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Abstract

Consider the problem of testing the linear hypothesis on regression coefficients in
the nested error regression model. The standard F -test statistic based on the ordi-
nary least squares (OLS) estimator has the serious shortcoming that its type I error
rates (sizes) are much larger than nominal significance levels, because the covariance
matrix of data is not the identity but has the intraclass correlation structure. One
of methods for fixing the problem is to consider an F -test statistic based on the
generalized least squares (GLS) estimator, and the resulting GLS F -test performs
well in controlling the sizes. However, numerical investigations show that the sizes
remain still slightly larger than nominal levels. In this paper, we derive two test
procedures: One is an exact test based on the within analysis of variance, and the
other is a testing procedure based on the asymptotic correction of the GLS method.
It is numerically shown that both procedures are superior to the GLS F -test in
controlling the sizes and that the latter test is more powerful than the exact test.

Key word and Phrases: asymptotic correction, generalized least squares method, intra-
class correlation, F -test statistic, linear mixed model, nested error regression model.

1 Introduction

Consider the nested error regression model which have been used in the small area esti-
mation. Let k be the number of small areas and let ni be size of a sample from the i-th
small area. Then the model is described as

yij = x′
ijβ + vi + eij, i = 1, . . . , k, j = 1, . . . , ni, (1.1)

where yij is a scalar observation and xij is a p-dimensional vector of the corresponding
covariates, β = (β0, β1, . . . , βp−1)

′ is an unknown vector of the regression coefficients, vi

is a random effect representing an area effect and eij is an error term. It is assumed that
these random variables are mutually independent and

vi ∼ N (0, σ2
v), eij ∼ N (0, σ2

e)
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where σ2
v and σ2

e are unknown and called ‘between’ and ‘within’ components of variance,
respectively. Let N =

∑k
i=1 ni and assume that N > k + p and k ≥ p. Letting yi =

(yi1, . . . , yi,ni)
′, X i = (xi1, . . . ,xi,ni)

′, ei = (ei1, . . . , ei,ni)
′ and jni

= (1, . . . , 1)′ ∈ Rni,
we can rewrite (1.1) as

yi = X iβ + jni
vi + ei, i = 1, . . . , k, (1.2)

and the covariance matrix of yi is

Cov (yi) = σ2
eV i(ψ) = σ2

e {Ini + ψJni} ,
where Ini is the ni × ni identity matrix, Jni = jni

j ′
ni

, and ψ = σ2
v/σ

2
e . It is noted that

the covariance of yi has the intra-class correlation structure, namely yi1, . . . , yi,ni are not
mutually independent when ψ �= 0. Letting y = (y′

1, . . . ,y
′
k)

′, X = (X ′
1, . . . ,X

′
k)

′,
v = (v1, . . . , vk)

′ and e = (e′
1, . . . , e

′
k)

′, we express (1.1) in the matrix notation as

y = Xβ + Zv + e,

where Z = block diag(jn1
, . . . , jnk

), a block diagonal matrix. It is assumed that X is of
full rank. The covariance matrix of y is given by

Cov (y) = σ2
eV (ψ) = σ2

e · block diag(V 1(ψ), . . . ,V k(ψ)).

In this paper, we consider the problem of testing the following linear hypothesis on
the regression coefficients β:

H0 : Cβ = b

against H1 : Cβ �= b, where C is a q × p (q ≤ p) known matrix with rank q and a p× 1
known vector b. The F -test statistic based on the ordinary least squares (OLS) estimator

β̂0 = (X ′X)−1X ′y is given by

FOLS =
(Cβ̂0 − b)′(X ′

cXc)
−1(Cβ̂0 − b)/q

(y − Xβ̂0)
′(y − Xβ̂0)/(N − p)

, (1.3)

where Xc = X(X ′X)−1C ′ and (X ′
cXc)

−1 = (C(X ′X)−1C ′)−1. The OLS F test FOLS

is a standard procedure when ψ = 0, while it has the serious drawback of having inflated
type I error (size) when ψ is away from zero. To fix this problem, two procedures have been
proposed in the literature: One is from Wu, Holt and Holmes (1988) and the other from
Rao, Sutradhar and Yue (1993). The expectations of the numerator and denominator

of FOLS are E[(Cβ̂0 − b)′(X ′
cXc)

−1(Cβ̂0 − b)] = σ2
etrP cV (ψ) and E[(y − Xβ̂0)

′(y −
Xβ̂0)] = σ2

e((1 + ψ)N − trPV (ψ)), respectively, for

P c = Xc(X
′
cXc)

−1X ′
c = X(X ′X)−1C ′(C(X ′X)−1C ′)−1C(X ′X)−1X ′,

and P = X(X ′X)−1X ′. Wu et al . (1988) proposed the method of exchanging the degrees
of freedom q and N − p in FOLS with the above expectations, namely,

FWHH(ψ) =
(Cβ̂0 − b)′(X ′

cX c)
−1(Cβ̂0 − b)/tr P cV (ψ)

(y −Xβ̂0)
′(y −Xβ̂0)/{(1 + ψ)N − trPV (ψ)}

. (1.4)
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On the other hand, Rao et al . (1993) proposed an F -type test statistic based on the

generalized least squares (GLS) estimator β̃(ψ) = (X ′V (ψ)−1X)−1X ′V (ψ)−1y, and their
test is given by

FRSY (ψ) =
(Cβ̃(ψ) − b)′{C(X ′V (ψ)−1X)−1C ′}−1(Cβ̃(ψ)− b)/q

(y −Xβ̃(ψ))′V (ψ)−1(y − Xβ̃(ψ))/(N − p)
. (1.5)

Since ψ is unknown, an estimator ψ̂ is substituted to get the test statistics FWHH(ψ̂) and

FRSY (ψ̂). Rao and Wang (1995) proved that the power function of FRSY (ψ̂) increases in

ψ. It has been numerically shown that these test procedures FWHH(ψ̂) and FRSY (ψ̂) have
sizes much smaller than FOLS, epecially FRSY performs well in cotrolling the sizes. As
shown in Section 3, however, the sizes of FRSY remain still slightly larger than significance
levels.

