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1 Introduction

The goal of this paper is to propose a nonstandard kernel-type estimator for nonparametric re-

gression using time series data when the support of the regressor has a boundary. Suppose that

for a stationary, strongly mixing process f(Xt; Yt)g1t=�1 2 R2, we are interested in estimating the

regression function

m (x) = E f� (Yt)jXt = xg ; (1)

where � (�) is a known measurable function. Examples of (1) include conditional distribution function

and rth-order conditional moment estimation of Yt given Xt = x when � (Y ) = 1 fY � yg and

� (Y ) = Y r; r > 0, respectively, and Xt may denote a lagged value of Yt:

An interesting situation, that often arises in economics and �nance, is when the regressor Xt in

(1) is nonnegative. In this case, the local constant or Nadaraya-Watson (NW) estimator (Nadaraya,

1964; Watson, 1964) based on a standard, symmetric kernel su¤ers from bias near the origin that does

not vanish even asymptotically. This is due to the fact that the symmetric kernels assign strictly

positive weights outside the support of Xt. Accordingly, several boundary correction techniques

have been proposed in the context of nonparametric regression such as boundary kernels (Gasser

and Müller, 1979) and Richardson extrapolation (Rice, 1984). The local linear (LL) estimator by

Fan and Gijbels (1992) is also known to automatically adapt the boundary bias. On the other hand,

there is a growing literature on employing asymmetric kernels as an alternative device for boundary

bias correction. In density estimation for positive observations, Chen (2000b) introduces the Gamma

kernel, and Scaillet (2004) proposes the Inverse Gaussian and Reciprocal Inverse Gaussian kernels.1

These asymmetric kernels have several attractive properties. First, they are free of boundary bias

because the support of the kernels match that of the density. Second, the shape of the asymmetric

kernel varies according to the positions of design points, and, as a result, the amount of smoothing

changes in an adaptive manner. Third, the asymmetric kernels achieve the optimal (in integrated

mean squared error sense) rate of convergence within the class of nonnegative kernel estimators.

1Throughout this paper, we refer to asymmetric kernels as kernel functions with support on the nonnegative
real line. Bouezmarni and Rolin (2003), Brown and Chen (1999), Chen (1999, 2000a), and Jones and Henderson
(2007) consider estimation of density and regression functions de�ned over the unit interval using di¤erent versions
of asymmetric kernels.
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Finally, their variances decrease as the position at which smoothing is made moves away from the

boundary. This property is particularly advantageous when the support of the density has sparse

regions.

Subsequently, Bouezmarni and Scaillet (2005) demonstrate weak convergence of the integrated

absolute error for asymmetric kernel density estimators, whereas Hagmann and Scaillet (2007) in-

vestigate the local multiplicative bias correction for asymmetric kernel density estimators that is

analogous to the one by Hjort and Jones (1996) in the symmetric kernel case. Besides density es-

timation, Chen (2002) applies asymmetric kernels to the LL estimator, and Fernandes and Monteiro

(2005) establish the central limit theorem for a class of asymmetric kernel functionals. Furthermore,

while all studies cited above are based on iid sampling, Bouezmarni and Rombouts (2006a,b) extend

asymmetric kernel density and hazard estimation to positive time series data.

In line with these recent developments, this paper proposes a nonparametric regression estimator

for dependent data using asymmetric kernels. We consider the NW, LL and re-weighted Nadaraya-

Watson (RNW; Hall and Presnell, 1999) estimators and study their asymptotic and �nite-sample

behavior. While the NW estimator includes a �design bias�term that depends on the density func-

tion of the regressor, the LL estimator is free of this bias term. On the other hand, unlike the

LL estimator, the NW estimator always yields estimated values within the range of observations

f� (Yt)gTt=1 and can preserve monotonicity and nonnegativity in conditional distribution estimation

or nonnegativity in conditional variance estimation, for example. The RNW estimator is known

to incorporate the strengths of the NW and LL estimators and has been used for nonparamet-

ric regression estimation (Cai, 2001), quantile estimation (Hall, Wol¤ and Yao, 1999; Cai, 2002),

and conditional density estimation (De Gooijer and Zerom, 2003). We adapt the three estimat-

ors to asymmetric kernels and strongly mixing data, and establish pointwise weak consistency and

asymptotic normality. We believe that our asymptotic results constitute an important theoretical

complement to the results for time series nonparametric regression with symmetric kernels such as

Lu and Linton (2007) and Masry and Fan (1997). Although we focus on the single regressor case

throughout, the basic idea of our methodology is expected to hold in the multiple regressor context.
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As an important economic application of the asymmetric kernel regression estimators, we con-

sider the problem of estimating time-homogeneous drift and di¤usion functions in scalar di¤usion

processes. Using the in�nitesimal generator and Taylor series expansions, Stanton (1997) derives

higher-order approximation formulae of the drift and di¤usion functions that are estimated nonpara-

metrically by the NW estimator. An interesting empirical �nding that emerges from this work is

that the drift function for the US short-term interest rate appears to exhibit substantial nonlinearity.

In contrast, Chapman and Pearson (2000) argue that the documented nonlinearity in the short rate

drift could be spurious due to the poor �nite-sample properties of the Stanton�s (1997) estimator at

high values of interest rates where the data are sparse. Fan and Zhang (2003) estimate the �rst-order

approximations of the drift and di¤usion functions by the LL estimator, and conclude that there

is little evidence against linearity in the short rate drift. Bandi (2002), Durham (2003) and Jones

(2003) also do not �nd empirical support for nonlinear mean reversion in short-term rates. We expect

that the use of the asymmetric kernel estimators can shed additional light on the nonparametric

estimation of spot rate di¤usion models.

The remainder of the paper is organized as follows. Section 2 develops asymptotic properties of

the asymmetric kernel regression estimators and discusses their practical implementation. Section 3

conducts a Monte Carlo simulation experiment that examines the �nite sample performance of these

estimators in the context of scalar di¤usion processes for spot interest rates. Section 4 summarizes

the main results of the paper. All proofs are given in the appendix.

This paper adopts the following notational conventions: � (�) =
R1
0
y��1 exp (�y) dy; � > 0 is

the Gamma function; G (�; �), IG (�; �) and RIG (�; �) symbolize the Gamma, Inverse Gaussian,

and Reciprocal Inverse Gaussian distributions with parameters (�; �), respectively; 1 f�g is the

indicator function; N denotes the set of positive integers f1; 2; :::g, bxc signi�es integer part of x;

and c (> 0) denotes a generic constant, the quantity of which varies from statement to statement.

The expression �X d
= Y �reads �A random variable X obeys the distribution Y .�For integers n and

k such that 0 � k � n,
�
n
k

�
= n!

k!(n�k)! denotes the number of combinations of size k taken from n

objects. Finally, the expression �XT � YT�is used whenever XT =YT ! 1 as T !1.
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2 Nonparametric Regression Using Asymmetric Kernels for
Time Series Data

2.1 Nonparametric Regression Estimators

Consider the problem of estimating nonparametric regression (1) using a sample f(Xt; Yt)gTt=1, where

Xt � 0 is assumed throughout. For a given design point x > 0, the NW, LL and RNW asymmetric

kernel estimators are de�ned as

m̂nw (x) =

PT
t=1 � (Yt)Kx;b (Xt)PT

t=1Kx;b (Xt)
;

m̂ll (x) =
TX
t=1

wt (x)� (Yt) ;

m̂rnw (x) =

PT
t=1 � (Yt) pt (x)Kx;b (Xt)PT

t=1 pt (x)Kx;b (Xt)
;

where Kx;b (u) is an asymmetric kernel function with a smoothing parameter b.

The LL estimator satis�es m̂ll (x) = �̂0 (x), where �̂ (x) =
h
�̂0 (x) ; �̂1 (x)

i|
solves the optimiza-

tion problem

�̂ (x) = argmin
�(x)

TX
t=1

f� (Yt)� �0 (x)� �1 (x) (Xt � x)g2Kx;b (Xt) :

The weight functions for the LL estimator fwt (x)gTt=1 are given by

wt (x) =
1

T

fS2 (x)� S1 (x) (Xt � x)gKx;b (Xt)

S0 (x)S2 (x)� S21 (x)
;

Sj (x) =
1

T

TX
t=1

(Xt � x)j Kx;b (Xt) ; j = 0; 1; 2:

On the other hand, the weight functions for the RNW estimator fpt (x)gTt=1 satisfy

pt (x) � 0;
TX
t=1

pt (x) = 1;
TX
t=1

(Xt � x) pt (x)Kx;b (Xt) = 0: (2)

Since fpt (x)gTt=1 that satisfy (2) are not uniquely determined, they are speci�ed as parameters that

maximize the empirical log-likelihood
PT

t=1 log fpt (x)g subject to these constraints. Then, as shown

in Cai (2001, 2002), fpt (x)gTt=1 are de�ned as

pt (x) =
1

T f1 + � (Xt � x)Kx;b (Xt)g
; (3)
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where � is the Lagrange multiplier associated with
PT

t=1 (Xt � x) pt (x)Kx;b (Xt) = 0 that can be

determined by maximizing the pro�le empirical log-likelihood

L
�
�; fXtgTt=1 ; x

�
=

TX
t=1

log f1 + � (Xt � x)Kx;b (Xt)g :

We consider several candidates for asymmetric kernels: Gamma density KG with parameters

(x=b+ 1; b) proposed by Chen (2000b),2 Inverse Gaussian (IG) density KIG with parameters (x; 1=b)

and Reciprocal Inverse Gaussian (RIG) density KRIG with parameters (1= (x� b) ; 1=b) proposed

by Scaillet (2004). These densities are given by

KG(x=b+1;b) (u) =
ux=b exp (�u=b)
bx=b+1� (x=b+ 1)

1 fu > 0g ;

KIG(x;1=b) (u) =
1p
2�bu3

exp

�
� 1

2bx

�u
x
� 2 + x

u

��
1 fu > 0g ;

KRIG(1=(x�b);1=b) (u) =
1p
2�bu

exp

�
�x� b

2b

�
u

x� b � 2 +
x� b
u

��
1 fu > 0g :

As is the case with symmetric kernels, the asymmetric kernel RNW estimator shares some at-

tractive properties of both NW and LL estimators. By construction, mint f� (Yt)g � m̂rnw (x) �

maxt f� (Yt)g for any x, and the RNW estimator always generates nonnegative estimates in �nite

samples whenever � (�) is nonnegative, as the NW estimator does. Moreover, the weight functions

for the LL estimator fwt (x)gTt=1 satisfy the moment conditions similar to (2)

TX
t=1

wt (x) = 1;
TX
t=1

(Xt � x)wt (x) = 0:

Hence, the bias properties of the RNW estimator are expected to be as good as that of the corres-

ponding LL estimator, and better than that of the NW estimator for interior design points.

2.2 Asymptotic Properties of Estimators

In this section we establish pointwise weak consistency with rates and asymptotic normality of the

NW, LL and RNW estimators for strongly mixing processes. Before stating regularity conditions
2Chen (2000b) also proposes another version of the Gamma kernel function

KG (u; �b (x) ; b) =
u�b(x)�1 exp

�
�u
b

�
b�b(x)� (�b (x))

1 fu > 0g ;

where

�b (x) =

�
x=b if x � 2b
(x=b)2 =4 + 1 if x 2 [0; 2b) :

However, this version is not considered here, because asymptotic properties of the LL and RNW estimators using
KG (u; �b (x) ; b) for interior x (satisfying x=b ! 1) are �rst-order equivalent to those when KG (u;x=b+ 1; b) is
employed.
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for our main results, we provide the de�nition of an �-mixing process for reference. Let Fba denote

the �-algebra generated by the stationary sequence f(Xt; Yt)gbt=a and

� (k) = sup
A2F0

�1;B2F1
k

jPr (A \B)� Pr (A) Pr (B)j ; k � 1:

Then, the stationary process f(Xt; Yt)g1t=�1 is said to be strongly mixing or �-mixing if � (k)! 0

as k !1 (Rosenblatt, 1956). Also, let f (x) be the marginal density of the regressor Xt, and de�ne

�2 (x) = V ar f� (Yt)jXt = xg. To obtain our main results, the following regularity conditions are

required:

(A1) For a given design point x > 0, m00 (x), f 00 (x) and �2 (x) are bounded and continuous.

(A2) supx�0 f (x) �M1 <1, 0 < m1 � infx�0 f (x), and supu�0;v�0 ft;s (u; v) �M2 <1.

(A3) E
n
j� (Y1)j�

���X1 = u
o
� �0+�1u

l and E [max fj� (Yt)j ; j� (Ys)j ; j� (Yt)� (Ys)jgjXt = u;Xs = v] �

�0+�1u
m+�2v

n; 8u; v � 0, for some � > 2, for some �0; �1; �0; �1; �2 � 0, and for some l;m; n 2 N.

(A4) The strong mixing coe¢ cient � (k) satis�es
P1

k=1 k
a f� (k)g1�2=� <1 for some a > 1�2=�.

(A5) The smoothing parameter b = bT satis�es�
b! 0 and bT !1 for the Gamma and RIG kernels
b! 0 and b2T !1 for the IG kernel

as T !1.

(A6) There exists a sequence sT 2 N such that sT !1, sT = o
n�
b1=2T

�1=2o
, and

�
T=b1=2

�1=2
� (sT )!

0 as T !1.

(A7) The smoothing parameter b = bT additionally satis�es b5=2T !  2 [0;1) as T !1.

Similar conditions to (A1)-(A7) are commonly used in the literature of LL (Lu and Linton, 2007;

Masry and Fan, 1997) and RNW estimation (Cai, 2001, 2002; De Gooijer and Zerom, 2003) with

dependent data. The condition (A3) is inspired by Hansen (2006), who derives uniform convergence
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rates of nonparametric density and regression estimators using dependent data even when unbounded

support kernels are employed. Both Hansen (2006) and this paper allow the two conditional

moments to diverge. An important di¤erence is that while his condition controls the divergence rates

of the conditional moments in comparison with the rate of decay in tails of the marginal density

of regressors, (A3) assumes the existence of polynomial dominating functions, taking into account

that all three asymmetric kernels have moments of any nonnegative integer order, as indicated in

the proof of Lemma B2 in the appendix.

The conditions (A5) and (A7) for the smoothing parameter b are required to establish the asymp-

totic normality of the estimators and ensure that the bias and the variance converge to zero, and

the remainder term in the bias expression is asymptotically negligible.

(A4) implies that the strong mixing coe¢ cient has the size � (� � 1) = (� � 2). To establish

Theorem 2 (joint asymptotic normality of regression and �rst-order derivative estimators), we need

to replace (A4) and (A5) by the stronger conditions (A4�) and (A5�) stated below. Note that (A4�)

and (A5) are required to approximate the variance of the �rst-order derivative estimator, and to

ensure that the variance converges to zero, respectively. In contrast, the original conditions (A4)

and (A5) su¢ ce to demonstrate the asymptotic results for the LL estimator only.

(A4�) The strong mixing coe¢ cient satis�es
P1

k=1 k
a f� (k)g1�2=� <1 for some a > 3 (1� 2=�).

(A5�) The smoothing parameter b = bT satis�es�
b! 0 and b3T !1 for the Gamma and RIG kernels
b! 0 and b6T !1 for the IG kernel

as T !1.

