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Abstract
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mental variables in a simultaneous equation system. It is mathematically equivalent
to an estimating equation estimation or a reduced rank regression in the statisti-
cal linear models when the number of restrictions or the dimension increases with
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of the limited information maximum likelihood (LIML) estimator to improve its
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and persistent heteroscedasticity. We show that an asymptotically optimal mod-
ification of the LIML estimator, which is called AOM-LIML, improves the LIML
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1. Introduction

In recent analysis of micro-econometric data many explanatory or instrumental

variables are sometimes used in estimating an important structural equation. Then

there have been increasing interest and research on the estimation of a structural

equation in a system of simultaneous equations when the number of instruments (the

number of exogenous variables excluded from the structural equation), say K2, is

large relative to the sample size, say n. Asymptotic distributions of estimators and

test criteria have been investigated on the basis when both K2 → ∞ and n → ∞.

These asymptotic distributions are used as approximations to the distributions of

the estimators and criteria when K2 and n are large. The early studies on the case of

many instruments, which we call the large-K2 asymptotic theory or the many instru-

ments asymptotics, are Kunitomo (1980, 1981, 1982, 1987), Morimune (1983) and

Bekker (1994). Several semi-parametric estimation methods have been developed

including the estimating equation method (or the generalized method of moments

(GMM) in econometrics) and the maximum empirical likelihood (MEL) method (see

Hayashi (2000), Qin and Lawless (1994) and Owen (2001)). However, it has been re-

cently recognized in econometrics that the classical Limited Information Maximum

Likelihood (LIML) estimation, originally developed by Anderson and Rubin (1949,

1950), has some advantage with many instruments in micro-econometric applica-

tions. (The LIML estimation can be regarded as a simplified version of the MEL

estimation.) There has been a growing literature in econometrics on the problem of

many instruments including Chao and Swanson (2005), Anderson, Kunitomo and

Matsushita (2005, 2007), Hansen, Hausman and Newey (2008) and their references.

This problem is mathematically equivalent to an estimating equation estimation or

a reduced rank regression with the statistical linear models when the number of

restrictions or the dimension increases with the sample size.

For sufficiently large sample sizes the LIML estimator and the Two-Stage Least

Squares (TSLS) estimator have approximately the same distribution in the stan-

dard large-sample asymptotic theory, but their exact distributions can be quite
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different for the sample size occurring in practice with many instruments. Ander-

son et al. (2007) have shown that the LIML estimator has an asymptotic optimum

property when K2 and n are large under a set of conditions. On the other hand,

the JIVE (Jackknife Instrumental Variables Estimation) method has been proposed

and its properties has been investigated. (See Angrist, Imbens and Krueger (1999),

Chao and Swanson (2004), for instance.) Also Hausman, Newey, Wountersen, Chao

and Swanson (2007) proposed the jackknife version of the LIML estimator (called

JMIML or HLIM) and the Fuller modification. They suggested that the JLIML

estimator improves the bias property of the LIML estimator in case of the persistent

heteroscedasticity, which we shall define precisely.

The main purpose of this paper is to propose an asymptotically optimal modifi-

cation of the LIML estimator, which we shall call AOM-LIML as an abbreviation.

We show that the AOM-LIML estimator improves some properties of the LIML es-

timator and its possible modifications including the JIVE (Jackknife Instrumental

Variables Estimators), the JLIML estimator. The AOM-LIML estimator has good

asymptotic properties and it often attains the lower bound of the asymptotic vari-

ance in a class of estimators when the disturbances are heteroscedastic and there are

many instruments or many weak instruments. We relate the AOM-LIML estimator

to other estimations methods known and show that the JLIML estimator is asymp-

totically equivalent to the AOM-LIML estimator. The results of this paper lead to

a new light on the asymptotic efficiency when there are many incidental parame-

ters (i.e. the number of instruments is large) and the disturbances have persistent

heteroscedasticity.

In Section 2 we state the structural equation model and the alternative estimation

methods of unknown parameters in simultaneous equation models with possibly

many instruments. Then in Section 3 we develop a new way of improving the LIML

estimation and discuss a set of sufficient conditions for the asymptotic normality

and the asymptotic lower bound when the number of instruments is large with the

persistent heteroscedasticity. We shall give a small number of numerical evidence on

the finite sample properties of the LIML, the AOM-LIML and JLIML estimators.
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when there are many incidental parameters. Finally, some brief concluding remarks

will be given in Section 4. The proof of our theorems will be given in Section 5. For

an illustration of our results in Section 3.3, we shall give some figures in Appendix.

2. Alternative Estimation Methods of A Structural Equation

with Many Instruments

Let a single linear structural equation be

y1i = β
′
2y2i + γ

′
1z1i + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are a scalar and a vector of G2 endogenous variables, respectively

(K1 and G2 are fixed integers); z1i is a vector of K1 (included) exogenous variables,

γ1 and β2 are K1 × 1 and G2 × 1 vectors of unknown parameters, and ui are

mutually independent disturbance terms with E(ui|z(n)
i ) = 0 and E(u2

i |z(n)
i ) = σ2

i

with the Kn × 1 instrumental variables z
(n)
i (i = 1, · · · , n). We assume that (2.1) is

the structural equation in a system of 1 + G2 endogenous variables y
′
i = (y1i,y

′
2i)

′

and Y = (y
(n)
1 ,Y

(n)
2 ) is an n × (1 + G2) vector of their observations. As a typical

situation we consider

Y
(n)
2 = Π

(z)
2n + V

(n)
2 ,(2.2)

where Π
(z)
2n = (π

′
2i(z

(n)
i )) is an n×G2 matrix, each row π

′
2i(z

(n)
i ) depends on Kn × 1

vector z
(n)
i , V

(n)
2 is an n × G2 matrix, v

(n)
1 = u + V

(n)
2 β2 and V = (v

(n)
1 ,V

(n)
2 ).

V = (v
′
i) is an n×(1+G2) matrix of disturbances (the i-th row v

′
i is a 1×(1+G2)×1

vector) with E(vi|z(n)
i ) = 0 and

E(viv
′
i|z(n)

i ) = Ωi =

⎡
⎢⎣ ω11.i ω

′
2.i

ω2.i Ω22.i

⎤
⎥⎦ .(2.3)

The formulation of (2.1) and (2.2) includes the statistical linear models as special

cases. We write

Y = ZΠn + V ,(2.4)

Πn is a (1 +G2)×Kn matrix of coefficients and the n×Kn matrix Z = (Z1,Z2n) =

(z
(n)′
i ) (the i-th row z

(n)′
i = (z

′
1i, z

(n)′
2i ) is the vector of Kn (= K1 +K2n) instruments).
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When γ1 = 0, the rank of Πn in (2.3) is G2 and it is a reduced rank regression

model. See Anderson (1984) for the classical arguments on the relations among

statistical models with different names including the linear functional relationships,

the simultaneous equations models, the errors-in-variables models and factor models.

