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Abstract

In this paper, we consider the problem of selecting the variables of the fixed
effects in the linear mixed models where the random effects are present and the
observation vectors have been obtained from many clusters. As the variable selection
procedure, we here use the Akaike Information Criterion, AIC. In the context of
the mixed linear models, two kinds of AIC have been proposed: marginal AIC
and conditional AIC. In this paper, we derive three versions of conditional AIC
depending upon different estimators of the regression coefficients and the random
effects. Through the simulation studies, it is shown that the proposed conditional
AIC’s are superior to the marginal and conditional AIC’s proposed in the literature
in the sense of selecting the true model. Finally, the results are extended to the
case when the random effects in all the clusters are of the same dimension but have
a common unknown covariance matrix.

Key words and phrases: Akaike information criterion, analysis of variance, linear mixed
model, nested error regression model, random effect, selection of variables.

1 Introduction

Consider the model in which the n;-vector of response variables y, in the i-th cluster is
related by

Yy, =XiB+Zwv;i+e, i=1,...k, (1)
where the k observation vectors y, ... , ¥y, are independently distributed, X; is a known
n; X p matrix, 3 = (0o, ... ,Bp—1)" is a p-vector of unknown parameters, Z; is an n; x r;,
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n; > r;, matrix of known covariables and wv; is an r;-vector of random effects. The error
n;-vector €; is distributed independently of the random effects vector v;, both are assumed
to be normally distributed; v; ~ N, (0,0%G;) and €; ~ N,,(0,0°I,,). It is assumed that
Zle(ni—n-) > p, Zle ri > p, and Z; are of full rank r;. Writingy = (v4,...,y,), X =
(X'1,...,X}), Z =block diagonal(Z, ..., Zy), v = (v},... ,v}) and € = (€},... ,€}),
we can express the model in (1) in matrix notation as

y=XB+Zv+e, (2)

where € and v are independently distributed as Ny (0,01 y) and Nz(0, 0*G) for

k k
R=>"r, N=) n; G=Dblockdiag(G,...,Gk).

i=1 =1

The usual goal of the model (2) is to provide a good predicted value for a future obser-
vation. Often, it is achieved by reducing the dimension of the parameters, or equivalently
by using fewer members of fixed variables than p, either by testing the hypothesis that
some specified [;’s are zero or by model selection method such as Akaike Information
Criterion (AIC) of Akaike (1973, 1974). Let f(y|v,3,0?%) and f(v|o?) be the conditional
density of y given v and the marginal density of v, respectively. Then, the marginal
density of y is written by f,,(y|3,0?) = [ f(y|v,B,0?)f(v|o?)dv, which has

Ny(XB,0*°A(GR)) for AG)=1+ZGZ'

When G is known, the Akaike information based on the marginal density f,.(y|3,c?) is

Al = 9 / / {10g fon (1B, 62)} i (y]B, 02)dy dy,

where y* is a future observation having the same distribution as y but independently
distributed of y, B and 62 are the maximum likelihood estimators (MLE) of 3 and
o? based on the observation y where the marginal distribution is given above. The
expressions for the MLE 3 and 62 are given in (5) and (6), respectively. Selection of the
variables of the fixed effects X is based on the minimum value of an unbiased estimator
of AI. In (7), an exact unbiased estimate of AI, which we denote by AIC is given.

Another interesting approach, proposed by Vaida and Blanchard (2005), is based on
the so-called conditional Akaike information given by

CAT = 2 / / / log{ £(3°[5,B,6%)} (5" |0, B,0) f(ylv, B. 0%) f(v]0?)dy*dydv,  (3)

where @ is the empirical Bayes estimator of v given in (8) and 3 and 62 are given in (5) and
(6), respectively. Vaida and Blanchard (2005) derived an unbiased estimator of cAl given
by (9). We will denote this estimator by cAIC'. Vaida and Blanchard have observed that
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when G is known cAIC takes the same value as DIC', the deviance information criterion
proposed by Spiegelhalter, Best, Carlin and van der Linde (2002) for Bayesian inference.