Now we present kernel-speci�c results on weak consistency and asymptotic normality of the three

estimators. Since the results depend on the kernel employed, we denote the NW estimator using the

Gamma kernel as m̂nw
G (x), for example. A similar notational convention is applied to the LL and

RNW estimators. We also mean by �interior x�and �boundary x�that the design point x satis�es

x=b!1 and x=b! � > 0 as T !1, respectively.
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Theorems 1, 2 and 3 establish the pointwise weak consistency and asymptotic normality of the

asymmetric kernel NW, LL and RNW estimators for interior x.

Theorem 1. If conditions (A1)-(A7) hold, then for interior x,

p
b1=2T

�
m̂nw
G (x)�m (x)�

�
m0 (x)

�
1 +

xf 0 (x)

f (x)

�
+
x

2
m00 (x)

�
b

�
d! N (0; VG) ;p

b1=2T

�
m̂nw
IG (x)�m (x)� x3

�
m0 (x)

f 0 (x)

f (x)
+
1

2
m00 (x)

�
b

�
d! N (0; VIG) ;p

b1=2T

�
m̂nw
RIG (x)�m (x)� x

�
m0 (x)

f 0 (x)

f (x)
+
1

2
m00 (x)

�
b

�
d! N (0; VRIG) ;

where VG = 1
2
p
�x1=2

�2(x)
f(x) , VIG =

1
2
p
�x3=2

�2(x)
f(x) and VRIG = VG:

Proof. See Appendix A. �

Theorem 2. If conditions (A1)-(A3), (A4�), (A5�), (A6)-(A7) hold, then for interior x,

Tb;1

�
�̂G (x)� � (x)�

�
1
2xm

00 (x) b
0

��
d! N

��
0
0

�
;

�
1 0
0 1

2x

�
VG

�
;

Tb;1

�
�̂IG (x)� � (x)�

�
1
2x

3m00 (x) b
0

��
d! N

��
0
0

�
;

�
1 0
0 1

2x3

�
VIG

�
;

Tb;1

�
�̂RIG (x)� � (x)�

�
1
2xm

00 (x) b
0

��
d! N

��
0
0

�
;

�
1 0
0 1

2x

�
VRIG

�
;

where � (x) = [m (x) ;m0 (x)]
| and Tb;1 =

p
b1=2T

�
1 0
0 b1=2

�
.

Proof. See Appendix A. �

Corollary 1. If conditions (A1)-(A7) hold, then for interior x,

p
b1=2T

�
m̂ll
G (x)�m (x)�

1

2
xm00 (x) b

�
d! N (0; VG) ;p

b1=2T

�
m̂ll
IG (x)�m (x)�

1

2
x3m00 (x) b

�
d! N (0; VIG) ;p

b1=2T

�
m̂ll
RIG (x)�m (x)�

1

2
xm00 (x) b

�
d! N (0; VRIG) :

Theorem 2 and Corollary 1 can be further extended to the pth-order local polynomial estima-

tion, provided that m(�) has a bounded continuous pth-order derivative and the mixing condition is

properly strengthened.
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Theorem 3. If conditions (A1)-(A7) hold, then for interior x,

p
b1=2T

�
m̂rnw
G (x)�m (x)� 1

2
xm00 (x) b

�
d! N (0; VG) ;p

b1=2T

�
m̂rnw
IG (x)�m (x)� 1

2
x3m00 (x) b

�
d! N (0; VIG) ;p

b1=2T

�
m̂rnw
RIG (x)�m (x)�

1

2
xm00 (x) b

�
d! N (0; VRIG) :

Proof. See Appendix A. �

The next two theorems derive the pointwise weak consistency and asymptotic normality of NW

and LL estimators for boundary x. Before proceeding, we modify the conditions (A6) and (A7).

Note that two alternative replacements of (A7), namely, (A7�) and (A7�), are required for asymptotic

normality of NW and LL estimators, respectively.

(A6�) There exists a sequence sT 2 N such that8<: sT !1, sT = o
n
(bT )

1=2
o
, and (T=b)1=2 � (sT )! 0 for the Gamma and RIG kernels

sT !1, sT = o
n�
b2T

�1=2o
, and

�
T=b2

�1=2
� (sT )! 0 for the IG kernel

as T !1.

(A7�) The smoothing parameter b = bT additionally satis�es8<: b3T !  2 [0;1) for the Gamma kernel
b10T !  2 [0;1) for the IG kernel
b5T !  2 [0;1) for the RIG kernel

as T !1.

(A7�) The smoothing parameter b = bT additionally satis�es�
b5T !  2 [0;1) for the Gamma and RIG kernels
b10T !  2 [0;1) for the IG kernel

as T !1.

Theorem 4. If conditions (A1)-(A5), (A6�), (A7�) hold, then for boundary x,

p
bT fm̂nw

G (x)�m (x)�m0 (x) bg d! N
�
0; V BG

�
;

p
b2T

�
m̂nw
IG (x)�m (x)� �3

�
m0 (x)

f 0 (x)

f (x)
+
1

2
m00 (x)

�
b4
�

d! N
�
0; V BIG

�
;

p
bT

�
m̂nw
RIG (x)�m (x)� (�+ 1)

�
m0 (x)

f 0 (x)

f (x)
+
1

2
m00 (x)

�
b2
�

d! N
�
0; V BRIG

�
;
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where V BG = �(2�+1)
22�+1�2(�+1)

�2(x)
f(x) , V

B
IG =

1
2
p
��3=2

�2(x)
f(x) and V

B
RIG =

��1=2+(7=16)��3=2+(3=32)��5=2

2
p
�

�2(x)
f(x) .

Proof. See Appendix A. �

Theorem 5. If conditions (A1)-(A3), (A4�), (A5�), (A6�), (A7�) hold, then for boundary x,

Tb;2

�
�̂G (x)� � (x)�

m00 (x)

2

�
(�� 2) b2

4b

��
d! N

��
0
0

�
;

�
2�+ 5 �2
�2 1

�
V BG

2 (�+ 1)

�
Tb;3

�
�̂IG (x)� � (x)�

�
1
2�

3m00 (x) b4

0

��
d! N

��
0
0

�
;

�
1 0
0 1

2�3

�
V BIG

�
;

Tb;2

(
�̂RIG (x)� � (x)�

m00 (x)

2

"
(�+ 1) b2�
3�+5
�+1

�
b

#)
d! N

��
0
0

�
;�RIGV

B
RIG

�
;

where

�RIG =

24 1 � 3
4(�+1)

n
1� (13=48)��3=2+(5=32)��5=2

��1=2+(7=16)��3=2+(3=32)��5=2

o
� 3
4(�+1)

n
1� (13=48)��3=2+(5=32)��5=2

��1=2+(7=16)��3=2+(3=32)��5=2

o
�

2(�+1)2

n
1 + (5=8)��3=2+(5=8)��5=2+(33=64)��7=2

��1=2+(7=16)��3=2+(3=32)��5=2

o 35 ;
Tb;2 =

p
bT

�
1 0
0 b

�
and Tb;3 =

p
b2T

�
1 0
0 b2

�
.

Proof. See Appendix A. �

Corollary 2. If conditions (A1)-(A5), (A6�), (A7�) hold, then for boundary x,

p
bT

�
m̂ll
G (x)�m (x)�

1

2
(�� 2)m00 (x) b2

�
d! N

�
0;

2�+ 5

2 (�+ 1)
V BG

�
;

p
b2T

�
m̂ll
IG (x)�m (x)�

�3

2
m00 (x) b4

�
d! N

�
0; V BIG

�
;

p
bT

�
m̂ll
RIG (x)�m (x)�

1

2
(�+ 1)m00 (x) b2

�
d! N

�
0; V BRIG

�
:

2.2.1 Discussion of results

Choice of estimator and kernel function. In case of an interior design point, the results in

Theorem 1, Corollary 1 and Theorem 3 reveal that the LL and RNW estimators eliminate the �design

bias�term of the NW estimator without any e¤ect on the variance. An immediate consequence of

Theorem 3 and Corollary 1 is that each RNW estimator is �rst-order equivalent to the corresponding

LL estimator, as is the case with symmetric kernels. Furthermore, we can see from Theorems 1-3

that for each of NW, LL and RNW estimators, variances decrease with x, i.e. as the position in

which smoothing is made moves away from the boundary. This property is particularly advantageous

when the support of the regressor has sparse regions.
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Now turning our attention to the properties of the di¤erent kernel functions, we note that the

estimators based on the Gamma and RIG kernels are �rst-order equivalent for interior x. The

asymptotic bias of the IG-based estimators is larger than that of the Gamma and RIG estimators

when x > 1; however, the larger bias is compensated by a much smaller variance. For example,

in the special case of a linear function m(x), the estimators m̂ll
IG (x) and m̂

rnw
IG (x) dominate their

Gamma and RIG counterparts for x > 1 but not for x < 1 which is the situation in our interest rate

application.

Some interesting �ndings emerge from the boundary design point case. First, comparing Theor-

ems 1 and 4 or Corollaries 1 and 2, we see that for each of the NW and LL estimators, improvement

in order of magnitude in the bias term is achieved at the expense of in�ating the variance. Indeed,

if the smoothing parameter b is chosen to satisfy (A5) and (A7), then the bias of the NW and LL

estimators becomes asymptotically negligible over the boundary region, and thus only the variance

matters. Second, for the IG and RIG kernels, the LL estimator eliminates the �design bias�term of

the NW estimator even over the boundary region, whereas the Gamma NW and LL estimators do

not have common bias terms.

More importantly, Theorem 4 and Corollary 2 show that m̂nw
G (x) and m̂ll

G (x) do not share the

same asymptotic variance for boundary x, which is typically the case for interior x, IG, RIG and

symmetric kernels.3 For example, for � = 0:5, the variance of m̂ll
G (x) is twice as big as the variance

of m̂nw
G (x) and it may well be the case that the Gamma-based NW estimator is preferred over the

Gamma LL estimator even though the latter may have a smaller bias. Figure 1 plots the di¤erences

in the asymptotic variances of m̂nw
G (x), m̂nw

RIG (x) and m̂
ll
G (x) as a function of � 2 [0:2; 1],4 and

shows the substantial e¢ ciency advantages of the Gamma NW estimator at the extreme design

points.

3The mean of G (x=b+ 1; b) is not the design point x but x+ b, whereas both IG (x; 1=b) and RIG (1= (x� b) ; 1=b)
have mean x. Hence, as x=b ! �, S1 (x) = Op (b) for the Gamma kernel, whereas S1 (x) = Op

�
b2
�
for the IG and

RIG kernels. Then, the term involving m0 (x) dominates the bias of m̂nw
G (x) for boundary x, and as a result, m̂nw

G (x)

and m̂ll
G (x) do not have common bias terms. Likewise, the reason why m̂nw

G (x) and m̂ll
G (x) do not share the same

asymptotic variance for boundary x is that when the Gamma kernel is employed, the scale-adjusted outer product

matrix SyT =
�

S0 (x) b�1S1 (x)
b�1S1 (x) b�2S2 (x)

�
has non-negligible o¤-diagonal elements in the limit as x=b! �; for details,

see Lemma A7 in Appendix A.
4The estimator m̂nw

IG (x) is not plotted in the diagram, because it has a slower rate of convergence than m̂
nw
G (x),

m̂nw
RIG (x) and m̂

ll
G (x) for boundary x.
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Also, unlike the case for interior x, asymptotic independence between LL regression and �rst-

order derivative estimators does not necessarily hold for boundary x; in fact, asymptotic variance-

covariance matrices of Gamma and RIG-based LL estimators in Theorem 5 have non-zero o¤-diagonal

elements when x=b! � is assumed. Moreover, we do not provide a theorem for the RNW estimator

in the boundary case. The di¢ culty for establishing the asymptotic properties of the RNW arises

from the fact that when x is located in a particularly small boundary region (of order O (b)), there

are not enough observations less than x for the constraint (2) to hold, and, as a result, the RNW

estimator is not well de�ned. Even though the asymptotic behavior of the RNW estimator for

boundary x does not a¤ect its global properties, these observations indicate that the numerical

performance of the RNW estimator near the boundaries could be rather poor which is con�rmed by

our simulation results presented below.

Mean squared error. It follows directly from Theorem 3 and Corollary 1 that the mean squared

errors (MSE) of the three LL (and thus RNW) estimators for interior x are approximated by

MSE
�
m̂ll
G (x)

	
� 1

4
x2 fm00 (x)g2 b2 + 1

b1=2T

�2 (x)

2
p
�x1=2f (x)

;

MSE
�
m̂ll
IG (x)

	
� 1

4
x6 fm00 (x)g2 b2 + 1

b1=2T

�2 (x)

2
p
�x3=2f (x)

;

MSE
�
m̂ll
RIG (x)

	
� 1

4
x2 fm00 (x)g2 b2 + 1

b1=2T

�2 (x)

2
p
�x1=2f (x)

:

In contrast, Theorem 1 suggests that the MSEs of their corresponding NW estimator for interior x

are approximated by

MSE fm̂nw
G (x)g �

�
m0 (x)

�
1 +

xf 0 (x)

f (x)

�
+
x

2
m00 (x)

�2
b2 +

1

b1=2T

�2 (x)

2
p
�x1=2f (x)

;

MSE fm̂nw
IG (x)g �

�
m0 (x)

x3f 0 (x)

f (x)
+
x3

2
m00 (x)

�2
b2 +

1

b1=2T

�2 (x)

2
p
�x3=2f (x)

;

MSE fm̂nw
RIG (x)g �

�
m0 (x)

xf 0 (x)

f (x)
+
x

2
m00 (x)

�2
b2 +

1

b1=2T

�2 (x)

2
p
�x1=2f (x)

;

and the NW estimators contain an additional �design bias�term that depends on the density of the

regressor f (x) while the variance terms remain unchanged. These results agree with the case of

standard symmetric kernels.
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Optimal smoothing parameter. From the MSE expressions, it can be easily inferred that the

optimal smoothing parameters of the LL (and thus RNW) estimators for interior x are

b�G =

"
�2 (x)

2
p
� fm00 (x)g2 f (x)

#2=5
x�1T�2=5;

b�IG =

"
�2 (x)

2
p
� fm00 (x)g2 f (x)

#2=5
x�3T�2=5;

b�RIG =

"
�2 (x)

2
p
� fm00 (x)g2 f (x)

#2=5
x�1T�2=5:

Note that the optimal smoothing parameters are b� = O
�
T�2=5

�
= O

�
a�2
�
, where a� is the MSE-

optimal bandwidth for the LL estimator using second-order symmetric kernels. Also, at the optimum,

MSE�
�
m̂ll
G (x)

	
� 5

4

(p
jm00 (x)j�2 (x)
2
p
�f (x)

)4=5
T�4=5;

MSE�
�
m̂ll
IG (x)

	
� 5

4

(p
jm00 (x)j�2 (x)
2
p
�f (x)

)4=5
T�4=5;

MSE�
�
m̂ll
RIG (x)

	
� 5

4

(p
jm00 (x)j�2 (x)
2
p
�f (x)

)4=5
T�4=5;

and each optimal MSE is identical and does not depend on x (the dependence of each optimal MSE

on x comes only through f (x) and �2 (x)). In addition, the optimal MSE is the same as that of

the LL estimator using the Gaussian kernel. Therefore, as argued by Chen (2000b) and Scaillet

(2004), we can see that, for interior x; the three asymmetric kernels de�ned over [0;1) have the

same pointwise e¢ ciency as the Gaussian kernel over (�1;1).