In this paper, we try to derive test statistics with further improvements in controlling
the sizes. To this end, we consider the two testing procedures: One is an exact test,
denoted by FEXT , which is constructed based on the ‘within’ analysis of variance, and
the other is the test, denoted by FACG, which is constructed based on the asymptotic
correction of the GLS test statistic. These test statistics are derived in Section 2. In
Section 3, we investigate the size performances of all the test statistics treated in this
paper through simulation studies, and show that the tests FEXT and FACG have sizes close
to nominal levels. Also the powers of the tests FRSY , FEXT and FACG are compared, and
it is shown that FRSY and FACG are more powerful than FEXT . Combining the numerical
properties of the sizes and the powers suggests the use of the asymptotic corrected GLS
test statistic FACG. The proof of the main result is given in Section 4.

2 Main results

2.1 An exact test statistic

We first derive an exact test for the linear hypothesis H0 : Cβ = b. The exact test
can be obtained from the ‘within’ part of analysis of variance in the likelihood function.
Letting f(y|β, σ2

v, σ
2
e) be a marginal density of y, we can decompose the likelihood as

−2 log f(y|β, σ2
v, σ

2
e) = g1(y|σ2

e ,β) + g2(y|σ2
e ,β, ψ), (2.1)

where for γi = γi(ψ) = 1/(1 + niψ) and y = (y1, . . . , yk)
′,

g1(y|σ2
e ,β) =(N − k) log(2πσ2

e) +
1

σ2
e

k∑
i=1

ni∑
j=1

{(yij − yi) − (xij − xi)
′β}2, g2(y|σ2

e ,β, ψ) = k log(2πσ2
e) −

which correspond to the ‘within’ and ‘between’ parts of analysis of variance, respectively.
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Since g1(y|σ2
e ,β) does not depend on ψ, we can construct an exact test. Let

β̂1 =B+
k∑

i=1

ni∑
j=1

(xij − xi)(yij − yi),

S1 =
k∑

i=1

ni∑
j=1

{
(yij − yi) − (xij − xi)

′β̂1

}2
,

where B =
∑k

i=1

∑ni

j=1(xij−xi)(xij−xi)
′, and B+ denotes the Moore-Penrose generalized

inverse matrix of B. Assume that the rank of B is p− λ, and an unbiased estimator of
σ2

e is given by
σ̂2U

e = S1/(N − k − p + λ).

The statistic for testing H0 : Cβ = b is

FEXT = (Cβ̂1 − b)′(CB+C ′)−(Cβ̂1 − b)/rank (CB+C ′)/σ̂2U
e , (2.2)

which, under H0, has an F -distribution with (rank (CB+C ′), N − k − p + λ) degrees of
freedom. This means that FEXT is an exact test.

2.2 Asymptotically corrected GLS test procedure

Although FEXT is an exact test, the power gets worse when CB+C ′ is not of full rank.
It is also noted that the estimator β̂1 used in FEXT is based on only the ‘within’ analysis

of variance, which means that β̂1 is less efficient than the GLS estimator β̃(ψ) given by

β̃(ψ) = (B + A(ψ))−1
{
Bβ̂1 + A(ψ)β̃2(ψ)

}
,

where A(ψ) =
∑k

i=1 niγixix
′
i and β̃2(ψ) = A(ψ)−1

∑k
i=1 niγixiyi. It is assumed that

A(ψ) is of full rank. Since β̃(ψ) is more efficient, it is reasonable to consider a test

statistic constructed based on the GLS β̃(ψ).

To derive a test statistic based on the GLS estimator, we need to estimate ψ since
it is unknown. For this purpose, we use the Henderson method III to get estimators
of the variance component σ2

v and the ratio ψ = σ2
v/σ

2
e . For β̂0 = (X ′X)−1X ′y, let

S = (y−Xβ̂0)
′(y−Xβ̂0) and N∗ = N − tr {(X ′X)−1

∑k
i=1 n

2
i xix

′
i}. Then, an unbiased

estimator of σ2
v is given by

σ̂2U
v =

{
S − (N − p)σ̂2U

e

}
/N∗,

and ψ is estimated by

ψ̂U =
σ̂2U

v

σ̂2U
e

=
1

N∗

{
S

σ̂2U
e

− (N − p)

}
. (2.3)

Since it takes negative values with a positive probability, it is reasonable to truncate ψ̂U

at zero as

ψ̂0 = max
{
ψ̂U , 0

}
. (2.4)
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It can be shown that for a ≥ 1/2, ψ̂0 = ψ̂U + op(k
−a) (see Kubokawa and Srivastava

(2007)). Then we can use the GLS estimator β̃(ψ̂0) substituting the truncated estimator

ψ̂0. Based on ψ̂0, Rao et (1993) proposed the GLS F -test FRSY (ψ̂0) and numerically

compared its size and power with Wu et al .’s test FWHH(ψ̂0).

We now consider the test statistic given by

FG(ψ̂0) =
(Cβ̃(ψ̂0) − b)′{C[B + A(ψ̂0)]

−1C ′}−1(Cβ̃(ψ̂0) − b)/q

σ̂2U
e

,

where the denominator uses the unbiased estimator σ̂2U
e constructed from the ‘within’

analysis of variance. Along the arguments as in Wu, et al . (1988), we try to modify the

numerator of FG(ψ̂0). Let

G(ψ̂0) = (Cβ̃(ψ̂0) − b)′{C[B + A(ψ̂0)]
−1C ′}−1(Cβ̃(ψ̂0) − b)/σ2

e .

