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Abstract

This paper proposes a new scheme for the static replication of Euro-
pean options and their portfolios. First, we derive a general approximation
formula for efficient static replication as an extension of Carr and Chou
[1997, 2002] and Carr and Wu [2002]. Second, we present a concrete pro-
cedure for implementing our scheme by applying it to plain vanilla options
under exponential Lévy models. Finally, numerical examples in a model
developed by Carr, Geman, Madan and Yor[2002] are used to demonstrate
that our replication scheme is more efficient and more effective in practice
than a standard static replication method.
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1 Introduction

This paper develops a new efficient scheme for the static replication of European
derivatives. Suppose the value of a target European derivative is twice differ-
entiable in the underlying asset price; in other words, the gamma of the target
derivative exists. By applying a technique similar to Carr and Chou [1997] and
Carr and Madan [1998], we first show that the value of the derivative can be
decomposed into a value-weighted bond, a delta-weighted forward contract and
a gamma-weighted portfolio of options, all of whose maturities are shorter than
the maturity of the target derivative. Based on this decomposition, a static
replication can be obtained. However, theoretically an infinite number of op-
tions are needed for the replication. To overcome this problem, we introduce the
Gauss-Legendre quadrature rule in order to approximate the replication based
on a finite number of options. Consequently, compared with a standard static
replication approach, our approach of gamma-weighted portfolio of options is
more efficient; that is, a more precise hedge is derived from a smaller number
of options.

To demonstrate this advantage, this paper presents a concrete procedure for
implementing our scheme by applying it to a standard plain vanilla option under
exponential Lévy models. Specifically, we derive semi-analytic formulas for the
price, and the delta and gamma of the target option based on modifications of
the fast Fourier transform method developed by Carr and Madan [1999]. In this
way, we are able to achieve a very efficient computation for constructing static
replication portfolios. It should also be noted that this scheme can be applied to
other European derivatives such as cash digital, asset digital and power options.

Finally, when the underlying asset price dynamics is represented by a Carr,
Geman, Madan and Yor [2002] (hereafter, CGMY) type exponential Lévy model
that can describe the price processes in the real world very well, numerical exam-
ples show that our scheme significantly outperforms a standard static replication
model. This result demonstrates that a more accurate replication can be derived
from fewer options.

For over a decade, static hedging techniques have been developed and inves-
tigated extensively for barrier type options. Bowie and Carr [1994] and Carr,
Ellis and Gupta [1998] consider a static hedge method for barrier-type and
lookback options by using put call symmetry (Carr [1994]). Derman, Ergener
and Kani [1995] proposes the calendar-spreads method. Carr and Picron [1999]
presents a method for static hedging of timing risk which is applied to pricing
barrier options.

Carr and Chou [1997, 2002] shows the representation of any twice differen-
tiable payoff function that corresponds to lemma 1 in our paper. Their paper
then develops the so called strike-spreads method for static hedging of barrier,
ratchet and lookback options under the Black-Scholes model. Andersen, An-
dreasen and Eliezer [2002] theoretically investigates static replication of barrier
options.

Fink [2003] generalizes the method of Derman, Ergener and Kani [1995]
for barrier options in an environment of stochastic volatility. More recently,
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Nalholm and Poulsen [2006b] proposes a new technique for static hedging of
barrier options under general asset dynamics, such as a jump-diffusion process
with correlated stochastic volatility. Furthermore, Nalholm and Poulsen [2006a]
examines the sensitivity of dynamic and static hedging methods for barrier
options to model risk.

On the other hand, Carr and Wu [2002] concentrates on an efficient repli-
cation of a plain vanilla option though their approach implies the possibility of
further extensions and applications. It also applies the Gauss-Hermite quadra-
ture rule to approximate static hedging of the option by plain vanilla options
with shorter terms under the Black-Scholes and Merton [1976] jump-diffusion
models. Moreover, their paper undertakes extensive simulation exercises to in-
vestigate the robustness of the method. In a certain sense, our scheme relies
on and extends the methodologies developed by Carr and Wu [2002], Carr and
Chou [1997, 2002] and Carr and Madan [1998, 1999].

The remainder of the paper is organized as follows. The next section presents
the details of our proposed method for static replication. Section 3 provides the
formulas for the price, and the delta and gamma of a target option for replication
under exponential Lévy models. In Section 4, numerical examples are applied
to a CGMY model. The conclusions are presented in Section 5.

