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Abstract

We present a simple way to estimate the effects of changes in a vector of observable variables
X on a limited dependent variable Y when Y is a general nonseparable function of X and
unobservables. We treat models in which Y is censored from above or below or potentially
from both. The basic idea is to first estimate the derivative of the conditional mean of Y
given X at x with respect to x on the uncensored sample without correcting for the effect
of changes in x induced on the censored population. We then correct the derivative for the
effects of the selection bias. We propose nonparametric and semiparametric estimators for
the derivative. As extensions, we discuss the cases of discrete regressors, measurement error
in dependent variables, and endogenous regressors in a cross section and panel data context.



1 Introduction

Many problems in economics involve dependent variables that are censored in some way. For
example, hundreds of empirical studies have used the Tobit and generalized Tobit models
to study the effects of a set of independent variables X on a dependent variable Y that
is censored at some constant. While great theoretical progress has been made in relaxing
assumptions on distribution forms of unobservables and functional forms to relate X and
Y , almost all of the approaches in the literature rely on the assumption that unobservables
in the model for the latent variable that determines Y are additively separable from the
observables.1

In many applications in economics, however, nonseparability is likely to be the rule rather
than exception. For example, Altonji, Hayashi and Kotlikoff (1997) consider the problem
of money transfers from parents to children. Assume that parents’ utility depends on their
own consumption Cp, the consumption of their child Ck, and a preference heterogeneity
vector U . That is, the parents’ utility function is

Vp(Cp, U) + Vk(Ck, U).

In their model the condition for positive transfers from the parents to the child is

V ′p(Xp, U) < V ′k(Xk, U),

where Xk and Xp are the endowments of the child and parents. Otherwise the transfer
amount is zero. Let M(Xp, Xk, U) be a value that solves

V ′p(Xp −M,U) = V ′k(Xk +M,U).

The observed transfer amount Y equalsM(Xk, Xp, U) ifM(Xk, Xp, U) > 0 and 0 otherwise.
Altonji, Hayashi and Kotlikoff (1997) point out that the function M(Xp, Xk, U) is nonsep-
arable in the endowments and preferences, and this nonseparability is a generic property
of transfer equations that are based on a consumer choice framework with interdependent
preferences.

In consumer demand and factor demand analysis, the utility function or production
function is often chosen so that there is a transformation of the demand functions, expen-
diture functions, or cost functions that lead to additive error terms. Usually this requires
that the unobservables enter the problem in a particular way. If the unobservables and the
regressors are independent and the dependent variable is not censored or truncated, the
inability to specify separable conditional mean functions does not lead to a serious problem
in terms of estimating the mean of the derivatives of the regression functions. In this setting
one can apply the average derivative methods of Stoker (1986), Härdle and Stoker (1989),
and Powell, Stock and Stoker (1989) among others. However, nonseparability and nonmono-
tonicity with respect to U are not innocuous when one wishes to make inferences about a
selected sample, such as parents who make monetary transfers, because nonseparability will
invalidate the existing methods of correcting for sample selection.

In this paper, we present a simple way to estimate the effects of changes in a vector of
observable regressors X on a limited dependent variable Y when Y is a general nonseparable

1See, e.g., Powell (1994), Horowitz (1998), and Pagan and Ullah (1999) for a survey.
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function of X and unobservables U . The general model we consider includes models of the
form Y = M(X,U) if L(X) < M(X,U) and Y = CL otherwise, where M(X,U) is a
differentiable function with respect to X indexed by U , L(X) is an unknown function of X,
and Y = CL indicates that Y is censored from below. In this special case, the parameter
of interest in Altonji, Hayashi and Kotlikoff (1997) reduces to β(x) = E[∇M(X,U)|X =
x, L(X) < M(X,U)], where ∇M(X,U) is the partial derivative ofM(X,U) with respect to
X. Note that in the ordinary linear censored regression model with an additive error (i.e.,
the Tobit model), β(x) is constant and coincides with the slope coefficients of the regressors.
Altonji, Hayashi and Kotlikoff (1997) use the semi-parametric version of our estimator with
L(X) = 0 to estimate the effects of the endowments Xk and Xp on the transfer amount Y
among parents who are making transfers.2

Our estimation strategy is very simple. The basic idea is: (i) estimate the derivative
of Ψ(x) = E[M(X,U)|X = x, L(X) < M(X,U)] with respect to x without correcting for
the effect of changes in x induced on the censored population through changes in L(x) (i.e.,
selection bias) and then (ii) correct the partial derivative for the effects of the selection
bias. It turns out that the correction has a simple structure which only depends on L(x),
the conditional minimum of Y given X = x and on Pr{L(X) < M(X,U)|X = x}, the
probability that Y is uncensored given X = x. We consider models in which Y is censored
from both above and below.

The paper continues in Section 2, where we provide a brief literature review. In Section
3 we present a canonical nonseparable limited dependent variable model. We then show
that β(x) is identified from knowledge of certain estimable functions of x. Starting from the
expression for β(x) that underlies our identification result, Section 4 discusses a nonpara-
metric estimator of β(x) as well as an average derivative estimator, which provides a way
to circumvent the curse of dimensionality. Section 5 discusses semiparametric estimation of
β(x). As extensions, Section 6 discusses the case of discrete regressors, measurement error
in the dependent variable, and the case of endogenous regressors in a cross section or panel
data context when a control function can be estimated from X and an external variable.
We also consider the panel data case in which the distribution of U conditional on the val-
ues of X for members in a group is exchangeable in those values. Section 7 presents some
Monte Carlo evidence on the performance of our estimators relative to the Tobit maximum
likelihood estimator. Section 8 concludes.

2 Previous Literature

Some early efforts on estimation of parameters in nonseparable models are found in Han
(1987), Matzkin (1991), and Powell (1991). One of the difficulties in nonseparable models
is to define an estimable parameter of interest. Suppose one assumes Y = M(X,U). Han
(1987) considered estimation of β in models where Y = M(X ′β, U), Matzkin (1991) con-
sidered estimation of m in models where Y = M(m(X), U), and Powell (1991) considered
estimation of β in models where Y = M(X,β, U). All models assume that U is a scalar
and that M is nondecreasing in U . Han (1987) and Matzkin (1991) allow the function M

2Other applications of the estimator include Kazianga (2006), Rauta and Tranb (2005) and Villanueva
(2002).
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to be unknown and Powell (1991) assumes it to be known. As the above authors discuss,
these models generalize many limited dependent variable models, some hazard models, and
transformation models of Box and Cox (1964).

Since the early drafts of our paper and Altonji, Hayashi and Kotlikoff (1997) were
circulated, a few papers on nonparametrically estimating features of limited dependent
variable models have appeared. Lewbel and Linton (2002) consider the model in which the
error term is additive and

M(X,U) = m(X) + U, L(X) = c,H(x) =∞,

where the constant c is known. Note that under their model β(x) = ∇m(x). Under the
additive error model they show that ∇m(x) is the derivative of E[1(Y > c)(Y − c)|X = x]
divided by the probability that Y is uncensored given X = x. We show that this result
holds much more generally when we replace ∇m(x) with β(x). We do not require additive
error structure and allow both censoring from above and below and the censoring points to
depend generally on X.3

Chen, Dahl and Kahn (2005) provide an estimator for m(x) based on conditional quan-
tiles in a model similar to Lewbel and Linton’s. They assume M(X,U) = m(X) + σ(X)U
were U is a scalar and independent of X and σ(X) is strictly positive. Their approach
breaks down if monotonicity in U is dropped and/or if a second additive error term appears
in the model. They do not consider estimation of β(x) or the case in which L(X) depends
on X and must be estimated. In contrast, we place almost no restrictions M(X,U) and
allow for endogeneity of X, but only consider estimation of β(X), L(X) and H(X).

Over the past decade there has been an explosion of research on nonseparable models
with particular attention to models with endogenous regressors.4 This literature is concerned
with estimation of the partial effects of X on Y holding the error distribution fixed as well
as with estimation of the structural function M(X,U) and the distribution function of U
given X, which we do not address. Monotonicity in a scalar valued U plays a key role in the
identification of M(x, u) for a point x and a conditional quantile points of u in the support
of X, but is not a reasonable assumption for models of family transfers in particular or for
consumer expenditure problems in general. We discuss the “control function” version of our
estimator in Section 6.3.

3 Model and Identification

In Section 3.1 we present the general model we treat and define the parameter of interest,
β(x). In Section 3.2 we derive an expression for β(x) and formally establish that β(x) is
identified from knowledge of certain estimable functions of x. We begin with a relatively
simple model that includes the regular Tobit model as a special case and then state an
identification result for the general case. We also make a brief comparison to the control
function approach of Heckman (1976) and many subsequent studies.

3Lewbel and Linton (2002) discuss identification of m(x)+k for some constant k as well, but once ∇m(x)
is identified, clearly m(x) + k for some constant k can be identified.

4See for example Blundell and Powell (2003), Chesher (2003, 2005), Imbens and Newey (2002) and
Matzkin (2007).
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3.1 Model and Parameter of Interest

Let X ∈ Rk be a k × 1 random vector, and M(X,U) be a random function of X, where
the random object U indexes a class of differentiable functions from Rk to R. The random
object U does not need to be a scalar random variable nor a finite dimensional random
vector. All that is required for our purpose is that it is a well defined random object. In
our model, M(X,U) is a latent variable. Instead we observe Y :

(1) Y =


M(X,U) if L(X) < M(X,U) < H(X),
CL if M(X,U) ≤ L(X),
CH if H(X) ≤M(X,U),

where L(X) and H(X) are scalar valued functions of X, and CL and CH are constants that
indicate whether Y is censored from below or above, respectively. Our notation allows for
the possibility that the functions M(X,U), L(X), and H(X) do not depend on all of the
elements of X. The linear censored regression model (i.e., the Tobit model) is a special
case of (1) in which U is a scalar random variable, M(X,U) = X ′β + U , L(X) = 0, and
H(X) = ∞. For notational convenience we introduce three indicator random variables:
IM (X) = I{L(X) < M(X,U) < H(X)}, IL(X) = I{M(X,U) ≤ L(X)}, and IH(X) =
I{H(X) ≤ M(X,U)}, where I{A} = 1 if the event A occurs and 0 otherwise, and the
argument U is suppressed to simplify the notation.

The parameter of interest, β(x), is the average derivative of Y with respect to X given
that X = x and Y is not censored. That is

(2) β(x) = E[∇M(X,U)|X = x, IM (X) = 1],

where ∇M(X,U) is the partial derivative of M(X,U) with respect to X. Note that in the
standard Tobit model mentioned above, β(x) corresponds to the constant slope parameter β.

3.2 Identification of β(x)

We now discuss identification of the parameter of interest β(x). For the sake of exposition
only we momentarily assume that U is a scalar with the Lebesgue density dµ and that
M(X,U) is continuous and monotonic with respect to U for each X. If U and X are
independent, the parameter of interest β(x) is written as

(3) β(x) = E[∇M(X,U)|X = x, IM (X) = 1] =
∫ uH(x)

uL(x)
∇M(x, u)dµ(u)/GM (x),

where uL(x) and uH(x) solve M(x, u) = L(x) and M(x, u) = H(x), respectively, µ is the
probability measure of U , and GM (x) = Pr{IM (X) = 1|X = x}. Denote

Ψ(x) = E[M(X,U)|X = x, IM (X) = 1] =
∫ uH(x)

uL(x)
M(x, u)dµ(u)/GM (x).
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Let us examine the relationship between the derivatives of Ψ(x) and β(x). Denoting the
partial derivative with respect to x by ∇, the Leibniz integral rule implies

∇[Ψ(x)GM (x)] =
∫ uH(x)

uL(x)
∇M(x, u)dµ(u)

+M(x, uH(x))dµ(uH(x))∇uH(x)
−M(x, uL(x))dµ(uL(x))∇uL(x).(4)

Note that M(x, uH(x)) = H(x) and M(x, uL(x)) = L(x). Let GH(x) = Pr{IH(X) =
1|X = x} and GL(x) = Pr{IL(X) = 1|X = x}. Then ∇GH(x) = −dµ(uH(x))∇uH(x) and
∇GL(x) = dµ(uL(x))∇uL(x). Therefore, β(x) can be written as

(5) β(x) = ∇Ψ(x) + {Ψ(x)∇GM (x) +H(x)∇GH(x) + L(x)∇GL(x)}/GM (x).

The second term in (5) corrects for the fact that x affects selection of the population for
which Y is observed. Our estimator is based on the observation that the correction term can
be identified from knowledge of (i) Ψ(x)∇GM (x), the product of the conditional mean of Y
given that Y is uncensored and the derivative of the probability that Y is uncensored, (ii)
H(x)∇GH(x), the product of the upper bound H(x) and the derivative of the probability
thatM(x, U) exceeds H(x), and (iii) L(x)∇GL(x), the product of the lower bound L(x) and
the derivative of the probability thatM(x, U) is below L(x). All components are normalized
by GM (x), the probability that Y is uncensored.

An important special case of the above model is fixed censoring from below, i.e., L(x) = 0
and H(x) =∞. In this case,

β(x) = ∇Ψ(x) + Ψ(x)∇GM (x)/GM (x).

The case of L(X) = c with a known constant c can be reduced to the case of L(X) = 0 by
simply subtracting off c from the values of Y when Y > c.

We now consider the general case where U need not be a scalar and not be continuous
and M(X,U) need not be monotonic and not be continuous in U . In particular, we impose
the following assumptions.