In our simulation results, we, however, find that the performance of cAIC is no better
than the marginal mAIC. Thus, the performance of both of them is not good. This may
be due to the fact that the estimate 62(G) ignores the existence of the random effects
although it provides the largest degrees of freedom availale to estimate o2. But it also
makes it necessary to obtain cAIl marginally, that is averaging with respect to the density

of v. Thus, we consider estimating o2 from the conditional model, where
ylv ~ Ny(Wr,0°I),

where W = (X, Z) and v = (@',v'). Hence, we need to obtain the bias term only
conditionally. That is, the conditional Akaike information we consider is

CAI(w) = —2 / / log{ (4" 15, B.62)} f(u°|v. B.02) f(ylv, B. ) dy'dy,  (4)

where 6o = (y — W#,)'(y — W#7,)/N for the least squares estimator 4, of v, and v
and 3 are linear estimators of y for v and B. It is noted that 62 is not affected by the
random effect term v and N3 /0? has a chisquare distribution with (N —p — R)-degrees
of freedom. The proposed new conditional AIC is an unbiased estimator of C'AI given by

N(tr [WL]+1)
N—r,—2 "~

CAIC(G) = —2log f(y[®, B, 63) + 2

where r,, = rank (W) and L is a (p + R) x N matrix such that (,B/,ﬂl)’ = Ly. It is
interesting to note that although this is obtained conditionally given v, the bias term
—2N(tr [WL]+1)/(N —ry, — 2) does not depend on v, and thus, it is also an unbiased
estimator of cAI defined by Vaida and Blanchard (2005). Although 62 is based on less
degrees of freedom than 62, we argue that it is the most appropriate estimate of o2 to
use in —2log f(y|v,3,62) as it takes into account that not only B but v has also been
estimated while 62 does not take this into account; in fact in the conditional framework
6?2 is a biased estimator of o2. Simulation experiments carried out in Section 4 show that
the performance of CAIC(G) is significantly better than mAIC(G) and cAIC(G) in the
sense of selecting the true model. This method also facilitates to consider the case when
G is a function of unknown parameters.

The organization of the paper is as follows. In Section 2, we introduce the concept of
AIC and marginal and conditional AIC’s. In Section 3, we derive three conditional AIC
using three different kinds of estimators available for (3, v), assuming that G is known.
The case of unknown G is considered in Section 4. We give simulation results in Section
5. The paper concludes in Section 6. The proof is given in the Appendix.



2 Marginal and Conditional AIC in the linear mixed
model

2.1 Concept of AIC

We now introduce the marginal and conditional AIC’s in the linear mixed model in the
case of known G. Before describing them, we first explain the concept of AIC briefly. The
AIC is based on Kullback-Leibler distance. For a true density f and an approximating
one g, this distance is defined as

I(f,9.) = Ey-log f(y") — Eylog gu(y"),

where E,» denotes the expectation with repect to the true density f(y*). Let G = {g. :
w € Q} be the class of approximating densities. If f € G, then there exist a g,, € G
such that I(f, gu,) = 0, otherwise I(f, g.,) > 0. Thus a ¢ is chosen for which I(f,g) is
minimum. Usually w is not known and estimated from the data y by @ = w(y). Thus,
I(f,g.) is approximated by I(f, g») and the quality of approximation is judged by

EyflI(f,92)] = Ey[log f(y")] — EyEy[10g gy (y7)],

where £, denotes the expectation with respect to the true density f(y), which is inde-
pendent of y*. Akaike information is defined by

Al = =2E,E,-[10g 9oy (y")].
An unbiased estimator of Al is given by
AIC = —2log goy)(y) + A,

where A is the bias
A = E,[-2log guw)(y)] — AL

Akaike (1973, 1974) used an approximate value of the bias given by the number of free
parameters. Thus, Akaike used the number of free parameters in place of A. It is noted
that AIC' is a criterion for selecting a good model in terms of minimizing the prediction
error. It may be noted that the estimator w of w need not be an MLE as any consistent
estimator of w may perform as good, see Konishi and Kitagawa (2007).

2.2 Marginal AIC

The marginal AIC in the linear mixed model is AIC based on the marginal distribution
y ~ Nn(XB,0°A),
for A=A(G) =1Iy+ ZGZ', where the marginal density is given by
fm(y1B,0%) = (210%) NE|A[V 2 exp{—(y — XB)' A" (y — XB)/(20%)}.
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When G does not include unknown parameters, the maximum likelihood estimators
(MLE) of 3 and 02 are given by

B=B(G) = (X'AT'X)"X'A 'y, (5)
5* =6%(G) = (y — XBYA ' (y — XB)/N
=y {ATT AT (X'ATX) ATy, (6)

where A" denotes the Moore-Penrose inverse of A and satisfies (i) AATA = A, (i)
ATAAT = A* (i) (ATA) = (AT A), (iv) (AAY) = AA". Then, —2log f,.(y|3,5?%)
is expressed as

—21og fm(ylB, 6%) = Nllog(2r6*(G)) + 1] + log [A],
and the exact bias correction AIC based on the marginal likelihood is given by
mAIC(G) = N[log(276*(G)) + 1] + log |A| + 2N (r, + 1) /(N — r, — 2), (7)

where r, = rank (X). When G includes unknown parameters, we can use the criteria

~ ~

AIC(G) and mAIC(G) when a consistent estimator G of G is available.

