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Abstract

In this paper, we consider the problem of selecting the variables of the fixed
effects in the linear mixed models where the random effects are present and the
observation vectors have been obtained from many clusters. As the variable selection
procedure, we here use the Akaike Information Criterion, AIC. In the context of
the mixed linear models, two kinds of AIC have been proposed: marginal AIC
and conditional AIC. In this paper, we derive three versions of conditional AIC
depending upon different estimators of the regression coefficients and the random
effects. Through the simulation studies, it is shown that the proposed conditional
AIC’s are superior to the marginal and conditional AIC’s proposed in the literature
in the sense of selecting the true model. Finally, the results are extended to the
case when the random effects in all the clusters are of the same dimension but have
a common unknown covariance matrix.

Key words and phrases: Akaike information criterion, analysis of variance, linear mixed
model, nested error regression model, random effect, selection of variables.

1 Introduction

Consider the model in which the ni-vector of response variables yi in the i-th cluster is
related by

yi =X iβ +Zivi + εi, i = 1, . . . , k, (1)

where the k observation vectors y1, . . . ,yk are independently distributed, X i is a known
ni × p matrix, β = (β0, . . . , βp−1)

′ is a p-vector of unknown parameters, Zi is an ni × ri,
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ni ≥ ri, matrix of known covariables and vi is an ri-vector of random effects. The error
ni-vector εi is distributed independently of the random effects vector vi, both are assumed
to be normally distributed; vi ∼ Nri(0, σ

2Gi) and εi ∼ Nni(0, σ
2Ini). It is assumed that∑k

i=1(ni−ri) > p,
∑k

i=1 ri ≥ p, and Zi are of full rank ri. Writing y = (y′
1, . . . ,y

′
k)

′,X =
(X ′

1, . . . ,X
′
k)

′, Z = block diagonal(Z1, . . . ,Zk), v = (v′1, . . . ,v
′
k)

′ and ε = (ε′1, . . . , ε
′
k)

′,
we can express the model in (1) in matrix notation as

y =Xβ +Zv + ε, (2)

where ε and v are independently distributed as NN(0, σ2IN) and NR(0, σ2G) for

R =
k∑

i=1

ri, N =
k∑

i=1

ni, G = block diag(G1, . . . ,Gk).

The usual goal of the model (2) is to provide a good predicted value for a future obser-
vation. Often, it is achieved by reducing the dimension of the parameters, or equivalently
by using fewer members of fixed variables than p, either by testing the hypothesis that
some specified βi’s are zero or by model selection method such as Akaike Information
Criterion (AIC) of Akaike (1973, 1974). Let f(y|v,β, σ2) and f(v|σ2) be the conditional
density of y given v and the marginal density of v, respectively. Then, the marginal
density of y is written by fm(y|β, σ2) =

∫
f(y|v,β, σ2)f(v|σ2)dv, which has

NN(Xβ, σ2Λ(G)) for Λ(G) = I +ZGZ′.

When G is known, the Akaike information based on the marginal density fm(y|β, σ2) is

AI = −2

∫ ∫
{log fm(y∗|β̂, σ̂2)}fm(y|β, σ2)dy∗dy,

where y∗ is a future observation having the same distribution as y but independently
distributed of y, β̂ and σ̂2 are the maximum likelihood estimators (MLE) of β and
σ2 based on the observation y where the marginal distribution is given above. The
expressions for the MLE β̂ and σ̂2 are given in (5) and (6), respectively. Selection of the
variables of the fixed effects X is based on the minimum value of an unbiased estimator
of AI . In (7), an exact unbiased estimate of AI , which we denote by AIC is given.

Another interesting approach, proposed by Vaida and Blanchard (2005), is based on
the so-called conditional Akaike information given by

cAI = −2

∫ ∫ ∫
log{f(y∗|v̂, β̂, σ̂2)}f(y∗|v,β, σ2)f(y|v,β, σ2)f(v|σ2)dy∗dydv, (3)

where v̂ is the empirical Bayes estimator of v given in (8) and β̂ and σ̂2 are given in (5) and
(6), respectively. Vaida and Blanchard (2005) derived an unbiased estimator of cAI given
by (9). We will denote this estimator by cAIC . Vaida and Blanchard have observed that
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when G is known cAIC takes the same value as DIC , the deviance information criterion
proposed by Spiegelhalter, Best, Carlin and van der Linde (2002) for Bayesian inference.

In our simulation results, we, however, find that the performance of cAIC is no better
than the marginal mAIC . Thus, the performance of both of them is not good. This may
be due to the fact that the estimate σ̂2(G) ignores the existence of the random effects
although it provides the largest degrees of freedom availale to estimate σ2. But it also
makes it necessary to obtain cAI marginally, that is averaging with respect to the density
of v. Thus, we consider estimating σ2 from the conditional model, where

y|v ∼ NN(Wγ, σ2I),

where W = (X,Z) and γ = (β′,v′)′. Hence, we need to obtain the bias term only
conditionally. That is, the conditional Akaike information we consider is