Since we assume that the vector of Kn (Kn = K1 +K2n) instruments z
(n)
i satisfy

the orthogonal condition

E [uiz
(n)
i ] = 0 (i = 1, · · · , n) ,(2.5)

the model of (2.1) and (2.2) is the same as an estimation equation problem well-

known in statistics, but we shall mainly investigate the situation when the number of

orthogonal conditions (Kn) increases with the sample size n. This situation has been

called the case of many instruments in recent econometrics. The relation between

(2.1) and (2.2) gives ui = (1,−β
′
2)vi and

σ2
i = (1,−β

′
2)Ωi

⎛
⎜⎝ 1

−β2

⎞
⎟⎠ = β

′
Ωiβ ,(2.6)

where β
′
= (1,−β

′
2). Since we are interested in the analysis of a large number of

cross-section micro-data as typical applications, we impose the condition

1

n

n∑
i=1

Ωi
p−→ Ω(2.7)

and Ω is a positive definite (constant) matrix. Then

1

n

n∑
i=1

σ2
i

p−→ σ2 = β
′
Ωβ > 0 .(2.8)

Define the (1 +G2) × (1 +G2) matrices by

G = Y
′
Z2.1A

−1
22.1Z

′
2.1Y ,(2.9)

and

H = Y
′ (

In − Z(Z
′
Z)−1Z

′)
Y ,(2.10)

where Z2.1 = Z2n − Z1A
−1
11 A12, A22.1 = Z

′
2.1Z2.1 and

A =

⎛
⎜⎝ Z

′
1

Z
′
2n

⎞
⎟⎠ (Z1,Z2n) =

⎛
⎜⎝ A11 A12

A21 A22

⎞
⎟⎠(2.11)
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is a nonsingular matrix (a.s.). Then the LIML estimator β̂LI (= (1,−β̂
′

2.LI)
′
) of

β = (1,−β
′
2)

′
is the solution of

(
1

n
G − 1

qn
λnH)β̂LI = 0 ,(2.12)

where qn = n−Kn (qn > G2 + 1) and λn is the smallest root of

| 1
n
G − l

1

qn
H| = 0 .(2.13)

The solution to (2.11) gives the minimum of the variance ratio

L1n =
[
∑n

i=1 z
(n)′
i (y1i − γ

′
1z1i − β

′
2y2i)][

∑n
i=1 z

(n)
i z

(n)′
i ]−1[

∑n
i=1 z

(n)
i (y1i − γ

′
1z1i − β

′
2y2i)]∑n

i=1(y1i − γ
′
1z1i − β

′
2y2i)2

.

(2.14)

The TSLS estimator β̂TS (= (1,−β̂
′

2.TS)
′
) of β = (1,−β

′
2)

′
is given by

Y
(n)′
2 Z2.1A

−1
22.1Z

′
2.1Y

⎛
⎜⎝ 1

−β̂2.TS

⎞
⎟⎠ = 0 .(2.15)

It minimizes the numerator of the variance ratio (2.14). The LIML and the TSLS

estimators of γ1 are γ̂1 = (Z
′
1Z1)

−1Z
′
1Yβ̂, where β̂ is β̂LI or β̂TS, respectively.

The GMM estimation (or the estimating equation method in statistical litera-

tures) can be regarded as a semi-parametric extension of the TSLS estimator. It

has been known that the GMM estimator has a significant bias when Kn is large.

The MEL estimation can be regarded as a semi-parametric extension of the LIML

estimator because the latter can be defined as the minimum variance ratio estima-

tion. Since the calculation of MEL becomes extremely difficult, however, its use has

not been implemented when Kn is large. See Anderson et al. (2005, 2007, 2008),

Kunitomo and Matsushita (2008) on the finite sample properties of the GMM, MEL,

TSLS, and LIML estimators in the detail.
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3 An Asymptotically Optimal Modification of

LIML

3.1 Alternative Modifications of the LIML estimator

Anderson, Kunitomo and Matsushita (2007) have considered a set of sufficient con-

ditions in details for an asymptotic optimality of the LIML estimator in a linear

structural equation estimation with Π
(z)
2n = Z1Π12 + Z2Π

(n)
22 (Π

(n)
22 is a K2n × G2

coefficient matrix) when there are many instruments and the disturbances are ho-

moscedastic. The basic conditions are

(A− I)
K2n

n
−→ c (0 ≤ c < 1)

and

(A − II
′
)

1

d2
n

Π
(z)′
2n Z

′
2.1A

−1
22.1Z2.1Π

(z)
2n

p−→ Φ22.1

as dn
p→ ∞ (n→ ∞), where Φ22.1 is a nonsingular constant matrix and the noncen-

trality parameter d2
n = tr(Π

(z)′
2n Z

′
2.1A

−1
22.1Z2.1Π

(z)
2n ). In the following analysis we shall

mainly discuss the standard case when d2
n = Op(n). However, it is straightforward

to extend the results to other cases including the case of many weak instruments,

which we shall mention briefly.

Since the estimation of structural coefficients depends on G in (2.9), the pro-

jection matrix P2.1 = (p
(2.1)
ij ) = Z2.1A

−1
22.1Z

′
2.1 has an important role for the small

sample properties of estimators. In Anderson et al. (2007) the condition

(A − VI) plim
n→∞

1

n

n∑
i=1

[
p

(2.1)
ii − c

]2
= 0

plays a crucial role, where p
(2.1)
ii are the diagonal elements of P2.1. The typical

example of (A-VI) is the case when we have orthogonal dummy variables which have

1 or −1 in their all components so that (1/n)A22.1 = IK2n
and p

(2.1)
ii = K2n/n (i =

1, · · · , n). When both (2.7) and (A-VI) hold,

(WH) plim
n→∞

[
1

n

n∑
i=1

p
(2.1)
ii Ωi − cΩ

]
= O
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by applying the Cauchy-Schwartz inequality. We say the Weak Heteroscedasticity

condition holds if we have (WH). If it is not satisfied, we say the Persistent Het-

eroscedasticity condition holds and denote (PH). Under (WH), the LIML estimator

has some desirable asymptotic properties in the sense that it has the consistency,

the asymptotic normality and it attains the lower bound of the asymptotic variance

in a class of estimators as dn
p→ ∞ (n → ∞) as stated in Section 4 of Anderson et

al. (2007).

In the more general cases with (PH), however, the distribution of the LIML esti-

mator could be significantly affected by the presence of (conditional) heteroscedastic-

ity of disturbance terms with many instruments. It is mainly because the condition

(WH) is not necessarily satisfied. In this respect, there can be several ways to im-

prove the LIML estimation method. Since the projection matrix of instruments has

a key role, it is useful to summarize its property.