2.3 Implementation and Selection of Smoothing Parameter

The practical implementation of the proposed nonparametric estimators requires a choice of smooth-

ing parameter. While the previous section provides some guidance in this direction, the expressions

for the optimal smoothing parameters depend on unknown functions of the data and a uniform

�plug-in rule�is di¢ cult to obtain. Note also that the optimal smoothing parameters for the asym-

metric kernels depend explicitly on the design point and, in principle, they should take di¤erent

values at each x. Hagmann and Scaillet (2007), however, argue for a uniform smoothing parameter

since the dependence on the design point x may deteriorate the adaptability of asymmetric kernels.
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In this paper, we adopt a cross-validation (CV) approach to choosing a uniform smoothing

parameter for nonparametric curve estimation based on asymmetric kernels. Since the data are

dependent, the leave-one-out CV is not appropriate. Instead, we work with the h-block CV version

of Györ� et al. (1989) and Burman et al. (1994) where h data points on both sides of observation t

are removed from the sample and the function m(x) is estimated from the remaining T � (2h + 1)

observations. The idea behind this method is that, due to the strong mixing property of the data,

the blocks of length h are asymptotically independent although the block size may need to shrink

(at certain rate) relative to the total sample size in order to ensure the consistency of the procedure.

Let m̂�(t�h):(t+h) (Xt) denote the estimate from observations 1; 2; :::; t � h � 1; t + h + 1; :::; T .

Then, the smoothing parameter can be selected by minimizing the least squares cross-validation

function

CV (b) = arg min
b2BT

T�hX
t=h+1

�
� (Yt)� m̂�(t�h):(t+h) (Xt)

	2
 (Xt) ; (4)

where  (�) is a weighting function that has compact support and is bounded by 1. Minimizing

CV (b) is asymptotically equivalent to minimizing the true expected prediction error provided that

h=T goes to zero at some rate as h!1 and T !1 (Chu, 1989; Györ� et al., 1989). Alternatively,

if one assumes that h is a nontrivial fraction of the sample size T so that h=T is a �xed constant

as h ! 1 and T ! 1, CV (b) has to be corrected as in Burman et al. (1994).5 While the

corrected CV (b) of Burman et al. (1994) may provide a better �nite-sample approximation to the

true expected prediction error, this procedure is computationally more involved and in our numerical

experiments the smoothing parameter is chosen by minimizing (4) with  (Xt) = 1:

3 Monte Carlo Experiment: Di¤usion Models of Spot Rate

The nonparametric estimation of continuous-time di¤usion processes, that are used to describe the

underlying dynamics of spot interest rates, has been an active area of recent research (Bandi and

Phillips, 2003; Florens-Zmirou, 1993; Jiang and Knight, 1997; Nicolau, 2003; among others). In this

section, we assess the �nite-sample properties of our proposed asymmetric kernel estimators in the

5The asymptotic optimality of the h-block cross validation bandwidths for mixing data in Chu (1989), Györ� et
al. (1989) and Burman et al. (1994) is derived for symmetric kernels. While it is useful to extend these results to
asymmetric kernels, it is beyond the scope of this paper.
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context of a di¤usion process of spot rate and evaluate the economic importance of the results in

terms of computed bond and option pricing errors.

The data for the �rst simulation experiment is generated from the CIR model (Cox et al., 1985)

drt = � (� � rt) dt+ �r1=2t dWt; (5)

where Wt is a standard Brownian motion. This model is convenient because the transition and

marginal densities are known and the bond and call option prices are available in closed form (Cox

et al., 1985). 5; 000 sample paths for the spot interest rate of length T = 600 observations are

simulated using the procedure described in Chapman and Pearson (2000). After drawing an initial

value from the marginal Gamma density, the interest rate process is constructed recursively by

drawing random numbers from the transition non-central chi-square density and using the values for

�, � and � and a time step between two consecutive observation equal to � = 1=52 corresponding

to weekly data.

We consider two parameter con�gurations that are used in Chapman and Pearson (2000) -

(�; �; �) = (0:21459; 0:085711; 0:0783) and (0:85837; 0:085711; 0:1566) ; that produce persistent in-

terest rate process with monthly autocorrelations of 0.982 and 0.931, respectively. The two spe-

ci�cations are calibrated to generate data with the same unconditional mean variance. The strong

mixing property of the process generated by (5), is demonstrated by Carrasco et al. (2007).

The expressions for the price of a zero-coupon discount bond and a call option on a zero-coupon

discount bond have an analytical form and are given in Cox et al. (1985). We follow Jiang (1998) and

Phillips and Yu (2005) and compute the prices of a three-year zero-coupon discount bond and a one-

year European call option on a three-year discount bond with a face value of $100 and an exercise

price of $87 with an initial interest rate of 5% by simulating spot rate data from the estimated

di¤usion process. The simulated bond and derivative prices are then compared to the analytical

prices based on the true values of the parameters.

More speci�cally, the price of a zero-coupon bond with face value P0 and maturity (� � t) is

computed as

P �t = P0Et

�
exp

�
�
Z �

t

r�udu

��
;
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where r�t = rt; dr
�
t = [b�(r�t )� b�(r�t )]dt+ b�(r�t )dWt; and b�(r�t ); b�(r�t ) and b�(r�t ) denote the nonpara-

metric estimates of the drift, di¤usion and market price of risk functions, respectively. For simplicity,

the market price of risk is assumed to be equal to zero since its computation requires another interest

rate process of di¤erent maturity. The expectation is evaluated by Monte Carlo simulation using a

discretized version of the dynamics of the spot rate.

The price of a call option with maturity (n � t) on a zero-coupon bond with maturity (� � t);

face value P0 and exercise price K is computed as

Cnt = Et

�
exp

�
�
Z n

t

r�udu

�
max (P �n �K; 0)

�
= Et

�
exp

�
�
Z n

t

r�udu

�
max

�
P0En

�
exp

�
�
Z �

N

r�vdv

��
�K; 0

��
;

where n < � and sample paths for r�t are simulated from the nonparametrically estimated discretized

model of spot rate.

In order to evaluate if the proposed estimators capture well the shape of the true function, data

are also generated from the nonlinear di¤usion model of Ahn and Gao (1999)

drt = � (� � rt) rtdt+ �r1:5t dWt; (6)

where the drift is a quadratic function of the interest rate. The strong mixing properties of the process

generated by (6) can be inferred by verifying the conditions in Chen et al. (1999). As argued by

Ahn and Gao (1999), st = 1=rt follows a square-root process with non-central chi-square transitional

density which facilitates the simulation of interest rate data. The particular parameterization that

we employ in simulating the data from (6) is (�; �; �) = (3; 0:1; 1) which is similar to the values

estimated by Ahn and Gao (1999) from actual data.

We consider the NW estimators with Gaussian and Gamma kernels and the LL and RNW

estimators with Gamma kernel. The LL estimator with Gaussian kernel produces substantially

larger biases than these estimators and is not reported.

First, Figures 2 to 5 present the �nite-sample properties of the asymmetric NW estimators of

the drift function from the CIR model. Figures 2 and 4 plot the median drift estimates of the

Gamma, IG and RIG NW estimators for both parameterizations and a �xed smoothing parameter.
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In agreement with the theoretical results in Section 2.2, the Gamma and RIG estimators exhibit

very similar behavior and provide a very good approximation to the true drift function. In contrast,

the IG drift function estimator is much more biased (the bias of the IG estimator is still substantial

for larger smoothing parameters) and we do not consider this estimator further in the paper. Figures

3 and 5 plot the 90% Monte Carlo con�dence bands of the Gamma and RIG estimators and reveal

that the Gamma estimator is less variable than the RIG estimator especially for the more persistent

speci�cation. In the rest of the paper, we only report the results from the Gamma NW estimator

noting that the RIG NW estimator delivers very similar results.

In order to compare the properties of the Gamma NW with the Gaussian NW, Gamma RNW

and Gamma LL estimators, we choose a common algorithm for selecting the smoothing parameter

based on h-block cross validation with h = 30 (our experiments with di¤erent values of h delivered

very similar results.) It is interesting to note that Gamma NW and RNW select signi�cantly smaller

smoothing parameters than the Gaussian NW and Gamma LL estimators.

The median Monte Carlo estimates plotted in Figures 6 and 8 show that the Gamma NW and

Gaussian NW are almost unbiased whereas the bias of the Gamma LL is rather large for both

interior and boundary design points. It appears that the Gamma LL estimator is more sensitive to

the high persistence in the data and its behavior improves for less persistent speci�cations. While

the Gamma NW is only slightly less biased than the Gaussian NW, the asymmetric kernel estimator

exhibits smaller variability (Figure 7) near the boundaries. The behavior of the asymmetric RNW

estimator is similar to the Gamma NW estimator but it tends to be much more noisy.

Finally, Figures 9 and 10 plot the drift function estimates from the nonlinear di¤usion speci�c-

ation of Ahn and Gao (1999). As in the case of linear drift, the Gamma kernel estimator provides

a very good approximation of the true drift function. The symmetric (Gaussian) NW estimator

exhibits larger bias and variability for interest rates above 9% whereas the local linear estimator

again tends to perform rather poorly compared to the asymmetric kernel estimator. In summary,

the Gamma NW appears to be the best performing nonparametric estimator of the drift function of

highly persistent di¤usion processes considered in the simulation experiments.
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The economic signi�cance of the improved estimation of di¤usion models of spot rate is evaluated

by comparing bond and option pricing errors based on di¤erent nonparametric estimators for the

CIR model with (�; �; �) = (0:21459; 0:085711; 0:0783). For reference, we include also the bond

and option prices computed analytically from the OLS estimates of �; � and � obtained from the

discretized version of the model. The results are presented in Table 1. Despite the fact that the

OLS estimator uses knowledge of the true shapes of the drift and di¤usion functions, the bond and

especially the call option prices are substantially underestimated due mainly to the severe downward

bias of the OLS estimator in autoregressive models (Phillips and Yu, 2005). In contrast, the bond and

derivative prices based on both symmetric and asymmetric kernel estimators are much less biased

and actually produce slightly positive pricing errors. The bias of the Gamma estimator is smaller

than its Gaussian counterpart but more importantly, the Gamma-based bond and option prices enjoy

much smaller variability and tighter con�dence intervals than the symmetric kernel-based prices.

4 Conclusion

This paper proposes several asymmetric kernel estimators of conditional moment functions based

on dependent data and nonnegative conditioning variables. The consistency, rate of convergence

and asymptotic normality of these estimators are established for both interior and boundary design

points. We show that the asymmetric kernel estimators possess some appealing properties such as

lack of boundary bias and/or adaptability in the amount of smoothing. The paper adopts a block

cross-validation method for dependent data in choosing the smoothing parameter. The �nite-sample

performance of the estimators is evaluated in the context of a scalar di¤usion process of spot interest

rate. Several interesting directions for future research include construction of bootstrap con�dence

bands and bootstrap-based speci�cation testing, establishing uniform rates of convergence and rate

improvement via multiplicative bias correction.
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A Appendix A: Proofs of Theorems

In this appendix, we present the proofs only for the Gamma kernel because the proofs for the IG

and RIG kernels are similar. Note that approximations to the moments of the IG and RIG kernels

can be obtained by following Scaillet (2004) and applying Lemmata B1 and B2.

A.1 Proofs of Theorems 1 and 2

The proofs of Theorems 1 and 2 require the following three lemmata. Before proceeding, de�ne

�t = � (Yt)�m (Xt).

Lemma A1. Let

ST =

�
S0 (x) b�1=2S1 (x)

b�1=2S1 (x) b�1S2 (x)

�
:

If the conditions (A1)-(A5) hold, then for interior x,

SG;T
p! SG =

�
1 0
0 x

�
f (x) ;

SIG;T
p! SIG =

�
1 0
0 x3

�
f (x) ;

SRIG;T
p! SRIG =

�
1 0
0 x

�
f (x) :

Proof of Lemma A1. Using Lemma B1,

E fSG;j (x)g = E
n
(X1 � x)j KG(x=b+1;b) (X1)

o
= E

n
(�1;x � x)j f (�1;x)

o
;

where �1;x
d
= G (x=b+ 1; b). Taking a second-order Taylor expansion of f (�1;x) around �1;x = x

yields

(�1;x � x)j f (�1;x) = (�1;x � x)j f (x)+(�1;x � x)j+1 f 0 (x)+
1

2
(�1;x � x)j+2 f 00 (x)+Op

n
(�1;x � x)j+3

o
:

Therefore, by Lemma B2, for interior x,

E fSG;0 (x)g = f (x) +O (b) ;

E fSG;1 (x)g = ff (x) + xf 0 (x)g b+O
�
b2
�
;

E fSG;2 (x)g = xf (x) b+O
�
b2
�
:
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Since strong mixing implies ergodicity, we can apply Birkho¤�s ergodic theorem to establish the

results. �

Lemma A2. Let

t�T =

�
T �0 (x)

b�1=2T �1 (x)

�
=

"
T�1

PT
t=1 �tKx;b (Xt)

b�1=2T�1
PT

t=1 (Xt � x) �tKx;b (Xt)

#
:

Also for an arbitrary vector c 2 R2, de�ne Q�T = c|t�T . If the conditions (A1)-(A3), (A4�) and

(A5) hold, then for interior x,

V ar
�p

b1=2TQ�G;T

�
! c|VGc = c

|

("
1

2
p
�x1=2

0

0 x1=2

4
p
�

#
�2 (x) f (x)

)
c;

V ar
�p

b1=2TQ�IG;T

�
! c|VIGc = c

|

("
1

2
p
�x3=2

0

0 x3=2

4
p
�

#
�2 (x) f (x)

)
c;

V ar
�p

b1=2TQ�RIG;T

�
! c|VRIGc = c

|

("
1

2
p
�x1=2

0

0 x1=2

4
p
�

#
�2 (x) f (x)

)
c:

Proof of Lemma A2. It su¢ ces to demonstrate that

V ar
np

b1=2TT �G;0 (x)
o

=
1

2
p
�x1=2

�2 (x) f (x) + o (1) ; (7)

V ar
np

b1=2Tb�1=2T �G;1 (x)
o

=
x1=2

4
p
�
�2 (x) f (x) + o (1) ; (8)

Cov
np

b1=2TT �G;0 (x) ;
p
b1=2Tb�1=2T �G;1 (x)

o
= o (1) : (9)

(i) Proof of (7). It follows from E (�tjXt) = 0 that

V ar
np

b1=2TT �G;0 (x)
o

= V ar

(
1p
T

TX
t=1

b1=4�tKG(x=b+1;b) (Xt)

)

� G;0 (0) + 2
T�1X
j=1

�
1� j

T

�
G;0 (j) ; (10)

where G;0 (j) = b1=2E
�
�1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-order autocovariance

of the stationary process
�
b1=4�tKG(x=b+1;b) (Xt)

	
. For the �rst term on the right-hand side of (10),

by the law of iterated expectations and Lemma B1,

G;0 (0) = b1=2E
n
�2 (X1)K

2
G(x=b+1;b) (X1)

o
= b1=2Ab;2 (x)E

�
�2 (�2;x) f (�2;x)

	
= b1=2

�
b�1=2x�1=2

2
p
�

+ o
�
b�1=2

��
E
�
�2 (�2;x) f (�2;x)

	
;
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where �2;x
d
= G (2x=b+ 1; b=2). Taking a Taylor expansion of �2 (�2;x) f (�2;x) around �2;x = x and

using Lemma B2, we have E
�
�2 (�2;x) f (�2;x)

	
= �2 (x) f (x) +O (b) so that

G;0 (0) =
x�1=2

2
p
�
�2 (x) f (x) + o (1) :

On the other hand, for a constant a satisfying (A4�), pick a sequence d0T =
�
b�(1�2=�)=(2a)

�
.