CAI(v) = −2

∫ ∫
log{f(y∗|ṽ, β̃, σ̂2

0)}f(y∗|v,β, σ2)f(y|v,β, σ2)dy∗dy, (4)

where σ̂0 = (y −Wγ̂0)
′(y −Wγ̂0)/N for the least squares estimator γ̂0 of γ, and ṽ

and β̃ are linear estimators of y for v and β. It is noted that σ̂2
0 is not affected by the

random effect term v and Nσ̂2
0/σ

2 has a chisquare distribution with (N − p−R)-degrees
of freedom. The proposed new conditional AIC is an unbiased estimator of CAI given by

CAIC(G) = −2 log f(y|ṽ, β̃, σ̂2
0) + 2

N(tr [WL] + 1)

N − rw − 2
,

where rw = rank (W ) and L is a (p + R) × N matrix such that (β̃
′
, ṽ′)′ = Ly. It is

interesting to note that although this is obtained conditionally given v, the bias term
−2N(tr [WL] + 1)/(N − rw − 2) does not depend on v, and thus, it is also an unbiased
estimator of cAI defined by Vaida and Blanchard (2005). Although σ̂2

0 is based on less
degrees of freedom than σ̂2, we argue that it is the most appropriate estimate of σ2 to
use in −2 log f(y|v̂, β̂, σ̂2

0) as it takes into account that not only β but v has also been
estimated while σ̂2 does not take this into account; in fact in the conditional framework
σ̂2 is a biased estimator of σ2. Simulation experiments carried out in Section 4 show that
the performance of CAIC(G) is significantly better than mAIC(G) and cAIC(G) in the
sense of selecting the true model. This method also facilitates to consider the case when
G is a function of unknown parameters.

The organization of the paper is as follows. In Section 2, we introduce the concept of
AIC and marginal and conditional AIC’s. In Section 3, we derive three conditional AIC
using three different kinds of estimators available for (β,v), assuming that G is known.
The case of unknown G is considered in Section 4. We give simulation results in Section
5. The paper concludes in Section 6. The proof is given in the Appendix.
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2 Marginal and Conditional AIC in the linear mixed

model

2.1 Concept of AIC

We now introduce the marginal and conditional AIC’s in the linear mixed model in the
case of known G. Before describing them, we first explain the concept of AIC briefly. The
AIC is based on Kullback-Leibler distance. For a true density f and an approximating
one gω, this distance is defined as

I(f, gω) = Ey∗ log f(y∗) − Ef log gω(y∗),

where Ey∗ denotes the expectation with repect to the true density f(y∗). Let G = {gω :
ω ∈ Ω} be the class of approximating densities. If f ∈ G, then there exist a gω0 ∈ G
such that I(f, gω0) = 0, otherwise I(f, gω0) ≥ 0. Thus a g is chosen for which I(f, g) is
minimum. Usually ω is not known and estimated from the data y by ω̂ = ω̂(y). Thus,
I(f, gω) is approximated by I(f, gω̂) and the quality of approximation is judged by

Eyf [I(f, gω̂)] = Ey∗ [log f(y∗)] − EyEy∗ [log gω̂(y)(y
∗)],

where Ey denotes the expectation with respect to the true density f(y), which is inde-
pendent of y∗. Akaike information is defined by

AI = −2EyEy∗ [log gω̂(y)(y
∗)].

An unbiased estimator of AI is given by

AIC = −2 log gω̂(y)(y) + ∆,

where ∆ is the bias
∆ = Ey[−2 log gω̂(y)(y)] − AI.

Akaike (1973, 1974) used an approximate value of the bias given by the number of free
parameters. Thus, Akaike used the number of free parameters in place of ∆. It is noted
that AIC is a criterion for selecting a good model in terms of minimizing the prediction
error. It may be noted that the estimator ω̂ of ω need not be an MLE as any consistent
estimator of ω may perform as good, see Konishi and Kitagawa (2007).

2.2 Marginal AIC

The marginal AIC in the linear mixed model is AIC based on the marginal distribution

y ∼ NN(Xβ, σ2Λ),

for Λ = Λ(G) = IN +ZGZ′, where the marginal density is given by

fm(y|β, σ2) = (2πσ2)−N/2|Λ|−1/2 exp{−(y −Xβ)′Λ−1(y −Xβ)/(2σ2)}.
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When G does not include unknown parameters, the maximum likelihood estimators
(MLE) of β and σ2 are given by

β̂ =β̂(G) = (X ′Λ−1X)+X ′Λ−1y, (5)

σ̂2 =σ̂2(G) = (y −Xβ̂)′Λ−1(y −Xβ̂)/N

=y′ {Λ−1 −Λ−1(X ′Λ−1X)−Λ−1
}
y, (6)

where A+ denotes the Moore-Penrose inverse of A and satisfies (i) AA+A = A, (ii)

A+AA+ = A+, (iii) (A+A)′ = (A+A), (iv) (AA+)′ = AA+. Then, −2 log fm(y|β̂, σ̂2)
is expressed as

−2 log fm(y|β̂, σ̂2) = N [log(2πσ̂2(G)) + 1] + log |Λ|,
and the exact bias correction AIC based on the marginal likelihood is given by

mAIC(G) = N [log(2πσ̂2(G)) + 1] + log |Λ| + 2N(rx + 1)/(N − rx − 2), (7)

where rx = rank (X). When G includes unknown parameters, we can use the criteria

AIC(Ĝ) and mAIC(Ĝ) when a consistent estimator Ĝ of G is available.