2.3 Conditional AIC

The conditional AIC in the linear mixed model was proposed by Vaida and Blanchard
(2005), who considered estimating the random effects v as well as 3 by the mixed model

equation

X'X X'z B\ (X

ZX ZZ+G ) \z )Y
which was given by Henderson (1950). Then the solution ,@ is the generalized least squares
estimator (GLS) given in (5), and v is given by

5= GZ'A ' (y - XP). (8)

which can also be derived as an empirical Bayes estimator by considering the conditional
distribution of v given y. Thus, using the estimator 6%(G) defined in (6), they define
the conditional Akaike information by (3). The conditional AIC, denoted by cAIC(G),

is given by
cAIC(G) = —2log f(y[v. B,67) — A, (9)
where

A, =E,[-2log f(y[v. B,6%)] — cAI
N(N —r, —1)
(N —rz)(N —1r, —2)

N(ry +1)

=2 (N=r)(N—r,—2)

(p+1)+



Here, p is defined by p = tr (Hy), where

X'X X'z L/ x
H1:<X7Z)(Z/X Z/Z+G_1) (Z/)

which can be also expressed as
H, =X(X'A"'X)"X'A'+ ZGZA ' {I - X(X'AT'X)"X'A ™}
AT X (XA X)TX'AT T - AT (10)

3 Proposed conditional AIC

In our simulation results, we find that the performance of cAIC(G) is only slightly better
than the marginal mAIC(G) in the sense of selecting true models. To improve the
performance, we here propose another type of conditional AIC’s. In this section, we
assume that G is known, and we begin with rewriting the model (2) as

y=XB+Zv+e=W~+e,

where W = (X, Z) is an N X (p + R) matrix and v = (3',v') is a (p + R)-dimensional
vector. Given v, the model y = W~ + € can be conditionally regarded as a usual linear
regression model, and the conditional MLE of ~ and ¢? are given by

Yo =(W'W)" W'y, (11)
6(2) =(y — W7,) (y — W7,)/N. (12)
It can be shown that the MLE of v can be expressed as
0= ( B, )- (X X)X y
"7\ % (Z22)'Z(I-X(XX)+X)

EL()ya

where X = (I — H )X for H, = Z(Z'Z)™'Z'. Tt is noted that the MLE of ~ is a linear
function of y. Thus, we may consider a general estimator of « as a linear function of y,
namely,

ﬁz(@)zLy,
v

where L is a (p + R) x N matrix which will be specified later. It is noted that N62 /o>
has a chisquare distribution with (N — r,,) degrees of freedom for r,, = rank (W'). Thus,
we shall obtain our CAIC using 4 and 63 as estimators of v and o, respectively.

The conditional Akaike information considered here is given in (4), which is different
from cAI given in (3) in that cAI = [CAI(v)f(v|o?)dv. Since —2log f(y|v,B,453) is
written as

—2log f(y|v, B,52) = Nlog(2162) + (y — W7)'(y — W7)/52.
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We now consider another random vector y* distributed independently of y but having
the same distribution as y. Hence,

Yy lv ~ Ny(Wa, oI).
Thus,
Ey.[-2log f(y*[v, B,53)|v] =N log(2762) + Ey-[(y* — W) (y* — W7)/52|v]
Y-—"NWW(H-7)

2
g
=N log(2762) + N— + - :
B(2m5)) + N o >

Hence, the conditional Akaike information given v is given by

2 (F-y)WW(H -
CAl(v) = E, [Nlog(%&g) + N2 + v =) a =) H |
90 o

and the bias is expressed as

Ac(v) =Ey [~210g f(y[5,B.63)|v] — CAI(v)
_E, [(y—in}’gy—Wv) _Q(y—Wvg}’ZW('NY—W) _Ng_z v}_ (13)

It is here noted that E,[c?/6|v] = N/(N —r,—2) and E,[(y — W~) (y — W=)/52|v] =
N+ Nry/(N —ry —2). Also for 4 = Ly, it is observed that

(y—Wy)W(y—9) (y —W~)WLy
Ey [ 52 ‘” =Ey 52 ‘”
g [(y ~ W) WL+ L'W')(y - W) ‘ ]
==L, — v
2 op
N u’(WL+L’W’)u‘
2 o (I —H,)u vl

where u = (y — W) /o and H,, = W(W'W )W'. Note that given v, the conditional
distribution of u has Ny (0, I), so that u is independent of v. Using Lemma A.1 in the
Appendix, we can see that