Lemma 1 : Let PZ = (p
(n)
ij ) = Z(Z

′
Z)−1Z

′
and QZ = (q

(n)
ij ) = In − Z(Z

′
Z)−1Z

′
.

We assume that the rank of matrix Z is Kn (> G2). Then 0 ≤ p
(n)
ii < 1 (i = 1, · · · , n)

and 0 < q
(n)
ii ≤ 1 (i = 1, · · · , n). (A-I) implies

p̄(n) =
1

n

n∑
i=1

p
(n)
ii =

Kn

n
−→ c ,(3.1)

q̄(n) =
1

n

n∑
i=1

q
(n)
ii = 1 − Kn

n
−→ 1 − c ,(3.2)

where cn = Kn/n→ c as n→ ∞.

The main reason why the LIML estimator does not necessarily have good prop-

erties when the disturbances are heteroscedastic with many instruments is the

presence of the possible correlation between the conditional covariance Ωi and

p
(n)
ii (i = 1, · · · , n), which prevents from satisfying (WH). Then we could use this

characterization of the diagonal elements of the projection matrix to improve the

LIML estimation.

For PZ = (p
(n)
ij ) = Z(Z

′
Z)−1Z

′
,QZ = (q

(n)
ij ) = In−PZ and PZ1

= Z1(Z
′
1Z1)

−1Z
′
1,

we utilize the relations P2.1 = (In − PZ1
)PZ(In − PZ1

) and QZ = (In − PZ1
)(In −

PZ)(In − PZ1
). We construct PM = (p

(m)
ij ) and QM = (q

(m)
ij ) = In − PM such that
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p
(m)
ij = p

(n)
ij (i �= j), p

(m)
ii −K2n/n→ 0 (i, j = 1, · · · , n) and

plim
n→∞

1

n

n∑
i=1

[
p

(m)
ii − c

]2
= 0 .(3.3)

Then we define two (K1 + 1 +G2) × (K1 + 1 +G2) matrices by

GM =

⎛
⎜⎝ Z

′
1

Y
′

⎞
⎟⎠PM (Z1,Y) , HM =

⎛
⎜⎝ Z

′
1

Y
′

⎞
⎟⎠QM (Z1,Y) .(3.4)

By using GM and HM , we define a class of modifications of the LIML estimator

(we may call AOM-LIML) such that θ̂MLI (= (−γ̂
′
1.MLI , β̂

′

MLI)
′
) and β̂MLI (=

(1,−β̂
′

2.MLI)
′
) of θ = (−γ

′
1, 1,−β

′
2)

′
is the solution of[

1

n
GM − 1

qn
λnHM

]
θ̂MLI = 0 ,(3.5)

where qn = n−Kn (> 0) and λn is the smallest root of

| 1
n
GM − l

1

qn
HM | = 0 .(3.6)

As the simplest case, the AOM-LIML estimator is defined by using the deter-

ministic sequences p
(m)
ii = cn, p

(m)
ij = p

(n)
ij (i �= j; i, j = 1, · · · , n).

When p
(n)
ii (i = 1, · · · , n) are close to cn or cn is small, the AOM-LIML estimator

is very close to the LIML estimator for practical purpose. Hausman et al. (2007)

have defined the JLIML (or HLIM) estimator by setting PH = (p∗ij), p
∗
ii = 0 (i =

1, · · · , n) and replacing PM and QM by PH and QH = In − PH in (3.4), (3.5)

and (3.6) but without (3.3). Then we find that it is not in the class of the AOM-

LIML estimation with (3.6). Numerically, however, the AOM-LIML estimator can

be close to the JLIML (or HLIM) estimator in some situation when cn is close to

zero. When cn is not 0, however, there can be some differences in finite samples. It

is also possible to define the corresponding modifications of the TSLS estimator and

the GMM estimator. An estimation method called JIVE (Jackknife Instrumental

Variables Estimators) has been proposed and its properties have been investigated

by Chao and Swanson (2005), for instance.

We note that GM with PM should be positive definite (a.s.) in order to define

the AOM-LIML estimation. This condition is weaker than the corresponding one
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with PH . Hence we expect that the AOM-LIML estimator may be stable than the

JLIML estimator in some cases.

3.2 Asymptotic Optimality of AOM-MLIML

We shall investigate the asymptotic properties of the AOM-LIML estimator when

there are many instruments. One of attractive features of the AOM-LIML estimator

is that it satisfies (3.3) while we can utilize nearly full information of data.

We have the consistency and the asymptotic normality of the MLIML estimator

when the disturbances are heteroscedastic with many instruments under a set of

conditions. The proof will be given in Section 6.

Theorem 1 : Let z
(n)
i (i = 1, 2, · · · , n) be a set of Kn ×1 vectors (Kn = K1 +K2n).

Let vi (i = 1, 2, · · · , n) be a set of (1 + G2) × 1 independent random vectors such

that E(vi|z(n)
i ) = 0 and E(viv

′
i|z(n)

i ) = Ωi (a.s.) is a function of z
(n)
i , say, Ωi[n, z

(n)
i ].

For (2.1) and (2.2), suppose (A-I), (2.7), (3.3),

1

n
max
1≤i≤n

‖π∗i(z
(n)
i )‖2 p−→ 0(3.7)

and
1

n
Π(z)′

∗n (PM − c∗QM)Π(z)
∗n

p−→ Φ∗(3.8)

is a positive definite matrix as n → ∞, Kn → ∞ and qn → ∞, where Π
(z)
∗n =(

Z1,Π
(z)
2n

)
= (π∗i(z

(n)′
i )). We denote (1/n)Π

(z)′
∗n PMΠ

(z)
∗n

p−→ Φ∗
1, (1/qn)Π

(z)′
∗n QMΠ

(z)
∗n

p−→
Φ∗

2 and c∗ = c/(1 − c). Also suppose E [‖vi‖2+ε] < ∞ for some ε > 0 (and

E [‖π∗i(z
(n)′
i )‖2+δ] <∞ for some δ > 0 when π∗i(z

(n)′
i ) are stochastic).