2.3 Conditional AIC

The conditional AIC in the linear mixed model was proposed by Vaida and Blanchard
(2005), who considered estimating the random effects v as well as β by the mixed model
equation (

X ′X X ′Z
Z ′X Z ′Z +G−1

)(
β̂
v̂

)
=

(
X ′

Z ′

)
y,

which was given by Henderson (1950). Then the solution β̂ is the generalized least squares
estimator (GLS) given in (5), and v̂ is given by

v̂ = GZ ′Λ−1(y −Xβ̂), (8)

which can also be derived as an empirical Bayes estimator by considering the conditional
distribution of v given y. Thus, using the estimator σ̂2(G) defined in (6), they define
the conditional Akaike information by (3). The conditional AIC, denoted by cAIC(G),
is given by

cAIC(G) = −2 log f(y|v̂, β̂, σ̂2) −∆c, (9)

where

∆c =E�[−2 log f(y|v̂, β̂, σ̂2)] − cAI

= − 2
N(N − rx − 1)

(N − rx)(N − rx − 2)
(ρ+ 1) +

N(rx + 1)

(N − rx)(N − rx − 2)
.
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Here, ρ is defined by ρ = tr (H1), where

H1 = (X,Z)

(
X ′X X ′Z
Z ′X Z ′Z +G−1

)−1(
X ′

Z ′

)
.

which can be also expressed as

H1 =X(X ′Λ−1X)+X ′Λ−1 +ZGZ′Λ−1
{
I −X(X ′Λ−1X)+X ′Λ−1

}
=Λ−1X(X ′Λ−1X)+X ′Λ−1 + I − Λ−1. (10)

3 Proposed conditional AIC

In our simulation results, we find that the performance of cAIC(G) is only slightly better
than the marginal mAIC(G) in the sense of selecting true models. To improve the
performance, we here propose another type of conditional AIC’s. In this section, we
assume that G is known, and we begin with rewriting the model (2) as

y = Xβ +Zv + ε ≡Wγ + ε,

where W = (X,Z) is an N × (p +R) matrix and γ = (β′,v′)′ is a (p+ R)-dimensional
vector. Given v, the model y = Wγ + ε can be conditionally regarded as a usual linear
regression model, and the conditional MLE of γ and σ2 are given by

γ̂0 =(W ′W )+W ′y, (11)

σ̂2
0 =(y −Wγ̂0)

′(y −Wγ̂0)/N. (12)

It can be shown that the MLE of γ can be expressed as

γ̂0 =

(
β̂0

v̂0

)
=

(
(X̃

′
X̃)+X̃

′

(Z ′Z)−1Z ′(I − X̃(X̃
′
X̃) + X̃

′
)

)
y

≡L0y,

where X̃ = (I−Hz)X for Hz = Z(Z′Z)−1Z ′. It is noted that the MLE of γ is a linear
function of y. Thus, we may consider a general estimator of γ as a linear function of y,
namely,

γ̃ =

(
β̃
ṽ

)
= Ly,

where L is a (p + R) × N matrix which will be specified later. It is noted that Nσ̂2
0/σ

2

has a chisquare distribution with (N − rw) degrees of freedom for rw = rank (W ). Thus,
we shall obtain our CAIC using γ̃ and σ̂2

0 as estimators of γ and σ2, respectively.

The conditional Akaike information considered here is given in (4), which is different

from cAI given in (3) in that cAI =
∫
CAI(v)f(v|σ2)dv. Since −2 log f(y|ṽ, β̃, σ̂2

0) is
written as

−2 log f(y|ṽ, β̃, σ̂2
0) = N log(2πσ̂2

0) + (y −Wγ̃)′(y −Wγ̃)/σ̂2
0.
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We now consider another random vector y∗ distributed independently of y but having
the same distribution as y. Hence,

y∗|v ∼ NN(Wγ, σ2I).

Thus,

E�∗ [−2 log f(y∗|ṽ, β̃, σ̂2
0)|v] =N log(2πσ̂2

0) + E�∗ [(y
∗ −Wγ̃)′(y∗ −Wγ̃)/σ̂2

0 |v]

=N log(2πσ̂2
0) +N

σ2

σ̂2
0

+
(γ̃ − γ)′W ′W (γ̃ − γ)

σ̂2
0

.

Hence, the conditional Akaike information given v is given by

CAI(v) = E�

[
N log(2πσ̂2

0) +N
σ2

σ̂2
0

+
(γ̃ − γ)′W ′W (γ̃ − γ)

σ̂2
0

∣∣∣v] ,
and the bias is expressed as

∆C(v) =E�
[
−2 log f(y|ṽ, β̃, σ̂2

0)
∣∣∣v]−CAI(v)

=E�

[
(y −Wγ)′(y −Wγ)

σ̂2
0

− 2
(y −Wγ)′W (γ̃ − γ)

σ̂2
0

−N
σ2

σ̂2
0

∣∣∣v] . (13)

It is here noted that E�[σ
2/σ̂2

0|v] = N/(N− rw−2) and E�[(y−Wγ)′(y−Wγ)/σ̂2
0 |v] =

N +Nrw/(N − rw − 2). Also for γ̃ = Ly, it is observed that

E�

[
(y −Wγ)′W (γ̃ − γ)