2 Efficient Method for Static Replication

This section presents a general efficient method for static replication of European
options. Specifically, under a single factor Markovian setting, we develop a
methodology to replicate European options and their portfolios based on a static
portfolio of shorter term plain vanilla options. Static portfolio implies that the
weights in the portfolio remain unchanged when the price of underlying assets
moves and options in the portfolio approach maturity.

Under the assumptions of a frictionless and no arbitrage market, let St de-
note the spot price of a stock, an underlying asset at time t ∈ [0, T ∗] where T ∗

is some arbitrarily determined time horizon. For sake of simplicity, the interest
rate r and the dividend yield d are assumed to be constants. The no-arbitrage
condition ensures the existence of a risk-neutral probability measure Q defined
on a probability space (Ω,F , Q) such that the instantaneous expected rate of
return on every asset is equal to the instantaneous interest rate r. Furthermore,
the risk-neutral process of the underlying asset price is assumed to be time-
inhomogeneous Markovian. Note that all exponential Lévy models belong to
this class, where an exponential Lévy model implies that stock price dynamics
are driven by Lévy processes. Moreover, the analysis in this paper concentrates
on static replication of path-independent options where the final payoff of the
option is solely determined by the stock price at maturity. Typical examples in
this class include plain vanilla, cash digital, asset digital and power options.

The following formula implies that a static portfolio of plain vanilla options
allows us to replicate any European derivatives under a certain condition.
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Lemma 1 Suppose that the payoff function f(ST ) of a European derivative with
maturity T is twice differentiable. Then, for any κ > 0, it satisfies

f(ST ) = f(κ) + f ′(κ)(ST − κ)

+
∫ κ

0

f ′′(K)(K − ST )+dK +
∫ +∞

κ

f ′′(K)(ST − K)+dK.
(1)

Moreover, for all t ∈ [0, T ] the present value Vt(St) of the derivative satisfies

Vt(St) = e−r(T−t)f(κ) + e−r(T−t)f ′(κ){Ft(T ) − κ}

+
∫ κ

0

f ′′(K)Pt(T,K)dK +
∫ +∞

κ

f ′′(K)Ct(T,K)dK,
(2)

where Ft(T ) denotes the time-t price of the forward contract with maturity T ,
and Pt(T,K) := Pt(St; T,K) and Ct(T,K) := Ct(St; T,K) represent the time-
t prices of plain vanilla put and call options with spot price St, strike K and
maturity T respectively.

Proof: See Carr and Chou [1997] or Appendix 1 in Carr and Madan [1998] for
instance.

¤

The following proposition indicates that an European derivative can be repli-
cated by using plain vanilla options whose maturities are shorter than the target
European derivative so long as the delta and gamma for all possible values of
the underlying spot price exist. Because the price function of a derivative can
be regarded as a payoff function, the proof of the proposition is obvious from
Lemma 1.

Proposition 1 Let τ ∈ [0, T ]. Suppose that the time-τ price function Vτ (S) of
a European derivative with maturity T is twice differentiable for all S ≥ 0, that
is, both the delta and gamma of the derivative exist at time τ . For any κ > 0,
it satisfies

Vτ (Sτ ) = Vτ (κ) +
∂Vτ

∂S
|S=κ (Sτ − κ)

+
∫ κ

0

∂2Vτ

∂S2
|S=K (K − Sτ )+dK +

∫ +∞

κ

∂2Vτ

∂S2
|S=K (Sτ − K)+dK.

(3)

Moreover, for all t ∈ [0, τ ] the present value Vt(St) of the derivative satisfies

4



Vt(St) = e−r(τ−t)Vτ (κ) + e−r(τ−t) ∂Vτ

∂S
|S=κ {Ft(τ) − κ}

+
∫ κ

0

∂2Vτ

∂S2
|S=K Pt(τ,K)dK +

∫ +∞

κ

∂2Vτ

∂S2
|S=K Ct(τ,K)dK.

(4)

According to Proposition 1, once the replication portfolio is created, re-balancing
is unnecessary until the maturity date of the options in the portfolio. This prop-
erty is called static. Note that although nearly none of the payoff functions of
the derivatives are twice differentiable, their price functions are mostly twice dif-
ferentiable. Hence, Proposition 1 is more useful for applications. The practical
implication of this proposition is that the risk embedded in a target European
derivative can be hedged using a static portfolio of liquid plain vanilla options
with a maturity that is shorter than the maturity of the target derivative.