Then

√
n

⎡
⎢⎣
⎛
⎜⎝ γ̂1.MLI

β̂2.MLI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ d−→ N(0,Ψ∗)(3.9)

where

Ψ∗ = Φ∗−1 [Ψ∗
1 + Ψ∗

2]Φ
∗−1 ,(3.10)

Ψ∗
1 = plim

1

n

n∑
i,j,k=1

π∗i(z
(n)
i )[p

(m)
ij − c∗q

(m)
ij ]σ2

j [p
(m)
jk − c∗q

(m)
jk ]π∗k(z

(n)
k )

′
,
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Ψ∗
2 = plim

1

n

n∑
i,j=1

[
σ2

i E(w∗jw
′
∗j|z(n)

j ) + E(w∗iui|z(n)
i )E(w

′
∗juj|z(n)

j )
] [
p

(m)
ij − c∗q

(m)
ij

]2
,

provided that Ψ∗
1 and Ψ∗

2 converge in probability as n → ∞, π∗i(z
(n)
i ) = (z

′
1i,π

′
2i(z

(n)
i ))

′
,

w∗i = (0
′
,w

′
2i)

′
, and w2i = v2i − ui(0, IG2

)Ωβ/σ2 (i = 1, · · · , n).

The first term of (3.10) is due to the noncentrality parameter and the second

term is due to the covariance estimation. We could interpret many weak instruments

as the case when the first term is negligible as we shall discuss.

When (2.2) is linear, we have (2.4) and we partition the (K1 +K2n) × (1 +G2)

coefficient matrix as

Πn =

⎛
⎜⎝ π11 Π12

π
(n)
21 Π

(n)
22

⎞
⎟⎠ .(3.11)

Suppose the disturbances have the homoscedasticity or weakly heteroscedastic in

the sense

(WH)
′

max
1≤i≤n

‖Ωi − Ω‖ p→ 0

and assume the condition (A-VI). Then by setting p∗ij = p
(n)
ij (i, j = 1, · · · , n),

Φ∗
2 = O and

Ψ∗
1 = σ2plim

1

n
Π

(n)′
22 A22.1Π

(n)
22 = σ2Φ22.1 .(3.12)

In this case we have

E(w2iw
′
2i) =

[
Ω − 1

β
′
Ωβ

Ωββ
′
Ω

]
22

,

where A22.1 = A22 − A21A
−1
11 A12 and [ · ] is the G2 × G2 lower left-corner of the

matrix. We also use the relations
∑n

i,j=1 p
(n)2
ij =

∑n
i=1 p

(n)
ii = Kn,

∑n
i,j=1 q

(n)2
ij =∑n

i=1 q
(n)
ii = n−Kn and

∑n
i,j=1 p

(n)2
ij =

∑n
i=1 p

(n)
ii = Kn. Hence the right-lower corner

of Ψ∗
2 is reduced to

[Ψ∗
2]22 = σ2plim

1

n

n∑
i,j=1

[
p

(n)
ij − c∗q

(n)
ij

]2 E(w2iw
′
2i)(3.13)

=
[

c

1 − c

]
σ2
[
Ω − 1

σ2
Ωββ

′
Ω
]
22
.

11



Then Ψ∗ in (3.10) corresponds to

Ψ∗
A = σ2Φ∗−1 + c∗Φ∗−1 [O, IG2

]
′ [

Ωσ2 −Ωββ
′
Ω
]
22

[O, IG2
]Φ∗−1(3.14)

where σ2 = β
′
Ωβ and c∗ = c/(1 − c). We find that (3.13) reduces to (3.8) of

Theorem 2 in Anderson et al. (2007).

For the estimation of the vector of structural parameters θ, it may be natural to

investigate the procedures based on two (K1 +1+G2)× (K1 +1+G2) matrices GM

and HM (by modifying G and H for the persistent heteroecedasticity) and hence we

consider a class of estimators which are functions of these matrices. Typical examples

of this class are the modified versions of the OLS estimator, the TSLS estimator, and

the LIML estimator including the one proposed by Fuller (1977). (It also includes

other estimators which are asymptotically equivalent to these estimators.) Then we

have a new result on the asymptotic optimality of the AOM-LIML estimator in a

class of estimators. We give the proof in Section 6.

Theorem 2 : Assume that (2.1) and (2.2) hold and define the class of consistent

estimators for θ by

θ̂ = φ(
1

n
GM ,

1

qn
HM) ,(3.15)

where φ is continuously differentiable and its derivatives are bounded at the proba-

bility limits of random matrices in (3.4) as K2n → ∞ and n → ∞ and 0 ≤ c < 1.

Then under the assumptions of Theorem 1,

√
n

⎡
⎢⎣
⎛
⎜⎝ γ̂1

β̂2

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ d−→ N(0,Ψ) ,(3.16)

where

Ψ ≥ Ψ∗(3.17)

and Ψ∗ is given in Theorem 1.

When the conditions (WH
′
) and (A-VI) are satisfied, the result of Theorem 2

corresponds to an extension of Theorem 4 of Anderson et al. (2007). When the

12



equations of (2.2) are linear and the disturbances are normally distributed with the

homoscedastic disturbances,

I(β) =
1

σ2
Π(z)′

∗n PZΠ(z)
∗n(3.18)

corresponds to the Fisher information. Hence (WH
′
) and c = 0 in (A-I) in the linear

models are the sufficient condition that we do not loose the information amount

by modifying the LIML estimation asymptotically. If they were not satisfied, the

AOM-LIML estimator has some information loss asymptotically although it is still

consistent and it has the asymptotic normality.

Also Anderson et al. (2007) have investigated an asymptotic optimality of al-

ternative estimators in three possible cases on the sequences of dn and n when both

dn and n go to infinity under homoscedasticity assumption. From our construc-

tion of the AOM-LIML method, it is straightforward to obtain the corresponding

asymptotic results for alternative parameter sequences when the disturbances are

heteroscedastic and there are many instruments at the same time.

Let θ̂HLI (= (−γ̂
′
1.HLI , 1,−β̂

′

2.HLI)
′
) be the JLIML (or HLIM) estimator defined

by Hausman et al. (2007). Then as a Corollary to Theorem 1, it is possible to show

that the JLIML (or HLIM) estimator cannot be improved asymptotically further.

Theorem 3 : We take PH = (p∗ij) such that p∗ii = 0, p∗ij = p
(n)
ij (i �= j; i, j =

1, · · · , n), QH = In − PH in (3.4), (3.5) and (3.6) instead of P M and QM . Suppose

(A-I), (2.7), and
1

n
Π(z)′

∗n (Pn −Dn)Π(z)
∗n

p−→ Φ∗
D(3.19)

is a positive definite matrix as n → ∞ and Kn → ∞, where Dn = diag(PZ). Also

suppose E [‖vi‖2+ε] <∞ for some ε > 0 (and E [‖π∗i(z
(n)′
i )‖2+δ] <∞ for some δ > 0

when π∗i(z
(n)′
i ) are stochastic). Then

√
n

⎡
⎢⎣
⎛
⎜⎝ γ̂1.HLI

β̂2.HLI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ d−→ N(0,Ψ∗)(3.20)

where Ψ∗ is given by (3.10).
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Theorem 3 together with Theorem 2 implies that the JLIML (or HLIM) estima-

tion cannot be improved asymptotically in a class of estimators which depend on

functions of GM and QM with some PH and QH . The condition (3.19) is equivalent

to (3.8) because of (5.29).