In the context of small area estimation, it is common to consider the asymptotic ap-
proximation when the number of small areas, k, is large. We thus derive an asymp-
totic approximation to E[G(ψ̂0)] as k → ∞. Let D(ψ) = C ′{C[B + A(ψ)]−1C ′}−1C,
D(1)(ψ) = (d/dψ)D(ψ) and D(2)(ψ) = (d2/dψ2)D(ψ). Also let A(ψ) =

∑
i niγixix

′
i,

A(1)(ψ) = −∑
i n

2
iγ

2
i xix

′
i and A(2)(ψ) = 2

∑
i n

3
i γ

3
i xix

′
i . Define h(ψ) by

h(ψ) =
2k

N(N − k)

∑
i

γ−1
i tr (B + A(ψ))−1D(1)(ψ)

+
2k

N2

{∑
i

γ−2
i +

1

N − k
(
∑

i

γ−1
i )2

}
×

{1

2
tr (B + A(ψ))−1D(2) +

1

2
trD0(ψ)A(2)(ψ)

− trD0(ψ)A(1)(ψ)(B + A(ψ))−1A(1)(ψ)
}

(2.5)

where D0(ψ) = (B + A(ψ))−1D(ψ)(B + A(ψ))−1.

Theorem 2.1 Assume that X and A(ψ) are of full rank and that B = O(k) and A(ψ) =

O(k) as k → ∞. Then, the expectation of G(ψ̂0) is approximated as E[G(ψ̂0)] = q +
h(ψ)/k + o(k−1).

From this theorem, we obtain the asymptotically corrected test statistic given by

FACG(ψ̂0, σ̂
2
e) = FG(ψ̂0, σ̂

2
e)/(q + h(ψ̂0)/k). (2.6)

When C = I, we have that q = p, D = B + A(ψ), D(1)(ψ) = A(1)(ψ) and D(2)(ψ) =
A(2)(ψ), so that h(ψ) is expressed as

h(ψ) =
2k

N(N − k)

∑
i

γ−1
i tr (B + A(ψ))−1A(1)(ψ)

+
2k

N2

{∑
i

γ−2
i +

1

N − k
(
∑

i

γ−1
i )2

}
×

{
tr (B + A(ψ))−1A(2) − tr [(B + A(ψ))−1A(1)(ψ)]2

}
.
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For the general matrix C, D(2)(ψ) gives a complicated form, but we can compute it
as follows: Let E(ψ) = (B + A(ψ))−1 and F (ψ) = {C(B + A(ψ))−1C ′}−1. Then,
D(1)(ψ) = C ′F (1)(ψ)C, which can be obtained from F (1)(ψ) = −F (ψ)CE(1)(ψ)C′F (ψ)
and E(1)(ψ) = −E(ψ)A(1)(ψ)E(ψ). Also, we have D(2)(ψ) = C ′F (2)(ψ)C, which can be
obtained from

F (2)(ψ) = −F (1)(ψ)CE(1)(ψ)C′F (ψ)−F (ψ)CE(2)(ψ)C ′F (ψ)−F (ψ)CE(1)(ψ)C ′F (1)(ψ)

and

E(2)(ψ) = −E(1)(ψ)A(1)(ψ)E(ψ) − E(ψ)A(2)(ψ)E(ψ) − E(ψ)A(1)(ψ)E(1)(ψ).

These expressions can be used in the numerical investigations studied in the next section.

3 Numerical Studies

In this section, we shall investigate the performances of the sizes of the test statistics
proposed in the previous section through simulation experiments.

Consider k small areas, and the sample sizes ni’s for small areas are generated as
ni = 1+Bin(10, 1/2) for i = 1, . . . , k, where Bin(10, 1/2) is a random variable distributed
as a binomial distribution with mean 5 and success probability 1/2. The observations from
each small area are generated as for i = 1, . . . , k,

yi = X iβ + jni
vi + ei, (3.1)

where yi is an ni-dimensional vector, X i is a ni × p matrix of the regressor variables and
the other notations are defined around (1.2). Here, vi and ei are random observations from
N (0, ψ) and Nni(0, Ini), respectively. The regression coefficients β = (β0, β1, . . . , βp−1)

′

are set up as βi = 5(−1)i(Ui + 1) for i = 0, . . . , p− 1 where Ui is a random number from
a uniform distribution on the interval (0, 1). For the regressor variables, it is supposed
that the model has an intercept term, namely, X ′

i = (jni
,X∗′

i ) for ni × (p − 1) matrix
X∗

i , where X∗
i is generated as

X∗
i = jni

u′
i + Zi,

where Zi is an ni × (p− 1) random matrix having Nni,p−1(0, (10Ini)⊗ Ip−1), and ui is a
(p− 1)-dimensional vector having Np−1(0, 10Σu) for Σu = (1− ρu)Ip−1 + ρujp−1j

′
p−1 and

ρu = 0.6.

In the simulation experiments, we handle the three cases: (A) k = 10, p = 3, q = 2 and
H0 : β1 = β2 = 0, (B) k = 10, p = 3, q = 2 and H0 : β0 = β1 = 0, and (C) k = 20, p = 5,
q = 3 and H0 : β2 = β3 = β4 = 0, where ψ takes the values ψ = 0, 0.2, 0.4, 0.6, 0.8, 1.0.
A set of observations of the regressor variables X is generated, and 10,000 observations
of the response variable y are generated from the model (3.1). Sizes of test statistics
can be approximated based on these simulation experiments. The test statistics we want
to investigate are the OLS F -test statistic FOLS, Wu et al .’s test statistic FWHH(ψ̂0),

Rao et al .’s test statistic FRSY (ψ̂0), the exact test statistic FEXT and the asymptotically
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Table 1: Size Estimates (%) of Tests FOLS, FWHH, FRSY , FEXT and FACG

Nominal level 5% Nominal level 1%
ψ FOLS FWHH FRSY FEXT FACG FOLS FWHH FRSY FEXT FACG

(A) k = 10, p = 3, q = 2 and H0 : β1 = β2 = 0
0.0 5.2 4.6 5.1 4.7 2.2 1.0 0.9 0.9 0.8 0.3
0.2 12.0 8.3 7.0 4.5 4.1 4.0 2.7 1.8 0.9 0.8
0.4 19.8 11.1 8.0 4.7 5.1 8.3 4.3 2.2 1.0 1.2
0.6 24.1 11.3 7.5 5.0 4.9 11.2 4.6 1.9 1.0 1.0
0.8 27.9 11.6 7.1 4.8 4.6 13.3 4.8 2.0 1.0 1.1
1.0 29.5 12.2 6.9 4.8 4.7 15.0 5.0 1.6 1.0 0.9

