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INTEGRAL INEQUALITY FOR MINIMAXITY IN THE

STEIN PROBLEM

Tatsuya Kubokawa*

In the estimation of a multivariate normal mean, it is shown that the problem
of deriving shrinkage estimators improving on the maximum likelihood estimator can
be reduced to that of solving an integral inequality. The integral inequality not only
provides a more general condition than a conventional differential inequality studied
in the literature, but also handles non-differentiable or discontinuous estimators. The
paper also gives general conditions on prior distributions such that the resulting
generalized Bayes estimators are minimax. Finally, a simple proof for constructing
a class of estimators improving on the James-Stein estimator is given based on the
integral expression of the risk.

Key words and phrases : Decision theory, differential inequality, estimation, inadmis-
sibility, integral inequality, James-Stein estimator, linear regression model, normal
distribution, regression coefficients, risk function, uniform domination.

1. Introduction

One of the most attractive topics in theoretical statistics is the Stein prob-
lem in the estimation of a mean vector of a multivariate normal distribution.
A considerable amount of studies have been developed since Stein (1956) and
James and Stein (1961) discovered the inadmissibility of the maximum likeli-
hood estimator (MLE) when the dimension of the mean vector is larger than
or equal to three. This phenomenon of the admissibility and the inadmissibility
has been studied by Brown (1971), Johnstone (1984) and Eaton (2004) in the
relation with the recurrence of a Markov chain and a diffusion process. Since
the MLE is a minimax estimator with a constant risk, the problem of finding
estimators improving on the MLE is equivalent to that of deriving minimax esti-
mators, and Stein (1973, 81) showed that this problem can be reduced to solving
a differential inequality. A powerful tool used there is the so-called Stein identity,
namely the integration by parts in a normal distribution. The identity has been
extended to discrete and continuous exponential families by Hudson (1978) as
well as to the Wishart distribution by Stein (1977) and Haff (1979). Those iden-
tities provided differential inequalities for finding improved estimators in various
estimation problems. Differential inequalities are quite useful, but require abso-
lute continuity of shrinkage functions. Instead of the differential inequality, in
this paper, we propose an integral inequality for deriving the minimax estima-
tors, which can not only provide more general conditions for the minimaxity, but
also eliminate the continuity condition for the shrinkage function. Also it can be
used to obtain general conditions on prior distributions such that the resulting
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generalized Bayes estimators are minimax.

To explain the outlines of the paper, we here describe the model and the
estimation problem. Let X = (X1, . . . , Xp)t and S be mutually independent
random variables distributed as

X ∼ Np(θ, σ2Ip) and S/σ2 ∼ χ2
n,

where Np(θ, σ2Ip) denotes a p-variate normal distribution with mean θ = (θ1, . . . , θp)t

and covariance matrix σ2Ip for the p × p identity matrix Ip, and χ2
n denotes a

chi-square distribution with n degrees of freedom. This is a canonical form of a
linear regression model. The problem of estimating the mean vector θ by θ̂ is
considered relative to the quadratic loss

L(ω, θ̂) = ‖θ̂ − θ‖2/σ2 = (θ̂ − θ)t(θ̂ − θ)/σ2,

for ω = (θ, σ2), unknown parameters. Estimator θ̂ is evaluated in terms of the
risk function R(ω, θ̂) = Eω[L(ω, θ̂)] where Eω[·] is the expectation with respect
to X and S. It is noted that (X, S) is the minimal sufficient statistic for ω, so
that the mean vector θ is estimated based on (X , S).

The maximum likelihood estimator of θ is θ̂0 = X . Since it is minimax with
the constant risk R(ω, θ̂0) = p, improving on θ̂0 is equivalent to deriving minimax
estimators but θ̂0. To find a minimax estimator, Stein (1956) considered a class
of the estimators

θ̂ψ = (1 − ψ(W )/W )X , for W = ‖X‖2/S,

where ψ(w) is a nonnegative function. In fact, out of the class, James and Stein
(1961) found the estimator

θ̂
JS

= (1 − a0/W )X , for a0 = (p− 2)/(n+ 2),(1.1)

and established that if p ≥ 3, then the James-Stein estimator θ̂
JS

dominates θ̂0

for p ≥ 3, namely, R(ω, θ̂
JS

) ≤ R(ω, θ̂0) for any ω and the strict inequality holds

for some ω. Since θ̂0 is minimax, the James-Stein estimator θ̂
JS

is minimax
for p ≥ 3. To characterize minimax shrinkage estimators, Efron and Morris
(1976) used the Stein identity and the chi-square identity to derive an unbiased
estimator R̂(θ̂ψ) of the risk function R(ω, θ̂ψ), namely R(ω, θ̂ψ) = Eω[R̂(θ̂ψ)],
where

R̂(θ̂ψ) = p+ {(n+ 2)ψ(W )− 2(p − 2)}ψ(W )/W − 4ψ′(W ) − 4ψ(W )ψ′(W ).

This implies that the estimator θ̂ψ is minimax if the function ψ(w) satisfies the
differential inequality:

D(w) ≡ (n+ 2) {ψ(w)− 2a0}ψ(w)/w− 4ψ′(w)− 4ψ(w)ψ′(w) ≤ 0.(1.2)
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Such an approach to finding improved estimators is generally called unbiased-
estimator-of-risk method. Some solutions of the differential inequality (1.2) have
been provided by Baranchick (1970), Alam (1973) and Efron and Morris (1976).

In this paper, we obtain an expression of the risk function R(ω, θ̂ψ) based on
an integral and derive an integral inequality for improvement on θ̂0. As derived in
Section 2., it is shown that θ̂ψ is minimax if ψ(w) satisfies the integral inequality

I(w) ≡ ψ2(w) + 2ψ(w)− (n+ p)
∫ 1

0
zn/2ψ(w/z)dz ≤ 0,

which does not assume the continuity nor the differentiability of ψ(w). Section
2. presents some examples of non-differentiable or discontinuous minimax es-
timators. Several sufficient conditions for the integral inequality I(w) ≤ 0 are
given, and the relation between the integral and differential inequalities is clari-
fied, namely, the differential inequality D(w) ≤ 0 implies the integral inequality
I(w) ≤ 0. In particular, the integral inequality gives a useful condition for the
minimaxity when wcψ(w) is non-decreasing in w for c ≥ 0.