Assumption 3.1 Assume that

(i) U and X are independent,

(ii) L(x) and H(x) are continuous at x and satisfy L(x′) < H(x′) for all x′ in a neighbor-
hood of x,

(iii) GL(x), GM (x) > 0, and GH(x) are differentiable at x,

(iv) M(x′, U) is continuously differentiable a.s. at each x′ in a neighborhood of x, and
there exists a real-valued function B such that for any x′ in a neighborhood of x,
|∇M(x′, U)| ≤ B(U) a.s., and

∫
B(u)dµ(u) <∞,

(v) Pr{M(X,U) = L(X)|X = x} = Pr{M(X,U) = H(X)|X = x} = 0.
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The first assumption is stronger than the usual conditional mean independence assump-
tion E[U |X] = 0 in a regression framework. However, the maximum likelihood estimator
for the Tobit model requires U to be a normal random variable and it is independent of
X. In Section 6.3, we discuss a generalization to the case of endogenous regressors. The
condition L(x′) < H(x′) for all x′ in a neighborhood of x in the second assumption reflects
the definition of L and H as the lower and upper bounds and is a regularity condition that
simplifies our analysis. The fourth assumption is standard and guarantees that one may
change the order of differentiation and integration. The rest of the assumptions are natural
given that we wish to estimate some aspects of derivatives. Here we implicitly assume that
all elements of X are continuous. In Section 6.3, we discuss the case where some elements
of X are discrete.

The derivation of (5) is based on the derivative formula in (4). We prove the following
lemma which extends the formula in (4) to the general case.

Lemma 3.1 Under Assumption 3.1,

∇
∫
M(x, u)I{L(x) < M(x, u) < H(x)}dµ(u)

=
∫
∇M(x, u)I{L(x) < M(x, u) < H(x)}dµ(u)−H(x)∇GH(x)− L(x)∇GL(x).

The proof is contained in the appendix. We emphasize that this lemma applies to any
random object U with the probability measure µ and the region of integration need not
be rectangular. In particular, U may be a vector and M(X,U) need not be monotone in
U . When L(x) = −∞, the last term on the right hand side does not appear and when
H(x) =∞, the second term on the right hand side does not appear. From the definition of
β(x) in (3), this lemma directly implies the identification result in (5).

Theorem 3.1 Under Assumption 3.1, the expression for β(x) in (5) holds true.

Based on this theorem, we derive nonparametric and semiparametric estimators of β(x)
in the next two sections. We close this section by a brief comparison with the control function
approach, such as Heckman (1976). Consider the standard Tobit model for simplicity.
The conventional control function approach is: (i) obtain the conditional mean function
E[Y |X = x, Y > 0] = xβ + Q(x) parametrically or semiparametrically, where Q(x) =
E[U |X = x, Y > 0], and then (ii) estimate β and Q(x) jointly. In contrast, our approach
is: (i) estimate

∇E[Y |X = x, Y > 0] = β +∇Q(x),

and then (ii) estimate the correction term ∇Q(x) to estimate β. More generally, β(x) is
given by (5), where the last three terms on the right hand side correspond to the correction
terms for sample selection. We emphasize that our approach can handle general random
object including a random function, and nonadditive error terms.
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4 Nonparametric Estimation

Based on Theorem 3.1, we estimate the parameter of interest β(x) by replacing the unknown
functions of x on the right hand side of (5) with either parametric or nonparametric estima-
tors. This section considers the nonparametric case. We first propose a fully nonparametric
estimator of β(x). Since the fully nonparametric approach may not be useful in multivariate
applications because of the curse of dimensionality, we also propose an estimator for the
average of β(x) over a range of X.

4.1 Estimation of β(x), L(x), and H(x)

To estimate β(x) from (5), we need to estimate the unknown functions Ψ(x), ∇Ψ(x), GM (x),
∇GL(x), ∇GH(x), L(x), and H(x). Observe that Ψ(x), ∇Ψ(x), GM (x), ∇GL(x), and
∇GH(x) are written as conditional mean functions or their derivatives. Thus, we can apply
any standard nonparametric estimator, such as the kernel or series estimator. Here we
employ the local polynomial estimator (see, e.g., Fan and Gijbels (1996)). In addition to
the statistical benefits discussed by Fan (1992), an additional benefit of the local polynomial
estimator is that we can estimate the conditional mean function and its derivatives at
the same time. Let x = (x1, . . . , xk)′ be a vector of real numbers and q = (q1, . . . , qk)′

be a vector of non-negative integers. Define xq =
∏k
j=1 x

qj
j , [q] =

∑k
j=1 qj , and q! =∏k

j=1 qj ! with the convention that 0! = 1. Consider the p-th order polynomial Pp(α, x̄, x) =∑
0≤[q]≤p αq (x̄− x)q /q!. For example, when k = 2 and p = 2, q′ takes on the values (0, 0),

(1, 0), (0, 1), (1, 1), (2, 0), and (0, 2) and Pp(α, x̄, x) may be written as

Pp(α, x̄, x) = α00 + α10(x̄1 − x1) + α01(x̄2 − x2) + α11(x̄1 − x1)(x̄2 − x2)

+
α20

2
(x̄1 − x1)2 +

α02

2
(x̄2 − x2)2.

For a random sample {Zi, Xi}ni=1, let α̂(x) denote the weighted least square estimator for
the regression of Zi on the terms of Pp(α,Xi, x), that is

(6) α̂(x) = arg min
α

n∑
i=1

{Zi − Pp(α,Xi, x)}2K
(
Xi − x
hn

)
,

where K(·) is a kernel function and hn is a bandwidth parameter. The local polynomial
estimator for the conditional mean E[Z|X = x] corresponds to the constant term α̂(x)0,...,0.
The estimator for the partial derivative ∇jE[Z|X = x] is α̂(x)0,...0,1,0,...0, where 1 in the
subscript is at the jth term, which corresponds to the coefficient on the term Xij − xj in
the polynomial. By setting Z to Y , IM , IL, or IH as is appropriate, we can obtain the local
polynomial estimators of Ψ(x), ∇Ψ(x), GM (x), ∇GL(x), and ∇GH(x).

We now consider estimation of the boundary functions L(x) and H(x). To estimate the
lower bound function L(x) (or the upper bound function H(x)), we apply a nonparametric
extreme quantile regression approach in which the quantile goes to 0 (or 1) as n gets large
(see, Chernozhukov (1998), Knight (2001), and Ichimura, Otsu and Altonji (2008)). Let
{bn}n∈N be a sequence of positive numbers satisfying bn → 0 as n → ∞, and consider the
estimated parameters of the (the r-th order) local polynomial quantile regression at the
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τn-th quantile:

(7) α̂(x; τn) = arg min
α

n∑
i=1

ρτn
(Yi − Pr(α,Xi, x)) IM (Xi)K

(
Xi − x
bn

)
,

where ρτn
(v) = (τn − I{v ≤ 0})v is Koenker and Bassett’s (1978) check function. The

kernel function does not have to be the same as that used in the estimation of functions
Ψ(x), GM (x) and derivatives of Ψ(x), GM (x), GL(x), and GH(x).

For the sequence {τn}n∈N satisfying τn → 0, our estimator of L(x) is the constant
term α̂(x; τn)0,...,0. Similarly, our estimator of H(x) is the constant term α̂(x; τn)0,...,0 when
τn → 1.

From (5), the parameter of interest β(x) is rewritten as

(8) β(x) =
[
c(x)′ ⊗ Ik

]
D(x),

where Ik is the k-dimensional identity matrix, ⊗ is the Kronecker product,

c(x) = (1, cG(x)′)′,
cG(x) = (Ψ(x)/GM (x), H(x)/GM (x), L(x)/GM (x))′,
D(x) = (∇Ψ(x)′,∇GM (x)′,∇GH(x)′,∇GL(x)′)′.

Our estimator of β(x) consists of replacing the functions c(x) and D(x) with the nonpara-
metric estimators defined above. Denoting the estimators of c(x) and D(x) by ĉ(x) and
D̂(x), respectively, we define our estimator as β̂(x) = [ĉ(x)′ ⊗ Ik] D̂(x).

To clarify the structure of the asymptotic theory we first state a lemma based on higher
level assumptions about the asymptotics of the nonparametric estimators ĉ(x) and D̂(x).

Lemma 4.1 Suppose that for some sequence {rn}n∈N satisfying rn →∞ as n→∞,

1. rn(D̂(x) − D(x)) converges in distribution to a normal random vector with mean 0
and variance-covariance matrix V (x),

2. rn(ĉ(x)− c(x)) converges in probability to 0.
Then

rn(β̂(x)− β(x)) d→ N(0, (c(x)′ ⊗ Ik)V (x)(c(x)⊗ Ik)).

The proof follows from the continuous mapping theorem. This lemma says that the
first order asymptotics of β̂ (x) are driven by those of D̂ (x), the vector of nonparametric
estimators of derivatives of conditional mean functions. The estimators ĉ(x) of c (x) can
be treated as constants to the first order. Condition 1 is satisfied by most nonparametric
estimators by adequately choosing the convergence rate rn. Note that the rate rn typically
depends on the number of regressors k (i.e., the curse of dimensionality). For Condition 2,
we need to guarantee faster convergence rates for Ψ̂(x), ĜM (x), L̂(x), and Ĥ(x) than r−1

n .
For the estimators of the conditional mean functions Ψ̂(x) and ĜM (x), it is known that
the optimal convergence rate of nonparametric estimators of the conditional mean is faster
than that of its derivatives (see, Stone (1980)). For the nonparametric quantile regression
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estimators L̂(x) and Ĥ(x) with drifting quantiles τn, we can apply the asymptotic theory of
extreme quantile regression by Chernozhukov (1998) or Ichimura, Otsu and Altonji (2008).

We now describe a concrete version of the above lemma. We first consider the compo-
nents D(x), Ψ(x), and GM (x) estimated by the local polynomial least square regression in
(6). Denote the conditional distribution of Y given X = x and IM (X) = 1 by FY (y|x)
and the marginal Lebesgue density of X by f(x). Based on Masry (1996a, Theorem 5), we
impose the following assumptions.

Assumption 4.1 Assume that

(i) {Yi, Xi}ni=1 is iid,

(ii) GM (x) > 0 and 0 < f(x) <∞,

(iii) Ψ, GM , GH , and GL are continuously differentiable at x up to total order of p + 1,
FY (y|x) is continuous at x, and E |YiIM (Xi)|2 <∞,

(iv) K : Rk → R is a uniformly bounded symmetric function, supported on a compact set
and

∫
ss′K(s)ds is positive definite.

(v) as n→∞, hn → 0, nhk+2
n →∞, and nhk+2p+2

n → 0.

To present the asymptotic distribution of D̂ (x), we need additional notation from Masry
(1996a). Let q be a k×1 vector with non-negative integer arguments andNt =

(
i+k−1
k−1

)
be the

number of distinct k×1 vectors with [q] = t for a given non-negative interger t. Arrange these
Nt vectors in a lexicographical order from qt,1 = (t, 0, . . . , 0)′ to qt,Nt = (0, . . . , 0, t)′. Let Mi,t

and Γi,t̄ be Nt ×Nt̄ matrices for t, t̄ = 0, . . . , p whose (l,m) elements are
∫
aqt,laqt̄,mK(a)da

and
∫
aqt,laqt̄,mK(a)2da and let M = [Mt,t̄] and Γ = [Γt,t̄]. Let A = [0k, Ik, 0k, . . . , 0k]′ be

a (
∑p

0=1Ni)× k matrix, where 0k is a k × 1 vector of zeros. The asymptotic properties of
the local polynomial estimators are obtained as follows.

Lemma 4.2 Suppose that Assumption 4.1 holds. Then√
nhk+2

n (Ψ̂(x)−Ψ(x))
p→ 0,√

nhk+2
n (ĜM (x)−GM (x))

p→ 0,√
nhk+2

n (D̂(x)−D(x)) d→ N(0, V (x)),

where

V (x) =
(
σ2
M (x)/GM (x) 0

0 Ω(x)

)
⊗
(
f(x)−1A′M−1ΓM−1A

)
,

Ω(x) =

 GM (x)(1−GM (x)) −GM (x)GH(x) −GM (x)GL(x)
−GM (x)GH(x) GH(x)(1−GH(x)) −GH(x)GL(x)
−GM (x)GL(x) −GH(x)GL(x) GL(x)(1−GL(x))

 .
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Since this theorem is a special case of Masry (1996a, Theorem 5), the proof is omitted.
Assumption 4.1 (i) is on the sampling of data. It is possible to extend the setup to allow
weakly dependent data (see, Masry (1996a)). Assumption 4.1 (ii) says that the probability
that Y is uncensored conditional on X = x is positive and that the Lebesgue density of X
is positive at x. These are natural conditions given that we are trying to estimate β(x).
Assumption 4.1 (iii) is on the smoothness of the estimand functions Ψ, GM , GH , and GL to
be estimated. Assumption 4.1 (iv) restricts the shape of the kernel function. For example,
the triangle kernel and Epanechnikov kernel satisfy this condition. Assumption 4.1 (v)
contains standard conditions for the bandwidth hn. The condition nhk+2p+2

n → 0 is used
to eliminate the asymptotic bias term in the local polynomial estimator. Note that if the
dimension of the regressors k is higher, then the convergence rate of the estimator becomes
slower (i.e., the curse of dimensionality). The results on Ψ̂(x) and ĜM (x) are obtained
from the fact that

√
nhkn(Ψ̂(x) − Ψ(x)) and

√
nhkn(ĜM (x) − GM (x)) are asymptotically

normal (i.e., Op(1)). Since (1, 1, 1)Ω(x) = (0, 0, 0), Ω(x) is a singular matrix. However, the
vector cG(x) is not proportional to (1, 1, 1)′. If it is, then L(x) = H(x) and it contradicts
with GM (x) > 0 in Assumption 4.1 (ii). In order to conduct inference on β(x), we need to
estimate the asymptotic variance V (x). The matrices M and Γ can be evaluated analytically,
typically, and always by numerical integration, and the functions σ2

M (x), GM (x), Ω(x), and
f(x) can be consistently estimated by some nonparametric estimators. Note that GM (x)
and Ω(x) may be estimated from the constant terms of the local polynomial estimators for
GM (x), GH(x), and GL(x).