σ̂2
0

∣∣∣v] =E�

[
(y −Wγ)′WLy

σ̂2
0

∣∣∣v]
=

1

2
E�

[
(y −Wγ)′(WL+L′W ′)(y −Wγ)

σ̂2
0

∣∣∣v]
=
N

2
E�

[
u′(WL+L′W ′)u
u′(I −Hw)u

∣∣∣v] ,
where u = (y −Wγ)/σ and Hw = W (W ′W )−W ′. Note that given v, the conditional
distribution of u has NN (0, I), so that u is independent of v. Using Lemma A.1 in the
Appendix, we can see that

N

2
E

[
u′(WL+L′W ′)u
u′(I −Hw)u

∣∣∣v] =N

{
tr (WL)

N − rw − 2
− 2tr [WL(I −Hw)]

(N − rw)(N − rw − 2)

}
=
Ntr (WL)

N − rw − 2
,

since tr [WL(I −Hw)] = 0. Combining these evaluations gives the following expression
for the bias term ∆C(v):

∆C(v) = −2
N(tr [WL] + 1)

N − rw − 2
, (14)
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which yields the conditional AIC given by

CAIC(G) = −2 log f(y|ṽ, β̃, σ̂2
0) + 2

N(tr [WL] + 1)

N − rw − 2
. (15)

It is interesting to note that the bias term ∆C(v) does not depend on the given v. Given
v, CAIC is an unbiased estimator of CAI given in (4), which turns out to be an unbiased
estimator of the conditional Akaike information cAI defined by Vaida and Blanchard
(2005).

The matrix L given in (15) depends on the choice of γ̂ as an estimator of γ. We
consider three kinds of estimators of γ as described below.

[1] Using maximum likelihood estimator γ̂0 for γ. Since the maximum likelihood
or lease squares estimator of γ is given in (11) as γ̂0 = (W ′W )+W ′y, the matrix L cor-
responds to L = (W ′W )+W ′. Hence, it is seen that tr [WL] = tr [(W ′W )+(W ′W )] =

rank (W ) = rw, and we get the conditional AIC based on MLE γ̂0 = (β̂
′
0, v̂

′
0)

′ as

CAICML(G) = − 2 log f(y|v̂0, β̂0, σ̂
2
0) + 2N(rw + 1)/(N − rw − 1)

=N [log(2πσ̂2
0) + 1] + 2N(rw + 1)/(N − rw − 1). (16)

[2] Using empirical Bayes (EB) estimator of v and simple estimator of β.
Consider the case that the empirical Bayes estimator is used for v and the simple estimator
β̂1 = (X ′X)−X ′y is utilized for β. The empirical Bayes estimator of v is given in (8) as

v̂ = GZ ′Λ−1(y −Xβ̂), and the matrix tr [WL] corresponds to

tr [WL] = tr
[
X(X ′X)−X ′ +ZGZ′Λ−1{I −X(X ′Λ−1X)+X ′Λ−1}] .

Note that tr [X(X ′X)−X ′] = tr [X(X ′Λ−1X)−X ′Λ−1] = rank (X). From the argument
around (10), it is seen that tr [WL] = tr [H1] = ρ. Hence, we get the conditional AIC

based on the estimator (β̂
′
1, v̂

′)′ of γ as

CAICSL(G) = − 2 log f(y|v̂, β̂1, σ̂
2
0) + 2N(ρ + 1)/(N − rw − 2)

=N log(2πσ̂2
0) +

(y −Xβ̂1 −Zv̂)′(y −Xβ̂1 −Zv̂)

σ̂2
0

+
2N(ρ + 1)

N − rw − 2
. (17)

[3] Using generalized least squares estimator of β and EB estimator of v.

Consider the generalized least squares estimator β̂ and the EB estimator v̂ given in (5)
and (8), respectively. These are estimators treated by Vaida and Blanchard (2005), and
it is seen that tr [WL] = ρ since WL = H1. Hence, we get the conditional AIC based

on the estimator (β̂
′
, v̂′)′ of γ as

CAICGL(G) = − 2 log f(y|v̂, β̂, σ̂2
0) + 2N(ρ + 1)/(N − rw − 2)

=N log(2πσ̂2
0) +

(y −Xβ̂ −Zv̂)′(y −Xβ̂ −Zv̂)

σ̂2
0

+
2N(ρ + 1)

N − rw − 2
. (18)
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4 Extensions to the case of unknown variance com-

ponents

We have explained the marginal and conditional AIC’s under the assumption that G
is known. In most applications, however, G depends on unknown parameters. In this
section, we handle the case of G including unknown parameters. If a consistent estimator
Ĝ is available for G, then it can be substituted into mAIC(G), cAIC(G) and CAIC(G)

to get the marginal AIC mAIC(Ĝ), the conditional AIC’s cAIC(Ĝ) and CAIC(Ĝ),
which will be suggested in this paper. In this case, the problem is how to estimate G.
The maximum likelihood method is an approach, but we need heavy computation as well
as convergence of numerical iterations. Thus, in this section, we provide estimators of G
in explicit forms in some specific models.