In Section 3., we investigate the minimaxity of the generalized Bayes esti-
mators in similar prior distributions as in Wells and Zhou (2008), who derived
the general and nice conditions on the priors. Their interesting point is that for
the shrinkage function ψπ(w) of the generalized Bayes estimator, their arguments
can handle the case that ψπ(w) is not increasing, but wcψπ(w) is increasing for
some c > 0. In this paper, we reexamine the minimaxity of the generalized Bayes
estimators under the similar setup as in Wells and Zhou (2008), and obtain more
general and slightly better conditions.

In Section 4., we give another simple proof for constructing a class of equiv-
ariant estimators θ̂ψ improving on the James-Stein estimator. This class was
given by Kubokawa (1994) without a proof, because the proof is complicated.
Using the integral expression given in Section 2., we can prove it more simply,

2. Integral Inequality for the Minimaxity

2.1. Derivation of the integral inequality
We shall derive a condition based on the integral inequality under which the

shrinkage estimator θ̂ψ is minimax in terms of the risk R(ω, θ̂ψ). To this end,
define I(w) by

I(w) = ψ2(w) + 2ψ(w)− (n+ p)
∫ 1

0
zn/2ψ(w/z)dz.(2.1)

Then the risk function can be expressed based on the function I(w).

Theorem 1. Assume that ψ(w) is a nonnegative and bounded function and
p ≥ 3. Then the risk function of the estimator θ̂ψ is expressed as

R(ω, θ̂ψ) = p+E

[
S

σ2W
I(W )

]
.(2.2)
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Proof. The risk function of the estimator θ̂ψ is written as

R(ω, θ̂ψ) = p− 2E
[
ψ(W )
σ2W

Xt(X − θ)
]

+E

[
S

σ2

ψ2(W )
W

]
.(2.3)

To evaluate the second term in the right hand side of this equality, we use the
Stein identity given by Stein (1973) and the chi-square identity given by Efron
and Morris (1976), which are, respectively, given by

E [(Xi − θi)h(X)] =σ2E

[
∂h(X)
∂Xi

]
,(2.4)

E[ϕ(S)S] =σ2E[nϕ(S) + 2Sϕ′(S)],(2.5)

where h(·) and ϕ(·) are absolutely continuous functions and all the expectations
are assumed to be finite.

Define a function Ψ(W ) by

Ψ(W ) =
1

2W

∫ 1

0

zn/2ψ(W/z)dz =
Wn/2

2

∫ ∞

W

ψ(t)
tn/2+2

dt,

where the transformation t = W/z is made at the second equation. Using the
chi-square identity (2.5), we obtain the equations given by

ES|� [Ψ(W )S] = σ2ES|�
[
nΨ(W ) + 2S

∂

∂S
Ψ(W )

]
= σ2ES|�

[
ψ(W )
W

]
,

where ES|� [·] denotes the conditional expectation with respect to S given X ,
and all the expectations are finite since ψ(w) is bounded. It is interesting to note
that Ψ(W ) is a solution of the differential equation nϕ(S)+2Sϕ′(S) = ψ(W )/W
with respect to ϕ(S) as a function of S.

Using the equation in the previous display, we can rewrite the cross product
term in (2.3) as

E

[
ψ(W )
W

X t(X − θ)
σ2

]
=E

[
S

σ2
Ψ(W )

X t(X − θ)
σ2

]
=E

[
S

σ2

Xt(X − θ)
σ2

Wn/2

2

∫ ∞

W

ψ(t)
tn/2+2

dt

]
.

Then, the Stein identity (2.4) is applied to this expectation and we observe that

E

[
S

σ2
Ψ(W )

Xt(X − θ)
σ2

]
= E

[
S

σ2

{
pΨ(W ) + 2WΨ′(W )

}]
= E

[
S

σ2

{
pΨ(W ) +

n

2
Wn/2

∫ ∞

W

ψ(t)
tn/2+2

dt−Wn/2+1 ψ(W )
Wn/2+2

}]
= E

[
S

σ2

{
(p+ n)Ψ(W ) − ψ(W )

W

}]
.(2.6)
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Substituting (2.6) into (2.3) and recalling the definition of Ψ(W ), we obtain the
expression (2.2) in Theorem 1.

The condition for the minimaxity of the estimator θ̂ψ can be directly provided
from Theorem 1.

Proposition 1. Assume that ψ(w) is a nonnegative and bounded function
and p ≥ 3. Then the estimator θ̂ψ is minimax if ψ(w) satisfies the integral
inequality

I(w) ≤ 0 for almost all w > 0,(2.7)

with respect to the Lebesgue measure.

An interesting point in Theorem 1 and Proposition 1 is that the continuity of
the function ψ(w) is not assumed. Since the function ψ(w) is differentiable for the
generalized Bayes estimators of θ, this result may not be important. However, a
class of minimax estimators can be clearly extended.

The function I(w) has several variants. For instance, from (2.1.) it is written
as

I(w) = ψ2(w) + 2ψ(w)− (n+ p)wn/2+1

∫ ∞

w

ψ(t)
tn/2+2

dt.(2.8)

It is also expressed as

I(w) = ψ2(w)− 2a0ψ(w)− (n+ p)
∫ 1

0
zn/2 {ψ(w/z)− ψ(w)}dz,

for a0 = (p − 2)/(n + 2). If ψ(w) is absolutely continuous, then it is further
rewritten as

I(w) = ψ2(w)− 2a0ψ(w)− 2
n+ p

n+ 2
w

∫ 1

0

zn/2−1ψ′(w/z)dz,(2.9)

since ∫ 1

0
zn/2−1ψ′(w/z)dz =

∫ 1

0

{
−z

n/2+1

w

}
d
dz
ψ(w/z)dz

= − 1
w
ψ(w) +

n+ 2
2w

∫ 1

0
zn/2ψ(w/z)dz,

where
∫ 1
0 z

n/2−1|ψ′(w/z)|dz is assumed to be finite.