N _[v(WL+LW'u| | tr (WL) 2tr [WL(I — H,)|
PR A H _N{N—rw—2 N (N—rw)(N—rw—2)}
 Ntr (WL)
TN, -2

since tr [WL(I — H,)] = 0. Combining these evaluations gives the following expression
for the bias term Aq(v):

N(tr [WL]+1)

Bolv) = 2=~

(14)



which yields the conditional AIC given by

N(tr [WL]+1)

AIC(G) = —21 v,3,63) +2
C C(G) ng<y|,071870—0)+ N—T'w—2

(15)

It is interesting to note that the bias term A (v) does not depend on the given v. Given
v, CAIC is an unbiased estimator of C'AI given in (4), which turns out to be an unbiased
estimator of the conditional Akaike information cAI defined by Vaida and Blanchard
(2005).

The matrix L given in (15) depends on the choice of 4 as an estimator of . We

consider three kinds of estimators of « as described below.

[1] Using maximum likelihood estimator 4, for . Since the maximum likelihood

or lease squares estimator of 4 is given in (11) as 4, = (W'W)*W'y, the matrix L cor-
responds to L = (W'W)TW'. Hence, it is seen that tr [WL] = tr [ (W'W)H(W'W)] =
rank (W) = r,,, and we get the conditional AIC based on MLE 7, = (,BE), v,) as

CAICwL(G) = — 21og f(ylBo. By, 63) + 2N (ry + 1)/ (N =1, = 1)
=Nlog(2r63) + 1] + 2N (ry + 1) /(N — 7y — 1). (16)

[2] Using empirical Bayes (EB) estimator of v and simple estimator of 3.
Consider the case that the empirical Bayes estimator is used for v and the simple estimator
B, = (X'X)” X'y is utilized for 3. The empirical Bayes estimator of v is given in (8) as
v=GZ' A (y— X,@), and the matrix tr [W L] corresponds to

tr[WL]=tr [ X(X'X)"X'+ ZGZ'A™{I - X(X'AT'X)*X'A7'}].

Note that tr [ X (X'X)~X'] = tr [X(X'A"'X)"X'A™!] = rank (X). From the argument

around (10), it is seen that tr [W L] = tr[H;] = p. Hence, we get the conditional AIC
~1

based on the estimator (3,,7') of v as

CAICsL(G) = — 2log f(y[D,8,,62) + 2N(p+ 1) /(N = 1y — 2)

(y —XB, — Z@)’(y -XB, - Z@) 2N(p+1)
) + .
on N —ry, —2

=N log(2762) + (17)
[3] Using generalized least squares estimator of 3 and EB estimator of v.

Consider the generalized least squares estimator B and the EB estimator v given in (5)
and (8), respectively. These are estimators treated by Vaida and Blanchard (2005), and
it is seen that tr [W L] = p since WL = H;. Hence, we get the conditional AIC based

~!
on the estimator (3,%') of ~ as

CAICGL(G) = —2log f(y[5.B,53) + 2N (p +1)/(N — 1,y — 2)
(y—XB-20)(y -~ XB—2v) , 2N(p+1)

=N log(2762 .
Og( 7T0'0)+ 6_(2) N—Tw—2

(18)



4 Extensions to the case of unknown variance com-
ponents

We have explained the marginal and conditional AIC’s under the assumption that G
is known. In most applications, however, G depends on unknown parameters. In this
section, we handle the case of G including unknown parameters. If a consistent estimator
G is available for G, then it can be substituted into mAIC(G), cAIC(G) and CAIC(G)

to get the marginal AIC mA[C((A;'), the conditional AIC’s cA[C((A;') and CA[C((A;'),
which will be suggested in this paper. In this case, the problem is how to estimate G.
The maximum likelihood method is an approach, but we need heavy computation as well
as convergence of numerical iterations. Thus, in this section, we provide estimators of G

in explicit forms in some specific models.

