes- - Ytak,0)
t+k . . R 1 R R |tk t+k—1
~ const. + 2; {l(hs) + (hs — hs)l'(hs) + §(h5 - hs)Ql”(hs)} s ;(yQ s —&—hy) = % sgl n?

=logeg(me—1,- - s Metk—1)-

Then we can consider g(n:—1, - .., +k—1) as the conditional density of linear Gaussian state space model,

Yi,s = hs + és, és ~ N(Oavs)a
=&+ hy+us, us~N(0,02),
and

hoy1 = p+ ¢lhs —p) +ns, M5 ~ N(O;ff%),
where 7, s and v, are defined as,
(i) ifs=t,t+1,....t+k—1lors=t+k="T,
1

As:iLs‘i_/UslIiLs; Vg = — =
i, (hs) )

(i) ifs=t+k<T,

0 ; _ o
+—%{ht+k+1—ﬂ—¢(hs—,u)} ) Us—m-

The correction in (ii) is necessary except the last block (s = t+k = T') because of the existence of the fourth
term in (A.1) (see Watanabe and Omori (2004)).

@:m+%V@)

Appendix B. Estimation of ASV-RVC Model

We first rewrite ASV-RVC model in (8) and (9) as

Y1t = ocexp(ag/2)et,

Y2, = C+ Q¢ + Oy Uy,
iyl = Gay + oy,

ar ~N(0,07/(1 —¢%)),
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and

€t 0 ].Op
w | ~N 01,1010
Mt 0 p01

New parameters are defined by parameters in (8) and (9) as 0. = exp(p/2), ay = hy — p, and ¢ = £ + p.
Similar to symmetric models, efficient sampling a; is the key to estimate the asymmetric model. Therefore,
we first describe the sampling algorithm for «;.

B.1. Efficient Sampler for the Latent Volatilities with Asymmetry

To make the sampling efficient, we use the block sampler by Omori and Watanabe (2008). As in Section
2.3.1, we first divide (ay,...,ar) into K + 1 blocks, (ak; ,41,...,a;) for j =1,..., K + 1, with ko = 0
and kxi1 =T, where kj — kj_1 > 2. We select K knots, (ki,...,kx), randomly (see Section 2.3.1 for the
detail) and sample the error term (ng;_,,...,Mk,;_,) instead of (ax,_,+1,.-., ;) simultaneously from their
full conditional distribution.

Suppose that k;_1 = s and k; = s 4+ m for the jth block and let y;, denote y; = (y1,4,¥y2,). Then

(Msy -+, Ns+m—1) are sampled simultaneously from the following full conditional distribution:
s+m s+m—1
f(ns; s ;ns+m71|as>as+m+1>ysv s ;strm) X H f(yt|at;at+l) H f(nt)) (B]-)
t=s

fors+m < T, and

s+m—1 s+m—1
f(nsa"'ans+m—1|a57ysv"'7ys+m) X H f(yt|at7at+1 yT|OéT H f 77t (BQ)
t=s

for s + m = T. The logarithm of f(y:|a:, ar+1) or f(yr|ar) in (B.1) and (B.2) (excluding constant term) is
given by

o (Y = pe)? Y a)?

lt:—

2 207 202 ’
where
) poeo l(at_H —ap)exp(ay/2), t<T,
o t=T,
and
2 (1—pHoexplay), t<T,
2 =

o? exp(ar), t="T.

Then the logarithm of (B.1) and (B.2) is — ;777" 12/2 + L (excluding a constant term) where

s

pRRiC as m+1 — ¢as m)
Zl — et + , s+m<T,
202
L: s—‘,—m
lea s+m="1T.
t=s

Further define
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oL

d:(ds+1,...,ds+m)l, dt:a—at, t:S+1,...,S+m,
As+1 Bs+2 0 0
Bs+2 As+2 Bs+3 e 0
0L . .
w=-F (W) =| 0 Bsyz Agyz o :
: ' Bs+m
0 0 Berm Aerm
0L
At:_E<W>’ t=s+1,...,s+m, (B.3)
and
0*L
Bi=-E(=—27"), t=s5+2,... Baoi1 =0, B.4
t <80ét804t_1>’ s+ 2, 8+ m, +1 ( )

where s > 0 (¢t > 1 for (B.3) and t > 2 for (B.4)) and & = (@541, ...,0s+m)". The first derivative of L with
respect to ay is given by
L, Ge—p)®  yo— e Op | oot = puor Opuy | ypa —C—

dt = —= 4
2 207 o} Oy o2 Doy o2

)

fort=s+1,....,.s+m—1lort=s+m=1T, and

1 — pue)? — 1 O —1 — fe—1 Opty— Qpy1 — G —c—«
dt:——+(yt p)” | Yo e O Yer — a1 Opus | Blouss = don) | 4 t

3 P 3
2 20} o; Oy o 0oy ol o2

)

fort = s+ m < T, where

O _ | poco, =0+ (ars1 — dan) 2} exp(ae/2), t=1,....,T —1,
day 0, t="T,

and

autfl . 07 t= 17

day pam;l exp(ay_1/2), t=2,...,T.

Taking expectations of second derivatives multiplied by —1 with respect to y;’s, we obtain the A;’s and B;’s
as follows:

1 A\’ G, ?
T i) +Ut_fl Fe1 +o0,% t=s+1,....,s+4m—-lort=s+m="T,
_ 2 80ét 80(15
Ay = 1 o 2 o 2
_ t — t—1 _ _
§+Ut2 (a—at> +Ut21< 8at ) +¢207]2+0u2’ t:5+m<T,

and

_9 3ut—1 3ut—1

By =o0,"
t 16at71 8at ’

t=2,...,T.