2.2. Relations with the differential inequality
In the previous subsection, we have obtained the condition based on the

integral inequality (2.7) for the minimaxity of the shrinkage estimator θ̂ψ. We
here provide general sufficient conditions for the integral inequality and clarify
the relation between the integral inequality and the differential inequality (1.2)
for the minimaxity.
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Proposition 2. Assume that ψ(w) is a nonnegative and bounded function
and p ≥ 3. Then I(w) is expressed as

I(w) = (n+ p)
∫ 1

0
zn/2 {F (w) − F (w/z)} ψ(w/z)

F (w/z)
dz,(2.10)

where

F (w) =
ψ(w){ψ(w)+ 2}

wn/2+1
exp

{∫ w

1

n + p

t{ψ(t) + 2}dt
}

=ψ(w){ψ(w)+ 2} exp
{
n + 2

2

∫ w

1

2a0 − ψ(t)
t{ψ(t) + 2}dt

}
.(2.11)

If F (w) is nondecreasing for almost all w, then I(w) ≤ 0 for almost all w.

Proof. From (2.1), I(w) can be rewritten as

I(w) =F (w)
{
{ψ(w) + 2}ψ(w)

F (w)
− (n+ p)

∫ 1

0

zn/2
ψ(w/z)
F (w/z)

dz
}

+ (n+ p)
∫ 1

0

zn/2 {F (w) − F (w/z)} ψ(w/z)
F (w/z)

dz

=I1 + I2, (say)

so that it is sufficient to show that I1 = 0. Making the transformation t = w/z

and noting the definition of F (w), we observe that∫ 1

0
zn/2

ψ(w/z)
F (w/z)

dz =wn/2+1

∫ ∞

w

1
tn/2+2

ψ(t)
F (t)

dt

=wn/2+1

∫ ∞

w

1
t{ψ(t) + 2} exp

{
−

∫ t

1

n+ p

s{ψ(s) + 2}ds
}

dt,

which is equal to

−w
n/2+1

n+ p

∫ ∞

w

d
dt

exp
{
−

∫ t

1

n + p

s{ψ(s) + 2}ds
}

dt

= − wn/2+1

n + p

[
exp

{
−

∫ t

1

n+ p

s{ψ(s) + 2}ds
}

dt
]∞

t=w

.(2.12)

Since ψ(w) is bounded and nonnegative, it is noted that limt→∞
∫ t
1 [s{ψ(s) +

2}]−1ds = ∞. Hence, (2.12) is equal to

wn/2+1

n+ p
exp

{
−

∫ w

1

n + p

s{ψ(s) + 2}ds
}

=
ψ(w) + 2
n + p

ψ(w)
F (w)

,

which means that I1 = 0. We thus obtain the expression (2.10). The second
equality in (2.11) can be shown by noting that

n + 2
2

∫ w

1

2a0 − ψ(t)
t{ψ(t) + 2}dt =

∫ w

1

p− 2 − (n+ 2)(ψ(t) + 2 − 2)/2
t{ψ(t) + 2} dt

=
∫ w

1

n + p

t{ψ(t) + 2}dt− n+ 2
2

∫ w

1

1
t
dt.
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From this expression, it follows that I(w) ≤ 0 if F (w) is nondecreasing, and
Proposition 2 is proved.

We here assume that ψ(w) is absolutely continuous. Under this assump-
tion, the relationship between the differential inequality (1.2) and the integral
inequality (2.7) can be clarified.

Proposition 3. Assume that ψ(w) is a nonnegative, bounded and abso-
lutely continuous function and p ≥ 3. Then the function (2.1) is rewritten as

I(w) =
wn/2+1

2

∫ ∞

w

1
tn/2+1

D(t)dt,(2.13)

where D(w) is given by (1.2). For F (w) defined in (2.11), the derivative of F (w)
is expressed as

F ′(w) = − F (w)
2ψ(w){ψ(w)+ 2}D(w).(2.14)

If the inequality D(w) ≤ 0 is satisfied, then F (w) is nondecreasing, so that the
inequality I(w) ≤ 0 holds.

Proof. It is noted that

ψ2(w) + 2ψ(w) =
∫ 1

0

d
dz

{
zn/2+1

[
ψ2(w/z) + 2ψ(w/z)

]}
dz

=
∫ 1

0

zn/2

2
{
(n+ 2)

[
ψ2(w/z) + 2ψ(w/z)

]
− 4 [ψ(w/z) + 1]ψ′(w/z)w/z

}
dz.(2.15)

Combining (2.1) and (2.15) gives that

I(w) =
∫ 1

0

zn/2

2
{
(n+ 2)ψ2(w/z)− 2(p− 2)ψ(w/z)

− 4[ψ(w/z) + 1]ψ ′(w/z)w/z
}
dz,

which is equal to (2.13). The expression (2.14) of F ′(w) can be derived by
differentiating logF (w) with respect to w where the function F (w) is given by
the r.h.s. of the second equality in (2.11). Hence, Proposition 3 is proved.

When ψ(w) is an absolutely continuous function satisfying that 0 < ψ(w) <
2a0, Efron and Morris (1976) showed that D(w) ≤ 0 if and only if M(w) is
nondecreasing, where

M(w) = wp/2−1ψ(w)/{2a0 − ψ(w)}1+a0.

Combining this result and Proposition 3, we can clarify the relations between the
sufficient conditions for the minimaxity illuatrated below, where ψ(w) ↑ means
that ψ(w) is nondecreasing.
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ψ(w) ↑ =⇒ D(w) ≤ 0 =⇒ F (w) ↑ =⇒ I(w) ≤ 0
	 ⇓

M(w) ↑ minimax

We conclude this section with notes on the differential inequality. Assuming
that ψ(w) is absolutely continuous, we can apply the chi-square identity (2.5) to
the expectation (2.2) with the expression (2.8) and get

R(ω, θ̂ψ) − p =E
[

S

σ2W
I(W )

]
=E

[
n

W
I(W ) + 2S

(
−‖X‖2

S2

)
d

dW
{
W−1I(W )

}]
= E [D(W )] ,

which is the expression derived by Efron and Morris (1976). This means that
p + D(W ) is an unbiased estimator of the risk function R(ω, θ̂ψ). Remark 4
and Example 3 in Efron and Morris (1976) treated the discontinuous case for
the function ψ(w) and stated that the condition (1.2) can be extended to the
discontinuous case by using a delta function at points of discontinuity of ψ(w).
Theorem 1 and Proposition 1 provide the general conditions which can cover the
discontinuous case.