(B) k = 10, p = 3, q = 2 and H0 : β0 = β1 = 0
0.0 5.6 4.4 4.7 5.0 1.9 0.9 0.8 0.7 0.8 0.2
0.2 15.9 9.0 7.7 4.9 4.5 5.7 3.2 2.2 1.0 0.9
0.4 24.6 11.0 8.3 4.8 5.2 11.3 4.6 2.5 1.0 1.3
0.6 30.4 11.8 8.4 4.7 5.4 15.3 5.3 2.5 1.0 1.4
0.8 34.3 12.4 8.0 5.1 5.4 19.2 5.9 2.6 0.9 1.7
1.0 37.5 13.0 8.1 4.9 5.1 21.7 6.7 2.4 1.0 1.3

(C) k = 20, p = 5, q = 3 and H0 : β2 = β3 = β4 = 0
0.0 5.2 4.7 4.9 4.7 2.9 0.9 0.9 0.8 0.9 0.5
0.2 12.0 7.3 6.1 5.1 4.7 3.7 2.2 1.4 1.0 1.1
0.4 19.3 9.3 6.5 4.8 5.0 7.7 3.0 1.2 1.0 0.8
0.6 23.3 9.0 5.7 5.0 4.6 9.9 3.1 1.5 1.0 1.0
0.8 26.4 8.9 5.7 5.0 4.6 12.4 3.1 1.4 1.2 1.0
1.0 29.3 9.6 5.6 5.0 4.5 14.9 3.6 1.1 1.0 0.8

corrected test statistic FACG(ψ̂0, σ̂
2U
e ), which are given in (1.3), (1.4), (1.5), (2.2) and

(2.6). The sizes of these test statistics for the nominal significance levels α = 5%, 1%

are reported in Table 1, where the notations FWHH(ψ̂0), FRSY (ψ̂0) and FACG(ψ̂0, σ̂
2U
e )

are abbreviated as FWHH, FRSY and FACG. In the cases of (A) and (B), X∗
i ’s are two

dimensional and the sample correlation coefficient for the simulated data is 0.350. For
the case (C), the correlation matrix of the simulated sample X∗

i ’s is

Sample Correlation Matrix of X∗
i ’s =

⎛⎜⎜⎝
1.000 0.347 0.316 0.264
0.347 1.000 0.357 0.386
0.316 0.357 1.000 0.345
0.264 0.386 0.345 1.000

⎞⎟⎟⎠
As seen from Table 1, the sizes of the Rao et al .’s test FRSY are much better than

those of FOLS and FWHH, but they are slightly larger than the nominal levels. The
asymptocally corrected test FACG has sizes close to the nominal levels and improves on
FRSY in controlling the sizes for ψ ≥ 0.2. When ψ = 0, FACG is very conservative, and
we need a further modification, which will be done in a future. Since FEXT is an exact
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Table 2: Power Estimates (%) of Tests FRSY , FEXT and FACG

(The size of FRSY is adjusted so that its size is about 5%.)

ψ FRSY FEXT FACG FRSY FEXT FACG

β1 = 0.00, β2 = 0.00 β1 = −0.05, β2 = 0.04
0.0 5.0 4.7 2.2 46.7 26.1 33.5
0.2 5.0 4.5 4.1 34.5 26.3 31.5
0.4 5.0 4.8 5.1 28.5 25.6 29.4
0.6 5.0 5.0 5.0 27.7 25.7 27.5
0.8 5.0 4.8 4.6 29.3 25.8 27.8
1.0 5.0 4.8 4.8 27.5 26.4 26.7

β1 = −0.10, β2 = 0.08 β1 = −0.15, β2 = 0.12
0.0 97.2 79.6 94.3 100.0 99.0 100.0
0.2 90.9 79.9 89.7 100.0 99.1 99.9
0.4 86.2 80.2 86.8 99.6 99.1 99.6
0.6 84.2 79.4 84.2 99.6 99.1 99.6
0.8 83.5 79.4 82.6 99.4 99.1 99.4
1.0 82.3 79.1 81.9 99.4 99.0 99.3

test, its sizes satisfy the nominal level.

The powers of the tests FRSY , FEXT and FACG are examined in the case (A) and
reported in Table 2 for (β1, β2) = (−0.05, 0.04), (−0.10, 0.08) and (−0.15, 0.12), where
the test FRSY is adjusted so that its size satisfies the nominal level α = 5%, but FACG

is not adjusted. The column for β1 = β2 = 0 means the sizes of the tests, and in most
cases the three tests satisfy the nominal level. It is seen that FRSY and FACG are more
powerful than the exact test FEXT and that FACG performs as well as FRSY . From the
numerical results reported in Tables 1 and 2, the asymptotically corrected test FACG is
recommendable.

4 Proof of Theorem 2.1

For notational convenience, let D(ψ) = C ′{C[B + A(ψ)]−1C ′}−1C. Under the null

hypothesis H0 : b = Cβ, the expectation E[G(ψ̂)] is written as

Eβ[G(ψ̂0)] =Eβ [(β̃(ψ̂0) − β)′D(ψ̂0)(β̃(ψ̂0) − β)]/σ2
e

=E0[β̃(ψ̂0)
′D(ψ̂0)β̃(ψ̂0)]/σ

2
e ,

so that we can put β = 0 without any loss of generality, and we shall omit 0 in the
expectation notation E0[·].