Next, we consider the linear model (2.1) and (2.4) when the noncentrality pa-

rameter dn = op(n
1/2) and

√
n/d2

n

p→ 0, which may correspond to the case of many

weak instruments. We have the asymptotic optimality result in this situation. Since

the proof is similar to that of Theorem 5 in Anderson et al. (2007), we omit the

detail. It is possible to extend the result further with an additional assumption and

complication. The variance of the limiting distribution of the AOM-LIML estimator

((3.24) below) is simpler than (3.10) because the effects of n dominate the first term

of (3.10) in Theorem 1.

Theorem 4 : Consider the linear model of (2.1) and (2.4). Suppose (A-I) and (2.7)

hold, and let dn = op(n
1/2) and

√
n/d2

n

p→ 0 as n → ∞ and Kn → ∞. Assume

1

d2
n

max
1≤i≤n

‖π∗i(z
(n)
i )‖2 p−→ 0(3.21)

and
1

d2
n

Π(z)′
∗n (PM − c∗QM)Π(z)

∗n
p−→ Φ∗∗(3.22)

is a positive definite matrix as n → ∞, Kn → ∞ and qn → ∞, where Π
(z)
∗n =(

Z1,Π
(z)
2n

)
= (π∗i(z

(n)′
i )). Also suppose E [‖vi‖2+ε] < ∞ for some ε > 0 (and

E [‖π∗i(z
(n)′
i )‖2+δ] < ∞ for some δ > 0 when π∗i(z

(n)′
i ) are stochastic). We de-

note (1/d2
n)Π

(z)′
∗n P∗

ZΠ
(z)
∗n

p−→ Φ∗
1, (1/d2

n)Π
(z)′
∗n Q∗

ZΠ
(z)
∗n

p−→ Φ∗
2 and c∗ = c/(1 − c).

For the AOM-LIML estimator,

[
d2

n√
n

] ⎡⎢⎣
⎛
⎜⎝ γ̂1.MLI

β̂2.MLI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ d−→ N(0,Ψ∗∗)(3.23)

and for any estimator θ̂ in the class of (3.15),

[
d2

n√
n

] ⎡⎢⎣
⎛
⎜⎝ γ̂1

β̂2

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ d−→ N(0,Ψ) ,(3.24)
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where

Ψ ≥ Ψ∗∗ ,(3.25)

and

Ψ∗∗ = Φ∗−1Ψ∗∗
2 Φ∗−1 ,(3.26)

Ψ∗∗
2 = plim

1

n

n∑
i,j=1

[
σ2

i E(w∗jw
′
∗j|z(n)

j ) + E(w∗iui|z(n)
i )E(w

′
∗juj|z(n)

j )
] [
p

(m)
ij − c∗q

(m)
ij

]2
,

provided that Ψ∗∗
2 converge in probability as n → ∞.

3.3 On Finite Sample Distributions of LIML and AOM-

LIML

The finite sample properties of the LIML estimator and semi-parametric estima-

tors including the GMM and MEL estimators have been investigated by Anderson,

Kunitomo and Matsushita (2005, 2008) in a systematic way. As an example we

present only three figures (Figures 1A-3A) in Appendix when we have the linear

model with (2.4) and G2 = 1 for the simplicity. (We took a typical case when

K2 is relatively large.) We have used the numerical evaluation of the cumulative

distribution function (cdf) of the LIML estimator based on the simulation and we

have enough numerical accuracy in most cases. See Anderson et al. (2005, 2008)

for the detail of the numerical computation method. The key parameters in figures

are K2 (or K2n), n−K (or n−Kn), α = [ω22/|Ω|1/2](β2 −ω12/ω22) (Ω = (ωij)) and

δ2 = Π
(n)′
22 A22.1Π

(n)
22 /ω22 when G2 = 1 and the disturbances are homoscedastic.

As a simple example of the LIML modification, we consider the case when K1 =

1, zi ∼ N(0, IK) (i = 1 · · · , n) and we take

p
(m)
ii = 1 − q

(m)
ii =

Kn

n
+

[
z2
1i∑n

j=1 z
2
1j

− 1

n

]
(3.27)

and p
(m)
ij = p

(n)
ij (i �= j; i, j = 1, · · · , n). Figures 1A and 2A correspond to the

homoscedastic disturbance case while Figure 3A corresponds to the case of persistent

heteroscedasticity which is similar to the one reported by Hausman et al. (2007).
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Three figures in Appendix show the estimated cdf of estimators in the standard

form, that is,
√
nΨ

∗−1/2
22

(
β̂2 − β2

)
,(3.28)

where Ψ∗
22 is the right-lower corner of Ψ∗, which is given by Theorem 1. The limiting

distribution of the AOM-LIML estimator is N(0, 1) in the large-K2 asymptotics and

it is denoted by ”o”.

From these figures we have found that the distribution function of the AOM-

LIML estimator is very similar to that of the LIML estimator in the homoscedastic

disturbance cases. At the same time we also have found that the distribution func-

tion of the AOM-LIML estimator is very similar to that of the JLIML (or HLIM)

estimator in the particular heteroscedastic disturbance case treated by Hausman et

al. (2007). In that case the finite sample distribution of the LIML estimator is dif-

ferent from the MLIM and JLIML estimators considerably as well as the standard

normal distribution because the effects of correlation between ‖z(n)
i ‖/n and Ωi do

not decrease as Kn and n increase. In this case the AOM-LIML estimator with

(3.4) improves both the LIML and JLIML estimators in the finite samples. These

observations agree with our theoretical results of Section 3.2.

4. Concluding Remarks

In this paper, we have introduced a class of modifications of the LIML estimation

method. When there are many instruments and the disturbances have heteroscedas-

ticity, it might be argued that the LIML estimator does loose good asymptotic

properties in the extremely heteroscedastic cases. However, as we have shown that

a simple modification of the LIML estimation, called the AOM-LIML estimator,

gives the consistency, the asymptotic normality and an asymptotic optimality under

a set of assumptions. The AOM-LIML estimator is close to the LIML estimator

when the disturbances are homoscedastic or weakly heteroscedastic while it can be

different when the disturbances have persistent heteroscedasticity. We also have

shown that the AOM-LIML estimator improves the LIML estimator and the JLIML
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(or HLIM) estimator is asymptotically equivalent to a simple case of the AOM-LIML

estimator when there are many instruments and the persistent heteroscedasiticity

exists at the same time. There are some differences in the finite samples.