2.3. Useful conditions for the minimaxity and simple examples
We now provide useful conditions for the minimaxity which can be derived

from the integral inequality I(w) ≤ 0. One of them can be obtained under the
assumption that wcψ(w) is nondecreasing in w for a nonnegative constant c.
Then, it is observed that∫ 1

0
zn/2ψ(w/z)dz =

∫ 1

0
zn/2(z/w)c{(w/z)cψ(w/z)}dz

≥
∫ 1

0
zn/2(z/w)c{wcψ(w)}dz

=
∫ 1

0
zn/2+cdzψ(w) =

2
n+ 2 + 2c

ψ(w),

since (w/z)cψ(w/z) ≥ wcψ(w) for 0 < z < 1. From (2.1), we have

I(w) ≤ψ2(w) + 2ψ(w)− 2
n + p

n+ 2 + 2c
ψ(w)

=ψ2(w) − 2
p− 2 − 2c
n+ 2 + 2c

ψ(w),

which implies the following proposition.

Proposition 4. Assume that for p ≥ 3 and a constant c ≥ 0, the function
ψ(w) satisfies the conditions for any w > 0:

(a) wcψ(w) is nondecreasing in w,
(b) 0 ≤ ψ(w) ≤ 2(p − 2 − 2c)/(n+ 2 + 2c).

Then, the estimator θ̂ψ is minimax.
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This is a variant of Alam (1973) for known variance case and very useful for
checking the minimaxity of the generalized Bayes estimators in the next section.
Wells and Zhou (2008) derived another variant where their condition (b) can be
written as

(WZ-b) 0 ≤ ψ(w) ≤ 2(p− 2− 2c)/(n+ 2 + 4c),
from Lemma 4.1 of Wells and Zhou (2008). This shows that our condition (b) is
slightly better than (WZ-b) for c > 0. When c = 0, the conditions (a) and (b)
correspond to those of Baranchik (1970).

Example 1 (Discontinuous case) Let us partition the positive real line into
k intervals as r0 = 0 < r1 < · · · < rk−1 < rk = ∞. For a nondecreasing function
d(r), consider a step function of the form

ψd(w) =
k−1∑
i=0

d(ri)I(ri ≤ w < ri+1),

where I(ri ≤ w < ri+1) is the indicator function such that I(ri ≤ w < ri+1) = 1
on the interval [ri, ri+1) and I(ri ≤ w < ri+1) = 0 otherwise. As examples of
d(r), we can consider the two functions

d1(r) = min{r, a0},

d2(r) =a0 − 2
n+ 2

[∫ 1

0

(1 + r)(p+n)/2

(1 + rz)(p+n)/2+1
zp/2−2dz

]−1

,

for a0 = (p−2)/(n+2). For d2(r), ψd2(w) is identical to the function ψ0(w) given
in (4.1), and the estimator with the discontinuous function ψd2(w) was treated in
Kubokawa (1994) in the process of deriving the Brewster-Zidek type estimator.
Since ψdi(w) satisfies the conditions (a) and (b) of Proposition 4 for c = 0, the
corresponding discontinuous estimators are minimax.

The integral inequality can provide another simple sufficient condition for
the minimaxity described below.

Proposition 5. Assume that the function ψ(w) is essentially bounded. De-
fine the essential infimum of ψ(w) on the set {x|w < x} by ess infx>wψ(x). If
ψ(w) satisfies the inequality

I∗(w) = ψ2(w) + 2ψ(w)− 2(1 + a0) ess infx>wψ(x) ≤ 0,(2.16)

then the estimator θ̂ψ is minimax.

Example 2 (Partly decreasing case) Let us consider a non-differentiable func-
tion of the form

ψ(w) =

⎧⎪⎨⎪⎩
w if w ≤ b,

−w + 2b if b < w ≤ 2b− a0,

a0 if 2b− a0 < w,
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for a positive constant b(≥ a0). The function ψ(w) is partly decreasing as illus-
trated in the following figure:

�

�
�

�
�

�
�

�
��

�

�
�

�

0

ψ(w)

w

a0

a0 b 2b− a0

In the case of w ≤ a0, the function I∗(w) given by (2.16) is written by

I∗(w) = ψ2(w) + 2ψ(w)− 2(1 + a0)ψ(w) = ψ2(w) − 2a0ψ(w),

which is not positive. It is also seen that I∗(w) = −a2
0 < 0 for w > 2b − a0. In

the case of a0 < w ≤ 2b− a0, it is noted that a0 ≤ ψ(w) ≤ b, so that

I∗(w) = ψ2(w) + 2ψ(w)− 2(1 + a0)a0 ≤ b2 + 2b− 2(1 + a0)a0,

which is not positive if b satisfies the inequality

0 < b ≤ −1 + (1 + a0)
√

1 + a2
0/(1 + a0)2.

Hence, the estimator θ̂ψ is minimax under this condition on b.

3. Minimaxity of the Generalized Bayes Estimators

We now derive conditions for minimaxity of the generalized Bayes estimators.
Wells and Zhou (2008), hereafter abbreviated by W&Z, recently developed nice
results for the minimaxity, and we use their arguments and Proposition 4 to
obtain slightly improved conditions for the minimaxity.

For the model and the prior assumption, a similar setup as in W&Z is used
here where their notation m is n in ours notation: The model is expressed as
X |(θ, η) ∼ Np(θ, η−2Ip) and S|η ∼ Sn/2−1ηn exp{−Sη2}, and the prior distri-
bution π(θ, η) is given by

θ|(ν, η) ∼ Np(0, νη−2Ip), ν ∼ h(ν)I(ν ≥ ν0), η ∼ η−K,

where I(ν ≥ ν0) is the indicator function for a nonnegative and known constant
ν0. It is assumed that K and h(ν) satisfy the following conditions:

(C1) K > 0 and A ≡ −K + (p+ n + 3)/2 > 1,
(C2)

∫ λ0

0 λp/2−2h((1 − λ)/λ)dλ <∞ for λ = 1/(1 + ν) and λ0 = 1/(1 + ν0),
(C3) limλ→0 λ

p/2−1h((1 − λ)/λ) = limν→∞ h(ν)/(1 + ν)p/2−1 = 0, and
(C4) h(ν) is differentiable.
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Then the generalized Bayes estimator of θ is given by

θ̂
GB

π (X, S) = (1 − ψπ(W )/W )X,

where W = ‖X‖2/S and

ψπ(w) =w

∫ λ0

0 λp/2−1(1 + λW )−Ah((1 − λ)/λ)dλ∫ λ0

0 λp/2−2(1 + λW )−Ah((1 − λ)/λ)dλ

=w

∫ λ0

0 λα+1(1 + λW )−AH(λ)dλ∫ λ0

0 λα(1 + λW )−AH(λ)dλ
,

for α = p/2 − 2 and H(λ) = h((1 − λ)/λ).