Next, we present an efficient method for static replication. Proposition 1
shows that any derivative whose price function is twice differentiable can be
completely replicated by using an infinite number of plain vanilla options. How-
ever, since an infinite number of options can not be used in practice, approx-
imation of a static portfolio using a finite number of the options is necessary.
Specifically, we apply the Gauss-Legendre quadrature rule for the approxima-
tion. The rule is a numerical computational method for an integral

∫ 1

−1
g(x)dx,

where g(x) ∈ C2n (n ∈ N) on [−1, 1]. Here, C2n denotes the set of 2n-times con-
tinuously differentiable functions. For a given target function g(x), the Gauss-
Legendre quadrature rule provides the following formula.∫ 1

−1

g(x)dx =
n∑

j=1

ωjg(xj) +
22n+1(n!)4

(2n + 1)[(2n)!]3
g(2n)(ξ), (5)

for some ξ ∈ [−1, 1], where xj , j = 1, 2, · · · , n, are roots of the nth order
Legendre polynomial Ln(x), ωj := 2/(nLn−1(xj)L

′

n(xj)) and g(2n) denotes the
2n-th derivative of g. The second term on the right hand side of equation (5)
is the approximation error on the n-th order Gauss-Legendre quadrature rule.
Note that if g(x) is smooth, the error term converges to zero when n → ∞.
For details of the Gaussian quadrature rule, see pp. 225-230 of Sugihara and
Murota [1994] for example. Application of the Gauss-Legendre quadrature rule
to Proposition 1 provides the main result in this paper, which can be stated as
the following theorem.

Theorem 1 Let τ ∈ [0, T ], and suppose that Ct(τ,K) ∈ C2m and Pt(τ,K) ∈
C2n with respect to K respectively. Let Vτ (S) ∈ Cq be the time-τ price function
of an European derivative with maturity T where q := 2max{m,n}. Assume
that there exist Smin ∈ [0, κ) and Smax ∈ (κ,∞) such that for all t ∈ [0, τ ]
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∂2Vτ

∂S2
|S=y Pt(τ, y) = 0 if y ∈ [0, Smin],

∂2Vτ

∂S2
|S=z Ct(τ, z) = 0 if z ∈ [Smax, +∞).

(6)

Moreover, define a static portfolio Λt(n,m) as follows:

Λt(n,m) := e−r(τ−t)Vτ (κ) + e−r(τ−t) ∂Vτ

∂S
|S=κ {Ft(τ) − κ}

+
n∑

j=1

AP
j Pt(τ,KP

j ) +
m∑

l=1

AC
l Ct(τ,KC

l ),
(7)

where

KP
j :=

κ − Smin

2
xn

j +
κ + Smin

2
, AP

j := ωn
j

(
κ − Smin

2

)
∂2Vτ

∂S2
|S=KP

j
,

KC
l :=

Smax − κ

2
xm

l +
Smax + κ

2
, AC

l := ωm
l

(
Smax − κ

2

)
∂2Vτ

∂S2
|S=KC

l
,

ωn
j :=

2
nLn−1(xn

j )L′
n(xn

j )
, ωm

l :=
2

mLm−1(xm
l )L′

m(xm
l )

.

(8)

Here, xn
j , j = 1, · · · , n(xm

l , l = 1, · · · ,m) denote the roots of the n-th(m-th)
order Legendre polynomial.

Then, Λt(n,m) approximates Vt(St) for all t ∈ [0, τ ]:

Vt(St) = Λt(n,m) + pn(ξ1) + pm(ξ2), for some ξ1, ξ2 ∈ [−1, 1], (9)

where pn(ξ1)(pm(ξ2)) is the error term of the n-th(m-th) order quadrature rule.
In particular, if Ct(τ,K), Pt(τ,K) and Vτ (S) are smooth, Λt(n,m) converges

to Vt(St) for all t ∈ [0, τ ], when n → +∞ and m → +∞.

Proof: Let us define the following integral.

I :=
∫ κ

0

∂2Vτ

∂S2
|S=K Pt(τ,K)dK =

∫ κ

Smin

∂2Vτ

∂S2
|S=K Pt(τ,K)dK (10)

Changing the integral parameter K into κ−Smin
2 x + κ+Smin

2 , we re-write the
integral (10) as

I =
κ − Smin

2

×
∫ 1

−1

∂2Vτ

∂S2
|
S=

κ−Smin
2 x+

κ+Smin
2

Pt(τ,
κ − Smin

2
x +

κ + Smin

2
)dx.