For the model given in (2), we begin with making the transformation(
ỹ1i

ỹ2i

)
=

(
Γi

(Z ′
iZi)

−1Z ′
i

)
yi, (19)

where Γi is an (ni − ri) × ni matrix such that ΓiZi = 0 and ΓiΓ
′
i = Ini−ri . It may

be noted that I − Zi(Z
′
iZi)

−1Z ′
i = Γ′

iΓi and thus Γi can easily be computed. Ac-

cording to this transformation, let X̃1i = ΓiX i, ε̃1i = Γiεi, X̃2i = (Z ′
iZi)

−1Z ′
iX i

and ε̃2i = (Z ′
iZi)

−1Z ′
iεi for i = 1, . . . , k. For j = 1, 2, let ỹj = (ỹ′

j1, . . . , ỹ
′
jk)

′,

X̃j = (X̃
′
j1, . . . , X̃

′
jk)

′ and ε̃j = (ε̃′j1, . . . , ε̃
′
jk)

′. Then, the model is decomposed as

ỹ1 =X̃1β + ε̃1,

ỹ2 =X̃2β + v + ε̃2,
(20)

where ỹ1 : (N − R) × 1, ỹ2 : R × 1, X̃1 : (N − R) × p, X̃2 : R × p, N =
∑k

i=1 ni and

R =
∑k

i=1 ri. Let ỹ = (ỹ′
1, ỹ

′
2)

′ and W 2 = block diag(Gi + (Z ′
iZi)

−1); i = 1, . . . , k).
Then, ỹ1 and ỹ2 are mutually independently distributed as

ỹ1 ∼NN−R(X̃1β, σ
2IN−R),

ỹ2 ∼NR(X̃2β, σ
2W 2).

From the marginal likelihood of ỹ1, we get an unbiased estimator of σ2 given by

σ̃2
1 = ỹ′

1

{
IM − X̃1(X̃

′
1X̃1)

+X̃
′
1

}
ỹ1/(N − R − r(��1)

), (21)

where r(��1) = rank (X̃1). It can be seen that σ̃2
1 is a consistent estimator of σ2.

We now consider the estimation of G. For this purpose, we handle two specific cases:
(1) Gi = ψDi for unknown scalar ψ and known matrix Di and (2) Gi = Ψ and ri = r
for i = 1, . . . , k.

9



[1] Case of Gi = ψDi for unknown scalar ψ and known matrix Di. In this
case, the marginal distribution of y has NN(Xβ, σ2Λ), where Λ = I + ψZDZ ′ for
D = blockdiag(D1, . . . ,Dk). Let S = y′(I −Hx)y for Hx = X(X ′X)+X ′, and the
expectation is written as

E[S] = σ2tr [(I −Hx)(I + ψZDZ ′)] = σ2{N − rx + ψtr [Z ′(I −Hx)ZD]},
for rx = rank (X). Thus, we get an estimator of ψ given by

ψ̂ = {S/σ̃2
1 − (N − rx)}/tr [Z ′(I −Hx)ZD],

for σ̃2
1 given in (21).

For the consistency of ψ̂, we assume that tr [Z ′(I−Hx)ZD] = O(k) for large k. From
the consistency of σ̃2

1 and the fact that S/tr [Z ′(I −Hx)ZD] = Op(1), it follows that

ψ̂ − ψ = {S/σ2 − (N − rx)}/tr [Z ′(I −Hx)ZD] − ψ + Op(k
−1/2). It can be seen that

V ar[ψ̂] = V ar[S]/{σ4(tr [Z ′(I −Hx)ZD])2} + O(k−1) and that V ar[S] = σ42tr [{(I −
Hx)(I + ψZDZ ′)}2] = O(k). Hence, V ar[ψ̂] = O(k−1) under the assumption that

tr [Z ′(I −Hx)ZD] = O(k), which implies the consistency of ψ̂.

The estimator ψ̂ can take negative values with positive probability. Thus, we consider
a truncated estimator

ψ̂TR = max{ψ̂, R−2/3}, (22)

which can be shown to be positive and consistent as k → ∞.

[2] Case of Gi = Ψ, an unknown matrix, and ri = r for i = 1, . . . , k. In this

case, we recall the transformed model given in (20). Let Si = (ỹ2i−X̃2iβ̃1)(ỹ2i−X̃2iβ̃1)
′

for β̃1 = (X̃
′
1X̃1)

+X̃
′
1y. It is noted that E[Si] = σ2{(Z ′

iZi)
−1 +Ψ+X̃2i(X̃

′
1X̃1)

+X̃
′
2i},

which yields that
∑k

i=1 E[Si] = σ2
∑k

i=1{(Z ′
iZi)

−1 + X̃2i(X̃
′
1X̃1)

+X̃
′
2i} + σ2kΨ. Thus,

Ψ can be estimated by

Ψ̂
U

=
1

kσ̃2
1

k∑
i=1

Si − 1

k

k∑
i=1

{
(Z ′

iZi)
−1 + X̃2i(X̃

′
1X̃1)

+X̃
′
2i

}
, (23)

for σ̃2
1 given in (21). It can be verified that Ψ̂

U
is consistent. For the proof, see the

Appendex.