To derive the conditions for the minimaxity of θ̂
GB

π (X , S), we prepares two
lemmas which were implicitly given in W&Z. Let

C(w) =

∫ λ0

0 λα+2(1 + λw)−AH ′(λ)dλ∫ λ0

0 λα+1(1 + λw)−AH(λ)dλ
−

∫ λ0

0 λα+1(1 + λw)−AH ′(λ)dλ∫ λ0

0 λα(1 + λw)−AH(λ)dλ
.(3.1)

Then we can get an inequality used for showing the monotonicity of ψπ(w).

Lemma 1. Assume the conditions (C1)-(C4). For a nonnegative constant
c, the following inequality holds:

d
dw

{wcψπ(w)} ≥ wc−1ψπ(w) {c−C(w)} .(3.2)

Proof. Differentiating wcψπ(w) with respect to w gives that

d
dw

{wcψπ(w)} =wc−1ψπ(w)
{
c+ 1 −Aw

∫ λ0

0 λα+2(1 + λw)−A−1H(λ)dλ∫ λ0

0 λα+1(1 + λw)−AH(λ)dλ

+ Aw

∫ λ0

0 λα+1(1 + λw)−A−1H(λ)dλ∫ λ0

0 λα(1 + λw)−AH(λ)dλ

}
.

By the integration by part, it is observed that

Aw

∫ λ0

0

λα+2(1 + λw)−A−1H(λ)dλ = − [
λα+2(1 + λw)−AH(λ)

]λ0

λ=0

+ (α+ 2)
∫ λ0

0
λα+1(1 + λw)−AH(λ)dλ+

∫ λ0

0
λα+2(1 + λw)−AH ′(λ)dλ.(3.3)

We can get a similar equality about Aw
∫ λ0

0 λα+1(1 + λw)−A−1H(λ)dλ. Using
these equalities and the condition (C3), we can get the inequality (3.2).

Let

D(w) =
∫ λ0

0
λα+1(1 + λw)−A+1H ′(λ)dλ/

∫ λ0

0
λα(1 + λw)−A+1H(λ)dλ.(3.4)

Then we can get an inequality about the bound of ψπ(w).
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Lemma 2. Assume the conditions (C1)-(C4). Then, the following inequal-
ity holds:

ψπ(w) ≤ p/2 − 1 +D(w)
A− p/2 −D(w)

.(3.5)

Proof. It is observed that

ψπ(w) =
w

∫ λ0

0 λα+1(1 + λw)−AH(λ)dλ/
∫ λ0

0 λα(1 + λw)−A+1H(λ)dλ

1 − w
∫ λ0

0 λα+1(1 + λw)−AH(λ)dλ/
∫ λ0

0 λα(1 + λw)−A+1H(λ)dλ
.

(3.6)

Using the similar equality to (3.3) gives that

w

∫ λ0

0 λα+1(1 + λw)−AH(λ)dλ∫ λ0

0 λα(1 + λw)−A+1H(λ)dλ
= − 1

A− 1
λα+1

0 (1 + λ0w)−A+1H(λ0)∫ λ0

0 λα(1 + λw)−A+1H(λ)dλ

+
α + 1
A− 1

+
1

A− 1
D(w)

≤α+ 1
A− 1

+
1

A− 1
D(w).

Substituting this into (3.6), we get

ψπ(w) ≤ α+ 1 +D(w)
A− 1 − (α− 1) −D(w)

,

which gives the inequality (3.5).

Using Lemmas 1, 2 and Proposition 4, we can obtain the conditions on
h(·) for the minimaxity of the generalized Bayes estimator θ̂

GB

π . Following the
notations as in W&Z, let

g(ν) = −(1 + ν)h′(ν)/h(ν), for ν = (1 − λ)/λ,(3.7)

where ν > ν0 for ν0 = (1 − λ0)/λ0. Since λH ′(λ)/H (λ) = −(1 + ν)h′(ν)/h(ν),
the functions C(w) and D(w) are rewritted based on ν as

C(w) =

∫ ∞
ν0

(1 + ν)−α−3[1 +w/(1 + ν)]−Ag(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3[1 +w/(1 + ν)]−Ah(ν)dν

−
∫ ∞
ν0

(1 + ν)−α−2[1 + w/(1 + ν)]−Ag(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−2[1 + w/(1 + ν)]−Ah(ν)dν
,

D(w) =

∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−A+1g(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−A+1h(ν)dν
.

Let
c0 = sup

w
C(w) and d0 = sup

w
D(w).
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From Lemma 1, wc0ψπ(w) is nondecreasing in w for c = c0. From Proposition
4, it is seen that the generalized Bayes estimator is minimax if 0 ≤ ψπ(w) ≤
2(p− 2 − 2c0)/(n + 2 + 2c0). Also from Lemma 2, it follows that

ψπ(w) ≤ p/2 − 1 + d0

A− p/2 − d0
=

p− 2 + 2d0

n + 3 − 2K − 2d0
.

Hence, the minimaxity is guaranteed if K, c0 and d0 satisfy the inequality

p− 2 + 2d0

n + 3 − 2K − 2d0
≤ 2

p− 2− 2c0
n+ 2 + 2c0

,(3.8)

which can be rewritten by (3.9) in the following proposition.

Proposition 6. Assume the conditions (C1)-(C4). Then, the generalized
Bayes estimator θ̂

GB

π (X, S) is minimax if K, c0 and d0 satisfy the inequality

(p− 2)(n + 4 − 4K)− 2(2n+ p+ 4 − 4K)c0 − 2(n+ 2p− 2)d0 + 4c0d0 ≥ 0.
(3.9)

It is not easy to get the values c0 and d0, and we need to approximate them.
We below consider the three cases of g(ν).