We next consider the local polynomial quantile regression estimators L̂(x) and Ĥ(x).
For simplicity we focus on the lower bound estimator L̂(x). Similar results hold for the
upper bound estimator Ĥ(x). Recall that the sample size is denoted n and bn denotes the
bandwidth used in the local polynomial quantile regression. The asymptotic properties of
L̂(x) crucially depends on the convergence rate of the drifting quantile τn to 0, and can be
analyzed by splitting into three cases: (i) extreme case (nbknτn → 0), (ii) intermediate case
(nbknτn → ∞), and (iii) edge case (nbknτn → c > 0). For the extreme case, the quantile
regression estimator L̂(x) is asymptotically equivalent to a linear programming estimator,
and its asymptotic properties are investigated by Chernozhukov (1998). The intermediate
case is considered by Ichimura, Otsu and Altonji (2008). Although the asymptotics of the
edge case are an open area for research in this nonparametric setup, we conjecture that
the results analogous to Chernozhukov (2005) hold. Here we present the convergence rate
of L̂(x) and Ĥ(x) for the intermediate case.5 Let Bx be some fixed closed ball around x.
Based on Ichimura, Otsu and Altonji (2008), the convergence rates of L̂(x) and Ĥ(x) are
obtained as follows. The relation f1(a) ∼ f2(a) means that f1(a)/f2(a) → 1 as a specified
limit for a.

Assumption 4.2 Assume that

(i) X is absolutely continuous on Bx, and f is continuous at x and is positive on Bx,

(ii) for all n large enough, the τn-th conditional quantile function Lτn(x) and Hτn(x) are

5For the extreme case (nbknτn → 0), the convergence rates of L̂(x) and Ĥ(x) can be obtained from
Chernozhukov (1998, Theorem 3).
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continuously differentiable up to total order of r at each x ∈ Bx, and its rth derivative
L

(r)
τn (x) and H(r)

τn (x) are uniformly Lipschitz on Bx,

(iii) the conditional distribution function FV (v|x) of V = Y − L(X) ≥ 0 and FU (u|x) of
U = H(X)− Y ≥ 0 given X = x and IM (X) = 1 have Lebesgue density fV (v|x) and
fU (u|x) are continuous and are positive on u, v ∈ [0, δ) for some δ > 0 uniformly on
x ∈ Bx.

(iv) as n→∞, it holds bn → 0 and for the case of estimating L(x), τn → 0 and nbknτn →∞
and for the case of estimating H(x), τn → 1 and nbkn(1− τn)→∞. Also assume that
nbk+2r+2

n τn
log logn → 0.

Assumption 4.2 (i) and (ii) are standard (see, Chaudhuri (1991a)). Assumption 4.2
(iii), which plays a key role, is on the tail behavior of the error terms V and U . As we
consider censored data, this assumption seems reasonable. This assumption also implies
that |Lτ (x) − L(x)| ≤ Cτ for some C > 0 uniformly on x ∈ Bx, for example, and helps
control the bias due to using the drifting quantile. Although the convergence rates become
more complicated, it is possible to consider more general situations for the tail behavior of
V .6 Assumption 4.2 (iv) is on the drifting quantile τn and the bandwidth bn.

Lemma 4.3 Suppose that Assumptions 4.1 (i) and 4.2 hold. Then

|L̂(x)− L(x)| = Oas

(
max

{
τn,
√
τn log logn/(nbkn)

})
,

|Ĥ(x)−H(x)| = Oas

(
max

{
1− τn,

√
(1− τn) log log n/(nbkn)

})
.

Thus the boundary functions can be estimated with rate log log n/(nbkn).
Combining Lemmas 4.1-4.3, the asymptotic distribution of the nonparametric estimator

β̂(x) is obtained as follows.

Theorem 4.1 Suppose that Assumptions 4.1 and 4.2 hold. Furthermore, assume that
hk+2
n (log log n)2/(nb2kn )→ 0 and hk+2

n τ2
n → 0 as n→∞. Then√

nhk+2
n (β̂(x)− β(x)) d→ N(0, (c(x)′ ⊗ Ik)V (x)(c(x)⊗ Ik)).

The bandwidths are required to satisfy the conditions to eliminate the bias.
Theorem 4.1 shows that our estimator β̂(x) converges to β(x) at a rate that depends on

the number of the regressors k. Since the bandwidth hn converges to 0, higher k implies
a slower rate of convergence. Thus, if we insist on estimating β(x) for each x without
restricting the class of potential functions for β(x), the curse of dimensionality results. One
way to circumvent the curse of dimensionality is to focus on the averages of β(x) over a
subset of the support of X. In other contexts, Ahmad (1976), Hall and Marron (1987),
and Powell, Stock and Stoker (1989) showed that the average of certain nonparametric
estimators converges to the limiting distribution at the parametric (or

√
n) rate. In the

next subsection we show that an analogous result holds in our case.
6See Ichimura, Otsu and Altonji (2008)
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4.2 Estimation of Averages of β(Xi), L(Xi), and H(Xi)

Let X̄ be a compact subset of the support of X (denoted as X) and Ii = I{Xi ∈ X̄} be
a trimming term. Our parameter of interest is defined as β(X̄) = E[β(Xi)|Ii = 1]. For
simplicity we will usually suppress the X̄ argument and write β(X̄) as β. We estimate β by

β̂ = n−1
n∑
i=1

Iiβ̂(Xi)/(n−1
n∑
i=1

Ii).

For the asymptotic distribution of β̂, we add the following assumptions.

Assumption 4.3 Assume that

(i) X̄ is compact, the (p + 1)-th total order derivatives of Ψ are uniformly bounded and
Lipschitz continuous on X, the (p+ 1)-th total order derivatives of GM , GH , and GL
are Lipschitz continuous on X, f is uniformly bounded and uniformly continuous on X
and is continuously differentiable on X̄ up to total order of 2, infx∈X̄GM (x) ≥ c1 for
some c1 > 0, infx∈X̄ f(x) ≥ c2 for some c2 > 0, and E |YiIM (Xi)|4 < ∞, E[Y 2

i |Xi =
x, IM (Xi) = 1] is continuous on x ∈ X̄,

(ii) K is non-negative and satisfies
∫
K(a)da = 1,

∫
aK(a)da = 0,

∫
aa′K(a)da = c3Ik for

some c3 > 0, and aqK(a) is Lipschitz continuous on the support of K for all q with
0 ≤ [q] ≤ 2p+ 1,

(iii) as n→∞, nhk+2
n / log(n)→∞ and nh2p

n → 0,

(iv) supx∈X̄

∣∣∣L̂(x)− L(x)
∣∣∣ = op(n−1/2) and supx∈X̄

∣∣∣Ĥ(x)−H(x)
∣∣∣ = op(n−1/2).

Assumption 4.3 (i)-(iii) are similar to those used in Masry (1996b, Theorem 6) and Li,
Lu and Ullah (2003, Theorem 2.1). Assumption 4.3 (i), which is an extension of Assumption
4.1 ((ii) and (iii)), contains smoothness and boundedness conditions over the sets X and X̄
as well as the requirement that Y has a positive probability of being uncensored at the
values of X in X̄. Assumption 4.3 (ii) and (iii) are additional conditions on the kernel
function K and the bandwidth hn, respectively. The condition nh2p

n → 0 is required to
make the asymptotic bias term negligible. Assumption 4.3 (iv) is required to guarantee that
the average components n−1/2

∑n
i=1 Ii(L̂(Xi)− L(Xi)) and n−1/2

∑n
i=1 Ii(Ĥ(Xi)−H(Xi))

are asymptotically negligible in the first-order asymptotics of
√
n(β̂ − β). Although it is

technically challenging, these higher level assumptions may be replaced with more primitive
ones by establishing the uniform Bahadur representation of the boundary estimators. Under
the intermediate quantile case (nbknτn →∞), the conditions on L̂(x) and Ĥ(x) are satisfied
if Assumption 4.2 (i)-(iii) hold over X̄ instead of holding on the set Bx and the bandwidth
bn satisfies nb2kn / log n→∞ and nb2rn → 0 when τn = log n/(nbkn).7

There are two reasons to introduce the trimming term Ii over the subset X̄. First, in
practice, empirical researchers are typically interested in the behavior of β(x) over some fixed
subset of the support of X. Second, as a technical matter, averaging over the trimming set

7See, Ichimura, Otsu and Altonji (2008).
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X̄ allows us to apply the uniform convergence results on L̂(x) and Ĥ(x) of Chernozhukov
(1998) for the extreme case or Ichimura, Otsu and Altonji (2008) for the intermediate
case. Although it is beyond the scope of this paper, it may be possible to consider the
sample average without trimming (i.e., n−1

∑n
i=1 β̂(Xi)) as the average derivative estimator

of E[β(Xi)]. The main technical difficulty is to derive a uniform convergence rate of the
boundary estimators for L(x) and H(x) over the whole support X or a growing subset that
converges to X as n grows to infinity (see, e.g., Ai (1997)).

Denote Qs,t,t̄ be an Nt × Nt̄ matrix for s = 1, . . . , k and t, t̄ = 0, . . . , p whose (l,m)
element is Qs,t,t̄ =

∫
asa

qt,laqt̄,mK(a)da, Qs = [Qs,t,t̄], and Q(x)=
∑k

s=1 ∂f(x)/∂xsQs. The
asymptotic distribution of the average derivative estimator β̂ is obtained as follows.

Theorem 4.2 Suppose that Assumptions 4.1 (i), (iii), and (iv) and 4.2 hold. Then

√
n(β̂ − β) d→ N(0,Σ),

where P = Pr(Ii = 1) and Σ is the variance covariance matrix of

ri =
Ii
P

[
β(Xi)− β

+(Yi − E[Yi|IM (Xi) = 1, Xi])IM (Xi)

((
M−1Q(Xi)

)
2:k+1,1

GM (Xi)f(Xi)
− ∇GM (Xi)

GM (Xi)2

)
+(IM (Xi)− E[IM (Xi)|Xi])

×

(
Ψ(Xi)

(
M−1Q(Xi)

)
2:k+1,1

GM (Xi)f(Xi)
− H(Xi)∇GH(Xi)

GM (Xi)2
− L(Xi)∇GL(Xi)

GM (Xi)2

)

+(IH(Xi)− E[IH(Xi)|Xi])
H(Xi)

(
M−1Q(Xi)

)
2:k+1,1

GM (Xi)f(Xi)

+(IL(Xi)− E[IL(Xi)|Xi])
L(Xi)

(
M−1Q(Xi)

)
2:k+1,1

GM (Xi)f(Xi)

]
+β(Ii − P ),

where
(
M−1Q(Xi)

)
2:k+1,1

is a k× 1 column vector defined from (2, 1) element to (k+ 1, 1)
element of M−1Q(Xi).

Note that the convergence rate of β̃ no longer depends on the dimension of the regressors
k. This phenomenon is common in average derivative estimation, where the data used in
the local estimate β̃(Xi) overlap with the data used in β̃(Xj) if Xi and Xj are sufficiently
close. The theorem can be modified to obtain the asymptotic distribution of estimators of
other weighted averages of β(x), i.e., E[Iiw(Xi)β(Xi)] for some weight function w.

5 Semiparametric Estimation

Imposing a priori information about potential functional forms is the most obvious way to
circumvent the curse of dimensionality. One way to impose a parametric specification is to
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specifyM(x, u), L(x), H(x), and the distribution of U parametrically. This approach always
leads to a parametric model which is consistent with the model (1). However, we may not
wish to specify the distribution of U explicitly, particularly if U is a vector. An alternative
is to specify Ψ(x), GH(x), GL(x), L(x), and H(x) parametrically without specifying the
distribution form of U . We consider the following semiparametric model:

Y =


Ψ(X; θ) + V if IM (X) = 1,
CL if IL(X) = 1,
CH if IL(X) = 1,

(9)

IL(x) = 1 with probability GL(x; θ),
IH(x) = 1 with probability GH(x; θ),

where E[V |IM (X) = 1, X = x] = 0 and θ is a finite dimensional parameter vector. From
the definitions, IM (x) = 1 with probability 1 −GH(x; θ) −GL(x; θ). To aid the search for
functional forms, the following lemma identifies the conditions that the parametric spec-
ification must satisfy to be consistent with a member of the class of models specified in
(1).