There are several important issues still remained for further investigations. For

the more general non-linear estimating equation model (2.5), the nonlinear LIML

and TSLS estimators can be defined by substituting ui(θ) = y1i − fi(z1i,y2i,θ) for

ui(θ) = y1i − γ
′
1z1i − β

′
2y2i (i = 1, · · · , n) and minimizing the variance ratio in

(2.13), where fi( · ) is a known function and θ is the vector of unknown (structural)

parameters. Then our method can be extended to such cases with some notational

complications. When the number of restrictions or the dimension becomes large

with the sample size, however, the semi-parametric methods such as the GMM and

the maximum empirical likelihood (MEL) estimations may have some difficulty in

theory as well as in practical computation.

Finally, a more practical question is the relevance Persistent Heteroscedasticity

in real applications. A more systematic investigation of the finite sample properties

of alternative semi-parametric estimation methods would be needed.

5 Proof of Theorems

In this section we give the proofs of Theorems. The methods of proofs are basically

some modifications of Section 6 of Anderson et al. (2007), which are often straight-

forward.

Proof of Lemma 1 : Let Z2.1 = (z∗
′

i ) (z∗
′

i are K2n × 1 vectors) and An(i) =∑n
j=1,j �=i z

∗
jz

∗′
j . Then

p
(n)
ii = z∗

′
i

[
z∗iz

∗′
i + An(i)

]−1
z∗i(5.1)

=
z∗

′
i A−1

n(i)z
∗
i

1 + z∗′i A−1
n(i)z

∗
i

and 0 ≤ p
(n)
ii < 1. For Qn we apply the same argument to In −Qn and we find that

0 < q
(n)
ii ≤ 1. Q.E.D.
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Proof of Theorem 1 : From (2.1) and (2.2) we write Y = Π(z)
n + V, Π(z)

n =(
Π

(z)
1n ,Π

(z)
2n

)
and Π

(z)
1n = Π

(z)
2n β2 +Z1γ1. By substituting this relation into GM yields

GM =

⎡
⎢⎣
⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠+

⎛
⎜⎝ O

V
′

⎞
⎟⎠
⎤
⎥⎦PM

[(
Z1,Π

(z)
n

)
+ (O,V)

]

=

⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠PM

(
Z1,Π

(z)
n

)
+

⎛
⎜⎝ O

V
′

⎞
⎟⎠PM (O,V)

+

⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠PM (O,V) +

⎛
⎜⎝ O

V
′

⎞
⎟⎠PM

(
Z1,Π

(z)
n

)
,

where PM is given in Section 3 and we define an n×(K1+1+G2) matrix V∗ = (O,V).

Then

GM −
⎡
⎢⎣
⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠PM

(
Z1,Π

(z)
n

)′
+Kn

⎛
⎜⎝ O

IG2+1

⎞
⎟⎠ Ω̄ (O, IG2+1)

⎤
⎥⎦

=

⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠PM (O,V) +

⎛
⎜⎝ O

V
′

⎞
⎟⎠PM

(
Z1,Π

(z)
n

)

+

⎡
⎢⎣
⎛
⎜⎝ O

V
′

⎞
⎟⎠PM (O,V)−Kn

⎛
⎜⎝ O

IG2+1

⎞
⎟⎠ Ω̄ (O, IG2+1)

⎤
⎥⎦ ,

where Ω̄ = (1/n)
∑n

i=1 Ωi. By using (A − II
′
) and (3.8), we find that as n −→ ∞

1

n
Π(z)′

n PMV
p−→ O ,(5.2)

and

1

n

⎡
⎢⎣
⎛
⎜⎝ O

V
′

⎞
⎟⎠PM (O,V)−Kn

⎛
⎜⎝ O

IG2+1

⎞
⎟⎠ Ω̄ (O, IG2+1)

⎤
⎥⎦ p−→ O .(5.3)

Then as n −→ ∞,
1

n
GM

p−→ G0 = B
′
Φ∗

1B + c Ω∗ ,(5.4)

where a (K1 +G2) × [K1 + (1 +G2)] matrix

B = (B1,B2) =

⎡
⎢⎣
⎛
⎜⎝ IK1

O

⎞
⎟⎠ ,

⎛
⎜⎝ γ1

β2

⎞
⎟⎠ ,

⎛
⎜⎝ O

IG2

⎞
⎟⎠
⎤
⎥⎦
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and a (K1 + 1 +G2) × (K1 + 1 +G2) matrix

Ω∗ =

⎡
⎢⎣ O O

O Ω

⎤
⎥⎦ .

By using (2.7) and (3.8),

1

qn
HM =

1

qn

⎡
⎢⎣
⎛
⎜⎝ Z1

Π(z)
n

⎞
⎟⎠+

⎛
⎜⎝ O

V
′

⎞
⎟⎠
⎤
⎥⎦QM

[(
Z1,Π

(z)
n

)
+ (O,V)

]
p−→ H0(5.5)

and

H0 = B
′
Φ∗

2B + Ω∗ .

Then (3.6) implies

∣∣∣B′
[Φ∗

1 − (plim λn)Φ∗
2] B − [(plim λn) − c]Ω∗

∣∣∣ = 0(5.6)

and we find that plimλn = c is a solution. Because λn is the minimum of

ln =
θ

′ 1
n
GMθ

θ
′ 1
n
HMθ

p→ θ
′
G0θ

θ
′
H0θ

(5.7)

and the minimum of the right-hand side is c under the condition (3.8), Then

plimλn = c(5.8)

is the unique solution and θ̂MLI
p−→ θ as n→ ∞ because of (3.5) and (3.6).

Define G1, H1, λ1n, and b1 by

G1 =
1√
n

⎡
⎢⎣
⎛
⎜⎝ Z

′
1

Π(z)′
n

⎞
⎟⎠PM (O,V) +

⎛
⎜⎝ O

V
′

⎞
⎟⎠PM

(
Z1,Π

(z)
∗n
)

+

⎛
⎜⎝ O

V
′

⎞
⎟⎠PM (O,V)−Kn

⎛
⎜⎝ O

IG2+1

⎞
⎟⎠ Ω̄ (O, IG2+1)

⎤
⎥⎦ ,

H1 =
√
qn( 1

qn
H − H0), λ1n =

√
n(λn − c) and b1 =

√
n(θ̂MLI − θ). From (3.5), we

have

[G0 − c H0]θ +
1√
n

[G1 − λ1nH0]θ +
1√
n

[G0 − c H0]b1 +
1√
qn

[−cH1]θ

= op(
1√
n

) .
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Since (G0 − c H0)θ = 0, (3.5) gives

B
′
Φ∗√n

⎡
⎢⎣
⎛
⎜⎝ γ̂1.LI

β̂2.LI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦ = (G1 − λ1nH0 −√

cc∗H1) θ + op(1) .(5.9)

Multiplication of (5.9) from the left by θ
′
= (−γ

′
1, 1,−β

′
2) yields

λ1n =
θ

′
(G1 −√

cc∗H1)θ

β
′
Ωβ

+ op(1) .