For the covariance matrix Cov (vi) = σ2Ψ, we consider the two cases of Ψ ; Ψ is fully

unknown, and Ψ = diag (ψ1, . . . , ψr). When Ψ is a fully unknown covariance matrix, Ψ̂
should be estimated by a positive definite matrix. Let P be an orthogonal matrix such

that Ψ̂
U

= P ′diag (ω1, . . . , ωm)P where ω1, . . . , ωr are eigenvalues of Ψ̂
U
. Then, we can

use the truncated estimator

Ψ̂
TR

= P ′ diag
(
max{ω1, R

−2/3}, . . . ,max{ωr, R
−2/3})P ,
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for R = kr. It can be shown that Ψ̂
TR

is consistent with order Ψ̂
TR − Ψ = Op(k

−1/2).

When Ψ has a covariance structure, we can use the structure to construct an appropri-

ate estimator based on Ψ̂
U
. For instance, assume that Ψ = diag (ψ1, . . . , ψr). This case

implies that Zivi in (1) is expressed as Zivi = zi1vi1 + · · ·+zirvir where vij ∼ N (0, σ2ψj)
and zij is an ni×1 vector for j = 1, . . . , r. This model may be useful when several factors
of random effects are considered in practical situations. Then, we can estimate each ψi

by

ψ̂TR
i = max{(Ψ̂U

)ii, R
−2/3}, (24)

where (Ψ̂
U
)ii denotes the (i, i) diagonal element of Ψ̂

U
. The resulting estimator of Ψ is

given by Ψ̂
TR

= diag (ψ̂TR
1 , . . . , ψ̂TR

r ).

5 Simulation Studies

We now investigate the numerical performances of the marginal and the conditional AIC’s
derived in the previous sections through simulation and compare them in terms of the
frequencies of selecting the true model.

The simulation experiments have been carried out for k = 20, r1 = · · · = r20 = r =
1, 2, 3 and p = 7. For the sample sizes ni’s, ni’s are generated as ni = 1 +Bin(8, 1/2) for
i = 1, . . . , k, where Bin(8, 1/2) is a random variable distributed as a binomial distribution
with mean 4 and success probability 1/2. For theN×pmatrixX of the regressor variables
in the model (2), the row vectors x1, . . . ,xN for X ′ = (x1, . . . ,xN ) are generated as
mutually independent random variables distributed as Np(0,Σx) where Σx = (1−ρx)Ip+
ρxJ p for ρx = 0.3, where Jp = jpj

′
p for jp = (1, . . . , 1)′, a p-vector of ones. For the n× r

matrix Zi’s in the model (1), the row vectors in Zi are generated as mutually independent
random variables distributed as Nr(0,Σz) where Σz = (1− ρz)Ir + ρzJ r for ρz = 0.3. In
this experiment, we assume that the true model is given by

(p∗) y = Xβ∗ +Zv + ε,

where 1 ≤ p∗ ≤ 7, β∗ = (β1, . . . , βp∗, 0, . . . , 0)′, and v and ε are mutually independent
random variables having v ∼ NR(0, σ2ψIR) and ε ∼ NN (0, σ2IN ); it may be noted that
when Cov (v) = σ2ψD, whereD is known, we may assume without any loss of generality
that D = IR, as it can be absorbed with the matrix Z by defining Z∗ = ZD−1/2. Here,
we handle the cases that σ2 = 1 and ψ = 0.01, 0.5, 1.0. Also, β� for 1 ≤ � ≤ p∗ is
generated as a random variable distributed as β� = 2(−1)�+1{1 + U(0, 1)} for a uniform
random variable U(0, 1) on the interval (0, 1). Let (m) be the set {1, . . . , m}, and we
write the model using the first m regressor variables β1, . . . , βm by Mm or simply (m).
Then, the full model is (7) and the true model is (p∗). As candidate models, we consider
the nested subsets (1), . . . , (7) of {1, . . . , 7}, namely,

(m) y = Xβ(m) +Zv + ε,

11



where β(m) = (β1, . . . , βm, 0, . . . , 0)′.

In the simulation experiments, 10 observations of the regressor variables X and Z are
generated, and for each observation of X and Z, 30 observations of the response variable
y are generated from the true model (p∗) for p∗ = 2, 4, 6. Thus, we have 10 × 30(= 300)
total data sets. For each data set, we calculate the values of mAIC given in (7), cAIC
given in (9) and CAICML, CAICSL and CAICGL given (16), (17) and (18), respectively,
for the eight candidate models (1), . . . , (8), and we select the models minimizing the values
of the information criteria. For each criterion and each candidate model (m), the number
of selecting the model (m) is counted for 300 data set. We thus obtain the frequencies of
the model (m) selected by the criteria by dividing the number by 300. These frequencies
are reported in Table 1, where standard deviations in selecting the true model are less
than 0.02. From the table, we can see that the proposed conditional AIC’s CAICML,
CAICSL and CAICGL are superior to mAIC and cAIC for most of the cases.

When the random effects vi has the covariance matrix such that Ψ = diag (ψ1, . . . , ψr),
we next investigate the similar performances of the five criteria mAIC , cAIC , CAICML,
CAICSL and CAICGL with known and unknown Ψ, where ψi is estimated by (24) in the
unknown case of Ψ. The frequencies of selecting the true model are reported in Table 2
for the balanced case of n1 = · · · = n20 = 10, k = 20 and r = 2, 3. This numerical results
show that the conditional AIC’s CAICML, CAICSL and CAICGL are better than mAIC
and cAIC . It is interesting to note that the performance of CAICML does not depend
on whether Ψ is known or unknown, since CAICML does not include Ψ or its estimator.
This means that CAICML can be used even if Ψ cannot be estimated appropriately, or
ni’s are small.