Then, the second term on the right-hand side of (10) is bounded by������
T�1X
j=1

�
1� j

T

�
G;0 (j)

������ �
d0T�1X
j=1

��G;0 (j)��+ T�1X
j=d0T

��G;0 (j)�� � U1 + U2:

For U1, using �t = � (Yt)� E f� (Yt)jXtg and the law of iterated expectations gives

��G;0 (j)�� � b1=2
�
E
�
E ( j� (Y1)� (Y1+j)jjX1; X1+j)KG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
+E

�
E ( j� (Y1)jjX1; X1+j)E ( j� (Y1+j)jjX1+j)KG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
+E

�
E ( j� (Y1)jjX1)E ( j� (Y1+j)jjX1; X1+j)KG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
+E

�
E ( j� (Y1)jjX1)E ( j� (Y1+j)jjX1+j)KG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	�
� b1=2 (U11 + U12 + U13 + U14) :

As indicated in the proof of Lemma B2, G (x=b+ 1; b) has moments of any nonnegative integer order,

and all these moments are O (1). Then, by (A2) and (A3),

U11 =

Z 1

0

Z 1

0

E f j� (Y1)� (Y1+j)jjX1 = u;X1+j = vg

�KG(x=b+1;b) (u)KG(x=b+1;b) (v) f1;1+j (u; v) dudv

� c

Z 1

0

Z 1

0

(�0 + �1u
m + �2v

n)KG(x=b+1;b) (u)KG(x=b+1;b) (v) dudv

= O (1) :

In addition, using (a conditional moment version of) Hölder�s inequality,

E f j� (Yt)jjXt = ug = E f j� (Yt) � 1jjXt = ug � E1=�
n
j� (Yt)j�

���Xt = u
o
� 1:

Without loss of generality, assume �0 � 1 so that �0 + �1u
l � max

h
1; E

n
j� (Yt)j�

���Xt = u
oi
.

Then, (A3) implies that

E f j� (Yt)jjXt = ug �
�
�0 + �1u

l
�1=� � �0 + �1u

l: (11)
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Using (11), (A2) and (A3), we have

U12 =

Z 1

0

Z 1

0

E f j� (Y1)jjX1 = u;X1+j = vgE f j� (Y1+j)jjX1+j = vg

�KG(x=b+1;b) (u)KG(x=b+1;b) (v) f1;1+j (u; v) dudv

� c

Z 1

0

Z 1

0

(�0 + �1u
m + �2v

n)
�
�0 + �v

l
�
KG(x=b+1;b) (u)KG(x=b+1;b) (v) dudv

= O (1) :

Similarly, U13 � O (1) can be shown. Furthermore, by (11) and (A2),

U14 =

Z 1

0

Z 1

0

E f j� (Y1)jjX1 = ugE f j� (Y1+j)jjX1+j = vg

�KG(x=b+1;b) (u)KG(x=b+1;b) (v) f1;1+j (u; v) dudv

� c

�Z 1

0

�
�0 + �1u

l
�
KG(x=b+1;b) (u) du

�2
= O (1) :

Hence,
��G;0 (j)�� � O

�
b1=2

�
, which establishes that

U1 � O
�
d0T b

1=2
�
= O

�
bfa�(1�2=�)g=(2a)

�
! 0:

For U2, we can apply Davydov�s lemma (Corollary A.2 in Hall and Heyde, 1980) to obtain

��G;0 (j)�� � 8 f� (j)g1�2=� �E ���b1=4�1KG(x=b+1;b) (X1)
�����2=� :

To �nd the bound for E
��b1=4�1KG(x=b+1;b) (X1)

���, note that since g (z) = z� (z � 0) is increasing

and convex,

jx� yj� � (jxj+ jyj)�

=

��
1

2

�
(2 jxj) +

�
1

2

�
(2 jyj)

��
�

�
1

2

�
(2 jxj)� +

�
1

2

�
(2 jyj)�

= 2��1
�
jxj� + jyj�

�
:

Substituting x = � (Y1) and y = E f� (Y1)jX1g yields

j�1j� � 2��1
h
j� (Y1)j� + jE f� (Y1)jX1gj�

i
� 2��1

h
j� (Y1)j� + E� f j� (Y1)jjX1g

i
: (12)
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Then, we have

E
���b1=4�1KG(x=b+1;b) (X1)

���� � cb�=4
�Z 1

0

E
n
j� (Y1)j�

���X1 = u
o
K�
G(x=b+1;b) (u) f (u) du

+

Z 1

0

E� f j� (Y1)jjX1 = ugK�
G(x=b+1;b) (u) f (u) du

�
� cb�=4 (U21 + U22) :

Again, as argued in the proof of Lemma B2, G (�x=b+ 1; b=�) has moments of any nonnegative

integer order and all these moments are O (1). Then, it follows from Lemma B1, (A2), (A3), and

(11) that each of U21 and U22 is bounded by

cAb;� (x)

Z 1

0

�
�0 + �1u

l
�
KG(�x=b+1;b=�) (u) du � O fAb;� (x)g = O

�
b(1��)=2

�
:

Therefore, E
��b1=4�1KG(x=b+1;b) (X1)

��� � O
�
b1=2��=4

�
, and thus

U2 � O
�
b1=��1=2

� T�1X
j=d0T

f� (j)g1�2=� � O
�
b�(1�2=�)=2

�
d�a0T

1X
j=d0T

ja f� (j)g1�2=� ! 0;

because O
�
b�(1�2=�)=2

�
d�a0T = O (1), d0T ! 1, and

P1
j=1 j

a f� (j)g1�2=� < 1. This completes

the proof of this part.

Remark. We can demonstrate (7) even after replacing (A4�) by a weaker condition (A4).

Observe that given (A4) and d0T =
�
b�(1�2=�)=(2a)

�
, each of U1 and U2 still becomes o (1).

(ii) Proof of (8). We have

V ar
np

b1=2Tb�1=2T �G;1 (x)
o

= V ar

(
1p
T

TX
t=1

b�1=4 (Xt � x) �tKG(x=b+1;b) (Xt)

)

� G;1 (0) + 2
T�1X
j=1

�
1� j

T

�
G;1 (j) ; (13)

where G;1 (j) = b�1=2E
�
(X1 � x) (X1+j � x) �1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-

order autocovariance of the stationary process
�
b�1=4 (Xt � x) �tKG(x=b+1;b) (Xt)

	
. By the law of

iterated expectations and Lemma B1, the �rst term on the right-hand side of (13) reduces to

G;1 (0) = b�1=2E
n
(X1 � x)2 �2 (X1)K

2
G(x=b+1;b) (X1)

o
= b�1=2Ab;2 (x)E

n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
= b�1=2

�
b�1=2x�1=2

2
p
�

+ o
�
b�1=2

��
E
n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
;
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where �2;x
d
= G (2x=b+ 1; b=2). By a Taylor expansion and Lemma B2, we have

E
n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
=

�
xb+ b2

2

�
�2 (x) f (x) +O

�
b2
�

so that

G;1 (0) =
x1=2

4
p
�
�2 (x) f (x) + o (1) :

On the other hand, the second term on the right-hand side of (13) is bounded by������
T�1X
j=1

�
1� j

T

�
G;1 (j)

������ �
d1T�1X
j=1

��G;1 (j)��+ T�1X
j=d1T

��G;1 (j)�� � V1 + V2;

where the sequence d1T is de�ned as d1T =
�
b�3(1�2=�)=(2a)

�
for a constant a satisfying (A4�). For

V1, the same logic as in part (i) yields

��G;1 (j)�� � b�1=2E
�
E f j� (Y1)� (Y1+j)jjX1; X1+jg jX1 � xjKG(x=b+1;b) (X1)

� jX1+j � xjKG(x=b+1;b) (X1+j)
�

+b�1=2E
�
E f j� (Y1)jjX1; X1+jg jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�

+b�1=2E
�
E f j� (Y1)jjX1g jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1; X1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�

+b�1=2E
�
E f j� (Y1)jjX1g jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�

� V11 + V12 + V13 + V14:

Observe that by (A2), we have f�1 (u) � m�1
1 so that

f1;1+j (u; v)

f (u) f (v)
� M2

m2
1

) f1;1+j (u; v) � cf (u) f (v) : (14)

Using (A3),

V11 � cb�1=2
��Z 1

0

(�0 + �1u
m) ju� xjKG(x=b+1;b) (u) f (u) du

��Z 1

0

jv � xjKG(x=b+1;b) (v) f (v) dv

�
+

�Z 1

0

�2v
n jv � xjKG(x=b+1;b) (v) f (v) dv

��Z 1

0

ju� xjKG(x=b+1;b) (u) f (u) du

��
� cb�1=2 (V111V112 + V113V114) :
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The Cauchy-Schwarz inequality implies that

V111 �
�
�0

Z 1

0

(u� x)2KG(x=b+1;b) (u) f (u) du+ �1

Z 1

0

um (u� x)2KG(x=b+1;b) (u) f (u) du

�1=2
�
�Z 1

0

(�0 + �1u
m)KG(x=b+1;b) (u) f (u) du

�1=2
� (�0V1111 + �1V1112)

1=2
V
1=2
1113:

By a Taylor expansion and Lemma B2, we have V1111 = O (b) and V1112 = O (b). In addition,

V1113 = O (1), and thus V111 � O
�
b1=2

�
. Similarly, each of V112, V113 and V114 is at most O

�
b1=2

�
.

Hence, V11 � O
�
b1=2

�
. Applying the same procedure, we can also demonstrate that each of V12,

V13 and V14 is bounded by O
�
b1=2

�
. Hence, we can conclude that

��G;1 (j)�� � O
�
b1=2

�
, which

establishes that

V1 � O
�
d1T b

1=2
�
= O

�
bfa�3(1�2=�)g=(2a)

�
! 0:

For V2, we can apply again Davydov�s lemma to obtain

��G;1 (j)�� � 8 f� (j)g1�2=� �E ���b�1=4 (X1 � x) �1KG(x=b+1;b) (X1)
�����2=� :

It follows from (11), (12), (14), and Lemma B1 that

E
���b�1=4 (X1 � x) �1KG(x=b+1;b) (X1)

����
� cb��=4

�Z 1

0

ju� xj� E
n
j� (Y1)j�

���X1 = u
o
K�
G(x=b+1;b) (u) f (u) du

+

Z 1

0

ju� xj� E� f j� (Y1)jjX1 = ugK�
G(x=b+1;b) (u) f (u) du

�
� cb��=4Ab;� (x)

Z 1

0

ju� xj�
�
�0 + �1u

l
�
KG(�x=b+1;b=�) (u) f (u) du

� cb��=4Ab;� (x)V21:

By the Cauchy-Schwarz inequality,

V21 �
�
�0

Z 1

0

ju� xj2�KG(�x=b+1;b=�) (u) f (u) du+ �1

Z 1

0

ul ju� xj2�KG(�x=b+1;b=�) (u) f (u) du

�1=2
�
�Z 1

0

�
�0 + �1u

l
�
KG(�x=b+1;b=�) (u) f (u) du

�1=2
� (�0V211 + �1V212)

1=2
V
1=2
213 :

Recall that 2� > 4. Hence, by Lemma B2, each of V211 and V212 is at most O
�
b2
�
. Clearly,
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V213 = O (1), and thus we have V21 � O (b) so that

E
���b�1=4 (X1 � x) �1KG(x=b+1;b) (X1)

���� � b��=4O
�
b(1��)=2

�
O (b) = O

�
b3=2�3�=4

�
:

Therefore,

V2 � O
�
b3=��3=2

� T�1X
j=d1T

f� (j)g1�2=� � O
�
b�3(1�2=�)=2

�
d�a1T

1X
j=d1T

ja f� (j)g1�2=� ! 0;

because O
�
b�3(1�2=�)=2

�
d�a1T = O (1), d1T ! 1, and

P1
j=1 j

a f� (j)g1�2=� < 1. This completes

the proof of this part.

(iii) Proof of (9). We have

Cov
np

b1=2TT �G;0 (x) ;
p
b1=2Tb�1=2T �G;1 (x)

o
= Cov

(
1p
T

TX
t=1

b1=4�tKG(x=b+1;b) (Xt) ;
1p
T

TX
t=1

b�1=4 (Xt � x) �tKG(x=b+1;b) (Xt)

)

� G;3 (0) + 2

T�1X
j=1

�
1� j

T

�
G;3 (j) ; (15)

where G;3 (j) = E
�
(X1+j � x) �1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-order cross-

covariance of the stationary processes
�
b1=4�tKG(x=b+1;b) (Xt)

	
and

�
b�1=4 (Xt � x) �tKG(x=b+1;b) (Xt)

	
.

By the law of iterated expectations and Lemma B1, the �rst term on the right-hand side of (15)

reduces to

G;3 (0) = E
n
(X1 � x)�2 (X1)K

2
G(x=b+1;b) (X1)

o
= Ab;2 (x)E

�
(�2;x � x)�2 (�2;x) f (�2;x)

	
=

�
b�1=2x�1=2

2
p
�

+ o
�
b�1=2

��
E
�
(�2;x � x)�2 (�2;x) f (�2;x)

	
;

where �2;x
d
= G (2x=b+ 1; b=2). By a Taylor expansion and Lemma B2, we can see that

E
�
(�2;x � x)�2 (�2;x) f (�2;x)

	
= O (b) ;

and thus G;3 (0) = o
�
b1=2

�
= o (1). On the other hand, applying the same procedures as in parts

(i) and (ii), we can also establish that the second term on the right-hand side of (15) is o (1). This

completes the proof. �
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Lemma A3. If the conditions (A1)-(A3), (A4�), (A5)-(A6) hold, then for interior x,

p
b1=2TQ�G;T

d! N (0; c|VGc) ;
p
b1=2TQ�IG;T

d! N (0; c|VIGc) ;
p
b1=2TQ�RIG;T

d! N (0; c|VRIGc) :

Proof of Lemma A3. We employ the small-block and large-block argument. Partition the set

f1; : : : ; Tg into 2qT + 1 subsets with large block of size rT and small block of sT . Put

qT =

�
T

rT + sT

�
:

Also let &�G;j = c
|Z�G;j , where

Z�G;j =

�
b1=4�j+1KG(x=b+1;b) (Xj+1)

b�1=4 (Xj+1 � x) �j+1KG(x=b+1;b) (Xj+1)

�

for j = 0; : : : ; T � 1. Then, p
b1=2TQ�G;T =

1p
T

T�1X
j=0

&�G;j :

Furthermore, de�ne the random variables, for 0 � j � qT � 1,

��G;j =

j(rT+sT )+rT�1X
i=j(rT+sT )

&�G;i; �
�
G;j =

(j+1)(rT+sT )�1X
i=j(rT+sT )+rT

&�G;i; �
�
G;q =

T�1X
i=qT (rT+sT )

&�G;i:

It follows that

p
b1=2TQ�G;T =

1p
T

0@qT�1X
j=0

��G;j +

qT�1X
j=0

��G;j + �
�
G;q

1A � 1p
T
(QG;T;1 +QG;T;2 +QG;T;3) :

We will show that

1

T
E
�
Q2G;T;2

�
! 0; (16)

1

T
E
�
Q2G;T;3

�
! 0; (17)�����E fexp (itQG;T;1)g � qT�1Q

j=0

E
�
exp

�
it��G;j

�	����� ! 0; (18)

1

T

qT�1X
j=0

E
�
��2G;j

�
! c|VGc; (19)

1

T

qT�1X
j=0

E
h
��2G;j1

n����G;j�� � � (c|VGc)
1=2
p
T
oi

! 0 (20)

for every � > 0. (16) and (17) imply that QG;T:2 and QG;T;3 are asymptotically negligible, (18)

implies that the summands
�
��G;j

	
in QG;T;1 are asymptotically mutually independent, and (19)
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and (20) are the standard Lindeberg-Feller conditions for asymptotic normality of QG;T;1 under

independence. Hence, the lemma follows if we can show (16)-(20).