(Case 1). Consider the case that |g(ν)| is bounded. Then, from (3.1) and
(3.4), it is seen that C(w) ≤ supν>ν0 g(ν)−infν>ν0 g(ν) and D(w) ≤ supν>ν0 g(ν).
In this case, let

c = c1 = sup
ν>ν0

g(ν)− inf
ν>ν0

g(ν) and d1 = sup
ν>ν0

g(ν),

and the minimaxity is guaranteed if K, c1 and d1 satisfy the inequality (3.9)
where c0 and d0 are replaced with c1 and d1.

(Case 2). Consider the case that g(ν) can be decomposed as

g(ν) = g1(ν) + g2(ν),(3.10)

where g1(ν) is nondecreasing in λ and g2(ν) is nonnegative and bounded. This
case was discussed in W&Z, and we can here derive a slightly better condition
since Proposition 4 gives the slightly wider condition. From the monotonicity of
g1(ν), it can be shown that∫ ∞

ν0
(1 + ν)−α−3[1 + w/(1 + ν)]−Ag1(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3[1 + w/(1 + ν)]−Ah(ν)dν

≤
∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−Ag1(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−Ah(ν)dν
,
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so that from (3.1),

C(w) ≤
∫ ∞
ν0

(1 + ν)−α−3[1 +w/(1 + ν)]−Ag2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3[1 +w/(1 + ν)]−Ah(ν)dν

−
∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−Ag2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−2[1 +w/(1 + ν)]−Ah(ν)dν
,(3.11)

≤ sup
ν>ν0

g2(ν).

In this case, let

c = c2 = sup
ν>ν0

g2(ν) and d2 = sup
ν>ν0

{g1(ν) + g2(ν)}.

Thus, the minimaxity is guaranteed if K, c1 and d1 satisfy the inequality (3.9)
where c0 and d0 are replaced with c2 and d2.

Since the minimaxity condition in this case will be applied to examples given
below, we provide a more useful condition. For this aim, let G1 = limν→∞ g1(ν),
and note that d2 ≤ G1 + c2 for c2 = supν>ν0 g2(ν). Then from the inequality
(3.8), we derive the following sufficient condition for the minimaxity:

(p− 2 + 2G1) + 2c2
(n + 3 − 2K − 2G1)− 2c2

≤ 2
p− 2 − 2c2
n+ 2 + 2c2

,

which is rewritten as

2(p − 2)(n + 3 − 2K − 2G1) − (n+ 2)(p− 2 + 2G1)

− (3n+ 3p+ 2− 4K − 2G1)(2c2) + (2c2)2 ≥ 0.(3.12)

Since (2c2)2 ≥ 0, we can obtain a simple condition given by 0 ≤ 2c2 ≤ {2(p −
2)(n+ 3− 2K− 2G1)− (n+ 2)(p− 2 + 2G1)}/(3n+ 3p+ 2− 4K− 2G1), namely,

0 ≤ sup
ν>ν0

g2(ν) ≤ 2(p − 2)(n + 3 − 2K − 2G1)− (n+ 2)(p− 2 + 2G1)
2(3n+ 3p+ 2 − 4K − 2G1)

.(3.13)

where G1 = limν→∞ g1(ν).

(Case 3). Consider the case that g(ν) can be decomposed as g(ν) =
g1(ν) + g2(ν), where g1(ν) is nondecreasing in λ and g2(ν) is nonnegative and
nonincreasing in λ. Then, it is noted that∫ ∞

ν0
(1 + ν)−α−3[1 + w/(1 + ν)]−Ag2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3[1 + w/(1 + ν)]−Ah(ν)dν
≤

∫ ∞
ν0

(1 + ν)−α−3g2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3h(ν)dν
,

so that from (3.11),

C(w) ≤
∫ ∞
ν0

(1 + ν)−α−3g2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−3h(ν)dν
≡ c3.
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Similarly,

D(w) ≤ min

{
d2, lim

ν→∞ g1(ν) +

∫ ∞
ν0

(1 + ν)−α−2g2(ν)h(ν)dν∫ ∞
ν0

(1 + ν)−α−2h(ν)dν

}
≡ d3.

Hence, the minimaxity is guaranteed if K, c2 and d2 satisfy the inequality (3.9)
where c0 and d0 are replaced with c3 and d3.

Example 3. (Maruyama and Strawderman type priors) Consider the pri-
ors with h(ν) = Cνb(1+ν)−a−b−2 for ν > ν0 and a constant C. These priors have
been treated by Maruyama and Strawderman (2005) and Wells and Zhou (2008)
for ν0 = 0, where −K = e + 1/2. W&Z showed that the conditions (C1)-(C3)
are satisfied when n/2+e > a > −p/2−1, and the function g(ν) defined in (3.7)
is written as

g(ν) = a+ 2 − b/ν.

These authors handled the case that b ≥ 0, which means that g(ν) is nondecreas-
ing, so that it corresponds to the case that g2(ν) = 0 in (3.10) and G1 = a+ 2 in
(3.13). Thus, the conditions that b ≥ 0 and 0 < (p/2 + a + 1)/(n/2 + e − a) ≤
2(p− 2)/(n+ 2) for ν0 ≥ 0 are imposed for the minimaxity.

The condition (3.13) allows us to handle the case that b < 0 where ν0 is
restricted to a positive number, namely ν0 > 0. In this case, let G1 = a+ 2 and
g2(ν) = −b/ν, and g2(ν) is decreasing and supν>ν0 g2(ν) = −b/ν0. From (3.13),
we obtain the condition that

0 < − b

ν0
≤ 2(p − 2)(n + 2e− 2a) − (n+ 2)(p+ 2 + 2a)

3n+ 3p+ 4e− 2a
,

where (p/2 + a+ 1)/(n/2 + e− a) < 2(p− 2)/(n+ 2).

Combining the conditions of the cases b ≥ 0 and b < 0 gives the following
condition for the minimaxity: n/2 + e > a > −p/2 − 1 and

max
{
− b

ν0
, 0

}
≤ 2(p − 2)(n + 2e− 2a) − (n+ 2)(p+ 2 + 2a)

3n+ 3p+ 4e− 2a
,

which is wider than the conditions given in the literature.