Lemma 5.1 Under the model (9), suppose that

1. there exists ε > 0 such that L(x; θ) + ε < Ψ(x; θ) < H(x; θ)− ε for all x,

2. there exist p1 and p2 such that 0 < GL(x; θ) < p1 < p2 < 1−GH(x; θ) < 1 for all x.
Then (1) holds with

M(X,U) = M0(X) +M1(X)U1 +M2(X)U2,

L(X) = L(X; θ), GL(x; θ) = Pr{IL(X) = 1|X = x},
H(X) = H(X; θ), GH(x; θ) = Pr{IH(X) = 1|X = x},

whereM1(x),M2(x) > 0 for all x, U1 and U2 are independent scalar random variables,
and U = (U1, U2) has the joint density fU such that

Ψ(x; θ) =
∫
u∈{u:IM (x)=1}

M(x, u)fU (u)du.

It is remarkable that we do not need to consider more general forms of M(x, u) than
the one specified in this lemma. The reason is that the parameter of interest in our analysis
is the conditional mean of the derivative of M(X,U) rather than the whole function of
M(X,U).

There is a simple way to impose the conditions of Lemma 5.1. First, specify some
parametric functional forms on L(x; θ), a(x; θ), ∆1(x; θ) > 0, ∆2(x; θ) > 0, 0 < P (x; θ) < 1,
and a distribution function F (·). Then the model that satisfies the conditions in Lemma
5.1 is obtained as H(x; θ) = L(x; θ) + ∆1(x; θ) and

Y =


L(X; θ)P (X; θ) +H(X; θ)(1− P (X; θ)) + V if IM (X) = 1,
CL if IL(X) = 1,
CH if IL(X) = 1,

IL(x) = 1 with probability F (L(x; θ) + a(x; θ)),
IH(x) = 1 with probability 1− F (H(x; θ) + a(x; θ) + ∆2(x; θ)).
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We now discuss the estimation problem of the parameter of interest by the semipara-
metric model (9). This estimation problem is not standard because of the presence of
the lower and upper bound functions L(x; θ) and H(x; θ). For simplicity we assume that
θ = (θ′L, θ

′
H , θ

′
R)′ ∈ Θ = ΘL × ΘH× ΘR, L(x; θ) = L(x; θL), and H(x; θ) = H(x; θH). The

parameter vector θR appears in GL(x; θ), GH(x; θ), and Ψ(x; θ). To estimate the parame-
ters θL and θH in the boundary functions L(x; θL) and H(x; θH), we apply extreme quantile
regression:

θ̂L = arg min
θL∈ΘL

n∑
i=1

ρτn
(Yi − L(Xi; θL))IM (Xi) for τn → 0,

θ̂H = arg min
θH∈ΘH

n∑
i=1

ρτn
(Yi −H(Xi; θH))IM (Xi) for τn → 1.

By combining the discrete choice likelihood for GL(x; θ) and GH(x; θ) and the least square
objective function for Ψ(x; θ), the remaining parameter θR can be estimated as

θ̂R = arg max
θR∈ΘR

`(θ̂L, θ̂H , θR),

where

`(θL, θH , θR)

=
n∑
i=1

[IL(Xi) logGL(Xi; θL, θH , θR) + IM (Xi) logGM (Xi; θL, θH , θR)

+IH(Xi) logGH(Xi; θL, θH , θR)]−
n∑
i=1

(Yi −Ψ(Xi; θL, θH , θR))2IM (Xi).

Note that if there is no overlapping parameter of θR in Ψ(x; θ) and (GL(x; θ), GH(x; θ)).
Then we can separately maximize the two terms in `(θL, θH , θR). There may be an efficiency
gain in accounting for heteroskedasticity in V but we do not consider this problem here.
The asymptotic properties of the extreme quantile regression estimators θ̂L and θ̂H can
be derived from, e.g., Knight (2001) or Chernozhukov (2005) when the model is linear
in parameters. The asymptotic property of θ̂R depends on the convergence rates of θ̂L
and θ̂H . If

√
n(θ̂L − θL) = op(1) and

√
n(θ̂H − θH) = op(1), then we can apply the

standard asymptotic theory on extremum estimators for θ̂R (see, e.g., Newey and McFadden
(1994)). In particular, the asymptotic distribution of θ̂R is equivalent to that of θ̂R =
arg maxθR∈ΘR

`(θL, θH , θR) in which θL and θH are known. The semiparametric estimator
for the parameter of interest β(x) is obtained by replacing the unknown functions with their
parametric estimators.

We close this section by noting that an alternative or complementary strategy is to
make use of linear index restrictions in the spirit of Ichimura and Lee (1991). One could
specify the model asM(x′θM , U), L(x′θL), H(x′θH), GL(x′θL, x′θM ), and GH(x′θH , x′θM ),
where M , L, H, GL, and GH are nonparametric functions. These restrictions imply that
Ψ(x) = Ψ(x′θM , x′θL, x′θH), GL(x) = GL(x′θL, x′θM ), and GH(x) = GH(x′θH , x′θM ).
Using the methods of Ichimura and Lee (1991), it would be relatively straightforward to
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implement the estimator with the index restrictions imposed. It might also be possible to
work with partially linear specifications of the M, GL, and GH functions using a two-step
approach in the spirit of Chen and Kahn (2001) to estimate Ψ, GL, and GH functions.
Finally, Lemma 5.1 may provide a way to further restrict the specification.

6 Extensions

6.1 Estimating the Effects of Discrete Regressors

Thus far we have discussed estimation of the average derivatives of Y with respect to X,
and our assumptions rule out discrete regressors. This section considers the case where X
contains both continuous and discrete elements. We assume we can partition X into X =
(XC , XD), where XC and XD are vectors of continuous and discrete regressors, respectively.
Let βC(xC , xD) denote the vector of average derivatives of Y with respect to XC given
IM (X) = 1, XC = xC , and XD = xD. It would be straightforward to extend our methods
above to allow estimation of βC(xC , xD). However, estimation of the effect of XD raises
issues of identification. For notational simplicity, assume XD is a scalar binary random
variable that takes on the values 0 and 1. There are a number of ways we can define
parameters of interest.8 Here we consider identification of

β01
D (xC , xD) = E(IM (xC , 1)M(xC , 1, U)−M(xC , 0, U)|IM (xC , 0) = 1, XC = xC);

the effect of a shift in XD from 0 to 1 on the average value of Y chosen by those for
whom IM (xC , 0) = 1 (initially uncensored). Assume that L(X) = 0 and H(X) = ∞. The
parameter of interest can be rewritten as

β01
D (xC , xD) = E(IM (xC , 1)M(xC , 1, U)|IM (xC , 0) = 1, XC = xC)

−E(M(xC , 0, U)|IM (xC , 0) = 1, XC = xC)
= E(IM (xC , 1)IM (xC , 0)M(xC , 1, U)|XC = xC)/GM (xC , 0)
−E(M(xC , 0, U)|IM (xC , 0) = 1, XC = xC)

= E(IM (xC , 1)M(xC , 1, U)|XC = xC)/GM (xC , 0)
−E(M(xC , 0, U)|IM (xC , 0) = 1, XC = xC)
−E(IM (xC , 1)(1− IM (xC , 0))M(xC , 1, U)|XC = xC)/GM (xC , 0)

= E(M(xC , 1, U)|IM (xC , 1) = 1XC = xC)GM (xC , 1)/GM (xC , 0)
−E(M(xC , 0, U)|IM (xC , 0) = 1, XC = xC)
−E(IM (xC , 1)(1− IM (xC , 0))M(xC , 1, U)|XC = xC)/GM (xC , 0)

Note that although the first and second terms of β01
D (xC , xD) are estimable from the sample

analogs, the third term is not in general. If IM (xC , 1) ≤ IM (xC , 0), then the last term is
zero and thus we can identify β01

D (xC , xD). If IM (xC , 1) ≤ IM (xC , 0) does not hold always,
then we need to analyze the bounds of the third term.

8For example E(M(xC , 1, U) −M(xC , 0, U)|IM (xC , 1) = 1, IM (xC , 0) = 1, XC = xC). This parameter
can be analyzed analogously.
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One way to find the bound is to impose the following assumption.9

Assumption 6.1 M(xC , 0, u′) < M(xC , 0, u′′) if and only if M(xC , 1, u′) < M(xC , 1, u′′).

The assumption presumes the ordering of individuals do not change between the two
cases. For any u′ ∈ {u′ : IM (xC , 0) = 0, IM (xC , 1) = 1} and u′′ ∈ {u′′ : IM (xC , 0) =
1, IM (xC , 1) = 1}, we have M(xC , 0, u′) ≤ 0 < M(xC , 0, u′′) and 0 < M(xC , 1, u′) <
M(xC , 1, u′′) by the above assumption.

Let B(xC) = E(IM (xC , 1)(1− IM (xC , 0))M(xC , 1, U)|XC = xC)/GM (xC , 0). Note that
B(xC) > 0 from M(xC , 1, u′) > 0 for any u′ ∈ {u′ : IM (xC , 0) = 0, IM (xC , 1) = 1}. For the
upper bound of B(xC), observe that

E[M(xC , 1, U)|IM (xC , 0) = 0, IM (xC , 1) = 1]
≤ min

u′′∈{u′′:IM (xC ,0)=1,IM (xC ,1)=1}
M(xC , 1, u′′)

≤ E[M(xC , 1, U)|IM (xC , 0) = 1, IM (xC , 1) = 1],

and

Ψ(xC , 1)
= E[M(xC , 1, U)|IM (xC , 0) = 1, IM (xC , 1) = 1] Pr {IM (xC , 0) = 1|IM (xC , 1) = 1}

+E[M(xC , 1, U)|IM (xC , 0) = 0, IM (xC , 1) = 1] Pr {IM (xC , 0) = 0|IM (xC , 1) = 1}
≥ E[M(xC , 1, U)|IM (xC , 0) = 0, IM (xC , 1) = 1].

Thus, the upper bound of B(xC) is obtained as

B(xC)
= E[M(xC , 1, U)|IM (xC , 0) = 0, IM (xC , 1) = 1]
×Pr{IM (xC , 0) = 0, IM (xC , 1) = 1}/GM (xC , 0)

≤ Ψ(xC , 1) min{1−GM (xC , 0), GM (xC , 1)}/GM (xC , 0).

If one assumes that M is nondecreasing in XD, with M(xC , 0, u) ≤ M(xC , 1, u) for all u,
then the bound becomes

0 < B(xC) < [GM (xC , 1)−GM (xC , 0)]Ψ(xC , 1)/GM (xC , 0).

By a similar argument, we can analyze β10
D (xC , xD), the effect of a shift in xD from 1 to 0

on the mean of Y chosen by those for whom IM (xC , 1) = 1, i.e.,

β10
D (xC , xD) =

GM (xC , 0)
GM (xC , 1)

Ψ(xC , 0)−Ψ(xC , 1) +B′(xC),

where the bound for the bias term

B′(xC) =
∫
u∈{u:IM (xC ,0)=1,IM (xC ,1)=0}

M(xC , 0, u)dµ(u)/GM (xC , 0)

is
0 ≤ B′(xC) ≤ min{GM (xC , 0), 1−GM (xC , 0)}Ψ(xC , 0)/GM (xC , 1).

We leave the analysis of the effect of XD in the case in which Y is censored by the general
functions L(XC , XD) and/or H(XC , XD) to further research.

9This assumption is used by Heckman, Smith, Clements (1997).
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6.2 Measurement Error in the Dependent Variable

This section considers the effect of measurement error in the dependent variable Y . Consider
a special case, where H(x) = ∞ and L(x) = 0 (or some known constant). In this special
case, GH(x) = 0 and GL(x) = 1−GM (x). Instead of Y and IM (X), we observe

Y ∗ = IRIM (X)(e1Y + e2),(10)
I∗M = IRIM (X),

respectively, where IR is a Bernoulli random variable (IR is 1 with probability p and is 0
with probability 1− p) that is independent of (X,U, e1, e2), e1 is a positive random variable
with the mean µ that is independent of (X,U, IR), and e2 is a random variable with the
mean 0 that is independent of (X,U, IR). IR can be interpreted as random variation in
whether Y is reported or not. e1 and e2 are multiplicative and additive measurement errors
for Y , respectively. The definition of Y ∗ implies10

E[Y ∗|X = x, I∗M = 1] = µΨ(x),
Pr{I∗M = 1|X = x} = pGM (x).

It follows immediately from the derivation of (5) that if one uses Y ∗ instead of Y to estimate
the components of β(x) in (5), then the probability limit of the estimator of β(x) is obtained
as

µβ(x).

Hence, random variation IR in whether the value of Y is reported when IM (X) = 1 does
not affect the probability limit of the estimator provided that the report of Y is unbiased
(i.e., E[Y ∗|Y = y, IM (X) = 1] = y), even if a fraction of respondents with Y > L(X) report
I∗M = 0. The same conclusions go through if Y ∗ = I∗Mf(Y, e) under the assumptions that
the measurement error component e is distributed independently of (X,U, IR) and that the
function f and the distribution of e satisfy E[f(Y, e)|Y = y, IM = 1] = y. Thus the form of
the measurement error can be generalized a bit.

Unfortunately, measurement error in Y in the form of (10) is a serious problem if L(x)
has to be estimated, because the conditional quantiles of Y ∗ and Y will not coincide. The
estimators of L(x) and β(x) are consistent even if p is less than 1 provided e1 = 1 and
e2 = 0. When both L(x) and H(x) must be estimated, then both forms of measurement
error lead to inconsistency.