We �rst choose the block sizes. (A6) implies that a sequence T 2 N such that T ! 1,

T sT =
�
b1=2T

�1=2 ! 0, and T
�
T=b1=2

�1=2
� (sT )! 0 as T !1. De�ne the large-block size rT by

rT =

$�
b1=2T

�1=2
T

%

and the small-block size by sT . It follows that

sT
rT
! 0;

rT
T
! 0;

rT�
b1=2T

�1=2 ! 0;
T

rT
� (sT )! 0 (21)

as T !1. The proofs of (16)-(20) are given subsequently.

(i) Proof of (16). Observe that

E
�
Q2G;T;2

�
=

qT�1X
j=0

V ar
�
��G;j

�
+

qT�1X
i=0

qT�1X
j=0; j 6=i

Cov
�
��G;i; �

�
G;j

�
� F1 + F2:

For F1, it follows from stationarity and Lemma A2 that

F1 = qTV ar

0@ sTX
j=1

&�G;j

1A = qT sT fc|VGc+ o (1)g = O (qT sT ) :

On the other hand, F2 can be further rewritten as

F2 =

qT�1X
i=0

qT�1X
j=0; j 6=i

sT�1X
l1=0

sT�1X
l2=0

Cov
�
��G;mi+l1 ; �

�
G;mj+l2

�
;

where mj = j (rT + sT ) + rT . Since i 6= j, we have j(mi + l1)� (mj + l2)j � rT . Then, by

stationarity,

jF2j � 2
T�rT�1X
l1=0

T�1X
l2=l1+rT

��Cov ���G;l1 ; ��G;l2��� � 2T T�1X
j=rT

��Cov ���G;0; ��G;j��� :
Note that the arguments used in the proof of Lemma A2 imply that

PT�1
j=rT

��Cov ���G;0; ��G;j��� = o (1).

Therefore, jF2j � o (T ), and thus, by (21),

1

T
E
�
Q2G;T;2

�
= O

�qT sT
T

�
+ o (1) = O

�
sT

rT + sT

�
+ o (1)! 0:
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(ii) Proof of (17). Using a similar argument to the one used in the proof of (16), we have, by

(21),

1

T
E
�
Q2G;T;3

�
� 1

T
fT � qT (rT + sT )gV ar

�
&�G;0

�
+ 2

T�1X
j=0

��Cov ���G;0; ��G;j���
= o (1) fc|VGc+ o (1)g+ o (1)! 0:

(iii) Proof of (18). Observe that ��G;a is F
ja
ia
-measurable with ia = a (rT + sT ) + 1 and

ja = a (rT + sT ) + rT . Applying Lemma B3 with Vj = exp
�
it��G;j

�
and (21) yields�����E fexp (itQG;T;1)g � qT�1Q

j=0

E
�
exp

�
it��G;j

�	����� � 16qT� (sT + 1) � 16
�

T

rT + sT

�
� (sT + 1)! 0:

(iv) Proof of (19). By stationarity and Lemma A2, we have

E
�
��2G;j

�
= V ar

�
��G;j

�
= rT fc|VGc+ o (1)g :

Therefore, by (21),

1

T

qT�1X
j=0

E
�
��2G;j

�
=
qT rT
T

fc|VGc+ o (1)g �
�

rT
rT + sT

�
c|VGc! c|VGc:

(v) Proof of (20). We employ a truncation argument because �j is not necessarily bounded.

Let �Lj = �j1 fj�j j � Lg for some �xed truncation point L > 0. Also let &�LG;j = c|Z�LG;j , where

Z�LG;j =

�
b1=4�Lj+1KG(x=b+1;b) (Xj+1)

b�1=4 (Xj+1 � x) �Lj+1KG(x=b+1;b) (Xj+1)

�
:

Furthermore, de�ne

Q�LG;T =
1

b1=4T

T�1X
j=0

&�LG;j ; �
�L
G;j =

j(rT+sT )+rT�1X
i=j(rT+sT )

&�LG;i:

In addition, let ~&�LG;j = c
|~Z�LG;j , where

~Z�LG;j =

�
b1=4~�Lj+1KG(x=b+1;b) (Xj+1)

b�1=4 (Xj+1 � x)~�Lj+1KG(x=b+1;b) (Xj+1)

�

and ~�Lj = �j1 fj�j j > Lg. Finally, de�ne

~Q�LG;T =
1

b1=4T

T�1X
j=0

~&�LG;j

so that Q�G;T = Q�LG;T +
~Q�LG;T .
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Since both KG(x=b+1;b) (u) and uKG(x=b+1;b) (u) are bounded above, we have

��(Xj+1 � x)KG(x=b+1;b) (Xj+1)
�� <1 (22)

for j = 0; : : : ; T � 1 so that
��&�LG;j�� � cLb�1=4. Then,

����LG;j�� � cLrT b
�1=4; (23)

and thus, by (21), ����LG;j��p
T

� c
rTp
b1=2T

! 0:

It follows that

Pr
n����LG;j�� � � (c|VGc)

1=2
p
T
o
= 0 (24)

at all j for su¢ ciently large T . Then, applying (23) and (24), we have

1

T

qT�1X
j=0

E
h����LG;j��2 1n����LG;j�� � � (c|VGc)

1=2
p
T
oi

� c

�
rTp
b1=2T

�2 qT�1X
j=0

Pr
n����LG;j�� � � (c|VGc)

1=2
p
T
o
! 0:

In other words, (20) holds for the truncated variables. Consequently, we have the following asymp-

totic normality result p
b1=2TQ�LG;T =

1p
T

T�1X
j=0

&�LG;j
d! N

�
0; c|VL

Gc
�
; (25)

where VL
G = V ar

�
Z�LG;j

��Xj = x
�
.

The remaining task for establishing (20) is to show that as �rst T !1 and then L!1,

b1=2TV ar
�
~Q�LG;T

�
! 0: (26)

Indeed,

����E nexp�itpb1=2TQ�G;T�o� exp�� t22 c|VGc

�����
�

����E nexp�itpb1=2TQ�LG;T�o� exp�� t22 c|VL
Gc

�����+ ���E nexp�itpb1=2T ~Q�LG;T�o� 1���
+

����exp�� t22 c|VL
Gc

�
� exp

�
� t

2

2
c|VGc

�����
� E1 + E2 + E3:
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By (25), E1 ! 0 as T ! 0 for every L > 0. E3 ! 0 as �rst T ! 1 and then L ! 1, because

VL
G ! V ar

�
Z�G;j

��Xj = x
�
= VG by the dominated convergence theorem. We can also see that

E2 ! 0 as �rst T !1 and then L!1, if (26) holds. Now,

lim
T!1

b1=2TV ar
�
~Q�LG;T

�
= c|V ar

�
~Z�LG;j

���Xj = x
�
c = c|V ar

�
Z�G;j1 fj�j j > Lg

��Xj = x
�
c! 0

as L!1 by the dominated convergence theorem. This completes the proof. �

A.1.1 Proof of Theorem 1

Lemma A3 implies that

p
b1=2T

(
1

T

TX
t=1

KG(x=b+1;b) (Xt) �t

)
d! N

�
0;
�2 (x) f (x)

2
p
�x1=2

�
:

Also, de�ne

~mnw
G (x) =

PT
t=1KG(x=b+1;b) (Xt)m (Xt)PT

t=1KG(x=b+1;b) (Xt)
= S�1G;0 (x)

(
1

T

TX
t=1

KG(x=b+1;b) (Xt)m (Xt)

)
:

Then, by the de�nitions of m̂nw
G (x) and �t,

m̂nw
G (x)� ~mnw

G (x) = S�1G;0 (x)

(
1

T

TX
t=1

KG(x=b+1;b) (Xt) �t

)
:

Therefore, by Slutsky�s lemma and Lemma A1, we have

p
b1=2T fm̂nw

G (x)� ~mnw
G (x)g d! N

�
0;

1

2
p
�x1=2

�2 (x)

f (x)

�
: (27)

In addition, a second-order Taylor expansion yields

~mnw
G (x) = m (x) +m0 (x)S�1G;0 (x)SG;1 (x) +

m00 (x)

2
S�1G;0 (x)SG;2 (x) +Op fSG;3 (x)g ; (28)

where

SG;1 (x) = ff (x) + xf 0 (x)g b+ op (b) ; SG;2 (x) = xf (x) b+ op (b) ; SG;3 (x) = Op
�
b2
�

(29)

by Lemma B2 and the ergodic theorem. Substituting (29) into (28) and using Lemma A1 and (A7),

we can see that the left-hand side of (27) can be approximated by

p
b1=2T fm̂nw

G (x)� ~mnw
G (x)g

=
p
b1=2T

�
m̂nw
G (x)�m (x)�

�
m0 (x)

�
1 +

xf 0 (x)

f (x)

�
+
1

2
xm00 (x)

�
b+ op (b)

�
=

p
b1=2T

�
m̂nw
G (x)�m (x)�

�
m0 (x)

�
1 +

xf 0 (x)

f (x)

�
+
1

2
xm00 (x)

�
b

�
+ op (1) :

31



This completes the proof. �

A.1.2 Proof of Theorem 2

Lemma A3 and the Cramér-Wald device imply that
p
b1=2T t�G;T

d! N (02;VG), where 02 is the

2� 1 zero vector. Also, de�ne

~�G (x) =

(
1

T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

� �
1 Xt � x

�)�1( 1
T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

�
m (Xt)

)
:

Then, by the de�nitions of �̂G (x) and �t,�
1 0
0 b1=2

�n
�̂G (x)� ~�G (x)

o
=

�
1 0
0 b�1=2

��1(
1

T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

� �
1 Xt � x

�)�1

�
(
1

T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

�
�t

)

=

�
1 0
0 b�1=2

��1(
1

T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

� �
1 Xt � x

�)�1

�
�
1 0
0 b�1=2

��1 �
1 0
0 b�1=2

�(
1

T

TX
t=1

KG(x=b+1;b) (Xt)

�
1

Xt � x

�
�t

)
= S�1G;T t

�
G;T :

Therefore, by Slutsky�s lemma and Lemma A1, we have

p
b1=2T

�
1 0
0 b1=2

�n
�̂G (x)� ~�G (x)

o
d! N

�
02;S

�1
G VGS

�1
G

�
: (30)

In addition, a second-order Taylor expansion yields

~�G (x)

= � (x) +
m00 (x)

2

�
1 0
0 b�1=2

�
S�1G;T

�
1 0
0 b�1=2

� �
SG;2 (x)
SG;3 (x)

�
+

�
Op fSG;3 (x)g

Op
�
b�1SG;4 (x)

	 � ;(31)
where

SG;2 (x) = xf (x) b+ op (b) ; SG;3 (x) = Op
�
b2
�
; SG;4 (x) = Op

�
b2
�

(32)
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by Lemma B2 and the ergodic theorem. Substituting (32) into (31) and using Lemma A1 and (A7),

the left-hand side of (30) can be approximated by

p
b1=2T

�
1 0
0 b1=2

�n
�̂G (x)� ~�G (x)

o
=

p
b1=2T

�
1 0
0 b1=2

��
�̂G (x)� � (x)�

m00 (x)

2

�
xb

Op (b)

�
+

�
op (b)
Op (b)

��
;

where
p
b1=2Top (b) = op

�p
b5=2T

�
= op (1), and

p
b1=2Tb1=2Op (b) = b1=2Op

�p
b5=2T

�
= op (1).

Therefore, (30) can be rewritten as

Tb;1

�
�̂G (x)� � (x)�

�
1
2xm

00 (x) b
0

��
+

�
op (1)
op (1)

�
d! N

��
0
0

�
;

�
1 0
0 1

2x

�
VG

�

by letting Tb;1 =
p
b1=2T

�
1 0
0 b1=2

�
, and VG = 1

2
p
�x1=2

�2(x)
f(x) . This completes the proof. �

A.2 Proof of Theorem 3

The proof of Theorem 3 requires the following three lemmata. Before proceeding, we introduce

some additional notation. For interior x, de�ne

bG;t (x) =

�
1 + 4

p
�

�
1

x1=2
+
x1=2f 0 (x)

f (x)

�
b1=2 (Xt � x)KG(x=b+1;b) (Xt)

��1
;

bIG;t (x) =

�
1 + 4

p
�x3=2

f 0 (x)

f (x)
b1=2 (Xt � x)KIG(x;1=b) (Xt)

��1
;

bRIG;t (x) =

�
1 + 4

p
�x1=2

f 0 (x)

f (x)
b1=2 (Xt � x)KRIG(1=(x�b);1=b) (Xt)

��1
:

For such bt (x) depending on a particular asymmetric kernel Kx;b (u), let

J1 =
1p
T

TX
t=1

b1=4bt (x) �tKx;b (Xt) :

Lemma A4. If the conditions (A1)-(A5) hold, then for interior x,

V ar (JG;1)!
�2 (x) f (x)

2
p
�x1=2

; V ar (JIG;1)!
�2 (x) f (x)

2
p
�x3=2

; V ar (JRIG;1)!
�2 (x) f (x)

2
p
�x1=2

:

Proof of Lemma A4. It follows from (22) that bG;t (x) = 1 + op (1). Then, applying the same

arguments which are used to establish (7), we obtain the stated results. �
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Lemma A5. Let

Wj (x) =
1

T

TX
t=1

(Xt � x)j Kj
x;b (Xt) ; j 2 N:

If the conditions (A1)-(A5) hold, then for interior x,

WG;1 (x) = ff (x) + xf 0 (x)g b+ op (b) ;WG;2 (x) =
x1=2f (x)

4
p
�

b1=2 + op

�
b1=2

�
;WG;3 (x) = Op (b) ;

WIG;1 (x) = x3=2f 0 (x) b+ op (b) ;WIG;2 (x) =
x3=2f (x)

4
p
�

b1=2 + op

�
b1=2

�
;WIG;3 (x) = Op (b) ;

WRIG;1 (x) = xf 0 (x) b+ op (b) ;WRIG;2 (x) =
x1=2f (x)

4
p
�

b1=2 + op

�
b1=2

�
;WRIG;3 (x) = Op (b) :

Proof of Lemma A5. Using Lemma B1,

E fWG;j (x)g = E
n
(X1 � x)j Kj

G(x=b+1;b) (X1)
o
= Ab;j (x)E

n
(�j;x � x)j f (�j;x)

o
;

where �j;x
d
= G (jx=b+ 1; b=j). Taking a second-order Taylor expansion and using Lemma B2, we

have, for interior x,

E fWG;1 (x)g = E fSG;1 (x)g = ff (x) + xf 0 (x)g b+ o (b) ;

E fWG;2 (x)g = Ab;2 (x)

��
xb+ b2

2

�
f (x) +O

�
b2
��
=
x1=2f (x)

4
p
�

b1=2 + o
�
b1=2

�
;

E fWG;3 (x)g = Ab;3 (x)O
�
b2
�
= O (b) :

Finally, the ergodic theorem establishes the results. �

Lemma A6. If the conditions (A1)-(A5) hold, then for interior x,

�G = �G (x) = 4
p
�

�
1

x1=2
+
x1=2f 0 (x)

f (x)

�
b1=2 f1 + op (1)g ;

�IG = �IG (x) = 4
p
�x3=2

f 0 (x)

f (x)
b1=2 f1 + op (1)g ;

�RIG = �RIG (x) = 4
p
�x1=2

f 0 (x)

f (x)
b1=2 f1 + op (1)g ;

so that pt (x) = T�1bt (x) f1 + op (1)g for bt (x) depending on a particular asymmetric kernel

Kx;b (u).