Example 4. (Generalized Student priors) Consider the priors with ν0 = 0
and

h(ν) = C(ν + 1)β−α−γ−(p−2)/2νγ−β exp{γ/ν},
which was handled by W&Z who treated the two cases (1) α ≤ 0, β ≤ 0 and
γ < 0, and (2) α ≤ 0, β > 0 and γ < 0. W&Z showed that the conditions
(C1)-(C3) are satisfied when n+ p+ 1− 2K > 0 and α > 2− p, and the function
g(ν) defined in (3.7) is written as

g(ν) =
p− 2

2
+ α+

β

ν
+

γ

ν2
.
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The first case (1) implies that g(ν) is increasing, so that g2(ν) = 0 in (3.10) and
G1 = (p−2)/2+α in (3.13). Hence the minimaxity condition (3.13) is guaranteed
when 0 < (p− 2 + 2G1)/(n+ 3− 2K − 2G1) ≤ 2(p − 2)/(n+ 2), or

0 <
2(p− 2 + α)

n+ 5 − 2K − p− 2α
≤ 2(p − 2)

n+ 2
.

Since the second case (2) means that g(ν) is not monotone, W&Z decomposed
g(ν) as

g(ν) = γ

(
1
ν

+
β

2γ

)2

− β2

4γ
+
p− 2

2
+ α = g1(ν) + g2(ν),

where

g1(ν) =

⎧⎪⎨⎪⎩
g(ν) +

β2

4γ
if ν ≤ −2γ

β
,

p− 2
2

+ α if ν > −2γ
β
,

g2(ν) =

⎧⎪⎨⎪⎩
−β

2

4γ
if ν ≤ −2γ

β
,

β

ν
+

γ

ν2
if ν > −2γ

β
.

It is noted that g1(ν) is increasing, G1 = (p−2)/2+α, and 0 < g2(ν) ≤ −β2/(4γ).
Hence from (3.13), we obtain the minimaxity condition that

0 < −β
2

4γ
≤ (p− 2)(n+ 5 − 2K − p− 2α) − (n+ 2)(p− 2 + α)

3n+ 2p+ 4 − 4K − 2α
.(3.14)

As stated in W&Z, the spherical multivariate Student-t priors with m degrees of
freedom and a scale parameter τ corresponds to the case that α = (m−p+4)/2,
β = [m(1 − τ) + 2]/2 and γ = −mτ/2. In fact, given η, the conditional density
of θ is written as

π(θ|η) =C0

∫ ∞

0
(η2/ν)p/2h(ν) exp{−η2‖θ‖2/(2ν)}dν

=C1

(
η2

τm

)p/2 (
1 +

η2

τm
‖θ‖2

)−(m+p)/2

,

for constants C0 and C1. In this case, the condition (3.14) can be simplified as

0 <
[m(1 − τ) + 2]2

8mτ
≤ 2(p− 2)(n+ 1− 2K −m) − (n+ 2)(p+m)

2(3n+ 3p− 4K −m)
,

where 2(p− 2)(n+ 1− 2K −m) > (n+ 2)(p+m) and n+ 1− 2K −m > 0. For
some special cases, we can get the corresponding conditions. In the case of τ = 1
and −2K = 3, which was treated by W&Z, the condition is expressed as

1
m

≤ 2(p − 2)(n + 4 −m) − (n + 2)(p+m)
3n+ 3p+ 6 −m

.
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This condition is equivalent to each of the following ones:

(2p + n − 2)m2 − (pn+ 6p− 4n− 15)m+ 3(n+ p+ 2) ≤ 0,

or

p ≥ (n− 2)m2 + (4n+ 15)m + 3(n+ 2)
(n+ 6)m− 2m2 − 3

,(3.15)

where (n + 6)m − 2m2 − 3 > 0. When n goes to infinity, these inequalities are,
respectively, given by

p− 4 − √
(p− 4)2 − 12
2

≤ m ≤ p− 4 +
√

(p− 4)2 − 12
2

,

p ≥ (m+ 3)(m+ 1)/m,

which suggest that the minimaxity can be guaranteed for small m or large p.

The case m = 1 corresponds to the spherical multivariate Cauchy prior, and
from (3.15), we get the condition p ≥ (8n+ 19)/(n+ 1). On the other hand, the
condition (5.3) of W&Z withm = 1 and −2K = 3, where their (m, n) corresponds
to our (n,m), is equivalent to the condition that there exists a constant b such
that

2(n+ 2)
(p− 2)(n+ 4)

(
1 + 2

p− 2
n+ 2

)
≤ b ≤ (p− 6)/(p− 2),

which is guaranteed when p ≥ (8n + 20)/n. It can be seen that the condition
p ≥ (8n+ 19)/(n+ 1) is slightly wider than p ≥ (8n+ 20)/n.

4. Improvement on the James-Stein estimator

The problems of improving the MLE θ̂0 by the estimators θ̂ψ have been
studied in the previous sections. As a further dominance property, we here
construct a class of the estimators θ̂ψ improving on the James-Stein estimator

θ̂
JS

given by (1.1). This result was given by Kubokawa (1994) without a proof,
because it is complicated in comparison with the case of a known variance σ2.
However, using the integral expression given in Section 2., we can prove it more
simply. Thus, we here provide the simple proof using the risk expression (2.2) or
(4.2) based on the integral.

Theorem 2. Assume that the function ψ(w) is absolutely continuous and
satisfies the condition

∫ 1
0 z

n/2−1|ψ′(w/z)|dz <∞ and the following conditions:
(a) ψ(w) is nondecreasing and limw→∞ ψ(w) = a0 = (p− 2)/(n+ 2),
(b) ψ(w) ≥ ψ0(w), where

ψ0(w) =
∫ w

0

yp/2−1

(1 + y)(n+p)/2+1
dy/

∫ w

0

yp/2−2

(1 + y)(n+p)/2+1
dy.(4.1)

Then the estimator θ̂ψ dominates the James-Stein estimator θ̂
JS

= (1−a0/W )X .
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Proof. We begin with providing another expression of the risk (2.2). Let
χ2
p(λ) and χ2

n+2 be mutually independent random variables where χ2
p(λ) has a

noncentral chi-square distribution with p degrees of freedom and the noncentral-
ity λ = ‖θ‖2/σ2. Let us define W̃ by W̃ = χ2

p(λ)/χ2
n+2. By incorporating the

term S/σ2 into the density of S/σ2 in the expression (2.2), the risk function of
θ̂ψ can be rewritten as

R(ω, θ̂ψ) = p+ nE

[
1
W̃

I(W̃ )
]