For the model given in (2), we begin with making the transformation

(5) ()

where T'; is an (n; — r;) X n; matrix such that I';Z; = 0 and I;T', = I,,,_,,. It may
be noted that I — Z;(Z:Z;)™'Z, = I'.T'; and thus T; can easily be computed. Ac-
Cording to this transformation, let /—X/li = ]_-‘ZXZ, éli = Fi€i7 /—X/QZ' = (Z;Zl)_IZ;XZ
and €y = (Z,Z;)"'Zje; for i = 1,... k. For j = 1,2, let §; = (¥1,...,Yj),

— —

}j = (Xj,...,X;.) and € = (€,...,€;)". Then, the model is decomposed as

@1 :/—X/LB + éla

i ) (20)
@2 :XQ,B + v + 627

where g, : (N—R) X1, §y: Rx1, X;: (N—=R)xp, Xo: Rxp, N =% n, and
R =% r. Lety = (g9, and Wy = block diag(G; + (Z,Z,)");i = 1,... k).
Then, y, and y, are mutually independently distributed as

¥, ~Ny-r(X18,0Iy_g),

?}2 NNR(XQIBaOQWQ)'

From the marginal likelihood of 4, we get an unbiased estimator of o given by
~ ~ v G =y ~
o1 =Y, {IM_X1<X1X1)+X1}yl/(N_R_T@fl))a (21)

where "%, = rank (’)Zl) It can be seen that 57 is a consistent estimator of 2.

We now consider the estimation of G. For this purpose, we handle two specific cases:
(1) G; = ¥ D, for unknown scalar ¢ and known matrix D; and (2) G; = ¥ and r; = r
fori=1,... k.



[1] Case of G; = ¥ D; for unknown scalar ¢» and known matrix D;. In this
case, the marginal distribution of y has Ny(X3,0%A), where A = I +ZDZ' for
D = blockdiag(Dy,... ,Dy). Let S = y'(I — H,)y for H, = X(X'X)" X', and the
expectation is written as

E[S] =c*tr|[I - H,)I +yZDZ') = 0c*{N —r, +¢tr[Z'(I — H,)ZD]},
for r, = rank (X). Thus, we get an estimator of ¢ given by
Y ={8/5% — (N —1,)}/txr[Z'(I - H,)ZD],

for 6% given in (21).

For the consistency of ¥, we assume that tr [Z'(I — H,)Z D] = O(k) for large k. From
the consistency of 6% and the fact that S/tr [Z'(I — H,)ZD] = O,(1), it follows that
W — ¢ ={S)o2 — (N —r,)}/tr[Z'(I — H,)ZD] — 4 + O,(k~'/?). Tt can be scen that
Var[d] = Var[S]/{o*(tr [Z'(I — H,)ZD)])?} + O(k™") and that Var[S] = o*2tr [{(I —
H,)I +¢ZDZ')}? = O(k). Hence, Var[¢] = O(k™') under the assumption that
tr [Z'(I — H,)ZD] = O(k), which implies the consistency of ¥.

The estimator 12 can take negative values with positive probability. Thus, we consider
a truncated estimator

9T = max{¢), R/}, (22)
which can be shown to be positive and consistent as k — oo.

[2] Case of G; = ¥, an unknown matrix, and r;, = r for i = 1,... | k. In this
case, we recall the transformed model given in (20). Let S; = (yy; — XQZ,BI)(y22 XQZ,BI)
for B, = (X, X1)* X y. It is noted that E[S;] = 02{(2’ ) +\IJ+X22<X X 1) Xyl
which yields that S°, E[Si] = 02 S8 {(Z1Z:)~" + Xo:( X, X1)" Xy} + 02k ®. Thus,
W can be estimated by

k k

k,(lf% Y. 8i- %Z { Zi) T+ }2i(}1}1)+};i} , (23)

i=1 i=1

~U
for 62 given in (21). It can be verified that ¥ is consistent. For the proof, see the
Appendex.

For the covariance matrix Cov (v;) = o>®, we consider the two cases of ¥ ; W is fully
unknown, and ¥ = diag (¢1, ... ,%,). When W is a fully unknown covariance matrix, ¥
should be estimated by a positive definite matrix. Let P be an orthogonal matrix such

~U ~U
that ¥ = P'diag (w1, ... ,wn)P where wy, ... ,w, are eigenvalues of ¥ . Then, we can
use the truncated estimator

oo p diag (max{ws, R™%3},...  max{w,, R_2/3}) P

10



~TR ~
for R = kr. It can be shown that ¥ is consistent with order ¥ = — @ = O, (k~1/2).

When W has a covariance structure, we can use the structure to construct an appropri-

ate estimator based on \TIU. For instance, assume that ¥ = diag (¢1, ... ,%,). This case
implies that Z,;v; in (1) is expressed as Z;v; = z;vi1 + - - + 23 v; Where vy ~ N (0, 0%9);)
and z;; is an n; x 1 vector for 7 = 1,... ,r. This model may be useful when several factors
of random effects are considered in practical situations. Then, we can estimate each 1;
by

OTR = max{(®" ), R723}, (24)

7

~U ~U
where (¥ );; denotes the (i,7) diagonal element of ¥ . The resulting estimator of W is
~T

R ~ ~
given by = diag (VI E, ... pI'H).