Also the multiplication of (5.9) on the left by a (K1 + G2) × (K1 + 1 + G2) choice

matrix

J
′
=

⎡
⎢⎣ IK1

,0, O

O ,0, IG2

⎤
⎥⎦

and substitution for λ1n from (5.9) yield

√
n

⎡
⎢⎣
⎛
⎜⎝ γ̂1.LI

β̂2.LI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦(5.10)

= Φ∗−1J
′
(G1 − λ1nH0 −√

cc∗H1)θ + op(1)

= Φ∗−1J
′
[
IK1+G2+1 − H0θθ

′

β
′
Ωβ

]
(G1 −√

cc∗H1) θ + op(1) .

By using the relation Vβ = u, we obtain

J
′
(G1 −√

cc∗H1) θ(5.11)

=
1√
n
Π(z)′

∗n (PM − c∗QM)u +
√
c

1√
Kn

J
′

⎡
⎢⎣
⎛
⎜⎝ O

V
′

⎞
⎟⎠PMu −Kn

⎛
⎜⎝ O

IG2

⎞
⎟⎠ Ω̄β

⎤
⎥⎦

−√
cc∗

1√
qn

J
′

⎡
⎢⎣
⎛
⎜⎝ O

V
′

⎞
⎟⎠QMu − qn

⎛
⎜⎝ O

IG2

⎞
⎟⎠ Ω̄β

⎤
⎥⎦ ,

where Kn + qn = n. Then by defining a (1 +K1 +G2) × n matrix

W
′
= J

′
[
IK1+G2+1 − Ω∗θθ

′

β
′
Ωβ

]⎛⎜⎝ O

V
′

⎞
⎟⎠ ,

(5.10) is rewritten as

√
n

⎡
⎢⎣
⎛
⎜⎝ γ̂1.LI

β̂2.LI

⎞
⎟⎠−

⎛
⎜⎝ γ1

β2

⎞
⎟⎠
⎤
⎥⎦(5.12)

= Φ∗−1 1√
n
Π(z)′

∗n (PM − c∗QM)u + Φ∗−1 1√
n

[
W

′
(PM − c∗QM)u

]
+ op(1) .
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Then the rest of the proof (i.e. for the asymptotic normality of the AOM-LIML

estimator) is essentially the same as the proof of Theorem 1, Theorem 2 and Lemma

3 in Anderson et al. (2007). (We omit the detail because we need to use a martingale

CLT for quadratic forms and it is straightforward, but quite lengthy.) Some care

should be taken because we have to use PM and QM instead of Pn and Qn, and (3.5)

and (3.6) to derive the asymptotic properties of the AOM-LIML estimator. Because

the construction of the diagonal parts of PM and QM , we have the results. Q.E.D.

The next proof of Theorem 2 is a simple modification of the proof of Theorem

4 of Anderson et al. (2007) and we shall use their arguments. For the sake of

completeness we give the proof for the simple case.

Proof of Theorem 2 : Without loss of generality, we assume K1 = 0 and

K2n = Kn. (The notation becomes simple slightly and the essential arguments are

clearer than otherwise. See the proof of Theorem 4 of Anderson et al. (2007).) We

set the vector of true parameters θ
′
= β

′
= (1,−β

′
2) = (1,−β2, · · · ,−β1+G2

). An

estimator of the vector β2 is composed of

β̂k = φk(
1

n
GM ,

1

qn
HM) (k = 2, · · · , 1 +G2) .(5.13)

For the estimator to be consistent we need

βk = φk

⎡
⎢⎣
⎛
⎜⎝ β

′
2

IG2

⎞
⎟⎠Φ∗

1 (β2, IG2
) + c Ω,

⎛
⎜⎝ β

′
2

IG2

⎞
⎟⎠Φ∗

2 (β2, IG2
) + Ω

⎤
⎥⎦(5.14)

for k = 2, · · · , 1+G2 as the identities with respect to β2, Φ
∗
k = (ψ

(k)
ij ) (k = 1, 2) and

Ω = (ωij). We set a (1 +G2) × (1 +G2) matrix

T(k) =

(
∂φk

∂gij

)
= (τ

(k)
ij ) (k = 2, · · · , 1 +G2; i, j = 1, · · · , 1 +G2)(5.15)

evaluated at the probability limits and then write a (1 + G2) × (1 + G2) matrix

Θk (= (θ
(k)
ij )) as

Θ1 =

⎛
⎜⎝ β

′
2

IG2

⎞
⎟⎠Φ∗

1 (β2, IG2
) =

⎡
⎢⎣ β

′
2Φ

∗
1β2 β

′
2Φ

∗
1

Φ∗
1β2 Φ∗

1

⎤
⎥⎦(5.16)
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and Θ2 is defined similarly.

Next we consider the role of the second matrix in (5.13). By differentiating (5.14)

with respect to ωij (i, j = 1, · · · , 1 +G2), we have the condition

c
∂φk

∂gij

= − ∂φk

∂hij

(k = 2, · · · , 1 +G2; i, j = 1, · · · , 1 +G2)

evaluated at the probability limit.

By differentiating each components of φk (k = 1, · · · , G2) with respect to βi (i =

1, · · · , G2), we have

∂φk

∂βi

=
G2+1∑
g,h=1

[
∂φk

∂ggh

∂ggh

∂βi

+
∂φk

∂hgh

∂hgh

∂βi

]
(5.17)

=
G2+1∑
g,h=1

∂φk

∂ggh

[
∂ggh

∂βi

− c
∂hgh

∂βi

]

and we have

tr

[
T(k)

(
∂Θ1

∂βj

− c
∂Θ2

∂βj

)]
= 2τ

(k)
11

1+G2∑
i=2

(ψ
(1)
ji −cψ(2)

ji )βi+2
1+G2∑
i=2

(ψ
(1)
ji −cψ(2)

ji )τ
(k)
ji = δk

j ,

(5.18)

where we define δk
k = 1 and δk

j = 0 (k �= j).

By defining a (1 +G2) × (1 +G2) partitioned matrix

T(k) =

⎡
⎢⎣ τ

(k)
11 τ

(k)′
2

τ
(k)
2 T

(k)
22

⎤
⎥⎦ ,(5.19)

(6.18) is represented as

2τ
(k)
11 (Φ∗

1 − cΦ∗
2)β + 2 (Φ∗

1 − cΦ∗
2) τ

(k)
2 = εk ,(5.20)

where ε
′
k = (0, · · · , 0, 1, 0, · · · , 0) with 1 in the k-th place and zeros in other elements.