6.3 Endogenous Regressors in a Cross Section

Our estimator can be modified to handle the case where X is correlated with U using
a control function approach. Assume that the distribution of X depends on a vector of
observable variables W . One can write X as X = ϕ(W )+V , where ϕ(W ) is defined so that
E[V |W = w] = 0 a.s. We assume

U ⊥W |V.
10Note that there may be cases in which Y ∗ is negative even though I∗M = 1. The researcher uses I∗M as

the indicator for whether Y > 0.
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This assumption is strong, but will be hard to avoid unless one is willing to impose addi-
tional restrictions on M(X,U), such as monotonicity in scalar valued function of U . This
assumption implies that dµ(u|ϕ(w), v) = dµ(u|v) for all v, where dµ(u|ϕ(w), v) and dµ(u|v)
are the conditional densities of U given (ϕ(W ), V ) = (ϕ(w), v) and V = v, respectively.
Let dµV (v|x) be the conditional density of V given X = x. Since X and W are observable,
one can consistently estimate ϕ(w) and dµV (v|x) under some regularity conditions. Given
ϕ(w), one can estimate the regression function Ψ(x, v) = E[Y |X = x, V = v, IM (X) = 1],
which can be written as

Ψ(x, v) =
∫
u∈{u:IM (x)=1}

M(x, u)dµ(u|ϕ(w), v)/GM (x, v)

=
∫
u∈{u:IM (x)=1}

M(x, u)dµ(u|v)/GM (x, v),

where GM (x, v) = Pr{IM (X) = 1|X = x, V = v} = Pr{IM (X) = 1|ϕ(W ) = ϕ(w), V = v}.
The parameter of interest is

β(x) =
∫
u∈{u:IM (x)=1}

∇M(x, u)dµ(u|x)/GM (x)

=
∫
v

∫
u∈{u:IM (x)=1}

{∇M(x, u)dµ(u|x, v)/GM (x, v)}dµV (v|x).(11)

Differentiating Ψ(x, v) with respect to x holding v fixed leads to

∇Ψ(x, v) =
∫
u∈{u:IM (x)=1}

∇M(x, u)dµ(u|v)/GM (x, v)

+{H(x)∇GH(x, v) + L(x)∇GL(x, v) + Ψ(x, v)∇GM (x, v)}/GM (x, v).

The second, third, and fourth terms on the right hand side and ∇Ψ(x, v) can also be
estimated using the approaches above. Rearranging the above equation leads to∫

u∈{u:IM (x)=1}
∇M(x, u)dµ(u|v)/GM (x, v)(12)

= ∇Ψ(x, v)− {H(x)∇GH(x, v) + L(x)∇GL(x, v) + Ψ(x, v)∇GM (x, v)}/GM (x, v).(13)

Taking v as known, the functions ∇Ψ(x, v),Ψ(x, v), H(x), L(x),∇GH(x, v),∇GL(x, v), and
GM (x, v) can be estimated using the parametric or nonparametric approaches discussed
above subject to similar regularity conditions, with x in the previous sections redefined
as (x, v). Multiplying the right hand side (13) by dµV (v|x) (which we can estimate) and
integrating over v yields the parameter of interest β(x) in (11).

Our treatment of endogeneity is closely related to a number of estimation procedures
in the literature in which a residual is introduced as a control variable in the second step,
particularly Smith and Blundell (1986) and Rivers and Vuong (1988) in the context of the
Tobit and probit models. Because of nonseparability between X and U , one must use
(11) to “undo” the effects of conditioning on V when estimating the response of X to Y
on the uncensored sample. Blundell and Powell (2004) and Altonji and Matzkin (2001)
use a similar idea in settings that differ from ours. Imbens and Newey (2002,2007) and
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Chesher (2003) consider the case in which X = g(Z, V ) and g is monotone in the scalar
unobservable V and M takes the form M(X,U), where U = {U1, V } and M is monotone
in scalar U1. See also Matzkin (2003). Following their approach, one can recover V from
the cumulative distribution function of X given Z and proceed as outlined above if Z and
(V,U) are independent.11 We suspect that the specification of M(X,U) and estimation
method used in Florens et al (2008) could also be used here as well.

A number of papers in the literature discuss estimation in nonseparable models with
endogenous variables when a control variable Z that is excluded from X is observed directly
and has the property dµ(u|X = x, Z = z) = dµ(u|Z = z). If one has such a variable, then
one can estimate β(x) using the estimator defined above by replacing v, V , and dµV (v|x)
with z, Z, and the conditional density dµZ(z|x) of Z given X = x. The problem with this
strategy, of course, is that it is hard to think of applications in which an appropriate Z
variable is directly available.

6.4 Endogenous Regressors in a Panel

When panel data are available, there are other possibilities. Suppose that one has panel
data observations Yit, Xit, and IMit, where i is a group indicator and t is a time indicator
(t = 1, . . . , T ). Assume that Xit and Uit are independent given Zi. In this case one can
show that

β(x) =
∫
z
∇Ψ(x, z)− {H(x)∇GH(x, z) + L(x)∇GL(x, z)

+Ψ(x, z)∇GM (x, z)/GM (x, z)}dµz(z|xit = x)dz.

We can estimate β(x) by substituting suitable parametric or nonparametric estimators for
the functions on the right hand side of this equation.12 Following Altonji and Matzkin (2001,
2005), if one is willing to assume that the conditional distribution of Uit is exchangeable in
(Xi1, Xi2, . . . XiT ), then symmetric functions (Xi1, Xi2, . . . XiT ), such as the group mean of
Xit for each i, might be a suitable choice for Zi.13

11These papers and others discussed by Blundell and Powell (2003), Matzkin (2007), and Chesher (2007)
focus on estimation of M(x, U) and ∇M(x, U) at various quantiles of U as well as dµ(U). Identifying the
structural function dµ(U |X = x) is much more demanding than identifying an average derivative such as
β(x) so it is not surprising that stronger assumptions are required. Note that β(x) is what Altonji and
Matzkin (2005) call a local average response. It is the average partial effect of an exogenous change in x
evaluated using the actual conditional distribution of U given X = x and IM (X) = 1. It corresponds to
how the population of agents with X = x and IM (x) = 1 would respond to an exogenous change in x.
Blundell and Powell (2004) focus on what Woodridge (2007) calls the average partial effect. In our context
the average partial effect is

R
u∈{u:IM (x)=1}∇M(x, u)dµ(u)/GM (x).

12In some applications this assumption may not be appropriate. Following along the lines of Altonji and
Matzkin (2001), one could proceed as follows. Write Xit = ϕ(Wit, Zi) + Vi, where ϕ(Wit, Zi) is defined so
that E[V |W = w,Zi = zi] = 0 a.s. Assume U ⊥W,Zi|V . Then one can construct an estimator based on

β(x) =

Z
zv

∇Ψ(x, z, v)− {H(x)∇GH(x, z, v) + L(x)∇GL(x, z, v)

+Ψ(x, z)∇GM (x, z, v)/GM (x, z, v)}dµz,v(z, v|xit = x)dzdv.

13In the case T = 2, the condition is
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The panel data version of our estimator complements Honoré’s (1992) trimmed LAD
estimator, which permits one to estimate θ in censored and truncated regression models
whenM(Xit, Uit) = Xitθ+Uit. His estimator is based on differencing the panel observations
in clever ways and is quite distinct from our approach.

7 A Monte Carlo Investigation

In this section we compare the performance of nonparametric and semiparametric versions
of our average derivative estimator to maximum likelihood Tobit. In Table 1, we report the
results of a series of Monte Carlo experiments based on the model

Model 1: M(X,U) = α0 + α1X + α2XU + U,

Y = max{0,M(X,U)},

where U has a normal distribution with mean 0 and variance 1 (written N(0, 1)) and X
has a uniform distribution between 0 and 4 (written U(0, 4)). The column headings report
the values of X at which β(x) is evaluated. The column labelled “Avg. β” reports results
for β̄, the average value of β(X) over the distribution of X for the uncensored observations.
The rows labeled “True Value” reports the true value of β̄ and the true values of β(x)
when x is 0, .4, .8, 1.2, 2, 2.8, 3.2, 3.6 and 4. The rows labelled “AIO-SP” report the
results for a semiparametric version, the rows labelled “AIO-NP” report the results for
a nonparametric version, and the rows labelled “Tobit” report the results for the Tobit
maximum likelihood estimator. For Model 1 as well as Models 2 and 3 below, in the
semiparametric case we specify Ψ(x; θ1) to be a fourth order polynomial in x plus a constant
term and estimate θ1 by OLS. We do not impose the restriction that the estimated values
of Ψ(x; θ1) is greater than 0 for all x. For the conditional probability GM (x; θ2), we specify
GM (x; θ2) = Φ(P (x; θ2)) where Φ(·) is the standard normal CDF and P (x; θ2) is a fourth
order polynomial in x plus a constant and estimate θ2 by the maximum likelihood. In
the nonparametric case we estimate both Ψ and GM by local linear regression with the
kernel weight K

(
X−x
hn

)
= I{−.5 ≤ X − x ≤ .5} (i.e., the uniform density kernel with the

bandwidth hn = 1). The kernel is symmetric around x if it is away from the boundary. When
x is 0, .4, 3.6, or 4, we extend the kernel in the direction away from the boundary to keep
the width of the window at 1.14 The Tobit estimation is conducted under the assumption

dµit(uit|Xi1 = xi1, Xi2 = xi2) = dµit(uit|Xi1 = xi2, Xi2 = xi1).

Altonji and Matzkin note that under the exchangeability, dµit(uit|Xi1 = xi1, Xi2 = xi2) may be written
as dµit(uit|zi) where zi = Z(xi1, xi2) is a vector of known symmetric functions of xi1 and xi2. In the case in
which T = 2 and xit is a scalar, any continuous symmetric function can be approximated arbitrarily closely
by a function of the first 2 elementary symmetric functions z1

i = (xi1+xi2) and z2
i = xi1xi2. The idea extends

to higher values of T using the first T elementary symmetric functions. However, exchangeability alone does
not restrict the z functions sufficiently to permit one to identify ∇Ψ(x, z), ∇GH(x, z), ∇GL(x, z), Ψ(x, z),
∇GM (x, z) and GM (x, z) nonparametrically. Consequently, some restrictions on these functions (e.g. linear
index restrictions) would be needed.

14We also performed simulations for the cases in Tables 1 and 2 using an Epanechnikov (or quadratic)
kernel with an automatic choice for the bandwidth. Our bandwidth choice rule is: (i) compute the rule of
thumb bandwidth bm of Fan and Gijbels (1996, pp. 110-113) to estimate the conditional mean function,
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that the analyst does not know the functional form of M(X,U) and approximates it with
a fourth order polynomial with an additively separable normal error term.

The rows labelled with “sd” report the standard deviations of the estimators across Monte
Carlo replications. For the semiparametric version of our estimator, the rows labelled “se”
report the mean of the asymptotic standard error estimates, and the rows labelled “90%” are
the coverages rates of the 90% confidence interval estimates. The sample size is 2,000 and
each row of the table is based on 4,000 Monte Carlo replications.15 For the semiparametric
version of our estimator, we compute asymptotic standard error estimates by applying the
delta method with the Huber-White heteroskedasticity consistent variance estimators for
the OLS and probit maximum likelihood estimators. For the nonparametric version of our
estimator and the Tobit maximum likelihood, we do not report estimated standard errors
or coverage rates.

The results are quite striking. For all cases AIO-SP is less biased than Tobit to estimate
β̄ and β(x). Consider, for example, the first panel of Table 1, where M(X,U) = 1.0 −
0.5X +XU + U . For this specification β(x) ranges from -0.212 when x is 0 to 0.429 when
x is 4. The Monte Carlo mean of Ave. β by AIO-SP is 0.229, while the true value is
0.210. For β(x), the Monte Carlo means of AIO-SP are -0.029 for β(.4) = −0.027, 0.056
for β(.8) = 0.098, 0.335 for β(2) = 0.298, 0.325 for β(2.8) = .366, 0.336 for β(3.2) =
.391, and 0.448 for β(3.6) = 0.412. Note, however, that at the boundaries, the Monte
Carlo means of AIO-SP are 0.002 for β(0) = −0.212 and 0.607 for β(4) = 0.429. The
discrepancies at 0 and 4 illustrate the fact that for most specifications we tried there is
substantial bias near the boundaries of the support of X.16 The standard deviations are
also large near the boundaries of the support of X in almost all of the experiments. Based on
our preliminary simulation study (not reported here), this reflects the large sampling errors
in ∇Ψ(x; θ̂1) and ∇GM (x; θ̂2) near the boundaries of the support of X, and these sampling
errors are magnified in Ψ(x; θ̂1)/GM (x; θ̂2). The relative importance of these two sources of
the sampling error varies to some extent with the design. Overall, however, AIO-SP does a
good job of fitting β̄ and tracking β(x), particularly between x = 0.4 and x = 3.6.

The results for AIO-NP are also encouraging. In many instances it is even closer to β(x)
than AIO-SP in terms of the Monte Carlo means. Interestingly, in all but two instances,
the nonparametric version has a smaller sampling variance at the boundaries x = 0 and 4.

and then (ii) compute the adjusted bandwidth as bm′ = bm(n1/5/n1/7). We use this adjustment because the
dominant components that drive the asymptotics of the estimator β̂(x) are the estimators for the derivatives
D̂(x) (see, Lemma 4.1), and because the optimal bandwidths to estimate the conditional mean function and
its first-order derivative take the form of cmn−1/5 and cm′n−1/7, respectively. The simulation results are in
Table 4. Overall, the performance is similar to that of the uniform kernel particularly in the range between
x = .4 and x = 3.6.