5 Simulation Studies

We now investigate the numerical performances of the marginal and the conditional AIC’s
derived in the previous sections through simulation and compare them in terms of the
frequencies of selecting the true model.

The simulation experiments have been carried out for k = 20, r; = --- =19 =1 =
1,2,3 and p = 7. For the sample sizes n;’s, n;’s are generated as n; = 1 + Bin(8,1/2) for
i=1,...,k, where Bin(8,1/2) is a random variable distributed as a binomial distribution
with mean 4 and success probability 1/2. For the N xp matrix X of the regressor variables
in the model (2), the row vectors @,... ,xx for X' = (@1,... ,xN) are generated as
mutually independent random variables distributed as ./\/},(O, 3,) where ¥, = (1—p,)I,+
padp for p, = 0.3, where J, = 3,3, for j, = (1,... 1), a p-vector of ones. For the n x r
matrix Z;’s in the model (1), the row vectors in Z; are generated as mutually independent
random variables distributed as NV,.(0,X,) where X, = (1 — p,)I, + p.J, for p, = 0.3. In
this experiment, we assume that the true model is given by

(p") y=XB" +2Zv+e,
where 1 < p* <7, 8" = (f1,...,0p,0,...,0), and v and € are mutually independent
random variables having v ~ Ng(0,0%)Ig) and € ~ Ny(0,0%I y); it may be noted that
when Cov (v) = 02D, where D is known, we may assume without any loss of generality
that D = I, as it can be absorbed with the matrix Z by defining Zx = ZD~/2. Here,
we handle the cases that 02 = 1 and ¥ = 0.01,0.5,1.0. Also, 3 for 1 < ¢ < p* is
generated as a random variable distributed as 8, = 2(—1)""'{1 + U(0,1)} for a uniform
random variable U(0,1) on the interval (0,1). Let (m) be the set {1,... ,m}, and we
write the model using the first m regressor variables (i, ..., 3, by M,, or simply (m).
Then, the full model is (7) and the true model is (p*). As candidate models, we consider
the nested subsets (1),...,(7) of {1,...,7}, namely,

(m) y=XpB" + Zv + ¢,

11



where 8™ = (81,...,Bm,0,...,0).

In the simulation experiments, 10 observations of the regressor variables X and Z are
generated, and for each observation of X and Z, 30 observations of the response variable
y are generated from the true model (p*) for p* = 2,4,6. Thus, we have 10 x 30(= 300)
total data sets. For each data set, we calculate the values of mAIC given in (7), cAIC
given in (9) and CAICy ., CAICs,, and CAIC¢y, given (16), (17) and (18), respectively,
for the eight candidate models (1), ... , (8), and we select the models minimizing the values
of the information criteria. For each criterion and each candidate model (m), the number
of selecting the model (m) is counted for 300 data set. We thus obtain the frequencies of
the model (m) selected by the criteria by dividing the number by 300. These frequencies
are reported in Table 1, where standard deviations in selecting the true model are less
than 0.02. From the table, we can see that the proposed conditional AIC’s CAIC)y,
CAICgy, and CAICqy, are superior to mAIC and cAIC for most of the cases.

When the random effects v; has the covariance matrix such that ¥ = diag (¢, ... ,¥,),
we next investigate the similar performances of the five criteria mAIC, cAIC, CAIC)y;y,
CAICg., and CAICq, with known and unknown W, where 1); is estimated by (24) in the
unknown case of ¥. The frequencies of selecting the true model are reported in Table 2
for the balanced case of ny = --- = ngg = 10, k = 20 and r = 2, 3. This numerical results
show that the conditional AIC’s CAIC), CAICs;, and CAICq, are better than mAIC
and cAIC. It is interesting to note that the performance of C'AIC);;, does not depend
on whether W is known or unknown, since C AIC),;, does not include W or its estimator.
This means that CAIC), 1, can be used even if ¥ cannot be estimated appropriately, or
n;’s are small.

6 Concluding Remarks

In this paper, we have considered linear mixed models. To select the fixed-effects variables,
we have derived three conditional Akaike information criteria CAIC), CAICSs; and
CAIC¢q, and have shown that these C'AIC’s perform better than mAIC as well as
better than cAIC, proposed by Vaida and Blanchard (2005). We have also considered
the case when Cov (v;) = 0% D; as well as when Cov (v;) = ¢*®, but r; = r, where 1
is a scalar unknown parameter, and ¥ is an unknown covariance matrix. The proposed
CAIC’s perform better than mAIC and cAIC. However, when n;’s are small, it is
recommended to use C'AIC);, when the matrix W is completely unknown as it does not
depend on the unknown parameters.