(11)
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Then, the Gauss-Legendre quadrature rule can be applied to the integral (11).
That is,

I =
n∑

j=1

AP
j Pt(τ,KP

j ) + pn(ξ1), for some ξ1 ∈ [−1, 1], (12)

where pn(ξ) denotes the error term of the n-th order quadrature rule.
A similar argument holds for:

J :=
∫ +∞

κ

∂2Vτ

∂S2
|S=K Ct(τ,K)dK =

∫ Smax

κ

∂2Vτ

∂S2
|S=K Ct(τ,K)dK. (13)

Further, if Ct(τ,K), Pt(τ,K) and Vτ (S) are smooth, it clearly holds that
when n → +∞, m → +∞,

n∑
j=1

AP
j Pt(τ,KP

j ) −→
∫ κ

0

∂2Vτ

∂S2
|S=K Pt(τ,K)dK, (14)

and
m∑

l=1

AC
l Ct(τ,KC

l ) −→
∫ +∞

κ

∂2Vτ

∂S2
|S=K Ct(τ,K)dK. (15)

¤

Remark 1 Although assumption (6) in the theorem may not hold rigorously in
applications, a static portfolio Λt(n,m) is very effective because the gamma of
most European derivatives, such as plain vanilla, cash digital and asset digital
options, approaches zero very quickly as the moneyness goes to in-the-money
and out-of-the-money.

3 Option Prices and Greeks under Exponential
Lévy Models

This section derives the formulas for the price and the Greeks of a European
plain vanilla option under exponential Lévy models. This is done because, in
practical situations, efficient and accurate computation of the price and Greeks
is crucial for static replication.

Suppose the stock price process is specified as St = S0e
(r−d)t+Xt , t ∈ [0, T ∗]

under a risk-neutral measure Q, where (Xt)t≥0 is a one-dimensional stochastic
process with X0 = 0 and is an exponential martingale on the probability space
(Ω,F , P ) endowed with a standard complete filtration F := (Ft)t≥0. In particu-
lar, (Xt)t≥0 is assumed to be a Lévy process with respect to the filtration F. By
the Lévy Khintchine formula (see Sato [1991] for example), the characteristic
function of Xt takes the form
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ΦXt(θ) := E
[
eiθXt

]
= e−tψX(θ), t ≥ 0, (16)

where the characteristic exponent ψX(θ), θ ∈ R, is given by

ψX(θ) = −iγθ +
1
2
σ2θ2 +

∫ +∞

−∞

(
1 − eiθx + iθx1|x|≤1

)
Π(dx), (17)

where σ ≥ 0 and γ ∈ R are constants, and Π is a measure on R \ {0} satisfying∫ +∞

−∞

(
1 ∧ x2

)
Π(dx) < +∞. (18)

In many exponential Lévy models, the characteristic function ΦXt(θ) can be
obtained analytically. Indeed, in the case of the Black-Scholes model (i.e. St =
S0e

(r−d)t− 1
2 σ2+σWt , where Wt is a one-dimensional standard Brownian motion

and σ is a volatility) the characteristic function Φσ
BSt

(θ) of BSt := −1
2σ2 +σWt

is given by Φσ
BSt

(θ) = exp
{
−σ2t

2 (θ2 + iθ)
}

. Other well-known examples are
the characteristic functions of Merton’s jump-diffusion process (Merton [1976]),
Kou’s jump-diffusion process (Kou [2002]), the Variance Gamma process (Mar-
dan, Carr and Chang [1998]), the normal inverse Gaussian process (Barndorff-
Nielsen [1997]), the CGMY process (Carr, Geman, Madan and Yor [2002]), the
generalized hyperbolic process (Eberlein, Keller and Prause [1998]), and the
finite moment log-stable process (Carr and Wu [2003]).

Carr and Madan [1999] introduces a fast Fourier transform method for op-
tion pricing. This paper proposes to compute the time value of the option after
subtracting an intrinsic value from the option price in order to avoid the oscilla-
tion of the integrand in the Fourier inversion. As a result, the option price can
be obtained as the time value derived by the Fourier inversion plus the intrin-
sic value. On the other hand, to compute the delta and gamma of an option,
we propose to subtract the Black-Scholes price with appropriate volatility from
the option price instead of subtracting the intrinsic value. This choice is made
because the intrinsic value might not be differentiable. See also p.363 of Cont
and Tankov [2003]. (Note that the Black-Scholes prices of European options are
twice differentiable.)