Proof of Lemma A6. It follows from (22) that we can pick some constant MG > 0 such that

sup
0�j�T�1

��(Xj+1 � x)KG(x=b+1;b) (Xj+1)
�� �MG <1:
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Then, applying expression (6.4) in Chen and Hall (1993) and using Lemma A2, we have

j�Gj �
jWG;1 (x)j

jWG;2 (x)j �MG jWG;1 (x)j
= Op

�
b1=2

�
:

Furthermore, a second-order Taylor expansion of the right-hand side of

0 =
1

T

TX
t=1

(Xt � x)KG(x=b+1;b) (Xt)

1 + �G (Xt � x)KG(x=b+1;b) (Xt)

around �G = 0 gives

0 =WG;1 (x)� �GWG;2 (x) + ��
2
GWG;3 (x)

for some ��G joining �G and 0. Since ��G is a convex combination of �G and 0, we have ��G = Op
�
b1=2

�
so that ��

2
GWG;3 (x) = Op

�
b2
�
by Lemma A5. Therefore, substituting the results in Lemma A5 yields

�G =
WG;1 (x)

WG;2 (x)
+ ��

2
G

WG;3 (x)

WG;2 (x)
= 4

p
�

�
1

x1=2
+
x1=2f 0 (x)

f (x)

�
b1=2 f1 + op (1)g+Op

�
b3=2

�
;

and pG;t (x) = T�1bG;t (x) f1 + op (1)g by (3). �

A.2.1 Proof of Theorem 3

It follows from Lemma A6 that

m̂rnw
G (x)�m (x) =

PT
t=1 f� (Yt)�m (x)g pG;t (x)KG(x=b+1;b) (Xt)PT

t=1 pG;t (x)KG(x=b+1;b) (Xt)

�
��

b1=2T
��1=2

JG;1 + JG;2

�
J�1G;3 f1 + op (1)g ;

where

JG;2 =
1

T

TX
t=1

fm (Xt)�m (x)g bG;t (x)KG(x=b+1;b) (Xt) ;

JG;3 =
1

T

TX
t=1

bG;t (x)KG(x=b+1;b) (Xt) :

To approximate JG;2, note that

1

T

TX
t=1

(Xt � x)2KG(x=b+1;b) (Xt) = SG;2 (x) = xf (x) b+ op (b) :

Then, taking a second-order Taylor expansion and using (2) and bG;t (x) = 1 + op (1), we have

JG;2 =
1

T

TX
t=1

m00 (x)

2
(Xt � x)2 bG;t (x)KG(x=b+1;b) (Xt) +Op fSG;3 (x)g

=
1

2
xm00 (x) f (x) b+ op (b) :
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Similarly, JG;3 = f (x) + op (1). Therefore,

p
b1=2T

�
m̂rnw
G (x)�m (x)� 1

2
xm00 (x) b

�
= f�1 (x) JG;1 + op (1) :

Finally, demonstrating the asymptotic normality of the right-hand side closely follows the arguments

used in the proof of Lemma A3, and thus the details are omitted. �

A.3 Proofs of Theorems 4 and 5

The proofs of Theorems 4 and 5 require the following three lemmata.

Lemma A7. Let

SyG;T =

�
SG;0 (x) b�1SG;1 (x)

b�1SG;1 (x) b�2SG;2 (x)

�
;

SyIG;T =

�
SIG;0 (x) b�2SIG;1 (x)

b�2SIG;1 (x) b�4SIG;2 (x)

�
;

SyRIG;T =

�
SRIG;0 (x) b�1SRIG;1 (x)

b�1SRIG;1 (x) b�2SRIG;2 (x)

�
:

If the conditions (A1)-(A5) hold, then for boundary x,

SyG;T
p! SyG (�) =

�
1 1
1 �+ 2

�
f (x) ; (33)

SyIG;T
p! SyIG (�) =

�
1 0
0 �3

�
f (x) ; (34)

SyRIG;T
p! SyRIG (�) =

�
1 0
0 �+ 1

�
f (x) : (35)

Proof of Lemma A7. Following the argument used in the proof of Lemma A1 and applying

Lemma B2, we have

E fSG;0 (x)g = f (x) +O (b) ;

E fSG;1 (x)g = f (x) b+O
�
b2
�
;

E fSG;2 (x)g = (�+ 2) f (x) b2 + o
�
b2
�
;

since x = �b+ o (b). Then, invoking the ergodic theorem establishes the results. �

36



Lemma A8. Let

tyT =

8>>>><>>>>:

�
T �0 (x)

b�1T �1 (x)

�
for the Gamma and RIG kernels

�
T �0 (x)

b�2T �1 (x)

�
for the IG kernel,

where T �0 (x) and T �1 (x) are de�ned in Lemma A2. Also, for an arbitrary vector c 2 R2, de�ne

QyT = c
|tyT . If the conditions (A1)-(A3), (A4�), (A5) hold, then for boundary x,

V ar
�p

bTQyG;T

�
! c|Vy

G (�) c

= c|
��

1 1
2

1
2

�+1
2

�
� (2�+ 1)

22�+1�2 (�+ 1)
�2 (x) f (x)

�
c;

V ar
�p

b2TQyIG;T

�
! c|Vy

IG (�) c

= c|

("
1

2
p
��3=2

0

0 �3=2

4
p
�

#
�2 (x) f (x)

)
c;

V ar
�p

bTQyRIG;T

�
! c|Vy

RIG (�) c

= c|
�
�y (�)�2 (x) f (x)

	
c;

where �y (�) = 1
2
p
�

�
��1=2 + 7

16�
�3=2 + 3

32�
�5=2 � 3

4�
�1=2 � 1

8�
�3=2 + 3

64�
�5=2

� 3
4�

�1=2 � 1
8�

�3=2 + 3
64�

�5=2 1
2�

1=2 + 17
32�

�1=2 + 23
64�

�3=2 + 33
128�

�5=2

�
.

Proof of Lemma A8. It su¢ ces to demonstrate that

V ar
np

bTT �G;0 (x)
o

=
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) ; (36)

V ar
np

bTb�1T �G;1 (x)
o

=

�
�+ 1

2

�
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) ; (37)

Cov
np

bTT �G;0 (x) ;
p
bTb�1T �G;1 (x)

o
=

�
1

2

�
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) : (38)

(i) Proof of (36). We have

V ar
np

bTT �G;0 (x)
o

= V ar

(
1p
T

TX
t=1

b1=2�tKG(x=b+1;b) (Xt)

)

� yG;0 (0) + 2
T�1X
j=1

�
1� j

T

�
yG;0 (j) ; (39)

where yG;0 (j) = bE
�
�1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-order autocovariance of

the stationary process
�
b1=2�tKG(x=b+1;b) (Xt)

	
. Lemma B1 implies that the �rst term on the

right-hand side of (39) reduces to

yG;0 (0) = bAb;2 (x)E
�
�2 (�2;x) f (�2;x)

	
= b

�
b�1� (2�+ 1)

22�+1�2 (�+ 1)
+ o

�
b�1
��

E
�
�2 (�2;x) f (�2;x)

	
;
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where �2;x
d
= G (2x=b+ 1; b=2). Since E

�
�2 (�2;x) f (�2;x)

	
= �2 (x) f (x) + O (b) for boundary x,

we have

yG;0 (0) =
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) :

On the other hand, for a constant a satisfying (A4�), pick a sequence dy0T =
�
b�(1�2=�)=a

�
. Then,

the second term on the right-hand side of (39) is bounded by������
T�1X
j=1

�
1� j

T

�
yG;0 (j)

������ �
dy0T�1X
j=1

���yG;0 (j)���+ T�1X
j=dy0T

���yG;0 (j)��� � Uy1 + U
y
2 :

For Uy1 ,
���yG;0 (j)��� � b (U11 + U12 + U13 + U14), where U11, U12, U13, and U14 are de�ned in the proof

of Lemma A2. It is demonstrated in Lemma A2 that each of U11, U12, U13, and U14 is bounded by

O (1), and thus
���yG;0 (j)��� � O (b), which establishes that

Uy1 � O
�
dy0T b

�
= O

�
bfa�(1�2=�)g=a

�
! 0:

For U2, by Davydov�s lemma,

���yG;0 (j)��� � 8 f� (j)g1�2=� �E ���b1=2�1KG(x=b+1;b) (X1)
�����2=� ;

where E
��b1=2�1KG(x=b+1;b) (X1)

��� � cb�=2 (U21 + U22), and U21 and U22 are de�ned in the proof of

Lemma A2. Applying the same arguments as in the proof of Lemma A2, it can be shown that each

of U21 and U22 is bounded by O fAb;� (x)g = O
�
b1��

�
: Therefore, E

��b1=4�1KG(x=b+1;b) (X1)
��� �

O
�
b1��=2

�
, and thus

Uy2 � O
�
b2=��1

� T�1X
j=dy0T

f� (j)g1�2=� � O
�
b�(1�2=�)

�
dy�a0T

1X
j=dy0T

ja f� (j)g1�2=� ! 0;

because O
�
b�(1�2=�)

�
dy�a0T = O (1), dy0T !1, and

P1
j=1 j

a f� (j)g1�2=� <1. This completes the

proof of this part.

Remark. As before, (36) can be demonstrated even after replacing (A4�) by the weaker condi-

tion (A4). Observe that given (A4) and dy0T =
�
b�(1�2=�)=a

�
, it can be shown that each of Uy1 and

Uy2 is still o (1).
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(ii) Proof of (37). We have

V ar
np

bTb�1T �G;1 (x)
o

= V ar

(
1p
T

TX
t=1

b�1=2 (Xt � x) �tKG(x=b+1;b) (Xt)

)

� yG;1 (0) + 2
T�1X
j=1

�
1� j

T

�
yG;1 (j) ; (40)

where yG;1 (j) = b�1E
�
(X1 � x) (X1+j � x) �1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-

order autocovariance of the stationary process
�
b�1=2 (Xt � x) �tKG(x=b+1;b) (Xt)

	
. By Lemma B1,

the �rst term on the right-hand side of (40) reduces to

yG;1 (0) = b�1Ab;2 (x)E
n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
= b�1

�
b�1� (2�+ 1)

22�+1�2 (�+ 1)
+ o

�
b�1
��

E
n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
;

where �2;x
d
= G (2x=b+ 1; b=2). Using a Taylor expansion and Lemma B2 and noting that x =

�b+ o (b) for boundary x, we have

E
n
(�2;x � x)2 �2 (�2;x) f (�2;x)

o
=

�
�+ 1

2

�
�2 (x) f (x) b2 + o

�
b2
�

so that

yG;1 (0) =

�
�+ 1

2

�
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) :

On the other hand, the second term on the right-hand side of (40) is bounded by������
T�1X
j=1

�
1� j

T

�
yG;1 (j)

������ �
dy1T�1X
j=1

���yG;1 (j)���+ T�1X
j=dy1T

���yG;1 (j)��� � V y1 + V
y
2 ;

where the sequence dy1T is de�ned as d
y
1T =

�
b�3(1�2=�)=a

�
for a constant a satisfying (A4�).
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To �nd the bound for V y1 , we have
���yG;1 (j)��� � V y11 + V

y
12 + V

y
13 + V

y
14, where

V y11 = b�1E
�
E f j� (Y1)� (Y1+j)jjX1; X1+jg jX1 � xjKG(x=b+1;b) (X1)

� jX1+j � xjKG(x=b+1;b) (X1+j)
�
;

V y12 = b�1E
�
E f j� (Y1)jjX1; X1+jg jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�
;

V y13 = b�1E
�
E f j� (Y1)jjX1g jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1; X1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�
;

V y14 = b�1E
�
E f j� (Y1)jjX1g jX1 � xjKG(x=b+1;b) (X1)

�E f j� (Y1+j)jjX1+jg jX1+j � xjKG(x=b+1;b) (X1+j)
�
:

Note that V y11 � cb�1 (V111V112 + V113V114), where V111, V112, V113, and V114 are de�ned in

the proof of Lemma A2. Moreover, V111 � (�0V1111 + �1V1112)
1=2

V
1=2
1113 by the Cauchy-Schwarz

inequality, where V1111, V1112 and V1113 are again de�ned in the proof of Lemma A2. By a Taylor

expansion and Lemma B2, together with x = �b + o (b), we have V1111 = O
�
b2
�
and V1112 =

O
�
bm+2

�
. In addition, V1113 = O (1), and thus V111 � O (b). Similarly, each of V112, V113 and V114

is at most O (b). Hence, V y11 � O (b). Applying the same argument, it can also be demonstrated

that each of V y12, V
y
13 and V

y
14 is bounded by O (b). Hence, we can conclude that

���yG;1 (j)��� � O (b),

which establishes that

V y1 � O
�
dy1T b

�
= O

�
bfa�3(1�2=�)g=a

�
! 0:

For V2, Davydov�s lemma implies that���yG;1 (j)��� � 8 f� (j)g1�2=� �E ���b�1=2 (X1 � x) �1KG(x=b+1;b) (X1)
�����2=� ;

where E
��b�1=2 (X1 � x) �1KG(x=b+1;b) (X1)

��� � cb��=2Ab;� (x)V21, and V21 is de�ned in the proof of

Lemma A2. Furthermore, V21 � (�0V211 + �1V212)1=2 V 1=2213 , where

V211 =

Z 1

0

ju� xj2�KG(�x=b+1;b=�) (u) f (u) du;

V212 =

Z 1

0

ul ju� xj2�KG(�x=b+1;b=�) (u) f (u) du;

V213 =

Z 1

0

�
�0 + �1u

l
�
KG(�x=b+1;b=�) (u) f (u) du;
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where 2� > 4. Then, by Lemma B2, V211 and V212 are bounded by O
�
b4
�
and O

�
bl+4

�
, respectively.