12



Table 1: Frequencies selected by the five criteria mAIC, cAIC, CAIC), CAICs, and
CAICgq, abbreviated by AIC, Cyg, Cyr, Cep and Cgr, in 300 replications for the
unbalanced case of n; and k£ = 20: the dimension of a full model is p = 7 and the true
model is (p*) ={1,... ,p*}

known unknown )
My, AIC Cyp Cyr Cgp Car  AIC Cyp Cur Cep  Car
pF=211v=001,r=1

(1) 0.0 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(2) 76.3 76.3 84.0 84.7 84.7 75.3 74.7 84.0 85.0 84.7
(3) 11.0 11.0 9.7 9.0 90 113 127 97 87 9.0
(4) 43 4.3 3.3 2.3 2.3 5.0 4.7 3.3 2.7 2.7
(5) 4.3 4.3 1.0 2.3 2.3 3.7 3.7 1.0 20 2.0
(6) 2.0 20 1.0 1.3 1.3 2.3 2.0 1.0 1.0 1.0
(7) 20 20 1.0 03 0.3 23 23 1.0 07 0.7
p*=4,1v=05r=2
(1) 0.0 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(2) 00 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(3 0.0 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(4) 76.3 75.0 94.3 98.3 96.3 77.0 72.0 94.3 98.7 97.3
(5) 12.7 12.0 3.3 1.7 2.7 12.0 11.7 3.3 1.3 2.0
(6) 80 97 20 0.0 1.0 80 93 20 00 0.7
(7) 30 33 03 0.0 0.0 30 70 03 0.0 0.0
p*=6,v=10,r=3
(1) 0.0 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(2) 00 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(3 0.0 00 0.0 0.0 0.0 0.0 00 00 0.0 0.0
(4 00 00 00 0.0 0.0 0.0 00 00 1.0 0.0
(5) 0.0 0.0 0.0 0.0 0.03 0.0 00 00 9.7 0.0
(6) 88.0 87.3 98.7 96.0 99.7 87.0 77.3 98.7 89.0 100.0
(7) 12.0 12.7 1.3 0.0 0.3 13.0 22.7 1.3 0.3 0.0
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Table 2: Frequencies selected by the five criteria mAIC, cAIC, CAIC), CAICs, and
CAICgqy, abbreviated by AIC, Cypg, Cyr, Ceg and Cgr, in 300 replications for known
and unknown ¥ and the unbalanced case of ny = -+ = ngg = 10 and & = 20: the
dimension of a full model is p = 7 and the true model is (p*) = {1,...,p"}

known ¥ unknown ¥
My, AIC Cyp Cyur Cep Car AIC Cvp Cur Ces Car

p* = 2, (Y1,v%2) = (0.01,1.0), r = 2

(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 78.0 74.7 87.7 94.7 86.3 75.7 780 87.7 95.0 89.7
(3) 10.7 12.0 8.0 3.7 8.3 12.3 10.3 8.0 2.3 5.7
(4) 3.7 4.0 1.3 0.7 1.3 3.0 4.0 1.3 07 1.7
(5) 3.0 4.3 1.3 0.3 2.0 4.0 3.0 1.3 1.0 2.0
(6) 2.7 23 1.0 0.3 1.0 2.3 23 1.0 0.7 0.7
(7) 2.0 27 0.7 0.3 1.0 2.7 2.3 0.7 0.3 0.3
p* =4, (¢19 P2, ¢3) = (0'01a0°5’ 1°0)> r=3
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 78.0 76.7 86.0 95.7 91.0 74.7 73.0 86.0 93.3 87.3
(5) 10.3 11.7 8.7 3.7 5.3 11.3 13.0 8.7 5.0 7.0.0
(6) 6.7 7.3 3.7 0.3 2.0 8.3 8.0 3.7 1.3 3.0
(7) 5.0 4.3 1.7 03 1.7 5.7 6.0 1.7 0.3 27
p* =6, (¢1,92,9¢3) = (1.0,1.0,1.0), r = 3
(1) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(2) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(3) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(4) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
(5) 0.0 0.0 0.0 0.0 0.0 0.7 6.3 0.0 0.0 0.0
(6) 85.3 85.3 91.3 95.3 91.0 85.7 85.3 91.3 97.0 93.7
(7) 14.7 14.7 87 4.7 9.0 14.3 14.7 8.7 3.0 6.3
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A Appendix

A.1 Expectation of a ratio of quadratic forms

We here evaluate the expected value of the ratio of two quadratic forms which have been
used to derive the bias terms of the conditional AIC.