Applying the second order Taylor expansion to (B.1) will produce the approximating normal density
F*Msy s Nstm—1]0s, Cstmt1,Yss - - -, Ys+m) as follows (see Omori and Watanabe (2008) for details):
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IOg f(nsa - Ms4m—1 |a57 QXstm+1,Ysy -« -, ys+m)

s+m—1 2
1 s+ OL N P &L R
A const — 5 ; n + L+ o . (m—n)+ 5(77—77) E <—577377'> n:ﬁ( b))
s+m—1

~ ~ . 1 LU A R
= const — 5 tZ; w+L+d(a-a) —§(a—a)'Q(a—a)

= const + log f*(ns, <o Ms+m—1 |a87 Astm4+1yYsye- e ys+m)a

where J, ﬁ, and Q denote d, L, and @ evaluated at a = & (or, equivalently, at 5 = 7}). The expectations are
taken with respect to y,’s conditional on a;’s. Similarly, we can obtain the normal density which approximates
(B.2).

To make the linear Gaussian state-space model corresponding to the approximating density, we first
compute the following D;, Ky, J;, and b, for t = s + 2,..., s + m recursively,

Dy =A, — D NB2, Dy = A,

K, =+/Dy,

Jo=BKZ, J1=0, Jeymi1 =0,
and

by =dy, — JK 7 b1, bep = ds+1-
Second, we define auxiliary variables §;, = 4, + D; 'b; where
A=y + K7 16441, t=s+1,...,5+m.

Then the approximating density corresponds to the density of the linear Gaussian state-space model given
by

U= Zioy + Gy, t=s+1,...,5s+m,
and

apy1 = ¢y + Hi Gy, t=s,s+1,....,s+m, { ~N(0,I),

where

Zt:1+Kt_1Jt+1¢7 Gt:Kt_l(]-; Jt+1an)7 Ht:(oy Un)‘

As in Section 2.3.1, we can sample (7s, ..., 9s+m—1) from the full posterior distribution in (B.1) and (B.2)
by applying the simulation smoother to this state-space model and using ARMH algorithm. Similarly, the
mode of 7;’s (or equivalently «;’s) is obtained by applying Kalman filter and the disturbance smoother to
the state-space model repeatedly.

B.2. Sampling Parameters

Let Y> Yt, E) and 0 denOte Y = (yly L] >yT)7 Yt = (yl,t;y2,t))

2
5 . pooy
- )
2
poeoy o,

and 0 = (¢, %, 02, ¢), respectively. Further, we write all parameters of 6 except x as #_,. We first initialize
{a;}L, and @ and proceed an MCMC implementation in 5 steps.
1. Sample {a;}1,]0,Y.

(a) Generate K stochastic knots (ki,...,kx) and set kg =0, kg1 =T

(b) Sample {at}f;ki_1+1|{at|t <ki1,t>k},0,Yfori=1,...,K+1.
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2. Sample ¢[{a;} L ,,0_4,Y.

3. Sample X|{a},,0-5,Y.

4. Sample o [{o }/1,0_52,Y.

5. Sample c|{a;}L 1,0 ., Y.

In the first step, we sample {a; }1_, by applying block the sampler to each block as in the previous subsection.
In the second step, let m(¢) denote a prior probability density for ¢. The logarithm of the conditional

posterior density for ¢ (excluding a constant term) is given by

i1 -9 Y Mo — gan— poyo ! exp(—ai/2yia)’
202 2(1 - p?)o? '

log (g) + 5 log(1 — )

We propose a candidate for the MH algorithm using a truncated normal distribution on (—1,1), with mean
pts and variance o (which we denote by ¢ ~ TN(_y 1)(pg,03)) where

(1—p*)a;

B S au(ausn — pogo st exp(—au/2)y1,0)
p2ad + Y, a3

2 2 T—1 o
prai+ ) o af

Given the current sample ¢, generate ¢, ~ TNy 1)(g, 0'3)) and accept it with probability

W(‘f)y)\/ 1- ¢§ )
w(de)y/1— 02
In the third step, we assume that a prior distribution of ¥~! follows Wishart distribution (which we

denote by ¥7! ~ W (vp,%p)). Then the logarithm of the conditional posterior density of ¥ (excluding a
constant term) is

N

5 a

He

min

2(1—¢?) n+3 1 yir
-1 - - log |Z| — ztr(Z7'E ) —logo, — —5——
0g 0y 20_% 2 Og| | 2 I‘( 1 ) ogo 20-52 eXp(OéT)
where
T—1
n=v+T-1, L' '=%"+ Z iy, o = (yeexp(—au/2), appr — day)'.
t=1

We sample ¥ using MH algorithm with a proposal ¥~! ~ W (v, ;). Given the current value ¥ !, generate
¥, ~ W(vi,X1) and accept it with probability

2
o lg1 exp (— a%(l _ ¢2) _ V1,1 >

YTy 202, 202, exp(ar)
min . . 5 ,
ortorl exp _01(1 - ¢%) _ Yir
wa0e,x
" 20727’30 202 , exp(ar)

In the last two steps, we use similar priors as in Section 2.3.2. Since ¢ and o2 only depend on y» ;s given
ay’s, we can sample these parameters in a similar way.
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