Let β̃
(i)

(ψ) = (di/dψi)β̃(ψ) and D(i)(ψ) = (di/dψi)D(ψ) for i = 1, 2. Using the

Taylor expansion of β̃(ψ̂0) and D(ψ̂0) around ψ̂0 = ψ, we can approximate them as
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β̃(ψ̂0) = β̃(ψ) + β̃
(1)

(ψ)(ψ̂0 − ψ) + 2−1β̃
(2)

(ψ)(ψ̂0 − ψ)2 + op(k
−1) and D(ψ̂0) = D(ψ) +

D(1)(ψ)(ψ̂0−ψ)+2−1D(2)(ψ)(ψ̂0−ψ)2 +op(k
−1). It can be shown that ψ̂0 = ψ̂U +op(k

−1)

for ψ̂0 and ψ̂U given in (2.4) and (2.3), respectively. Evaluating G(ψ̂0) up to O(k−1), we
observe that

G(ψ̂0) =
1

σ2
e

{
β̃(ψ)′D(ψ)β̃(ψ) + 2β̃(ψ)′D(ψ)β̃

(1)
(ψ)(ψ̂U − ψ)

+ β̃(ψ)′D(ψ)β̃
(2)

(ψ)(ψ̂U − ψ)2 + β̃
(1)

(ψ)′D(ψ)β̃
(1)

(ψ)(ψ̂U − ψ)2

+ β̃(ψ)′D(1)(ψ)β̃(ψ)(ψ̂U − ψ) + 2β̃(ψ)′D(1)(ψ)β̃
(1)

(ψ)(ψ̂U − ψ)2

+
1

2
β̃(ψ)′D(2)(ψ)β̃(ψ)(ψ̂U − ψ)2

}
+ op(k

−1).

Hereafter, let ψ̂ = ψ̂U for simplicity. Also we use the notations β̃, β̃
(1)

, D, D(1) and A

instead of β̃(ψ), β̃
(1)

(ψ), D(ψ), D(1)(ψ) and A(ψ), respectively. Since E[β̃
′
Dβ̃/σ2

e ] = q,

the expectation E[G(ψ̂)] can be approximated as E[G(ψ̂)] = q + I1 + 2−1I2 + 2I3 +

2I4 + I5 + I6 + o(k−1), where I1 = E[β̃
′
D(1)β̃(ψ̂ − ψ)]/σ2

e , I2 = E[β̃
′
D(2)β̃(ψ̂ − ψ)2]/σ2

e ,

I3 = Eβ̃
′
Dβ̃

(1)
(ψ̂−ψ)]/σ2

e, I4 = E[β̃
′
D(1)β̃

(1)
(ψ̂−ψ)2]/σ2

e , I5 = E[β̃
(1)′

Dβ̃
(1)

(ψ̂−ψ)2]/σ2
e

and I6 = E[β̃
′
Dβ̃

(2)
(ψ̂−ψ)2]/σ2

e . Hence, we need to evaluate the terms I1 to I6. For the
purpose, we note the following distributional properties for β = 0:

(1) From (2.1), it is seen that β̂1, S1 and (y1, . . . , yk) are mutually independently
distributed as S1/σ

2
e ∼ χ2

N−k−p+λ and yi ∼ N (x′
iβ, σ

2
e/(niγi)) for i = 1, . . . , k. For a

distribution of β̂1, let H and L be a p× p orthogonal matrix and a diagonal matrix with
positive diagonal elements such that

B = H ′
(

L 0
0′ 0

)
H ,= H ′

1LH1

where H ′ = (H ′
1,H

′
2). Then, Bβ̂1 = H ′

1Lz and z ∼ N (0, σ2
eL

−1).

(2) The GLS estimator β̃ is expressed as β̃ = β̃(ψ) = (B+A)−1(H ′
1Lz+

∑
i niγixiyi)

and it has Np(β, σ
2
e [B + A]−1).

(3) From the result of Kackar and Harville (1984), it follows that ψ̂ is independent of

β̃.
(4) (Stein identity) Let Y be a p-dimensional random vector having Np(η,Σ).

Then, for p-dimensional absolutely continuous function g(Y ), Stein (1973, 81) derived
the following identity:

E[Y ′g(Y )] = E[(∂/∂Y )′Σg(Y )],

where (∂/∂Y )′ = ∂/∂Y ′ = (∂/∂Y1, . . . , ∂/∂Yp) for Y = (Y1, . . . , Yp)
′.

(5) The following equation is also useful: for scalar function f(Y ),

(∂/∂Y )′[g(Y )f(Y )] = [(∂/∂Y )′g(Y )]f(Y ) + g(Y )′[∂f(Y )/∂Y ].
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To evaluate I1 = E[β̃
′
D(1)β̃(ψ̂ − ψ)]/σ2

e , note that β̃ is independent of ψ̂ and that

E[β̃
′
D(1)β̃] = E[tr {D(1)β̃β̃

′}] = σ2
etr {D(1)[B + A(ψ)]−1}. Thus, it is observed that

I1 =E[β̃
′
D(1)β̃]Bias(ψ̂)/σ2

e

=tr {D(1)[B + A(ψ)]−1}Bias(ψ̂).

Similarly,

I2 = E[β̃
′
D(2)β̃(ψ̂ − ψ)2]/σ2

e = tr {D(2)[B + A(ψ)]−1}E[(ψ̂ − ψ)2].

To evaluate I3 = Eβ̃
′
Dβ̃

(1)
(ψ̂−ψ)]/σ2

e , note that ψ̂ is not independent of β̃
(1)

, which
is written as

β̃
(1)

= −(B + A)−1A(1)β̃ − (B + A)−1
∑

i

n2
i γ

2
i xiyi, (4.1)

where A(1) = (d/dψ)A(ψ). Then,

I3 = − E[β̃
′
D(B + A)−1A(1)β̃(ψ̂ − ψ)]/σ2

e

− E[β̃
′
D(B + A)−1

∑
i

n2
i γ

2
i xiyi(ψ̂ − ψ)]/σ2

e

= I31 + I32. (say)

Let D0 = (B + A)−1D(B + A)−1. The independence of ψ̂ and β̃ implies that I31 =

−tr D0A
(1)Bias(ψ̂). The Stein identity is used to get that

I32 = −
∑

i

E[n2
iγ

2
i x

′
iyiD0(H

′
1Lz +

∑
j

njγjxjyj)(ψ̂ − ψ)]/σ2
e

= −
∑

i

E[niγix
′
iD0niγixi(ψ̂ − ψ)] −

∑
i

E[niγix
′
iD0(H

′
1Lz +

∑
j

njγjxjyj)
∂ψ̂

∂yi

]

=I321 + I322. (say)