Clearly, V213 = O (1), and thus we have V21 � O
�
b2
�
. Hence, E

��b�1=2 (X1 � x) �1KG(x=b+1;b) (X1)
��� �

O
�
b3�3�=2

�
, because Ab;� (x) = O

�
b1��

�
. Therefore,

V y2 � O
�
b6=��3

� T�1X
j=dy1T

f� (j)g1�2=� � O
�
b�3(1�2=�)

�
dy�a1T

1X
j=dy1T

ja f� (j)g1�2=� ! 0;

because O
�
b�3(1�2=�)

�
dy�a1T = O (1), dy1T ! 1, and

P1
j=1 j

a f� (j)g1�2=� < 1. This completes

the proof of this part.

(iii) Proof of (38). We have

Cov
np

bTT �G;0 (x) ;
p
bTb�1T �G;1 (x)

o
= Cov

(
1p
T

TX
t=1

b1=2�tKG(x=b+1;b) (Xt) ;
1p
T

TX
t=1

b�1=2 (Xt � x) �tKG(x=b+1;b) (Xt)

)

� yG;3 (0) + 2
T�1X
j=1

�
1� j

T

�
yG;3 (j) ; (41)

where yG;3 (j) = E
�
(X1+j � x) �1�1+jKG(x=b+1;b) (X1)KG(x=b+1;b) (X1+j)

	
is the jth-order cross-

covariance of the stationary processes
�
b1=2�tKG(x=b+1;b) (Xt)

	
and

�
b�1=2 (Xt � x) �tKG(x=b+1;b) (Xt)

	
.

By Lemma B1, the �rst term on the right-hand side of (41) reduces to

yG;3 (0) = E
n
(X1 � x)�2 (X1)K

2
G(x=b+1;b) (X1)

o
= Ab;2 (x)E

�
(�2;x � x)�2 (�2;x) f (�2;x)

	
=

�
b�1� (2�+ 1)

22�+1�2 (�+ 1)
+ o

�
b�1
��

E
�
(�2;x � x)�2 (�2;x) f (�2;x)

	
;

where �2;x
d
= G (2x=b+ 1; b=2). Using a Taylor expansion, Lemma B2 and x = �b + o (b) for

boundary x, we have

E
�
(�2;x � x)�2 (�2;x) f (�2;x)

	
=
b

2
�2 (x) f (x) +O

�
b2
�

so that

yG;3 (0) =

�
1

2

�
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)
+ o (1) :

On the other hand, applying the same procedures as in parts (i) and (ii), we can also establish that

the second term on the right-hand side of (41) is o (1). This completes the proof. �
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Lemma A9. If the conditions (A1)-(A3), (A4�), (A5), (A6�) hold, then for boundary x,

p
bTQyG;T

d! N
�
0; c|Vy

G (�) c
�
;
p
b2TQyIG;T

d! N
�
0; c|Vy

IG (�) c
�
;
p
bTQyRIG;T

d! N
�
0; c|Vy

RIG (�) c
�
:

Proof of Lemma A9. The proof strategies used for Lemma A3 directly apply after the fol-

lowing minor modi�cations. First, for the block sizes in the small-block and large-block argu-

ment, we can use (A6�) and pick a sequence T 2 N such that T ! 1, T sT = (bT )
1=2 ! 0, and

T (T=b)
1=2

� (sT )! 0 as T !1. De�ne the large-block size rT by

rT =

$
(bT )

1=2

T

%

and the small-block size by sT . It follows that

sT
rT
! 0;

rT
T
! 0;

rT

(bT )
1=2

! 0;
T

rT
� (sT )! 0

as T !1. Also put

qT =

�
T

rT + sT

�
:

Second, replace &�G;j by &
y
G;j = c

|ZyG;j , where

ZyG;j =

�
b1=2�j+1KG(x=b+1;b) (Xj+1)

b�1=2 (Xj+1 � x) �j+1KG(x=b+1;b) (Xj+1)

�
for j = 0; : : : ; T � 1, so that

p
bTQyG;T =

1p
T

T�1X
j=0

&yG;j :

Then, the �ve statements analogous to (16)-(20) can be demonstrated in exactly the same manner.

�

A.3.1 Proof of Theorem 4

Lemma A9 implies that

p
bT

(
1

T

TX
t=1

KG(x=b+1;b) (Xt) �t

)
d! N

�
0;
� (2�+ 1)�2 (x) f (x)

22�+1�2 (�+ 1)

�
:

Using the same argument as in the proof of Theorem 1 and applying Slutsky�s lemma and Lemma

A7, we have

p
bT fm̂nw

G (x)� ~mnw
G (x)g d! N

�
0;

� (2�+ 1)

22�+1�2 (�+ 1)

�2 (x)

f (x)

�
; (42)
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where ~mnw
G (x) is de�ned in the proof of Theorem 1. Note that

SG;1 (x) = f (x) b+ op (b) ; SG;2 (x) = Op
�
b2
�
; SG;3 (x) = Op

�
b3
�
; (43)

by Lemma B2 and the ergodic theorem as x=b ! �. Substituting (43) into (28) and using Lemma

A7 and (A7�), we can see that the left-hand side of (42) can be approximated by

p
bT fm̂nw

G (x)� ~mnw
G (x)g =

p
bT fm̂nw

G (x)�m (x)�m0 (x) b+ op (b)g

=
p
bT fm̂nw

G (x)�m (x)�m0 (x) bg+ op (1) :

This completes the proof. �

A.3.2 Proof of Theorem 5

Lemma A9 and the Cramér-Wald device imply that
p
bT tyG;T

d! N
�
02;V

y
G (�)

�
. Following to the

same argument as in the proof of Theorem 2, we also have�
1 0
0 b

�n
�̂G (x)� ~�G (x)

o
= Sy�1G;T t

y
G;T :

Therefore, by Slutsky�s lemma and Lemma A7,

p
bT

�
1 0
0 b

�n
�̂G (x)� ~�G (x)

o
d! N

�
02;S

y�1
G (�)Vy

G (�)S
y�1
G (�)

�
: (44)

In addition, a second-order Taylor expansion yields

~�G (x)

= � (x) +
m00 (x)

2

�
1 0
0 b�1

�
Sy�1G;T

�
1 0
0 b�1

� �
SG;2 (x)
SG;3 (x)

�
+

�
Op fSG;3 (x)g

Op
�
b�2SG;4 (x)

	 � ; (45)
where

SG;2 (x) = (�+ 2) f (x) b
2 + op

�
b2
�
; SG;3 (x) = (5�+ 6) f (x) b

3 + op
�
b3
�
; SG;4 (x) = Op

�
b4
�
(46)

by Lemma B2 and the ergodic theorem as x=b! �. Substituting (46) into (45) and using Lemma

A7 and (A7�), we can see that the left-hand side of (44) can be approximated by

p
bT

�
1 0
0 b

�n
�̂G (x)� ~�G (x)

o
=

p
bT

�
1 0
0 b

��
�̂G (x)� � (x)�

m00 (x)

2

�
(�� 2) b2

4b

�
+

�
op
�
b2
�

op (b)

��
;
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where
p
bTop

�
b2
�
= op

�p
b5T

�
= op (1), and

p
bTbop (b) = op

�p
b5T

�
= op (1).

Therefore, (44) can be rewritten as

Tb;2

�
�̂G (x)� � (x)�

m00 (x)

2

�
(�� 2) b2

4b

��
+

�
op (1)
op (1)

�
d! N

��
0
0

�
;

�
2�+ 5 �2
�2 1

�
V BG

2 (�+ 1)

�

by letting Tb;2 =
p
bT

�
1 0
0 b

�
and V BG = �(2�+1)

22�+1�2(�+1)
�2(x)
f(x) . This completes the proof. �

B Appendix B: Auxiliary Results

Appendix B additionally provides three lemmata that are useful to establish the theorems in this

paper. Lemma B1 refers to the properties of powered asymmetric kernels with an arbitrarily

chosen exponent � � 1. For convenience, Lemma B2 presents analytical expressions and orders

of magnitude of the moments of three asymmetric kernels around the design point x. Lemma B3

restates Lemma 1.1 in Volkonskii and Razanov (1959).

Lemma B1. For � � 1,

K�
G(x=b+1;b) (u) = Ab;� (x)KG(�x=b+1;b=�) (u) ;

K�
IG(x;1=b) (u) = Bb;�u

3(1��)=2KIG(x;�=b) (u) ;

K�
RIG(1=(x�b);1=b) (u) = Bb;�u

(1��)=2KRIG(1=(x�b);�=b) (u) ;

where

Ab;� (x) =
b1��� (�x=b+ 1)

��x=b+1�� (x=b+ 1)
=

8<:
b(1��)=2x(1��)=2

�1=2(
p
2�)

��1 + o
�
b(1��)=2

�
for interior x

b1���(��+1)
���+1��(�+1) + o

�
b1��

�
for boundary x;

and

Bb;� =
b(1��)=2

�1=2
�p
2�
���1 :

Proof of Lemma B1. A straightforward calculation yields

K�
G(x=b+1;b) (u) =

u�x=b exp (��u=b)
b�x=b+��� (x=b+ 1)

1 fu > 0g

=

�
b1��� (�x=b+ 1)

��x=b+1�� (x=b+ 1)

�"
u�x=b exp f�u= (b=�)g
(b=�)

�x=b+1
� (�x=b+ 1)

1 fu > 0g
#

� Ab;� (x)KG(�x=b+1;b=�) (u) :
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Let R (z) =
p
2�zz+1=2 exp (�z) =� (z + 1) for z � 0. Following the argument in Section 3 of Chen

(2000b), we have

Ab;� (x) =
b(1��)=2x(1��)=2R� (x=b)

�1=2
�p
2�
���1

R (�x=b)
=
b(1��)=2x(1��)=2

�1=2
�p
2�
���1 + o�b(1��)=2�

for interior x. On the other hand, as x=b! � > 0,

Ab;� (x) =
b1��� (��+ 1)

���+1�� (�+ 1)
+ o

�
b1��

�
:

For the IG and RIG kernels, proofs are straightforward and thus omitted. �

Lemma B2. Let

��;x
d
= G (�x=b+ 1; b=�) ; ��;x

d
= IG (x; �=b) ; ��;x

d
= RIG (1= (x� b) ; �=b) ; � � 1:

(a)-(i) First four moments of ��;x around x are

E (��;x � x) =
b

�
;

E (��;x � x)2 =
b (�x+ 2b)

�2
;

E (��;x � x)3 =
b2 (5�x+ 6b)

�3
;

E (��;x � x)4 =
b2
�
3�2x2 + 26�xb+ 24b2

�
�4

:

(ii) For any integer r � 0,

E (��;x � x)r =

8<: O
�
br=2

�
for interior x and even r

O
�
b(r+1)=2

�
for interior x and odd r

O (br) for boundary x:
(47)

(b)-(i) First four moments of ��;x around x are

E
�
��;x � x

�
= 0;

E
�
��;x � x

�2
=

x3b

�
;

E
�
��;x � x

�3
=

3x5b2

�2
;

E
�
��;x � x

�4
=

3x6b2 (� + 5xb)

�3
:

45



(ii) For any integer r � 3,

E
�
��;x � x

�r
=

�
O
�
b2
�

for interior x
O
�
br+4

�
for boundary x:

(48)

(c)-(i) First four moments of ��;x around x are

E
�
��;x � x

�
=

b (1� �)
�

;

E
�
��;x � x

�2
=

b
�
�x+

�
�2 � 3� + 3

�
b
	

�2
;

E
�
��;x � x

�3
=

b2
�
(�3� + 6) �x�

�
�3 � 6�2 + 15� � 15

�
b
	

�3
;

E
�
��;x � x

�4
=

b2
�
3�2x2 +

�
6�2 � 30� + 45

�
�xb+

�
�4 � 10�3 + 45�2 � 105� + 105

�
b2
	

�4
:

(ii) For any integer r � 3,

E
�
��;x � x

�r
=

�
O
�
b2
�
for interior x

O (br) for boundary x:
(49)

Proof of Lemma B2: Part (a)-(i). We show that the recursive formula

E (��;x � x)r =
b

�
E (��;x � x)r�1 +

�
x+

b

�

� r�1X
j=1

j�1Y
k=0

(r � 1� k)
�
b

�

�j
E (��;x � x)r�1�j (50)

holds for r 2 N. First four moments of ��;x around x directly follows this formula.

By the property of the Gamma distribution, we have

E
�
�j�;x

�
=

�
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
:

Then, applying a binomial expansion and Pascal�s triangle yields

E (��;x � x)r =
rX
j=0

�
r

j

�
E
�
�j�;x

�
(�x)r�j

=
rX
j=0

(�1)r�j
�
r

j

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

=
rX
j=0

(�1)r�j
��

r � 1
j � 1

�
+

�
r � 1
j

���
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

=
rX
j=0

(�1)r�j
�
r � 1
j � 1

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

+

rX
j=0

(�1)r�j
�
r � 1
j

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

� A (r) +B (r) : (51)
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By
�
r�1
r

�
= 0,

B (r) =
r�1X
j=0

(�1)r�j
�
r � 1
j

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

= (�x)
r�1X
j=0

(�1)(r�1)�j
�
r � 1
j

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
x(r�1)�j

= (�x)E (��;x � x)r�1 : (52)

On the other hand, by
�
r�1
�1
�
= 0,

A (r) =
rX
j=1

(�1)r�j
�
r � 1
j � 1

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
xr�j

=
r�1X
j=0

(�1)r�(j+1)
�
r � 1
j

��
b

�

�j+1 jY
k=0

��x
b
+ 1 + k

�
xr�(j+1)

=
r�1X
j=0

(�1)(r�1)�j
�
r � 1
j

��
x+

(1 + j) b

�

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
x(r�1)�j

=

�
x+

b

�

� r�1X
j=0

(�1)(r�1)�j
�
r � 1
j

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
x(r�1)�j

+

�
b

�

�8<:
r�1X
j=0

(�1)(r�1)�j
�
r � 1
j

�
j

�
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
x(r�1)�j

9=; :

The �rst term on the right-hand side reduces to (x+ b=�)E (��;x � x)r�1. In addition, since�
r�1
j

�
j = (r � 1)

�
r�2
j�1
�
, the second term on the right-hand side reduces to

�
b

�

�
(r � 1)

8<:
r�1X
j=0

(�1)(r�1)�j
�
(r � 1)� 1
j � 1

��
b

�

�j j�1Y
k=0

��x
b
+ 1 + k

�
x(r�1)�j

9=; =

�
b

�

�
(r � 1)A (r � 1) :

Therefore,

A (r) =

�
x+

b

�

�
E (��;x � x)r�1 +

�
b

�

�
(r � 1)A (r � 1) :

Using this recursive formula, together with A (1) = (x+ b=�)E (��;x � x)0 (= x+ b=�), we have

A (r) =

�
x+

b

�

�8<:E (��;x � x)r�1 +
r�1X
j=1

j�1Y
k=0

(r � 1� k)
�
b

�

�j
E (��;x � x)r�1�j

9=; : (53)

Finally, substituting (52) and (53) into (51) establishes (50).

Part (a)-(ii). Using (50), we prove (47) by induction for interior x and for boundary x separately.
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For interior x. The result in part (i) implies that for interior x,

E (��;x � x)0 = O (1) = O
�
b0=2

�
;

E (��;x � x)1 = O (b) = O
�
b(1+1)=2

�
;

E (��;x � x)2 = O (b) = O
�
b2=2

�
;

E (��;x � x)3 = O
�
b2
�
= O

�
b(3+1)=2

�
;

E (��;x � x)4 = O
�
b2
�
= O

�
b4=2

�
:

Hence, (47) holds for r = 0; 1; 2; 3; 4.