6 Concluding Remarks

In this paper, we have considered linear mixed models. To select the fixed-effects variables,
we have derived three conditional Akaike information criteria CAICML, CAICSL and
CAICGL, and have shown that these CAIC ’s perform better than mAIC as well as
better than cAIC , proposed by Vaida and Blanchard (2005). We have also considered
the case when Cov (vi) = σ2ψDi as well as when Cov (vi) = σ2Ψ, but ri = r, where ψ
is a scalar unknown parameter, and Ψ is an unknown covariance matrix. The proposed
CAIC ’s perform better than mAIC and cAIC . However, when ni’s are small, it is
recommended to use CAICML when the matrix Ψ is completely unknown as it does not
depend on the unknown parameters.

12



Table 1: Frequencies selected by the five criteria mAIC , cAIC , CAICML, CAICSL and
CAICGL, abbreviated by AIC , CV B , CML, CEB and CGL, in 300 replications for the
unbalanced case of ni and k = 20: the dimension of a full model is p = 7 and the true
model is (p∗) = {1, . . . , p∗}

known ψ unknown ψ
Mk AIC CV B CML CEB CGL AIC CV B CML CEB CGL

p� = 2, ψ = 0.01, r = 1
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 76.3 76.3 84.0 84.7 84.7 75.3 74.7 84.0 85.0 84.7
(3) 11.0 11.0 9.7 9.0 9.0 11.3 12.7 9.7 8.7 9.0
(4) 4.3 4.3 3.3 2.3 2.3 5.0 4.7 3.3 2.7 2.7
(5) 4.3 4.3 1.0 2.3 2.3 3.7 3.7 1.0 2.0 2.0
(6) 2.0 2.0 1.0 1.3 1.3 2.3 2.0 1.0 1.0 1.0
(7) 2.0 2.0 1.0 0.3 0.3 2.3 2.3 1.0 0.7 0.7

p� = 4, ψ = 0.5, r = 2
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 76.3 75.0 94.3 98.3 96.3 77.0 72.0 94.3 98.7 97.3
(5) 12.7 12.0 3.3 1.7 2.7 12.0 11.7 3.3 1.3 2.0
(6) 8.0 9.7 2.0 0.0 1.0 8.0 9.3 2.0 0.0 0.7
(7) 3.0 3.3 0.3 0.0 0.0 3.0 7.0 0.3 0.0 0.0

p� = 6, ψ = 1.0, r = 3
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0 0.0
(5) 0.0 0.0 0.0 0.0 0.03 0.0 0.0 0.0 9.7 0.0
(6) 88.0 87.3 98.7 96.0 99.7 87.0 77.3 98.7 89.0 100.0
(7) 12.0 12.7 1.3 0.0 0.3 13.0 22.7 1.3 0.3 0.0
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Table 2: Frequencies selected by the five criteria mAIC , cAIC , CAICML, CAICSL and
CAICGL, abbreviated by AIC , CV B, CML, CEB and CGL, in 300 replications for known
and unknown Ψ and the unbalanced case of n1 = · · · = n20 = 10 and k = 20: the
dimension of a full model is p = 7 and the true model is (p∗) = {1, . . . , p∗}

known Ψ unknown Ψ
Mk AIC CV B CML CEB CGL AIC CV B CML CEB CGL

p� = 2, (ψ1, ψ2) = (0.01, 1.0), r = 2
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 78.0 74.7 87.7 94.7 86.3 75.7 78.0 87.7 95.0 89.7
(3) 10.7 12.0 8.0 3.7 8.3 12.3 10.3 8.0 2.3 5.7
(4) 3.7 4.0 1.3 0.7 1.3 3.0 4.0 1.3 0.7 1.7
(5) 3.0 4.3 1.3 0.3 2.0 4.0 3.0 1.3 1.0 2.0
(6) 2.7 2.3 1.0 0.3 1.0 2.3 2.3 1.0 0.7 0.7
(7) 2.0 2.7 0.7 0.3 1.0 2.7 2.3 0.7 0.3 0.3

p� = 4, (ψ1, ψ2, ψ3) = (0.01, 0.5, 1.0), r = 3
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 78.0 76.7 86.0 95.7 91.0 74.7 73.0 86.0 93.3 87.3
(5) 10.3 11.7 8.7 3.7 5.3 11.3 13.0 8.7 5.0 7.0.0
(6) 6.7 7.3 3.7 0.3 2.0 8.3 8.0 3.7 1.3 3.0
(7) 5.0 4.3 1.7 0.3 1.7 5.7 6.0 1.7 0.3 2.7

p� = 6, (ψ1, ψ2, ψ3) = (1.0, 1.0, 1.0), r = 3
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(5) 0.0 0.0 0.0 0.0 0.0 0.7 6.3 0.0 0.0 0.0
(6) 85.3 85.3 91.3 95.3 91.0 85.7 85.3 91.3 97.0 93.7
(7) 14.7 14.7 8.7 4.7 9.0 14.3 14.7 8.7 3.0 6.3
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A Appendix

A.1 Expectation of a ratio of quadratic forms

We here evaluate the expected value of the ratio of two quadratic forms which have been
used to derive the bias terms of the conditional AIC.