The following proposition shows the formulas for the price, the delta and
the gamma of a plain vanilla call option.

Proposition 2 Let Ct denote a plain vanilla call price with strike K and ma-
turity T at time t. Then the call price is given by

Ct =
Se−αk

2π

∫ +∞

−∞
e−iukζT,t(u)du + Cσ

t , (19)

where
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ζT,t(u) :=
exp {[(r − d)(iu + α + 1) − r](T − t)}

(iu + α)(iu + α + 1)

×
(
ΦXT−t

(u − iα − i) − Φσ
BST−t

(u − iα − i)
)

,

(20)

α > 0, k := ln(K/S) and Cσ
t denotes the Black-Scholes price of the plain vanilla

call with some volatility σ > 0. Moreover, the delta ∂Ct

∂S and the gamma ∂2Ct

∂S2

are given by

∂Ct

∂S
=

e−αk

2π

∫ +∞

−∞
(iu + α + 1)e−iukζT,t(u)du +

∂Cσ
t

∂S
,

∂2Ct

∂S2
=

e−αk

2πS

∫ +∞

−∞
(iu + α)(iu + α + 1)e−iukζT,t(u)du +

∂2Cσ
t

∂S2
.

(21)

Proof: See Appendix.

4 Numerical Examples

This section examines the effectiveness of our replication scheme through nu-
merical examples. First, let us specify the stock process St = S0e

(r−d)t+Xt

as the CGMY model under a risk-neutral measure Q, which is introduced by
Carr, Geman, Madan and Yor [2002]. That is, Xt := ωt + ZCGMY

t where
ω := −ψZCGMY (−i). Here, ω is called a convexity correction, and ZCGMY

t is a
pure jump Lévy process whose Lévy measure ΠCGMY is defined by:

ΠCGMY (dx) :=


C

exp {−G|x|}
|x|1+Y

dx for x < 0

C
exp {−M |x|}

|x|1+Y
dx for x > 0,

(22)

where C > 0, G ≥ 0, M ≥ 0, and Y < 2. The characteristic exponent of
ZCGMY

t is given by

ψZCGMY (θ) = CΓ(−Y )
[
MY − (M − iθ)Y + GY − (G + iθ)Y

]
, (23)

where Γ(·) is the gamma function. See Carr, Geman, Madan and Yor [2002] for
details.

The input parameters of the CGMY model in the numerical examples are
listed in Table 1, where the CGMY parameters are taken from Table 2 in Carr,
Geman, Madan and Yor [2002].
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Table 1: The input parameters of the CGMY model
S0 r d C G M Y

100 0.00 0.00 24.79 94.45 95.79 0.2495

In order to examine effectiveness of our method, we compare it to a static
replication approach that is referred to as the standard method in the subsequent
analysis. In the standard method, the replication portfolio for a given target
option consists of various plain vanilla options with different strike prices and
the same maturity, which is shorter than the maturity of the target option. The
replication portfolio is obtained so that the value of the portfolio is equal to
that of the target option for each discretized grid of stock prices at the maturity
of the portfolio. At each grid, the corresponding portfolio weights can be found
by solving a system of linear equations. The general procedure of the standard
method can be found in Nalholm and Poulsen[2006b], for instance. On the other
hand, our replication scheme is hereafter referred to as the efficient method.

We compute the replication portfolios for a target plain vanilla call with
strike K = 100 and maturity T = 1. Using 8, 12, or 16 plain vanilla options
with maturity τ = 0.5, we replicate each value of the target option for all
St ∈ [50, 150], 0 ≤ t ≤ τ . Figure 1 describes the present values of the target
option with different underlying stock prices and times-to-expiry. Figures 2-
4 plot the errors of the replication that are defined as the deviations of the
portfolio’s values from the target option’s values. It is obvious that the efficient
method provides more accurate approximations of the replication portfolio than
the standard method in all cases. Table 2 shows the costs of replication that
are equivalent to the portfolio values at the initial time, as well as the errors
and error ratios against the corresponding option premium. In the efficient
method, considerable accuracy in prices can be obtained by using only 8 options.
Consequently, these numerical results show that the efficient method is effective
and efficient in practice.

Remark 2 A similar technique was applied to the static replication of European
derivatives such as cash digital, asset digital and power options. We obtained
particularly good results for these options in numerical experiments using the
same CGMY model. The results will be made available upon request.