Next, suppose that (47) holds for r = 0; 1; 2; : : : ; s. Then, consider the order of magnitude of

E (��;x � x)s+1. If s is odd, then s + 1 is even, and thus we need to show that E (��;x � x)s+1 =

O
�
b(s+1)=2

�
. By the assumption of induction, the �rst term on the right-hand side of (50) is

bounded by O fbE (��;x � x)sg = O
�
b(s+3)=2

�
. Also, by the assumption of induction,

bjE (��;x � x)s�j =
�

bjO
�
b(s�j)=2

�
= O

�
b(s+j)=2

�
for j = 1; 3; : : : ; s

bjO
�
b(s�j+1)=2

�
= O

�
b(s+j+1)=2

�
for j = 2; 4; : : : ; s� 1:

Since x + b=� = O (1) for interior x, the second term on the right-hand side of (50) is bounded by

O
�
b(s+1)=2

�
. Therefore, we have E (��;x � x)s+1 = O

�
b(s+1)=2

�
.

On the other hand, if s is even, then s+1 is odd, and thus we need to show that E (��;x � x)s+1 =

O
�
b(s+2)=2

�
. By the assumption of induction, the �rst term on the right-hand side of (50) is bounded

by O fbE (��;x � x)sg = O
�
b(s+2)=2

�
. Also, by the assumption of induction,

bjE (��;x � x)s�j =
�

bjO
�
b(s�j+1)=2

�
= O

�
b(s+j+1)=2

�
for j = 1; 3; : : : ; s

bjO
�
b(s�j)=2

�
= O

�
b(s+j)=2

�
for j = 2; 4; : : : ; s� 1:

Then, the second term on the right-hand side of (50) is bounded by O
�
b(s+2)=2

�
. Therefore, we

have E (��;x � x)s+1 = O
�
b(s+2)=2

�
, and thus (47) is proven by induction for interior x.

For boundary x. The result in part (i) implies that as x=b! � > 0,

E (��;x � x)0 = O
�
b0
�
; E (��;x � x)1 = O

�
b1
�
; E (��;x � x)2 = O

�
b2
�
;

E (��;x � x)3 = O
�
b3
�
; E (��;x � x)4 = O

�
b4
�
:

Hence, (47) holds for r = 0; 1; 2; 3; 4.
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Next, suppose that (47) holds for r = 0; 1; 2; : : : ; s. We need to show that E (��;x � x)s+1 =

O
�
bs+1

�
. By the assumption of induction, the �rst term on the right-hand side of (50) is bounded

by O fbE (��;x � x)sg = O
�
bs+1

�
. Also, by the assumption of induction, bjE (��;x � x)s�j =

bjO
�
bs�j

�
= O (bs) for j = 1; 2; : : : ; s. Since x+b=� = O (b) when x = �b+o (b), the second term on

the right-hand side of (50) is bounded by O
�
bs+1

�
. Therefore, we have E (��;x � x)s+1 = O

�
bs+1

�
,

and thus (47) is proven by induction for boundary x.

Part (b)-(i). The expression (12) in Tweedie (1957)6 gives

E
�
�j�;x

�
= xjKj�1=2

� �
xb

�
K�1
1=2

� �
xb

�
;

where Kv (z) is the modi�ed Bessel function of the second kind of order v. Applying a binomial

expansion and the expressions (12) and (13) on p.80 in Watson (1944), we have

E
�
��;x � x

�r
=

rX
j=0

�
r

j

�
E
�
�j�;x

�
(�x)r�j

=
rX
j=0

(�1)r�j
�
r

j

�
xjKj�1=2

� �
xb

�
K�1
1=2

� �
xb

�
xr�j

= xr
rX
j=0

(�1)r�j
�
r

j

� j�1X
k=0

(j � 1 + k)!
2kk! (j � 1� k)!

�
xb

�

�k
: (54)

Then, �rst four moments of ��;x around x immediately follow.

Part (b)-(ii). By (54), we can write E
�
��;x � x

�r
= xr

Pr
j=0 cj (xb)

j for some constants c0; c1; : : : ; cr.

To establish (48), it su¢ ces to show that c0 = c1 = 0 for r � 3, because if this is the case, then

E
�
��;x � x

�r
= O

8<:xr
rX
j=2

(xb)
j

9=; =

�
O
�
b2
�

for interior x
O
�
br+4

�
for boundary x:

Since

(j � 1 + k)!
2kk! (j � 1� k)!�

�k
����
k=0

= 1;
(j � 1 + k)!

2kk! (j � 1� k)!�
�k
����
k=1

=
1

�

j!

2 (j � 2)! =
1

�

�
j

2

�
;

we need to show that

c0 =
rX
j=0

(�1)r�j
�
r

j

�
= 0; c1 =

1

�

rX
j=0

(�1)r�j
�
r

j

��
j

2

�
= 0;

6The expression (12) in Tweedie (1957) contains a typographical error. It should read ��0r =

�rKr�1=2 (�)K
�1
1=2

(�).�
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for r � 3. The �rst equality immediately follows from the standard result of binomial sums.

Furthermore,
�
0
2

�
=
�
1
2

�
= 0, and thus in order to establish the second equality, it su¢ ces to

demonstrate that
rX
j=2

(�1)r�j
�
r

j

��
j

2

�
= 0 (55)

for r � 3.

We prove (55) by induction. If r = 3, then

3X
j=2

(�1)3�j
�
3

j

��
j

2

�
= (�1)1

�
3

2

��
2

2

�
+ (�1)0

�
3

3

��
3

2

�
= 0:

Next, suppose that (55) holds for some r � 3. We want to show that (55) holds for r + 1. By

Pascal�s triangle, we have

r+1X
j=2

(�1)r+1�j
�
r + 1

j

��
j

2

�

=
r+1X
j=2

(�1)r+1�j
��

r

j � 1

�
+

�
r

j

���
j

2

�

=
r+1X
j=2

(�1)r+1�j
�

r

j � 1

��
j

2

�
+
r+1X
j=2

(�1)r+1�j
�
r

j

��
j

2

�
� C +D:

By
�
r
r+1

�
= 0 and the assumption of induction,

D =
rX
j=2

(�1)r+1�j
�
r

j

��
j

2

�
= (�1)

rX
j=2

(�1)r�j
�
r

j

��
j

2

�
= 0:

On the other hand, by Pascal�s triangle, we have

C =

rX
j=1

(�1)r�j
�
r

j

��
j + 1

2

�

=
rX
j=1

(�1)r�j
�
r

j

���
j

1

�
+

�
j

2

��

=
rX
j=1

(�1)r�j
�
r

j

��
j

1

�
+

rX
j=1

(�1)r�j
�
r

j

��
j

2

�
� C1 + C2:

By
�
1
2

�
= 0 and the assumption of induction,

C2 =
rX
j=2

(�1)r�j
�
r

j

��
j

2

�
= 0:
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In addition, using
�
r
j

��
j
1

�
= r
�
r�1
j�1
�
and the standard result of binomial sums, we have

C1 = r
rX
j=2

(�1)r�j
�
r � 1
j � 1

�
= r

r�1X
j=1

(�1)(r�1)�j
�
r � 1
j

�
= 0:

Therefore,
r+1X
j=2

(�1)r+1�j
�
r + 1

j

��
j

2

�
= 0;

and thus (55) is proven by induction.

Part (c)-(i). Using the expression (33) in Tweedie (1957), we have

E
�
�j�;x

�
= (x� b)j

jX
k=0

(j + k)!

2kk! (j � k)!

�
b

� (x� b)

�k
so that

E
�
��;x � x

�r
=

rX
j=0

�
r

j

�
E
�
�j�;x

�
(�x)r�j

=

rX
j=0

(�1)r�j
�
r

j

�
(x� b)j

jX
k=0

(j + k)!

2kk! (j � k)!

�
b

� (x� b)

�k
xr�j :

Note that

(x� b)j
jX

k=0

(j + k)!

2kk! (j � k)!

�
b

� (x� b)

�k
=

jX
k=0

(j + k)!

2kk! (j � k)! (x� b)
j�k

�
b

�

�k
;

(x� b)j�k =

j�kX
l=0

(�1)l
�
j � k
l

�
xj�k�lbl:

Hence,

E
�
��;x � x

�r
=

rX
j=0

jX
k=0

j�kX
l=0

(�1)r�j+l
�
r

j

��
j � k
l

�
(j + k)!

2kk! (j � k)!�
�kxr�k�lbk+l: (56)

Then, �rst four moments of ��;x around x immediately follow.

Part (c)-(ii). By (56), we can write E
�
��;x � x

�r
=
Pr

j=0 djx
r�jbj for some constants d0; d1; : : : ; dr.

To establish (56), it su¢ ces to show that d0 = d1 = 0 for r � 3, because if this is the case, then

E
�
��;x � x

�r
= O

0@ rX
j=2

xr�jbj

1A =

�
O
�
b2
�
for interior x

O (br) for boundary x:

The coe¢ cient on xrb0 can be obtained by setting k + l = 0, (k; l) = (0; 0) in (56). Hence,

d0 =
rX
j=0

jX
k=0

j�kX
l=0

(�1)r�j+l
�
r

j

��
j � k
l

�
(j + k)!

2kk! (j � k)!�
�k

������
(k;l)=(0;0)

=
rX
j=0

(�1)r�j
�
r

j

�
;
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which is zero by the standard result of binomial sums. Moreover, the coe¢ cient on xr�1b1 can be

obtained by setting k + l = 1, (k; l) = (1; 0) ; (0; 1) in (56). Hence,

d1 =
rX
j=0

jX
k=0

j�kX
l=0

(�1)r�j+l
�
r

j

��
j � k
l

�
(j + k)!

2kk! (j � k)!�
�k

������
(k;l)=(1;0)

+
rX
j=0

jX
k=0

j�kX
l=0

(�1)r�j+l
�
r

j

��
j � k
l

�
(j + k)!

2kk! (j � k)!�
�k

������
(k;l)=(0;1)

=
1

�

rX
j=0

(�1)r�j
�
r

j

�
(j + 1)!

2 (j � 1)! +
rX
j=0

(�1)r�j�1
�
r

j

��
j

1

�

=
1

�

rX
j=0

(�1)r�j
�
r

j

��
j + 1

2

�
+ r

rX
j=0

(�1)r�j�1
�
r � 1
j � 1

�
� E + F:

By
�
1
2

�
= 0,

E =
1

�

rX
j=1

(�1)r�j
�
r

j

��
j + 1

2

�
=
C

�
= 0

for r � 3, where C is de�ned in the proof of part (b)-(ii) of this lemma. Furthermore, by
�
r�1
�1
�
= 0

and the standard result of binomial sums,

F = (�r)
rX
j=1

(�1)(r�1)�(j�1)
�
r � 1
j � 1

�
= (�r)

r�1X
j=0

(�1)(r�1)�j
�
r � 1
j

�
= 0:

Therefore, d1 = 0 for r � 3, which completes the proof. �

Lemma B3. (Volkonskii and Razanov, 1959) Let V1; : : : ; VL be strongly mixing random

variables measurable with respect to the �-algebras Fj1i1 ; : : : ;F
jL
iL
respectively with 1 � i1 < j1 < i2 <

� � � < jL � T; il+1 � jl � w � 1 and jVj j � 1 for j = 1; : : : ; L. Then,�����E
 

LQ
j=1

Vj

!
�

LQ
j=1

E (Vj)

����� � 16 (L� 1)� (w) ;
where � (w) is the strong mixing coe¢ cient.
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Table 1. Monte Carlo statistics of bond and option prices based on nonparametric (Gaussian NW
and Gamma NW) and OLS estimators in the CIR model with � = 0:21459; � = 0:085711 and
� = 0:0783.

bond price call option price
true price 0.83763 1.93118
OLS
median estimate 0.81979 0.69922
mean estimate 0.81546 1.09872
std. deviation 0.03242 1.18950
90% con�dence interval [0.75621, 0.85952] [0.00000, 3.46050]
Gaussian NW
median estimate 0.84073 2.15101
mean estimate 0.83838 2.28154
std. deviation 0.03568 2.80581
90% con�dence interval [0.79089, 0.87444] [0.02886, 4.73207]
Gamma NW
median estimate 0.83943 2.05317
mean estimate 0.83712 2.11356
std. deviation 0.02505 1.32988
90% con�dence interval [0.79375, 0.87100] [0.05484, 4.34292]

Notes: The statistics in the table are computed from 5,000 samples generated from the CIR model
with 4 = 1=52 and T = 600. The prices of a three-year zero-coupon discount bond and a one-year
European call option on a three-year bond with face value of $100, strike price of $87 and initial
interest rate of 5% are computed analytically for the OLS estimator and by Monte Carlo simulation
for the nonparametric estimators.
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Figure 1. Di¤erences in asymptotic variances of m̂nw
G (x), m̂nw

RIG (x) and m̂
ll
G (x) for boundary x as

a function of � 2 [0:2; 1]:
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Figure 2. Median Monte Carlo drift estimates based on asymmetric (Gamma, IG and RIG)
estimators from CIR model with (�; �; �) = (0:21459; 0:085711; 0:0783) and smoothing parameter
equal to 2std(rt)T�1=5, where std(rt) is the standard deviation of the data.

Figure 3. 90% Monte Carlo con�dence intervals of the asymmetric kernel drift estimates from CIR
model with (�; �; �) = (0:21459; 0:085711; 0:0783) and smoothing parameter equal to 2std(rt)T�1=5,
where std(rt) is the standard deviation of the data. Long dashes: Gamma NW estimator; short
dashes: RIG NW estimator.

58



Figure 4. Median Monte Carlo drift estimates based on asymmetric (Gamma, IG and RIG)
estimators from CIR model with (�; �; �) = (0:85837; 0:085711; 0:1566) and smoothing parameter
equal to 1:5std(rt)T�1=5, where std(rt) is the standard deviation of the data.

Figure 5. 90% Monte Carlo con�dence intervals of the asymmetric kernel drift estimates from CIR
model with (�; �; �) = (0:85837; 0:085711; 0:1566) and smoothing parameter equal to 1:5std(rt)T�1=5,
where std(rt) is the standard deviation of the data. Long dashes: Gamma NW estimator; short
dashes: RIG NW estimator.
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Figure 6. Median Monte Carlo drift estimates from CIR model with (�; �; �) = (0:21459; 0:085711;
0:0783). The smoothing parameter is selected by h-block cross validation with h = 30.

Figure 7. 90% Monte Carlo con�dence intervals of the drift estimates from CIR model with
(�; �; �) = (0:21459; 0:085711; 0:0783) and smoothing parameter selected by h-block cross validation
with h = 30. Long dashes: Gamma NW estimator; short dashes: Gaussian NW estimator.
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Figure 8. Median Monte Carlo drift estimates from CIR model with (�; �; �) = (0:85837; 0:085711;
0:1566). The smoothing parameter is selected by h-block cross validation with h = 30.
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Figure 9. Median Monte Carlo drift estimates from Ahn and Gao�s (1999) model with smoothing
parameter selected by h-block cross validation with h = 30.

Figure 10. 90% Monte Carlo con�dence intervals of the drift estimates from Ahn and Gao�s (1999)
model with smoothing parameter selected by h-block cross validation with h = 30. Long dashes:
Gamma NW estimator; short dashes: Gaussian NW estimator.
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