15One can obtain standard errors of the Monte Carlo means by dividing the reported standard deviations
by
√

4000 or 63.2.
16We obtained similar results for n = 500, so small sample bias does not appear to be the main problem.

The bias appears to be a consequence of minor misspecification of Ψ(x; θ1) and GM (x; θ2) for the behavior
of the estimator of OΨ(x; θ1) and OGM (x; θ2) near the boundaries of the support of X. To isolate the role of
functional form, we performed the following experiment. For one set of parameter values, we computed the
true values of Ψ(x) and GM (x) implied by Model 1. We then estimated Ψ(x) by regressing the uncensored
values of Y on a third order polynomial in the true Ψ(x). We estimated GM (x) using a probit model with
the probit index specified to be a cubic function in the true value of Φ−1(GM (x)), where Φ−1(·) is the inverse
of the standard normal CDF. The estimator was essentially unbiased for values of x between 0.01 and 4.
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This superior performance near the boundaries may reflect the effects of heteroskedasticity
on the efficiency of OLS in the semiparametric case. (Ignoring the effects of censoring, the
error variance rises with the square of x when α2 6= 0.)17 In contrast, Tobit is severely
biased to estimate β̄ and β(x) and is also very noisy near the boundary values of X.

The results in Panel 3, where M(X,U) = −1 + XU + U , are also quite interesting. In
this case, the Monte Carlo mean of Ave. β of Tobit is 0.918 which is reasonably close to the
true value of β̄ = 1.046. However, the Monte Carlo mean of Ave. β of AIO-SP is 1.034 and
is better than Tobit. Both AIO-SP and AIO-NP do a good job of tracking the variation
in β(x) in this experiment at least between x = .4 and x = 3.6, while the Tobit does very
poorly.

In Panel 6 we report the results for an experiment in which α2 = 0. Note that β̄ =
β(x) = α1 in this case and Tobit is the maximum likelihood estimator for the problem. All
estimators are essentially unbiased, and perhaps surprisingly, AIO-SP is almost as efficient
as Tobit. However, we find that if one uses Tobit with α0 + α1X, the true form, imposed
as the Tobit index, then Tobit sd of the estimates of α1 is about half of that of AIO-SP for
β̄ and is between 1/9th and 2/5ths as large for β(x) between x = 0.4 and x = 3.6.

What about inference? The asymptotic standard error estimates of AIO-SP closely track
the standard deviations of the estimators and the coverage rates are close to 0.9 in all cases,
even at the boundary values. Both se and sd of AIO-SP depend on V ar(α2XU + U) and
on how far the value of x is from the boundaries of the support. They tend to be negatively
related to the number of uncensored values in the neighborhood of x, although we do not
provide enough information to infer this from the tables. The Monte Carlo simulations
indicate that the standard errors based on the delta method perform well.

In Table 2 we report the Monte Carlo results for AIO-SP, AIO-NP, and Tobit under
Model 2, which is:

Model 2: M(X,U) = α0 + α1X + α2XU1 + U2,

Y = max{0,M(X,U)},

where U1 follows N(0, 1), U2 follows N(0, 1), and X follows U(0, 4). Since U2 does not
interact with X, Model 2 is closer to a Tobit model than Model 1. Consequently, one would
expect that the presence of U2 would lead to improvement in the Tobit estimator from Table
1 relative to AIO-SP and AIO-NP for the same parameter values. The results for Panels
1-4 in Tables 1 and 2 support this conjecture. Although the results are not reported here,
increasing the variance of U2 reduces the amount of bias in Tobit. However, in a number of
cases Tobit is still substantially biased. Our AIO-SP and AIO-NP are essentially unbiased
for β̄ and also tracks the true values of β(x) reasonably closely when x is between 0.4 and
3.6 in all cases.

17It also may reflect the possibility that for the window width we have chosen, the functional forms implicit
in the local linear regression estimators are more restrictive than regression and probit with global fourth
order polynomials.
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The third model that we examine is of the form

Model 3 : M(X,U) = α0 + α1X + α2XU + U,

Y =
{
M(X,U) if M(X,U) > L(X)
CL otherwise ,

L(X) = a0 + a1X,

where U follows N(0, 1) and X follows U [0, 4]. The specification of M(X,U) is the same
as Model 1, but the lower bound for Y is L(X) rather than 0. We did not impose the
restriction that the sample estimate of Ψ(x; θ1) be greater than L(x) for all values of x. We
performed the simulations under the assumption that the econometrician knows the form
of L(x) up to the parameter values a1and a2. We used quantile regression with the third
centile to estimate a0 and a1 as discussed in Section 5.18 We did not experiment much with
whether choosing a lower or higher quantile improves the performance of the estimator,
although in a few experiments not reported here we found that in large samples choosing a
very low quantile, (say τn = .01) reduces the bias in the estimates of a0 and a1 but did not
alter the estimates of β(x) by very much. The rows labeled “Tobit” report the results for
the maximum likelihood estimator of the censored regression model under the assumption
that M(X,U) = α0 + α1X + U . This estimator requires Y > â1 + â2X for all observations
in which Y = M(X,U).

The results are in Table 3. In Panel 1 we consider the case in which M(X,U) = X +U
and L(X) = .5X. For this specification, β(x) = 1 for all x. The Monte Carlo mean of
AIO-SP is very close to 1 for all values of x, and the coverage rates are close to 0.9. The
Monte Carlo mean of â0 and â1 are 0.001 and 0.565, respectively. Thus there is a small
positive bias in the estimation of L(x), which is not surprising given our use of the third
centile. In Panel 1 the censored regression model is correctly specified and the censored
Tobit is the maximum likelihood estimator for the problem. Not surprisingly, it does very
well.

In the remaining panels we consider several specifications in which α2 differs from 0,
so β(x) varies and the censored regression model is misspecified. In all of the cases, the
Monte Carlo mean of AIO-SP tracks β(x) closely between x = .4 and x = 3.6. For all of
the specifications in Table 3, se tracks sd well and coverages of 90% confidence intervals are
close to 0.9. The censored regression model is biased for β̄ and fails to track β(x).

We repeated the experiments in Tables 1 and 2 for sample sizes of 500 (not reported).
The behaviors of AIO-SP for β̄ and β(x) are quite similar. Although AIO-SP se and sd
typically double, coverage rates remain close to 0.9. It is likely, however, that in small
samples the mean squared error can be improved if one is more parsimonious in specifying
Ψ(x; θ1) and P (x; θ2) than we have been.

Overall, the Monte Carlo results are very encouraging.
18We did not bother to estimate standard errors for â0 and â1. Recall that under our assumptions the

asymptotic distribution of β̂(x) is not influenced by sampling errors in â0 and â1. The asymptotic standard
error estimates of β̂(x) are calculated by the delta method, as in Models 1 and 2.
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8 Conclusions

We provide an estimator for partial derivatives in nonseparable limited dependent variables
models, with and without endogenous variables. We place almost no restrictions on the
function that determines the dependent variable. The basic idea is to first estimate the
derivatives of the regression function relating the dependent variable to the explanatory
variables on the uncensored sample, and then correct for the effects of sample selection. The
correction term for the derivative has a simple structure and can be estimated quite easily.
For example, if the censoring point is known and one chooses to use flexible parametric forms,
the estimator can be computed using a regression program and a probit or logit program.
If the censoring points are not known, then in addition one requires a quantile regression
program such as qreg in STATA. The nonparametric version can be implemented using a
local polynomial regression routine and a quantile regression that allows weights, such as
the lpoly and qreg packages in STATA. We provide encouraging Monte Carlo evidence for
cases in which the outcome is censored at 0 and cases in which the censoring point is an
unknown linear function of an explanatory variable. The estimator has been successfully
applied in a few empirical studies.

When the censoring point is known the estimator is robust to random misclassification
of some uncensored observations as censored and to measurement error in the dependent
variable, provided that the mean of the report conditional on the explanatory variables is
unbiased. A version of the estimator that can be used in the case of endogenous explanatory
variables in some circumstances, such as when an exogenous determinant of X is available
or in panel data that satisfy the exchangeability conditions used in Altonji and Matzkin
(2001, 2005) is available.

In future research, it would be valuable to examine whether the estimator can be ex-
tended to the case of stochastic censoring functions L(x; η) and H(x; η), where η is a random
vector, which would cover a very broad class of models.
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A Appendix

A.1 Proof of Lemma 3.1 and Theorem 3.1

Lemma 3.1 directly implies Theorem 3.1. We prove Lemma 3.1. Clearly it is sufficient to
prove Lemma 3.1 for ∇1, the partial derivative with respect to the first element of x, i.e.,
(14)

∇1

∫
M(x, u)IM (x)dµ(u) =

∫
∇1M(x, u)IM (x)dµ(u)−H(x)∇1GH(x)− L(x)∇1GL(x).

The left hand side of (14) is written as

lim
ε→0

[∫
M(x+ εe1, u)IM (x+ εe1)dµ(u)−

∫
M(x, u)IM (x)dµ(u)

]
/ε

= lim
ε→0

∫
[M(x+ εe1, u)−M(x, u)] IM (x+ εe1)dµ(u)/ε

+ lim
ε→0

∫
M(x, u) [IM (x+ εe1)− IM (x)] dµ(u)/ε

= T1 + T2,

where e1 = (1, 0, . . . , 0). Assumption 3.1 (ii), (iv), and (v) imply limε→0 IM (x + εe1) =
IM (x) a.s. Thus, Assumption 3.1 (iv) and the Lebesgue dominated convergence theorem
imply that T1 =

∫
∇1M(x, u)IM (x)dµ(u). We now consider T2. From the definition of IM

and Assumption 3.1 (ii),

IM (x+ εe1)− IM (x)
= [I{L(x+ εe1) < M(x+ εe1, U)}+ I{M(x+ εe1, U) < H(x+ εe1)}]
− [I{L(x) < M(x, U)}+ I{M(x, U) < H(x)}] ,

a.s. for all ε sufficiently close to zero. So, T2 can be written as

T2 = lim
ε→0

∫
M(x, u) [I{L(x+ εe1) < M(x+ εe1, u)} − I{L(x) < M(x, u)}] dµ(u)/ε

+ lim
ε→0

∫
M(x, u) [I{M(x+ εe1, u) < H(x+ εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε.

Since I{L(x + εe1) < M(x + εe1, u)} = 1 − I{M(x + εe1, u) ≤ L(x + εe1)} for all ε
sufficiently close to zero, the following lemma completes the proof.

Lemma A.1 Under Assumption 3.1,

lim
ε→0

∫
M(x, u) [I{M(x+ εe1, u) < H(x+ εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε(15)

= −H(x)∇1GH(x).

It is sufficient to show that both an upper bound and a lower bound of the left hand
side of (15) converge to the right hand side as ε→ 0. The left hand side of (15) equals

lim
ε→0

∫
M(x, u)I{M(x+ εe1, u) < H(x+ εe1)}I{M(x, u) ≥ H(x)}dµ(u)/ε

− lim
ε→0

∫
M(x, u)I{M(x+ εe1, u) ≥ H(x+ εe1)}I{M(x, u) < H(x)}dµ(u)/ε.
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Since the argument is analogous, we only show the result for an upper bound. To do so,
note that if M(x + εe1, u) < H(x + εe1), then Assumption 3.1 (iv) implies M(x, u) <
H(x+ εe1) + εB(u) for all ε sufficiently close to zero, where B(u) is defined in Assumption
3.1 (iv). Similarly, if M(x+ εe1, u) ≥ H(x+ εe1), then M(x, u) ≥ H(x+ εe1)− εB(u) for
all ε sufficiently close to zero. Hence the left hand side of (15) can be bounded from above
by

lim
ε→0

∫
H(x+ εe1)I{M(x+ εe1, u) < H(x+ εe1)}I{M(x, u) ≥ H(x)}dµ(u)/ε

+ lim
ε→0

∫
B(u)I{M(x+ εe1, u) < H(x+ εe1)}I{M(x, u) ≥ H(x)}dµ(u)

− lim
ε→0

∫
H(x+ εe1)I{M(x+ εe1, u) ≥ H(x+ εe1)}I{M(x, u) < H(x)}dµ(u)/ε

+ lim
ε→0

∫
B(u)I{M(x+ εe1, u) ≥ H(x+ εe1)}I{M(x, u) < H(x)}dµ(u).

By Assumption 3.1 (ii), (iv), and (v), the Lebesgue dominated convergence theorem implies
that the second term and the fourth term converge to zero. The first term and the third
term can be rewritten as

lim
ε→0

H(x+ εe1)
∫

[I{M(x+ εe1, u) < H(x+ εe1)} − I{M(x, u) < H(x)}] dµ(u)/ε

which equals the right hand side of (15) under Assumption 3.1 (ii) and (iii). Therefore, the
conclusion is obtained.