= p+ n

∫ ∞

0

1
w
I(w)f(w; λ)dw,(4.2)

where the density of W̃ is written by

f(w; λ) =
∞∑
j=0

Pj(λ)
cjw

p/2−1+j

(1 + w)(n+p)/2+1+j

for cj = Γ((n+p)/2 + j+1)/{Γ(n/2 +1)Γ(p/2 + j)} and the Poisson probability
Pj(λ) = (λ/2)je−λ/2/j!. From the condition (a), the risk of the James-Stein

estimator is given by R(ω, θ̂
JS

) = p + nE[W̃−1 limt→∞ I(tW̃ )]. Then, the risk

difference ∆ = R(ω, θ̂
JS

) − R(ω, θ̂ψ) can be written as

∆ =nE
[

1
W̃

{
lim
t→∞ I(tW̃ ) − I(W̃ )

}]
=nE

[
1
W̃

∫ ∞

1

d
dt

I(tW̃ )dt
]

= nE

[∫ ∞

1
I ′(tW̃ )dt

]
,

which is also expressed by

∆ = n

∫ ∞

0

∫ ∞

1
I ′(tw)f(w; λ)dtdw,

where I ′(w) = (d/dw)I(w) and f(w; λ) is defined below (4.2). Making the
transformations x = tw and y = x/t in turn with dx = tdw and dt/t = dy/y, we
observe that

E

[∫ ∞

1
I ′(tW̃ )

]
=

∫ ∞

0

∫ ∞

1
I ′(tw)f(w; λ)dtdw

=
∫ ∞

0

∫ ∞

1
I ′(x)t−1f(x/t; λ)dtdx

=
∫ ∞

0
I ′(x)F (x; λ)dx,(4.3)

where F (x; λ) =
∫ x
0 y

−1f(y; λ)dy. To provide the derivative I ′(x), we can
use the expression given in (2.9) which can be derived under the condition∫ 1
0 z

n/2−1|ψ′(x/z)|dz <∞, and note that

x

∫ 1

0
zn/2−1ψ′(x/z)dz = xn/2+1

∫ ∞

x
s−n/2−1ψ′(s)ds.
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Then, the derivative I ′(x) has the form

I ′(x) =2ψ(x)ψ ′(x) − 2a0ψ
′(x)(4.4)

− (n+ p)xn/2
∫ ∞

x
s−n/2−1ψ′(s)ds+ 2

n+ p

n+ 2
ψ′(x)

=2ψ(x)ψ ′(x) + 2ψ′(x) − (n+ p)
∫ 1

0
zn/2−1ψ′(x/z)dz.

By making the transformation w = x/z with dw = dx/z, it is noted that∫ ∞

0

∫ 1

0
zn/2−1ψ′(x/z)dzF (x; λ)dx =

∫ ∞

0
ψ′(w)

∫ 1

0
zn/2F (zw; λ)dzdw.(4.5)

Combining (4.3), (4.4) and (4.5), we obtain the expression

∆ = 2n
∫ ∞

0
ψ′(w)

{
(ψ(w) + 1)F (w; λ)− n+ p

2

∫ 1

0
zn/2F (zw; λ)dz

}
dw.

Since ψ′(w) ≥ 0 from the condition (a), it is seen that ∆ ≥ 0 if ψ(w) satisfies the
inequality

ψ(w) ≥ −1 +
n + p

2

∫ 1
0 z

n/2F (zw; λ)dz
F (w; λ)

.(4.6)

Taking the integration by parts gives∫ 1

0
zn/2F (zw; λ)dz =

∫ 1

0

{
d
dz

2
n+ 2

zn/2+1

}
F (zw; λ)dz

=
2

n+ 2
F (w; λ)− 2

n + 2

∫ 1

0
zn/2f(zw; λ)dz

=
2

n+ 2
F (w; λ)− 2

n + 2
1

wn/2+1

∫ w

0
yn/2f(y; λ)dy,

which is used to rewrite (4.6) as

ψ(w) ≥ a0 − n+ p

n+ 2
1

wn/2+1

∫ w
0 yn/2f(y; λ)dy∫ w
0 y−1f(y; λ)dy

.(4.7)

Let f(y) = f(y; 0) = c0y
p/2−1/(1 + y)(n+p)/2+1 and note that f(y; λ)/f (y) is

increasing in y. Then from Lemma 3.1 of Kubokawa (2007), we obtain the
inequality ∫ w

0 yn/2f(y; λ)dy∫ w
0 y−1f(y; λ)dy

≥
∫ w
0 yn/2f(y)dy∫ w
0 y−1f(y)dy

,

which means that the inequality (4.7) holds if ψ(w) satisfies the inequality

ψ(w) ≥ a0 − n + p

n + 2
1

wn/2+1

∫ w
0 yn/2f(y)dy∫ w
0 y−1f(y)dy

.(4.8)
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Finally, we shall verify that the r.h.s. of the inequality (4.8) is equal to ψ0(w)
given by (4.1). Note that∫ w

0
yn/2f(y)dy =

∫ w

0

y(n+p)/2−1

(1 + y)(n+p)/2+1
dy

=
∫ w/(1+w)

0
u(n+p)/2−1du =

2
n+ p

(
w

1 +w

)(n+p)/2

.(4.9)

By the integration by parts, it is also shown that∫ w

0
f(y)dy =

∫ w

0

yp/2−1

(1 + y)(n+p)/2+1
dy =

∫ w

0

(
y

1 + y

)p/2−1 d
dy

(
− 2/(n+ 2)

(1 + y)n/2+1

)
dy

= − 2
n + 2

wp/2−1

(1 + w)(n+p)/2
+
p− 2
n + 2

∫ w

0
y−1f(y)dy.(4.10)

Using the equations (4.9) and (4.10), we can verify that the r.h.s. of the inequality
(4.8) is equal to

a0 − n+ p

n + 2
1

wn/2+1

∫ w
0 yn/2f(y)dy∫ w
0 y−1f(y)dy

=

∫ w
0 f(y)dy∫ w

0 y−1f(y)dy
,

which is identical to (4.1). Therefore, the proof of Theorem 2 is complete.

From this theorem, we can derive several interesting estimators improving
on the James-Stein estimator, including the generalized Bayes estimator. For the
details, see Kubokawa (1994, 98) and Maruyama (1999).
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