5 Conclusion

This paper presents a new scheme for the static replication of European deriva-
tives under a general class of exponential Lévy models. The scheme can be
applied to European derivatives including digital-type options for which dy-
namic hedging is sometimes difficult to implement and is therefore not very
effective in practice. Our efficient method developed in a general class of the
underlying price process appears to be useful and widely applicable in trading
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and hedging of derivatives. Moreover, numerical examples in a CGMY model
confirm the validity of our scheme through comparison with a standard static
replication method. Finally, our next research topic will be to establish an ef-
fective and efficient scheme for the static replication of multi-factor derivatives,
such as stochastic volatility models.

Table 2: The cost of replication for the target call option
Exact Value 4.86176
Number of Options 8 12 16
Efficient Method 4.86424 4.86167 4.86175
Error -0.00248 0.00010 0.00001
Error Ratio -0.0510% 0.0020% 0.0003%
Standard Method 5.21137 4.95555 4.89037
Error -0.34961 -0.09379 -0.02861
Error Ratio -7.1910% -1.9291% -0.5884%
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Figure 1: The present value of the target call option

50

100

150

0

0.1

0.2

0.3

0.4

-10

0

10

20

30

40

50

Stock Price
Time

P
r
e
s
e
n
t
 
V
a
l
u
e

Figure 2: The replication error with 8 options

50

100

150

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Stock Price

Efficient Method

Time 50

100

150

0

0.1

0.2

0.3

0.4

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Stock Price

Standard Method

Time

E
r
r
o
r

12



Figure 3: The replication error with 12 options
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Figure 4: The replication error with 16 options
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Appendix: The Proof of Proposition 2

Note that

Ct =E
[
e−r(T−t)(ST − K)+ | Ft

]
=Ste

−rT̄

∫ ∞

−∞

(
e(r−d)T̄+x − ek

)
1{(r−d)T̄+x>k}ρXT̄

(x)dx,
(24)

where T̄ := T − t and ρXT̄
(·) is the density function of XT̄ . We define the

function ζ̄T,t(k) as

ζ̄T,t(k) :=
eαk

St
(Ct − Cσ

t )

=e−rT̄+αk

∫ ∞

−∞

(
ρXT̄

(x) − ρBST̄
(x)

)
×

(
e(r−d)T̄+x − ek

)
1{(r−d)T̄+x>k}dx.

(25)

Let ζT,t(u) denote the Fourier transform of ζ̄T,t(k). Then, ζT,t(u) can be calcu-
late as follows:

ζT,t(u) =
∫ ∞

−∞
eiuk ζ̄T,t(k)dk

=e−rT̄

∫ ∞

−∞

(
ρXT̄

(x) − ρBST̄
(x)

)
×

∫ (r−d)T̄+x

−∞
e(iu+α)k

(
e(r−d)T̄+x − ek

)
dkdx

=
exp

{
[(r − d)(iu + α + 1) − r]T̄

}
(iu + α)(iu + α + 1)

×
∫ ∞

−∞
e(iu+α+1)x

(
ρXT̄

(x) − ρBST̄
(x)

)
dx

=
exp

{
[(r − d)(iu + α + 1) − r]T̄

}
(iu + α)(iu + α + 1)

×
(
ΦXT̄

(u − iα − i) − Φσ
BST̄

(u − iα − i)
)

.

(26)

By the Fourier inversion of ζT,t(u), the equation (19) is obtained. Next we define
the function ζ̂(S) as

ζ̂(S) := S

∫ +∞

−∞
e−(iu+α)kζT,t(u)du. (27)
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Let us differentiate ζ̂T,t(S) once and twice. Thus,

∂ζ̂

∂S
=

∫ +∞

−∞
e−(iu+α)kζT,t(u)du + S

∫ +∞

−∞

∂k

∂S

∂

∂k
e−(iu+α)kζT,t(u)du

=
∫ +∞

−∞
(iu + α + 1)e−(iu+α)kζT,t(u)du,

∂2ζ̂

∂S2
=

∫ +∞

−∞

∂k

∂S

∂

∂k
(iu + α + 1)e−(iu+α)kζT,t(u)du

=
1
S

∫ +∞

−∞
(iu + α)(iu + α + 1)e−(iu+α)kζT,t(u)du.

(28)

Therefore the equation (21) is obtained.
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