A.2 Proof of Theorem 4.2

Observe that
√
n(β̃ − β)

=
1√
n

n∑
i=1

{Iiβ(Xi)− β}

+
1√
n

n∑
i=1

Ii

{
∇̂Ψ(Xi)−∇Ψ(Xi)

}
+

1√
n

n∑
i=1

Ii

{
Ψ̂(Xi)
ĜM (Xi)

∇̂GM (Xi)−
Ψ(Xi)
GM (Xi)

∇GM (Xi)

}

+
1√
n

n∑
i=1

Ii

{
H̃(Xi)
ĜM (Xi)

∇̂GH(Xi)−
H(Xi)
GM (Xi)

∇GH(Xi)

}

+
1√
n

n∑
i=1

Ii

{
L̃(Xi)
ĜM (Xi)

∇̂GL(Xi)−
L(Xi)
GM (Xi)

∇GL(Xi)

}
= T0 + T1 + T2 + T3 + T4.
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We analyze the j-th component of Tm for each j = 1, . . . , k and m = 1, . . . , 4. For T1, an
application of Li, Lu and Ullah (2003, Theorem 2.1) implies that

T1,j =
1√
n

n∑
i=1

Ii (Yi − E [Yi|IM (Xi) = 1, Xi])
IM (Xi)

(
M−1Q(Xi)

)
j+1,1

GM (Xi)f(Xi)
+ op(1).

From Masry (1996b, Theorem 6) and Assumption 4.3 (iii), we have

sup
x∈X̄

∣∣∣(Ψ̂(x)−Ψ(x)
)(

ĜM (x)−GM (x)
)∣∣∣ = op(n−1/2),

sup
x∈X̄

∣∣∣(Ψ̂(x)−Ψ(x)
)(
∇̂GM,j(x)−∇GM,j(x)

)∣∣∣ = op(n−1/2),

sup
x∈X̄

∣∣∣(ĜM (x)−GM (x)
)(
∇̂GM,j(x)−∇GM,j(x)

)∣∣∣ = op(n−1/2),

sup
x∈X̄

∣∣∣ĜM (x)−GM (x)
∣∣∣2 = op(n−1/2).(16)

Thus, for T2,j , adapted versions of Li, Lu and Ullah (2003, Theorem 2.1) yield

T2,j =
1√
n

n∑
i=1

Ii
Ψ(Xi)
GM (Xi)

(
∇̂GM,j(Xi)−∇GM,j(Xi)

)
+

1√
n

n∑
i=1

Ii
∇GM,j(Xi)
GM (Xi)

(
Ψ̂(Xi)−Ψ(Xi)

)
− 1√

n

n∑
i=1

Ii
Ψ(Xi)∇GM,j(Xi)

GM (Xi)2

(
ĜM (Xi)−GM (Xi)

)
+ op(1)

=
1√
n

n∑
i=1

Ii (IM (Xi)− E [IM (Xi)|Xi])
Ψ(Xi)

(
M−1Q(Xi)

)
j+1,1

GM (Xi)f(Xi)

+
1√
n

n∑
i=1

Ii (Yi − E [Yi|IM (Xi) = 1, Xi]) IM (Xi)
∇GM,j(Xi)
GM (Xi)2

− 1√
n

n∑
i=1

Ii (IM (Xi)− E [IM (Xi)|Xi])
Ψ(Xi)∇GM,j(Xi)

GM (Xi)2
+ op(1).

>From Masry (1996b, Theorem 6) and Assumption 4.3 (iii), we have

sup
x∈X̄

∣∣∣(ĜM (x)−GM (x)
)(
∇̂GH,j(x)−∇GH,j(x)

)∣∣∣ = op(n−1/2).

32



Thus, from Assumption 4.3 (iv), (16), and adapted versions of Li, Lu and Ullah (2003,
Theorem 2.1), T3,j satisfies

T3,j =
1√
n

n∑
i=1

Ii
H(Xi)
GM (Xi)

(
∇̂GH,j(Xi)−∇GH,j(Xi)

)
− 1√

n

n∑
i=1

Ii
H(Xi)∇GH,j(Xi)

GM (Xi)2

(
ĜM (Xi)−GM (Xi)

)
+ op(1)

=
1√
n

n∑
i=1

Ii (IH(Xi)− E [IH(Xi)|Xi])
H(Xi)

(
M−1Q(Xi)

)
j+1,1

GM (Xi)f(Xi)

− 1√
n

n∑
i=1

Ii (IM (Xi)− E [IM (Xi)|Xi])
H(Xi)∇GH,j(Xi)

GM (Xi)2
+ op(1).

Similarly, we have

T4,j =
1√
n

n∑
i=1

Ii (IL(Xi)− E [IL(Xi)|Xi])
L(Xi)

(
M−1Q(Xi)

)
j+1,1

GM (Xi)f(Xi)

− 1√
n

n∑
i=1

Ii (IM (Xi)− E [IM (Xi)|Xi])
L(Xi)∇GL,j(Xi)

GM (Xi)2
+ op(1).

Combining these results, the conclusion is obtained.

A.3 Proof of Lemma 5.1

Denote the marginal distribution functions of U1 and U2 by F1 and F2, respectively. Suppose
F1 and F2 have zero mean, strictly increasing, and have smooth marginal densities f1 and
f2, respectively. For these distributions we construct a function

M(x, u) = M0(x) +M1(x)u1 +M2(x)u2

so that

GL(x; θ) = Pr {M(X,U) ≤ L(X; θ)|X = x} ,
GH(x; θ) = Pr {M(X,U) ≥ H(X; θ)|X = x} , and

Ψ(x; θ) = E [M(X,U)|IM (X) = 1, X = x] .

For notational convenience from now on we drop the arguments x and θ from functions.
First, note that

GL =
∫ ∞
−∞

f1(u1)F2

(
L−M0 −M1u1

M2

)
du1(17)

=
∫ ∞
−∞

f2(u2)F1

(
L−M0 −M2u2

M1

)
du2,(18)

1−GH =
∫ ∞
−∞

f1(u1)F2

(
H −M0 −M1u1

M2

)
du1(19)

=
∫ ∞
−∞

f2(u2)F1

(
H −M0 −M2u2

M1

)
du2.(20)
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If L = −∞ (or H = +∞), then GL = 0 (or GH = 0) and these equalities are trivially
satisfied. Similarly,

ΨGM = M0GM

+M1

∫ ∞
−∞

u1f1(u1)
[
F2

(
H −M0 −M1u1

M2

)
− F2

(
L−M0 −M1u1

M2

)]
du1

+M2

∫ ∞
−∞

u2f2(u2)
[
F1

(
H −M0 −M2u2

M1

)
− F1

(
L−M0 −M2u2

M2

)]
du2.(21)

Reparametrize so that λ = M1/M2. By holding λ constant, we can find M∗0 (λ) and M∗2 (λ)
that solve (18) and (20) with respect to M0 and M2, respectively. Let lλ and hλ denote the
solutions to GL =

∫∞
−∞ f1(u1)F2(lλ − λu1)du1 and 1 − GH =

∫∞
−∞ f1(u1)F2(hλ − λu1)du1,

respectively. Then by the definitions, M∗0 (λ) and M∗2 (λ) are written as

M∗0 (λ) =
hλL− lλH
hλ − lλ

, M∗2 (λ) =
H − L
hλ − lλ

.

By substituting these solutions, the right hand side of (21) can be regarded as a function
of λ (denote the function by m(λ)). Thus, for the conclusion it is sufficient to check the
existence of λ∗ > 0 that solves ΨGM = m(λ). From the mean value theorem and Condition
1, the existence of λ∗ can be verified by showing that

(22) lim
λ→0

m(λ) < (L+ ε)GM , lim
λ→∞

m(λ) > (H − ε)GM ,

for some ε > 0 satisfying Condition 1.
We now show (22). Choose F1 and F2 so that F−1

1 (p1) < 0 < F−1
1 (p2) and F−1

2 (p1) <
0 < F−1

2 (p2) for some p1 and p2 satisfying Condition 2. Note that hλ → h0 and lλ → l0 as
λ → 0, where h0 and l0 solve F2(h0) = 1 − GH and F2(l0) = GL, respectively. Similarly,
hλ/λ → h∞ and lλ/λ → l∞ as λ → ∞, where h∞ and l∞ solve F1(h∞) = 1 − GH and
F1(l∞) = GL, respectively. From Condition 2, we have l0 < 0 < h0 and l∞ < 0 < h∞. As
λ→ 0, we have

m(λ)→ LGM +
H − L
h0 − l0

∫ h0

l0

(u− l0)f2(u)du,

and as λ→∞, we have

m(λ)→ HGM −
H − L
h∞ − l∞

∫ h∞

l∞

(h∞ − u)f1(u)du.

Therefore, by choosing F1 and F2, we can obtain l0, h0, l∞, and h∞ that satisfy (22). This
completes the proof.
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Table 1: Models with a single error term and a known censoring point

Model 1: M(X,U) = 1.0− 0.5X + 1.0X · U + U ; percentage uncensored: 53.8%
Avg. β Evaluation Point of β(x)

0.0 0.4 0.8 1.2 2.0 2.8 3.2 3.6 4.0
True Value 0.210 -0.212 -0.027 0.098 0.186 0.298 0.366 0.391 0.412 0.429

AIO-SP 0.229 0.002 -0.029 0.056 0.178 0.335 0.325 0.336 0.448 0.607
sd 0.126 0.747 0.245 0.167 0.204 0.181 0.312 0.326 0.844 2.166
se 0.126 0.702 0.247 0.162 0.206 0.179 0.313 0.322 0.845 2.129

90% 0.901 0.862 0.904 0.880 0.905 0.889 0.902 0.891 0.894 0.891
AIO-NP 0.215 0.020 -0.006 0.080 0.182 0.294 0.338 0.390 0.376 0.294

sd 0.118 0.572 0.277 0.306 0.382 0.542 0.703 0.793 0.869 0.939
Tobit -0.130 -0.967 -0.639 -0.390 -0.208 0.002 0.085 0.109 0.137 0.180

sd 0.113 0.988 0.332 0.178 0.222 0.158 0.252 0.242 0.620 1.479
Model 2: M(X,U) = 1.0 + 0.0X + 1.0X · U + U ; percentage uncensored: 65.3%

True Value 0.556 0.288 0.405 0.481 0.533 0.598 0.638 0.653 0.655 0.675
AIO-SP 0.567 0.415 0.397 0.455 0.530 0.619 0.610 0.622 0.703 0.764

sd 0.131 0.757 0.245 0.162 0.202 0.169 0.293 0.303 0.783 1.988
se 0.128 0.731 0.250 0.157 0.202 0.168 0.294 0.298 0.779 1.964

90% 0.890 0.888 0.908 0.887 0.902 0.894 0.902 0.891 0.894 0.896
AIO-NP 0.558 0.437 0.416 0.474 0.524 0.601 0.654 0.648 0.645 0.602

sd 0.119 0.560 0.280 0.293 0.372 0.522 0.644 0.730 0.803 0.843
Tobit 0.252 -0.265 -0.048 0.110 0.219 0.330 0.366 0.381 0.407 0.454

sd 0.117 0.973 0.325 0.178 0.220 0.157 0.251 0.245 0.627 1.488
Model 3: M(X,U) = −1.0 + 0.0X + 1.0X · U + U ; percentage uncensored: 34.7%

True Value 1.046 1.525 1.301 1.182 1.108 1.021 0.973 0.955 0.941 0.929
AIO-SP 1.034 1.401 1.316 1.212 1.113 1.002 0.999 0.983 0.900 0.539

sd 0.194 0.890 0.407 0.187 0.257 0.193 0.345 0.332 0.873 2.287
se 0.194 1.061 0.391 0.188 0.255 0.192 0.347 0.334 0.867 2.241

90% 0.896 0.955 0.886 0.895 0.898 0.895 0.907 0.900 0.901 0.887
AIO-NP 1.050 1.614 1.301 1.207 1.128 1.018 0.973 0.973 0.939 0.902

sd 0.169 4.311 0.400 0.405 0.462 0.605 0.742 0.814 0.879 0.928
Tobit 0.918 2.416 1.735 1.258 0.950 0.686 0.645 0.615 0.529 0.350

sd 0.155 1.555 0.609 0.263 0.291 0.193 0.300 0.275 0.679 1.686
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Table 1: (Continued) Models with a single error term and a known censoring point

Model 4: M(X,U) = 0.0 + 1.0X + 0.5X · U + U ; percentage uncensored: 80.2%
Avg. β Evaluation Point of β(x)

0.0 0.4 0.8 1.2 2.0 2.8 3.2 3.6 4.0
True Value 1.162 1.399 1.299 1.237 1.195 1.144 1.115 1.105 1.097 1.090

AIO-SP 1.156 1.388 1.300 1.242 1.196 1.143 1.118 1.110 1.092 0.940
sd 0.088 0.644 0.244 0.115 0.149 0.105 0.167 0.166 0.428 1.047
se 0.089 0.684 0.236 0.117 0.149 0.104 0.171 0.165 0.430 1.065

90% 0.890 0.916 0.887 0.909 0.901 0.898 0.906 0.895 0.904 0.910
AIO-NP 1.167 1.357 1.303 1.245 1.206 1.151 1.111 1.113 1.111 1.116

sd 0.081 0.558 0.254 0.241 0.270 0.318 0.377 0.420 0.439 0.451
Tobit 1.147 1.699 1.449 1.273 1.159 1.061 1.046 1.035 1.005 0.942

sd 0.083 0.772 0.285 0.127 0.152 0.106 0.166 0.161 0.413 0.990
Model 5: M(X,U) = 0.0− 0.0X + 1.0X · U + U ; percentage uncensored: 50.0%

True Value 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798
AIO-SP 0.802 0.826 0.802 0.802 0.800 0.791 0.789 0.800 0.822 0.731

sd 0.149 0.831 0.287 0.168 0.223 0.172 0.312 0.309 0.804 2.067
se 0.150 0.831 0.286 0.168 0.220 0.176 0.312 0.310 0.814 2.059

