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Abstract

This paper addresses the Stein conjecture in the simultaneous estimation of a
matrix mean of a multivariate normal distribution with a known covariance ma-
trix. Stein (1973) derived an unbiased estimator of a risk function for orthogonally
equivariant estimators and considered to isotonize the estimator which minimizes
the main part of the unbiased risk-estimator. We call it the Stein risk-minimization
estimator (RM) in this paper. Although the Stein RM estimator has been recog-
nized as an excellent procedure with a nice risk-performance, it has a complicated
form based on the isotonizing algorithm, and no analytical properties such as min-
imaxity have been shown. The aim of this paper is to fix this conjecture in lower
dimensional cases, that is, the minimaxity of the Stein RM estimator is established
for the two and three dimensions.

Key words and phrases: Decision theory, isotonic regression, Stein estimator,
minimaxity, quadratic loss, simultaneous estimation, unbiased estimate of risk.

1 Introduction

For7=1,...,pand j = 1,...,m, let x;; be mutually independent random variables.
Suppose that p < m and that z;;’s are distributed as the normal distribution with mean
0;; and variance one, respectively. The simultaneous estimation of ¢;;s is then considered
under sum of the quadratic loss functions, > 5 | 2721(61 — 0,;)?, where §;;’s are, respec-
tively, certain estimators of 6;;’s. The estimation problem is written in the matrix form
as

X ~ Nop(©,1, @ I,), (1.1)

where X = (z;5), © = (0;;), I is the identity matrix of order k, and ® means the
Kronecker product. The notation Npy, (0, I, ® I,,) denotes the matrix-variate normal
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distribution with mean matrix © and the identity covariance matrix I, ® I,,. Then the
above estimation is expressed as the problem of estimating the mean matrix ® under the
quadratic loss function (the Frobenius norm)

|6 —O|? =tr (6 — ©)(5 — O, (1.2)

where § = (d;;), and tr A and A’ denote the trace and the transpose of a square matrix
A, respectively.

A natural class of estimators of ® is one of orthogonally equivariant estimators. Denote
by Oy, the group of k-dimensionally orthogonal matrices and by V,,, , the Stiefel manifold,
namely, V,,, = {V € R™?|V'V = I,}. Then, X is expressed as X = ULV" by the
singular value decomposition, where U € O,, V € V,,, and L = diag(ly,...,[,) with
ly >--->1,>0. When the orthogonal transformation X — PX Q is considered for any
P c O, and any Q € O,,, the estimator equivariant under the orthogonal transformations

can be represented as
§=U%(L)V", (1.3)

where W(L) = diag (¢1(L),...,¥,(L)), a diagonal matrix whose i-th diagonal element
¥;(L) is a function of L. Let

A =diag(Ai,.. ., N), A > .., for N\ =12,

and let W(L) = L{(I, — ®(A)}. Then, a conventional form of shrinkage estimators is
given by
(@)= X —ULPA)V'=UL{I,— ®(A)}V", (1.4)

where ®(A) = diag (¢1(A), ..., ¢p(A)).

A powerful tool for finding a minimax estimator is the use of an unbiased estimator
of risk function of the estimator d(®). Using the so-called Stein identity of a normal
distribution, Stein (1973) showed that the risk function of §(®) can be expressed as

~

R(6(®),®) = mp + E[A], where

N - i 0
A = ; {Mb? — 2¢co0; — 4; N, o; — 48_/\i<)\i¢i)}’ (1.5)

for ¢ = m — p — 1. This means that mp + A is an unbiased estimator of the risk.
Since X is a minimax estimator with the constant risk mp, the orthogonally equivariant
estimator 6(®) is minimax if ® satisfies that A < 0. Two representative examples of the
orthogonally equivariant and minimax estimators are the Efron-Morris (1972) estimator
OFM = §(®FM) for ®FM = diag (oFM, . .. , o) with oM = ¢p/ A, and the Stein (1973)
estimator 67 = §(®°T) for ®°7 = diag (57, .. ., ¢57) with @77 = (m +p —2i — 1)/ A
When we ignore the term —4¢; >, Ai/ (A — Aj) — 4(9/0N;)(Nigi) in A, the optimal ¢;
is given by ¢; = co/\;, which yields the Efron-Morris estimator. The Stein estimator
modifies the constant ¢ in ¢FM as (m +p — 20 — 1), and this modification leads to the
improvement of 6°7 upon 6% as stated by Stein (1973). It is noted that the Stein



estimator can be derived by incorporating a part of the term —4¢; 3=, Ai/(Ai — A),

since A can be rewritten as

Another interesting idea of Stein (1973) is to minimize the risk-unbiased estimator A
with respect to ¢; with incorporating the whole information in —4¢; > i il (A = ).
From (1.5), the minimizing function ¢; is provided by