Lemma A.1 Assume thatA is an N×N symmetric matrix, and thatH is an idempotent
matrix of rank q. Then,

E

[
u′Au

u′(IN −H)u

]
=

trA

N − q − 2
− 2tr [A(IN −H)]

(N − q)(N − q − 2)
,

where u ∼ NN(0, IN).

Proof. SinceH is an idempotent matrix of rank q, we can writeH = Γ2Γ
′
2, Γ2 = N×

q, and Γ′
2Γ2 = Iq. Let Γ1 be N × (N − q) matrix such that Γ′

1Γ2 = 0 and Γ′
1Γ1 = IN − q.

Then, Γ = (Γ1,Γ2) is an N × N orthogonal matrix and hence Γ1Γ
′
1 + Γ2Γ

′
2 = IN , and

IN −H = Γ1Γ
′
1. Let v = Γ′u, v1 = Γ′

1u, v2 = Γ′
2u and

B = ΓAΓ′ =

(
B11 B12

B′
12 B22

)
.

Then,

Q =
u′Au

u′(IN −H)u
=
v′Bv
v′1v1

=
v′1B11v1 + 2v′

1B12v2 + v′2B22v2

v′1v1
.

Noting that v ∼ NN (0, IN ), we can see that

E[Q] =
trB11

N − q
+

trB22

N − q − 2
=

trAΓ1Γ
′
1

N − q
+

trAΓ2Γ
′
2

N − q − 2

=
trA(IN −H)

N − q
+

trAH

N − q − 2

=
trA

N − q − 2
− 2trA(IN −H)

(N − q)(N − q − 2)
,

which proves Lemma A.1.

A.2 Consistency of Ψ̂
U

From the consistency of σ̃2
1 and the fact that

∑k
i=1Si/k = Op(1), it follows that Ψ̂

U
=

Ψ∗/σ2+Op(k
−1/2) for Ψ∗ =

∑k
i=1 Si/k−σ2

∑k
i=1{(Z ′

iZi)
−1+X̃2i(X̃

′
1X̃1)

+X̃
′
2i}/k. Note

that Si = (ỹ2i − X̃2iβ̃1)(ỹ2i − X̃2iβ̃1)
′ and that ỹ2i and β̃1 are mutually independently
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distributed as ỹ2i ∼ N (X̃2iβ,Σi) and β̃1 ∼ N (β, σ2(X̃
′
1X̃1)

+), where Σi = σ2{Ψ +

(Z ′
iZi)

−1}. Then, Ψ̂
∗ − σ2Ψ is expressed as

Ψ̂
∗ − σ2Ψ =

1

k

k∑
i=1

{
(ỹ2i − X̃2iβ)(ỹ2i − X̃2iβ)′ − Σi

}
+

1

k

k∑
i=1

{
X̃2i(β̃1 − β)(β̃1 − β)′X̃

′
2i − σ2X̃2i(X̃

′
1X̃1)

+X̃
′
2i

}
− 1

k

k∑
i=1

{
(ỹ2i − X̃2iβ)(β̃1 − β)′X̃

′
2i + X̃2i(β̃1 − β)(ỹ2i − X̃2iβ)′

}
=K1 +K2 −K3. (say)

It is easy to see that E[Kj] = 0 for j = 1, 2, 3. For the consistency of ΨU or Ψ∗, it is

sufficient to show that E[tr [K2
j ]] = O(k−1) for j = 1, 2, 3. Let ui = ỹ2i − X̃2iβ, and it

has N (0,Σi). Then,

E[tr [K2
1]] =

1

k2
E
[
tr
[
(

k∑
i=1

uiu
′
i)

2
]]

− 1

k2
tr
[
(

k∑
i=1

Σi)
2
]

and

E
[
tr [

k∑
i=1

uiu
′
i]

2
]

=E
[ k∑

i=1

(u′
iui)

2 +
k∑

i=1

∑
j �=i

tr [uiu
′
iuju

′
j ]
]

=

k∑
i=1

{
2tr [Σ2

i ] + (tr [Σi])
2
}

+

k∑
i=1

∑
j �=i

tr
[
ΣiΣj

]

=2

k∑
i=1

tr [Σ2
i ] + tr

[
(

k∑
i=1

Σi)
2
]
.

Hence,

E[tr [K2
1]] = 2

k∑
i=1

tr [Σ2
i ]/k

2,

which has the order O(k−1). Similarly, we can see that

E[tr [K2
2]] =2σ4tr

[
(

k∑
i=1

X̃2i(X̃
′
1X̃1)

+X̃
′
2i)

2
]
/k2,

E[tr [K2
3]] =4σ2

k∑
i=1

tr [Σi]tr [X̃2i(X̃
′
1X̃1)

+X̃
′
2i]/k

2,
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both of which have the order O(k−1) under the assumption that Σi is bounded and∑k
i=1 X̃2i(X̃

′
1X̃1)

+X̃
′
2i = O(1). Thus, the consistency of Ψ̂

U
is verified.
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