Since A(1) = −∑
i n

2
iγ

2
i xix

′
i, it is easy to see that I321 = trD0A

(1)Bias(ψ̂). The Stein
identity is used again to rewrite I322 as

I322 = −
∑

i

niγiE[(z′LH1 +
∑

j

njγjx
′
jyj)D0xi

∂ψ̂

∂yi

]

= − σ2
e

∑
i

niγiE[tr H1D0xi
∂2ψ̂

∂z′∂yi

] − σ2
e

∑
i

niγi

∑
j

E[x′
jD0xi

∂2ψ̂

∂yi∂yj

].
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From Lemma 4.1 given below, it follows that

I322 =E[
2σ2

e

N∗σ̂2
e

]
∑

i

niγitr H1D0xinix
′
i(B + A0)

−1H ′
1L

− E[
2σ2

e

N∗σ̂2
e

]
∑

i

niγix
′
iD0xini

+ E[
2σ2

e

N∗σ̂2
e

]
∑

i

niγi

∑
j

E[x′
jD0xininjx

′
i(B + A0)

−1xj

=E[
2σ2

e

N∗σ̂2
e

]trD0

∑
i

n2
i γixix

′
i

{
(B + A0)

−1B − (I − (B + A0)
−1A0)

}
,

which is equal to zero. Hence,

I3 = 0.

For I4 = E[β̃
′
D(1)β̃

(1)
(ψ̂ − ψ)2]/σ2

e , from (4.1), it is written as

I4 = − E[β̃
′
D(1)(B + A)−1A(1)β̃(ψ̂ − ψ)2]/σ2

e

− E[β̃
′
D(1)(B + A)−1

∑
i

n2
i γ

2
i xiyi(ψ̂ − ψ)2]/σ2

e

=I41 + I42.

Let D1 = (B + A)−1D(1)(B + A)−1. The independence of ψ̂ and β̃ implies that I41 =

−tr D1A
(1)E[(ψ̂ − ψ)2]. Using the Stein identity, we have

I42 = −
∑

i

E[n2
i γ

2
i x

′
iyiD1(H

′
1Lz +

∑
j

njγjxjyj)(ψ̂ − ψ)2]/σ2
e

= −
∑

i

E[niγix
′
iD1niγixi(ψ̂ − ψ)2]

− 2
∑

i

E[niγix
′
iD1(H

′
1Lz +

∑
j

njγjxjyj)
∂ψ̂

∂yi

(ψ̂ − ψ)]

=I421 + I422.

It can be seen that I421 = trD1A
(1)E[(ψ̂ − ψ)2]. The Stein identity is used again to get

that

I422 = − 2
∑

i

niγiE[(z′LH1 +
∑

j

njγjx
′
jyj)D1xi

∂ψ̂

∂yi

(ψ̂ − ψ)]

= − 2σ2
e

∑
i

niγiE[trH1D1xi{ ∂2ψ̂

∂z′∂yi

(ψ̂ − ψ) +
∂ψ̂

∂yi

∂ψ̂

∂z′}]

− 2σ2
e

∑
i

niγi

∑
j

E[x′
jD1xi{ ∂2ψ̂

∂yi∂yj

(ψ̂ − ψ) +
∂ψ̂

∂yi

∂ψ̂

∂yj

}].
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Hence from Lemma 4.2,

I4 = o(k−1). (4.2)

For I5 = E[β̃
(1)′

Dβ̃
(1)

(ψ̂ − ψ)2]/σ2
e , from (4.1), I5 is rewritten as

I5 = − E[β̃
′
A(1)(B + A)−1Dβ̃

(1)
(ψ̂ − ψ)2]/σ2

e

+ E[
∑

i

n2
i γ

2
i x

′
iyiD0A

(1)β̃(ψ̂ − ψ)2]/σ2
e

+ E[
∑

i

n2
i γ

2
i x

′
iyiD0

∑
j

n2
jγ

2
j xjyj(ψ̂ − ψ)2]/σ2

e

= I51 + I52 + I53.

From the same arguments as in the evaluation of I4, it follows that I51 = o(k−1). For I52,
let D5 = D0A

(1)(B + A)−1 = (B + A)−1D(B + A)−1A(1)(B + A)−1. Similar to I42,

I52 =
∑

i

E[n2
iγ

2
i x

′
iyiD5(H

′
1Lz +

∑
j

njγjxjyj)(ψ̂ − ψ)2]/σ2
e

=
∑

i

E[niγix
′
iD5niγixi(ψ̂ − ψ)2]

+ 2
∑

i

E[niγix
′
iD5(H

′
1Lz +

∑
j

njγjxjyj)
∂ψ̂

∂yi

(ψ̂ − ψ)]

= − tr D5A
(1)E[(ψ̂ − ψ)2]

+ 2σ2
e

∑
i

niγiE[tr H1D5xi{ ∂2ψ̂

∂z′∂yi

(ψ̂ − ψ) +
∂ψ̂

∂yi

∂ψ̂

∂z′}]

+ 2σ2
e

∑
i

niγi

∑
j

E[x′
jD5xi{ ∂2ψ̂

∂yi∂yj

(ψ̂ − ψ) +
∂ψ̂

∂yi

∂ψ̂

∂yj

}],

which implies that I52 = −tr D5A
(1)E[(ψ̂−ψ)2]+o(k−1) = −tr D0A

(1)(B+A)−1A(1)E[(ψ̂−
ψ)2] + o(k−1). Finally, I53 is evaluated as

I53 =
∑

i

niγix
′
iD0n

2
i γ

2
i xiE[(ψ̂ − ψ)2] + 2

∑
i

niγiE[x′
iD0

∑
j

n2
jγ

2
j xjyj

∂ψ̂

∂yi

(ψ̂ − ψ)]

=tr D0

∑
i

n3
i γ

3
i xix

′
iE[(ψ̂ − ψ)2]

+ 2σ2
e

∑
i

∑
j

niγinjγjE[x′
iD0xj{ ∂

2ψ̂

∂yiyj

(ψ̂ − ψ) +
∂ψ̂

∂yi

∂ψ̂

∂yj

]

=
1

2
trD0A

(2)E[(ψ̂ − ψ)2] + o(k−1).