90% 0.889 0.893 0.899 0.900 0.894 0.909 0.899 0.898 0.903 0.895
AIO-NP 0.797 0.822 0.789 0.811 0.806 0.801 0.787 0.799 0.789 0.748

sd 0.135 0.604 0.308 0.331 0.407 0.534 0.684 0.769 0.829 0.875
Tobit 0.493 0.523 0.517 0.509 0.499 0.481 0.475 0.480 0.491 0.511

sd 0.125 1.175 0.425 0.202 0.243 0.166 0.266 0.251 0.630 1.527
Model 6: M(X,U) = 0.0 + 0.0X + 0.0X · U + U ; percentage uncensored: 50.0%

True Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AIO-SP -0.000 0.030 0.001 0.001 0.000 -0.001 -0.001 0.000 0.001 -0.026

sd 0.041 0.450 0.177 0.075 0.085 0.055 0.085 0.076 0.175 0.448
se 0.041 0.452 0.179 0.076 0.085 0.057 0.085 0.076 0.179 0.451

90% 0.905 0.892 0.899 0.903 0.904 0.911 0.904 0.906 0.911 0.899
AIO-NP -0.001 0.031 -0.003 0.002 -0.000 0.001 0.001 0.004 -0.003 -0.010

sd 0.043 0.536 0.217 0.181 0.181 0.183 0.183 0.184 0.183 0.184
Tobit 0.000 0.007 0.004 0.001 0.000 -0.001 -0.001 -0.000 -0.001 -0.002

sd 0.039 0.426 0.167 0.071 0.080 0.052 0.080 0.072 0.166 0.421
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Table 2: Models with two error terms and a known censoring point

Model 1: M(X,U) = 1.0− 0.5X + 1.0X · U1 + U2; percentage uncensored: 54.7%
Avg. β Evaluation Point of β(x)

0.0 0.4 0.8 1.2 2.0 2.8 3.2 3.6 4.0
True Value 0.050 -0.500 -0.354 -0.172 -0.007 0.214 0.334 0.374 0.405 0.430

AIO-SP 0.042 -0.597 -0.351 -0.155 -0.011 0.199 0.350 0.388 0.382 0.190
sd 0.099 0.574 0.191 0.126 0.147 0.138 0.244 0.258 0.663 1.763
se 0.100 0.564 0.194 0.121 0.151 0.139 0.247 0.260 0.689 1.774

90% 0.896 0.886 0.905 0.883 0.913 0.900 0.905 0.900 0.907 0.890
AIO-NP 0.049 -0.394 -0.328 -0.187 -0.017 0.205 0.324 0.366 0.358 0.280

sd 0.098 0.498 0.216 0.216 0.269 0.409 0.545 0.638 0.709 0.781
Tobit -0.181 -0.836 -0.671 -0.507 -0.350 -0.081 0.093 0.129 0.125 0.074

sd 0.088 0.740 0.251 0.137 0.167 0.118 0.193 0.184 0.470 1.121
Model 2: M(X,U) = 1.0 + 0.0X + 1.0X · U1 + U2; percentage uncensored: 69.4%

True Value 0.400 0.000 0.117 0.235 0.338 0.480 0.562 0.590 0.612 0.631
AIO-SP 0.393 -0.063 0.113 0.253 0.344 0.463 0.574 0.612 0.606 0.384

sd 0.102 0.595 0.103 0.117 0.144 0.126 0.228 0.235 0.625 1.653
se 0.101 0.596 0.196 0.117 0.147 0.128 0.229 0.236 0.624 1.616

90% 0.894 0.900 0.905 0.891 0.910 0.907 0.901 0.901 0.898 0.891
AIO-NP 0.398 0.101 0.137 0.225 0.331 0.483 0.555 0.574 0.577 0.533

sd 0.093 0.472 0.215 0.213 0.253 0.368 0.505 0.572 0.628 0.664
Tobit 0.196 -0.115 -0.046 0.026 0.098 0.231 0.330 0.361 0.374 0.369

sd 0.092 0.756 0.250 0.134 0.166 0.117 0.194 0.190 0.502 1.191
Model 3: M(X,U) = −1.0 + 0.0X + 1.0X · U1 + U2; percentage uncensored: 30.6%

True Value 0.908 0.000 0.545 0.845 0.957 0.986 0.964 0.952 0.940 0.930
AIO-SP 0.931 0.281 0.563 0.798 0.953 1.019 0.918 0.907 0.999 1.141

sd 0.177 0.880 0.336 0.147 0.208 0.152 0.281 0.273 0.714 1.877
se 0.175 0.934 0.324 0.151 0.205 0.153 0.282 0.274 0.720 1.877

90% 0.893 0.899 0.893 0.892 0.891 0.900 0.896 0.893 0.903 0.901
AIO-NP 0.922 0.691 0.577 0.834 0.963 0.982 0.958 0.969 0.946 0.921

sd 0.153 6.050 0.344 0.324 0.360 0.467 0.591 0.649 0.724 0.765
Tobit 0.755 0.673 0.870 0.951 0.945 0.778 0.589 0.556 0.600 0.749

sd 0.129 1.325 0.526 0.216 0.238 0.161 0.243 0.224 0.549 1.365
Model 4: M(X,U) = 0.0 + 1.0X + 0.5X · U1 + U2; percentage uncensored: 86.3%

True Value 1.052 1.000 1.056 1.073 1.071 1.056 1.046 1.042 1.039 1.037
AIO-SP 1.052 1.083 1.058 1.070 1.071 1.060 1.041 1.041 1.048 0.979

sd 0.065 0.595 0.202 0.095 0.112 0.076 0.120 0.118 0.317 0.771
se 0.065 0.599 0.197 0.093 0.111 0.075 0.121 0.119 0.313 0.769

90% 0.893 0.895 0.897 0.897 0.895 0.897 0.902 0.905 0.897 0.905
AIO-NP 1.060 1.110 1.066 1.081 1.081 1.067 1.046 1.040 1.042 1.044

sd 0.060 0.511 0.209 0.185 0.193 0.230 0.272 0.300 0.320 0.326
Tobit 1.076 1.374 1.244 1.150 1.086 1.024 1.013 1.011 1.005 0.988

sd 0.064 0.579 0.217 0.097 0.111 0.077 0.121 0.117 0.312 0.750
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Table 3: Models with a single error term and an unknown censoring function

Model 1: M(X,U) = 0.0 + 1.0X + 0.0X · U + U , L(x) = 0.0 + 0.5x; percentage uncensored: 80.5% L(x) parameters
Avg. β Evaluation Point of β(x) a0 a1

0.0 0.4 0.8 1.2 2.0 2.8 3.2 3.6 4.0
True Value 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 0.500

AIO-SP 0.985 1.030 0.992 0.988 0.983 0.980 0.986 0.991 0.991 0.964 0.001 0.565
sd 0.037 0.497 0.237 0.077 0.082 0.053 0.072 0.067 0.152 0.373 0.001 0.014
se 0.036 0.484 0.234 0.075 0.082 0.052 0.071 0.065 0.150 0.371

90% 0.868 0.893 0.899 0.885 0.894 0.868 0.892 0.887 0.893 0.900
Tobit 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 1.010 -0.084 0.500

sd 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.021 0.008 0.005
Model 2: M(X,U) = −1.0 + 0.0X + 1.0X · U + U , L(x) = 0.0 + 0.5x; percentage uncensored: 24.3% L(x) parameters
True Value 1.283 1.525 1.412 1.350 1.311 1.265 1.239 1.229 1.222 1.215 0.000 0.500

AIO-SP 1.272 1.493 1.417 1.356 1.302 1.248 1.253 1.241 1.181 0.885 0.016 0.551
sd 0.198 0.984 0.401 0.202 0.274 0.210 0.381 0.367 0.959 2.507 0.027 0.019
se 0.199 1.076 .389 0.202 0.271 0.210 0.378 0.368 0.955 2.444

90% 0.895 0.929 .887 0.899 0.899 0.903 0.896 0.900 0.898 0.882
Tobit 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 0.991 -0.105 0.510

sd 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.090 0.015 0.009
Model 3: M(X,U) = −1.0 + 1.0X + 1.0X · U + U , L(x) = 0.0 + 0.5x; percentage uncensored: 46.2% L(x) parameters
True Value 1.826 2.525 2.194 2.021 1.917 1.798 1.732 1.709 1.691 1.675 0.000 0.500

AIO-SP 1.791 2.250 2.169 2.035 1.906 1.758 1.744 1.727 1.640 1.269 0.016 0.551
sd 0.179 0.821 0.423 0.174 0.240 0.172 0.313 0.300 0.774 1.997 0.027 0.019
se 0.844 1.061 0.388 0.173 0.239 0.174 0.312 0.298 0.778 2.006

90% 0.891 0.958 0.862 0.893 0.902 0.895 0.907 0.900 0.900 0.888
Tobit 1.671 1.671 1.671 1.671 1.671 1.671 1.671 1.671 1.671 1.671 -0.106 0.509

sd 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.082 0.013 0.008
Model 4: M(X,U) = −1.0 + 0.0X + 1.0X · U + U , L(x) = 0.0− 0.5x; percentage uncensored: 46.2% L(x) parameters
True Value 0.826 1.525 1.194 1.021 0.917 0.798 0.732 0.709 0.691 0.675 0.000 -0.500

AIO-SP 0.796 1.272 1.189 1.038 0.898 0.748 0.749 0.741 0.660 0.289 0.016 -0.448
sd 0.180 0.815 0.420 0.176 0.250 0.176 0.323 0.301 0.786 2.061 0.026 0.019
se 0.180 1.061 0.389 0.173 0.239 0.174 0.313 0.298 0.779 2.007

90% 0.891 0.961 0.873 0.896 0.888 0.887 0.891 0.901 0.897 0.890
Tobit 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670 0.670 -0.106 -0.490

sd 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.084 0.014 0.008
Model 5: M(X,U) = −1.0 + 1.0X + 1.0X · U + U , L(x) = 0.0− 0.5x; percentage uncensored: 67.7% L(x) parameters
True Value 1.469 2.525 1.988 1.729 1.582 1.427 1.350 1.324 1.304 1.288 0.000 -0.500

AIO-SP 1.424 2.156 1.990 1.738 1.540 1.373 1.365 1.344 1.246 0.835 -0.016 -0.379
sd 0.160 0.728 0.441 0.172 0.233 0.164 0.285 0.266 0.705 1.788 0.0379 0.030
se 0.163 1.118 0.407 0.163 0.231 0.159 0.282 0.267 0.707 1.811

90% 0.890 0.971 0.872 0.884 0.892 0.872 0.895 0.901 0.902 0.897
Tobit 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 1.45 -0.107 -0.48

sd 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.079 0.014 0.009
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Table 4: Results using Epanechnikov kernel

Model 1: M(X,U) = 1.0− 0.5X + 1.0X · U + U ; percentage uncensored: 53.8%
Avg. β Evaluation Point of β(x)

0.0 0.4 0.8 1.2 2.0 2.8 3.2 3.6 4.0
True Value 0.210 -0.212 -0.027 0.098 0.186 0.298 0.366 0.391 0.412 0.429
AIO-NP 0.264 0.137 0.112 0.123 0.190 0.310 0.388 0.399 0.430 0.370

sd 0.214 0.324 0.250 0.230 0.255 0.307 0.371 0.422 0.630 1.194
Model 2: M(X,U) = 1.0 + 0.0X + 1.0X · U + U ; percentage uncensored: 65.3%

True Value 0.556 0.288 0.405 0.481 0.533 0.598 0.638 0.653 0.655 0.675
AIO-NP 0.595 0.516 0.497 0.506 0.548 0.613 0.656 0.669 0.690 0.652

sd 0.275 0.360 0.303 0.288 0.301 0.336 0.383 0.426 0.620 1.106
Model 3: M(X,U) = −1.0 + 0.0X + 1.0X · U + U ; percentage uncensored: 34.7%

True Value 1.046 1.525 1.301 1.182 1.108 1.021 0.973 0.955 0.941 0.929
AIO-NP 1.070 1.339 1.267 1.230 1.160 1.059 1.005 0.986 0.955 0.871

sd 0.304 0.515 0.343 0.328 0.349 0.378 0.420 0.465 0.667 1.211
Model 4: M(X,U) = 0.0 + 1.0X + 0.5X · U + U ; percentage uncensored: 80.2%

True Value 1.162 1.399 1.299 1.237 1.195 1.144 1.115 1.105 1.097 1.090
AIO-NP 1.208 1.287 1.293 1.276 1.245 1.200 1.172 1.162 1.161 1.161

sd 0.333 0.397 0.353 0.343 0.343 0.353 0.373 0.390 0.453 0.666
Model 5: M(X,U) = 0.0− 0.0X + 1.0X · U + U ; percentage uncensored: 50.0%

True Value 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798 0.798
AIO-NP 0.827 0.838 0.829 0.823 0.824 0.823 0.825 0.822 0.826 0.777

sd 0.288 0.372 0.323 0.311 0.315 0.356 0.403 0.449 0.648 1.151
Model 6: M(X,U) = 0.0 + 0.0X + 0.0X · U + U ; percentage uncensored: 50.0%

True Value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
AIO-NP 0.0007 0.0157 0.0033 0.0006 -0.0008 0.0015 -0.0005 -0.0005 -0.0003 -0.0053

sd 0.0345 0.224 0.126 0.0872 0.0780 0.0782 0.0791 0.0846 0.127 0.227
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