Since we assumed Φ∗ (= Φ∗
1 − cΦ∗

2) is positive definite, we solve (5.20) as

τ
(k)
2 =

1

2
Φ∗−1εk − τ

(k)
11 β2 .(5.21)

Further by differentiating Θg (g = 1, 2) with respect to ψ
(h)
ij , we have the represen-

tation

tr

⎛
⎝T(k) ∂Θg

∂ψ
(1)
ij

⎞
⎠ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
β2

i τ
(k)
11 + 2τ

(k)
1i βi + τ

(k)
ii (i = j)

2βiβjτ
(k)
11 + 2τ

(k)
1j βi + 2τ

(k)
1i βj + 2τ

(k)
ij (i �= j)

(5.22)
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and in the matrix form

τ
(k)
11 β2β

′
2 + τ

(k)
2 β

′
2 + β2τ

(k)′
2 + T

(k)
22 = O .(5.23)

Then we have the representation

T
(k)
22 = −τ (k)

11 β2β
′
2 − τ

(k)
2 β

′
2 − β2τ

(k)′
2

= τ
(k)
11 β2β

′
2 −

1

2

[
Φ∗−1εkβ

′
2 + β2ε

′
kΦ

∗−1
]
.

Let

S = G1 −√
cc∗H1 =

⎡
⎢⎣ s11 s

′
2

s2 S22

⎤
⎥⎦ ,(5.24)

where G1 and H1 are defined as in the proof of Theorem 1.

Since φ( · ) is differentiable and its first derivatives are bounded at the true param-

eters by assumption, the linearized estimator of βk in the class of our concern can

be represented as

1+G2∑
g,h=1

τ
(k)
gh sgh = τ

(k)
11 s11 + 2τ

(k)′
2 s2 + tr

[
T

(k)
22 S22

]

= τ
(k)
11 β

′
Sβ + ε

′
kΦ

∗−1(s2,S22)β .

Let

τ 11 =

⎡
⎢⎢⎢⎢⎣

τ
(2)
11

...

τ
(1+G2)
11

⎤
⎥⎥⎥⎥⎦(5.25)

and we consider the asymptotic behavior of the normalized estimator
√
n(β̂2 − β2)

as

ê =
[
τ 11β

′
+ (0,Φ∗−1)

]
Sβ .(5.26)

Since the asymptotic variance-covariance matrix of Sβ has been obtained by the

proof of Theorem 1, we have

E
[
ê ê

′]

=

[
(τ 11 + (0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 − Ωββ

′

β
′
Ωβ

)

]
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×E [Sββ
′
S] ×

[
(τ 11 + (0,Φ∗−1)Ωβ)β

′
+ (0,Φ∗−1)(IG2+1 − Ωββ

′

β
′
Ωβ

)

]′

= Ψ∗ + E
[
(β

′
Sβ)2

] [
τ 11 + (0,Φ∗−1)Ωβ

] [
τ

′
11 + β

′
Ω(0,Φ∗−1)

′]
+ o(1) ,

where Ψ∗ has been given in Theorem 1 with K1 = 0. This covariance matrix is the

sum of a positive semi-definite matrix of rank 1 and a positive definite matrix. It

has a minimum if

τ 11 = −(0,Φ∗−1)Ωβ .(5.27)

Q.E.D.

Proof of Theorem 3 : We take p
(m)
ii = 1 − q

(m)
ii = cn, p

(m)
ij = p

(n)
ij (i �= j; i, j =

1, · · · , n) and QM = In − PM in the AOM-LIML estimation. We use the fact that

PM = Pn − Dn + cnIn, PH = Pn − Dn and Dn = diag(Pn). Then

PM − c∗QM = [Pn − Dn + cnIn] − c∗ [In − (Pn − Dn + cnIn)](5.28)

= (1 + c∗) (Pn − Dn) + [cn − c∗(1 − cn)] In .

The assumptions in Theorem 1 implies

1

n
Π(z)′

∗n [PM − c∗Q∗
n]Π(z)

∗n − (1 + c∗)
1

n
Π(z)′

∗n [Pn − Dn] Π
(z)
∗n

p−→ O .(5.29)

By using the same arguments for Ψ∗
i (i = 1, 2) in (3.10), and we find that the

corresponding terms of Ψ∗
i (i = 1, 2) become

Ψ∗∗
1 = (1 + c∗)2plim

1

n

n∑
i,j,k=1

π∗i(z
(n)
i )[p

(n)
ij (1 − δj

i )]σ
2
j [p

(n)
jk (1 − δk

j )]π∗k(z
(n)
k )

′
,

Ψ∗∗
2 = (1 + c∗)2plim

1

n

n∑
i,j=1

[
σ2

i E(w∗jw
′
∗j|z(n)

j ) + E(w∗iui|z(n)
i )E(w

′
∗juj |z(n)

j )
]

×
[
p

(n)
ij (1 − δj

i )
]2
,

where δj
i = 0 (i = j), 0 (i �= j). Hence the factors (1 + c∗)2 in Φ∗∗ and Ψ∗ are

cancelled out.

Let λH be the smallest root of (3.6) in the JLIML estimation by using PH and QH

instead of PM and QM . Then we have plim λ∗H = 0 because p∗ii = 0 (i = 1, · · · , n).
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Then the asymptotic normality of the JLIML estimator can be established under

the assumption of (3.19) that

1

n
Π(z)′

∗n (Pn − Dn)Π
(z)
∗n

p−→ (1 + c∗)−1Φ∗(5.30)

is a positive definite matrix as n → ∞. Hence the covariance matrix of the asymp-

totic distribution has the same form in Theorem 1. Q.E.D.
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Figure 1A: CDF of Standardized estimators: n − K = 20,K2 = 30, α = 0.5, δ2 =

30, ui = N(0, 1)

APPENDIX : FIGURES

In Figures 1A-3A the distribution functions of the LIML, the HLIM (or JLIML) and the MLIML

estimators are shown with the large-K2 normalization. The limiting distributions for the efficient

estimators in the large-K2 asymptotics are N(0, 1) as n → ∞ and K2n → ∞ which are denoted

as ”o”. The parameter α stands for the normalized coefficient of an endogenous variable and δ2 is

the noncentrality parameter. The details of numerical computation method of this paper are given

in Anderson et al. (2005, 2008).
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Figure 2A: CDF of Standardized estimators: n − K = 20,K2 = 30, α = 1, δ2 =

30, ui = N(0, 1)
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Figure 3A: CDF of Standardized estimators: Heteroscedastic disturbances in Haus-

man et.al (2007), n = 100,K = 10, δ2 = 30
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