Hence,

I5 = −trD0A
(1)(B + A)−1A(1)E[(ψ̂ − ψ)2] +

1

2
trD0A

(2)E[(ψ̂ − ψ)2] + o(k−1).

12



For I6 = E[β̃
′
Dβ̃

(2)
(ψ̂ − ψ)2]/σ2

e , we need to derive β̃
(2)

, which is written as

β̃
(2)

=(B + A)−1{A(1)(B + A)−1A(1) −A(2)}β̃ − (B + A)−1A(1)β̃
(1)

+ (B + A)−1A(1)(B + A)−1
∑

i

n2
i γ

2
i xiyi + 2(B + A)−1

∑
i

n3
i γ

3
i xiyi.

Since
∑

i n
2
i γ

2
i xiyi = −(B + A)β̃

(1) −A(1)β̃, β̃
(2)

is rewritten as

β̃
(2)

= −(B + A)−1A(2)β̃ − 2(B + A)−1A(1)β̃
(1)

+ 2(B + A)−1
∑

i

n3
i γ

3
i xiyi,

which is used to express I6 as

I6 = −E[β̃
′
D(B + A)−1A(2)β̃(ψ̂ − ψ)2]/σ2

e

− 2E[β̃
′
D(B + A)−1A(1)β̃

(1)
(ψ̂ − ψ)2]/σ2

e

+ 2E[β̃
′
D(B + A)−1

∑
i

n3
iγ

3
i xiyi(ψ̂ − ψ)2]/σ2

e

=I61 + I62 + I63.

It is easy to see that I61 = −tr D0A
(2)E[(ψ̂−ψ)2]. Also from (4.2), I62 = o(k−1). Similar

to I52,

I63 =2trD0

∑
i

n3
i γ

3
i xix

′
iE[(ψ̂ − ψ)2] + o(k−1)

=trD0A
(2)E[(ψ̂ − ψ)2] + o(k−1),

which implies that

I6 = o(k−1).

Combining the evaluations I1-I6 and recalling ψ̂ = ψ̂U , we obtain the approximation
as

E[G(ψ̂0)] =q + tr (B + A)−1D(1)Bias(ψ̂U)

+ E[(ψ̂U − ψ)2]
{1

2
tr (B + A)−1D(2) +

1

2
trD0A

(2)

− trD0A
(1)(B + A)−1A(1)

}
+ op(k

−1)

Finally, we shall evaluate the bias Bias(ψ̂) and E[(ψ̂−ψ)2] for ψ̂ = ψ̂U , which is written

by ψ̂ = σ̂2U
v /σ̂2U

e for unbiased estimators σ̂2U
v and σ̂2U

e . By the Taylor approximation, it

is observed that (ψ̂ − ψ)/ψ = Tv − Te + T 2
e − TvTe + op(k

−1), where Tv = (σ̂2U
v − σ2

v)/σ
2
v

13



and Te = (σ̂2U
e − σ2

e)/σ
2
e . From the unbiasedness of σ̂2U

v and σ̂2U
e , it is seen that E[Tv] = 0

and E[Te] = 0. Also,

E[ψ̂ − ψ] =ψE[T 2
e − TvTe] + o(k−1),

E[(ψ̂ − ψ)2] =ψ2E
[
T 2

v − 2TvTe + T 2
e

]
+ o(k−1).

From Battese and Fuller (1981) and Prasad and Rao (1891), it follows that

E[T 2
e ] =

1

σ4
e

V ar(σ̂2U
e ) =

2

N − k − p+ λ
,

E[T 2
v ] =

1

σ4
v

V ar(σ̂2U
v ) =

2

N2∗

[
(k − λ)(N − p)

(N − k − p + λ)ψ2
+ 2

N∗
ψ

+N∗∗

]
,

E[TvTe] =
1

σ2
eσ

2
v

Cov(σ̂2U
e , σ̂2U

v ) = − 2(k − λ)

N∗(N − k − p + λ)ψ
,

where N∗∗ = tr [(I − X(X ′X)−1X ′)ZZ ′]2. Noting that ψ2N∗∗/N∗ = ψ2
∑k

i=1 n
2
i/N +

o(k−1) = (
∑k

i=1 γ
−2
i − k − 2Nψ)/N + o(k−1), we get the approximations as E[T 2

e ] =
2/(N − k) + o(k−1), E[TvTe] = −2k/{N(N − k)ψ} + o(k−1) and

E[T 2
v ] =

2

N2ψ2

[
k2

N − k
+

k∑
i=1

γ−2
i

]
+ o(k−1).

Thus, we obtain that

E[ψ̂ − ψ] =
2

N(N − k)

∑
i

γ−1
i + o(k−1),

E[(ψ̂ − ψ)2] =
2

N2

{∑
i

γ−2
i +

1

N − k
(
∑

i

γ−1
i )2

}
+ o(k−1),

which are used to get the approximation as

G(ψ̂0) =q +
2

N(N − k)

∑
i

γ−1
i tr (B + A)−1D(1)

+
2

N2

{∑
i

γ−2
i +

1

N − k
(
∑

i

γ−1
i )2

}
×

{1

2
tr (B + A)−1D(2) +

1

2
trD0A

(2) − trD0A
(1)(B + A)−1A(1)

}
+ op(k

−1).

This is the expression given in Theorem 2.1.

To compete the proof, we show the following lemmas which have been used in the
above proof.
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Lemma 4.1 For ψ̂ = ψ̂U given in (2.3), the second partial derivatives of ψ̂ with respect
to z, yi are given by

∂2ψ̂

∂z∂z′ =
2

N∗σ̂2
e

LH1(B
+ − (B + A0)

−1)H ′
1L,

∂2ψ̂

∂z∂yi

= − 2

N∗σ̂2
e

LH1(B + A0)
−1nixi,

∂2ψ̂

∂y2
i

=
2

N∗σ̂2
e

{ni − n2
i x

′
i(B + A0)

−1xi},

∂2ψ̂

∂yi∂yj

= − 2

N∗σ̂2
e

ninjx
′
i(B + A0)

−1xj , (i �= j).