Lemma A.1 Assume that A is an N x N symmetric matriz, and that H is an idempotent
matrix of rank q. Then,

{ u' Au }_ trA 2w [A(Iy — H)]
w(Iy—H)u] N-qg—2 (N—q(N—-g-2)

where u ~ Ny (0, Iy).

Proof. Since H is an idempotent matrix of rank ¢, we can write H = 3Ty, Ty = N X
¢, and T'sTy = I,,. Let T'; be N x (N — ¢) matrix such that I'\T'y = 0 and I'\T"; = Iy —gq.
Then, T' = (T'1,Ty) is an N x N orthogonal matrix and hence I';T"] + I'sI';, = Iy, and
Iy — H=TII". Let v =T"u, v; = I'"u, vo = Tyu and

By B
B =TAT' = )
(5 o)
Then,
Q= u' Au _ v Bv  v|Bpv; + 201 B1ovs + v5 Byv
CwW(Iy—-Hu vv, vV, '

Noting that v ~ Nx(0, Iy), we can see that

_tI' B11 tr 322 . tr AI‘lI"l tr AI‘QF/Q

E =
@] N—q+N—q—2 N —q +N—q—2
_trA(IN—H) n tr AH
N N —q N—q—2
. trA 2tr A(In — H)
N-q—=2 (N-q)(N-q-2)
which proves Lemma A.1. [

~U
A.2 Consistency of ¥

~U
From the consistency of 62 and the fact that Y. | 8;/k = O,(1), it follows that ¥ =
~ o~ ~ —~
‘IJ*/OQ—FOp(k_I/z) for ¥* = Zle Si/l{—O'Q Zle{(Z;Zl)_l+XQZ(X/1X1)+X22}/IC Note
that S; = (Yo — X2:81) (Y2 — X2:08;) and that g,; and B, are mutually independently
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distributed as @y; ~ ./\/'(3(/2@,8 3,) and B, ~ /\/’(,@,02()\(//1/)\(/1#), where ¥; = o2{¥ +
(Z,Z;)7'}. Then, U — oW is expressed as

k

— oW =— Z {@22 - }z%@)@% - }Z?Zﬁ)/ - E’}

i=1

k
+ % ZZI: {X22<Iél - IB)(BI - IB)/XQZ' - 0—2X2i(X1X1)+X2i}

1< ~ - o _
" > {(@% — X2B8)(By — B) Xy + X2i(By — B) (s — ngﬁ)’}
=1
:K1+K2—K3. (Say)

It is easy to see that E[K;] = 0 for j = 1,2,3. For the consistency of ¥ or ¥* it is
sufficient to show that E[tr [K?]] = O(k™) for j = 1,2,3. Let u; = 9y, — X 2,3, and it
has N (0,%;). Then,

el ) = o [ wat]] ~ oo [
and - B
pler ] E[3 o+ 35t |
- Z{m 2]+ (i [2)%} + Z >u P
_QZtr +tr[zk:2h)2]
Hence, B

Eltr [K?]] —2Ztr 2 /K2,

which has the order O(k™!). Similarly, we can see that

Eltr [K2]] =20t |( [ ZXQZ (X, X 1) X) ] /K2,

=1

Eltr [K2)] =40> Ztr Jtr (X oi(X, X 1) X o] /K2,
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both of which have the order O(k~') under the assumption that X; is bounded and
5 v e ~U
Zle Xg,»(Xlle)JrX;i = O(1). Thus, the consistency of ¥ is verified. ]

Acknowledgments. The research of the first author was supported by NSERC. The
research of the second author was supported in part by a grant from the Ministry of
Education, Japan, No. 19200020.

References

1]

[6]

Akaike, H. (1973). Information theory and an extension of the maximum likelihood
principle. In 2nd International Symposium on Information Theory, (B.N. Petrov
and Csaki, F, eds.), 267-281, Akademia Kiado, Budapest.

Akaike, H. (1974). A new look at the statistical model identification. System iden-
tification and time-series analysis. IEEE Trans. Autom. Contr., AC-19, 716-723.

Henderson, C.R. (1950). Estimation of genetic parameters. Ann. Math. Statist., 21,
309-310.

Konishi, S. and Kitagawa, G. (2007). Information Criteria and Statistical Modeling.
Springer.

Spiegelhalter, D.J., Best, N.G., Carlin, B.P., and van der Linde, A. (2002). Bayesian
measures of model complexity and fit (with Discussion). J. Royal Statist. Soc., B
64, 583-639.

Vaida, F., and Blanchard, S. (2005). Conditional Akaike information for mixed-
effects models. Biometrika, 92, 351-370.

17