Proof. Note that ψ̂ = N−1
∗ {S/σ̂2

e − (N − p)}, and S is expressed as

S = S1 + S2 + (β̂1 − β̂2)
′(A0 − A0(B + A0)

−1A0)(β̂1 − β̂2),

where A0 = A(0), β̂2 = A−1
0

∑k
i=1 nixiyi and S2 =

∑k
i=1 ni(yi − x′

iβ̂2)
2. Let S(1) =∑k

i=1

∑ni

j=1{(yij −yi)− (xij −xi)
′β̂0}2 and S(2) =

∑k
i=1 ni(yi−x′

iβ̂0)
2. Then, S is written

as S = S(1) + S(2). Since β̂0 = β̂1 − (B + A0)
−1A0(β̂1 − β̂2), S(1) is written as

S(1) = S1 + (β̂1 − β̂2)
′A0(B + A0)

−1B(B + A0)
−1A0(β̂1 − β̂2).

On the other hand, since β̂0 = β̂2 + (B + A0)
−1B(β̂1 − β̂2), S(2) is written as

S(2) = S2 + (β̂1 − β̂2)
′B(B + A0)

−1A0(B + A0)
−1B(β̂1 − β̂2),

so that
S = S1 + S2 + (β̂1 − β̂2)

′R(β̂1 − β̂2),

where

R = A0(B + A0)
−1B(B + A0)

−1A0 + B(B + A0)
−1A0(B + A0)

−1B.

Note that

R = B(B+ − (B + A0)
−1)B = B(B + A0)

−1A0 = A0(A
−1
0 − (B + A0)

−1)A0.

Using these equations, we can rewrite S as

S =S1 + S2 + β̂
′
1(B −B(B + A0)

−1B)β̂1

− 2β̂
′
1B(B + A0)

−1A0β̂2 + β̂
′
2(A0 − A0(B + A0)

−1A0)β̂2

=S1 + S2 + z′LH1(B
+ − (B + A0)

−1)H ′
1Lz

− 2z′LH 1(B + A0)
−1

∑
i

nixiyi +
∑

i

nix
′
iyi(A

−1
0 − (B + A0)

−1)
∑

i

nixiyi.
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Note that S1, β̂1, y1, . . . , yk are mutually independent. The first partial derivatives of ψ̂
with respect to z, yi are given by

∂ψ̂

∂z
=

1

N∗σ̂2
e

∂S

∂z

=
2

N∗σ̂2
e

{
LH1(B

+ − (B + A0)
−1)H1Lz − LH1(B + A0)

−1
∑

i

nixiyi

}
,

∂ψ̂

∂yi

=
2

N∗σ̂2
e

{
ni(yi − x′

iβ̂2) − nix
′
i(I − (B + A0)

−1A0)(β̂1 − β̂2)
}
,

so that we can derive the second partial derivatives given in Lemma 4.1.

The following lemmas can be shown directly from Lemma 4.1.

Lemma 4.2 Assume that B = O(k) and A(ψ) = O(k) as k → ∞. Then, as k → ∞,

∂2ψ̂

∂z∂z′ = Op(1),
∂2ψ̂

∂z∂yi

= Op(k
−1),

∂2ψ̂

∂y2
i

= Op(k
−1),

∂2ψ̂

∂yi∂yj

= Op(k
−2), (i �= j).

Lemma 4.3 Assume that B = O(k) and A(ψ) = O(k) as k → ∞. Then, as k → ∞,

E[
∂ψ̂

∂z

∂ψ̂

∂z′ ] = O(k−1), E[
∂ψ̂

∂z

∂ψ̂

∂yi

] = O(k−2),

E[(
∂ψ̂

∂yi

)2] = O(k−2), E[
∂ψ̂

∂yi

∂ψ̂

∂yj

] = O(k−3), (i �= j).

5 Concluding Remarks

In the problem of testing the linear hypothesis on regression coefficients in the nested
error regression model, the standard F -test based on the OLS method is known to have
the serious shortcoming of having inflated type I error rates (sizes) due to the intraclass
correlation structure. To fix this problem, in this paper, we have obtained the exact test
FEXT and the asymptotically corrected GLS test FACG. Through some simulation studies,
we have shown that the two tests FEXT and FACG have sizes close to nominal levels and
that the size of FACG is slightly better than Rao et al .’s GLS test FRSY . Also it is shown
that FACG is more powerful than FEXT . Thus we can recommend the test FACG from the
numerical results.

Acknowledgments. The research of the first author was supported in part by a
grant from the Ministry of Education, Japan, No. 16500172 and in part by a grant from
the 21st Century COE Program at Faculty of Economics, University of Tokyo.

16



References

[1] Fuller, W.A., and Battese, G.E. (1973). Transformations for estimation of linear
models with nested-error structures. Journal of the American Statistical Association,
68, 626-632.

[2] Kackar, R.N., and Harville, D.A. (1984). Approximations for standard errors of esti-
mators of fixed and random effects in mixed linear models. Journal of the American
Statistical Association, 79, 853-862.

[3] Kubokawa, T. and Srivastava, M.S. (2007). Akaike information criterion for select-
ing variables in a nested error regression model. Discussion Paper Series, CIRJE-F-
525, Faculty of Economics, University of Tokyo.

[4] Prasad, N.G.N. and Rao, J.N.K. (1990). The estimation of the mean squared error of
small-area estimators. Journal of the American Statistical Association, 85, 163-171.

[5] Rao, J.N.K, Sutradhar, B.C., and Yue, K. (1993). Generalized least squares F
test in regression analysis with two-stage cluster samples. Journal of the American
Statistical Association, 88, 1388-1391.

[6] Rao, J.N.K, and Wang, S.-G. (1995). On the power of F tests under regression
models with nested error structure. Journal of Multivariate Analysis, 53, 237-246

[7] Wu, C.F.J, Holt, D., and Holmes, D.J. (1988). The effect of two-stage sampling on
the F statistic. Journal of the American Statistical Association, 83, 150-159.

17