Co
@RM—)\— Z)\—)\ (1.6)

for co = m — p — 1. The resulting estimator is denoted by 6™ = §(®M) for &M —
diag (¢*M(A), . .. ,gbe(A)). Although 6% is expected to possess nice risk properties,
it has two shortcomings: One is that the inequality A <0 for #T*M’s does not hold. In
fact, it can be shown that A > 0 with a positive probability as stated in Proposition 2.1.
This means that the minimaxity of 6*™ cannot be guaranteed by the approach of the risk
unbiased estimation. The other shortcoming is that although the shrinkage functions ¢;’s
should possess the natural ordering ¢; < ... < ¢, as a desirable property, this ordering
is not always satisfied for the minimizing functions ¢*M’s.

To fix the second shortcoming, we use the isotonizing method. When the natural

ordering is violated, we perform the isotonizing algorithm by pooling the adjacent pairs

RM RM
¢RM* _ 4RMx _ _ _ RMx _ A+ /\z+1¢z+1 Tt >‘i+k¢z‘+k _ aRM

; = ¢ = = = =g
1+ i+ /\z + )\1+1 e )\i+k 2,0+

See Stein (1977) and Robertson, Wright and Dykstra (1988) and see also Lin and Perlman
(1985) for details of the algorithm. Tt is also noted that ¢/** can be obtained from the
solution g; of minimizing Y ©_ (¢FM — g;)\; subject to the restriction 0 < g; < ... < g,,.

This gives another expression of the isotonizing function ¢f*M* as
N
HFM* = min max Lozic A% . (1.7)
b2i a<i Zagjgb Aj

The isotonizing functions ¢/**’s satisfy the natural ordering ¢{"'* < ... < ¢f*™*. Then,
the estimator modified by the isotonization is given by

oM = §(@"M*) = X — UL®™*(A) VY, (1.8)

where ®M*(A) = diag (¢FM*(A),. .. , FM*(A)). We call, in this paper, oM the
Stein risk-minimization (RM) estimator. Then it is quite interesting to consider
the problem of showing the minimaxity of the Stein RM estimator 67"*. This is a
conjecture given by Stein (1973), and has been suggested from numerical investigations.
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However, no analytical proof has been provided for the minimaxity, because the estimator
is so complicated that it is very hard to evaluate the risk function.

The aim of this paper is to challenge this conjecture. We can establish the minimaxity
of the Stein RM estimator 6*M* in the lower dimensional cases, namely, it is minimax
for cg > 1 in the case p = 2 and for ¢y > 2 in the case p = 3. Although the general
dimensional case p is too hard to handle, Proposition 2.2 given in Section 2 suggests that
the condition ¢y > p — 1 may be imposed on the minimaxity. All the proofs are given
in Section 3. The risk performances of the estimators are numerically investigated in
Section 4, and it is shown that the positive-part Stein RM estimator is better than other
competitive estimators in most cases.

2 Minimaxity of the Stein risk-minimization estima-
tor

In this section, we state the main results concerning the minimaxity of the Stein risk-
minimization estimator 8™*. Since the function A can be derived by using an integration
by parts called the Stein-Haff identity, the functions ¢;’s need to be absolutely continuous.
It is noted that the non-order preserving functions ¢*M’s and the isotonizing functions
¢ftM*’s are absolutely continuous. Thus, for the minimaxity of O"M* it is sufficient to

show that A < 0 for all A, where A is defined in (1.5).

We first show the following proposition which gives the expression of A for the non-
order preserving functions ¢f*M’s.

Proposition 2.1 The estimator of the risk difference A for the estimator 6™ with the
non-order preserving functions ¢FM s is given by

:—COZ +4ZA (ZA_AY, (2.1)

i=1 J#i

which can take positive values with a positive probability.

Proposition 2.1 shows that A for 8™ is not always negative, namely, the approach
based on the risk unbiased estimator cannot guarantee the minimaxity of 8™. No an-
alytical properties have been studied about whether " is minimax or not. It may be
difficult to resolve this problem because one needs to evaluate the expected value E[A]
for 8™ . When we consider the estimator 6** with the isotonizing functions ¢FM*’s

(sRM*

instead of 67 however, we can show the minimaxity, namely, A < 0 for in lower

dimensional cases.

Our method for the proof of the minimaxity is to decompose the space of A into several
subsets corresponding to the forms of (¢pFM* ... ,gbe *), and to show that A < 0 on each
decomposed subset. For example, in the case of p = 2, it is seen that (¢fM* pfM*) =
(¢FtM | HIM) on the subset {pfPM < GEMY and ¢ftM* = GIM* = (N dTM 4 NopZM) /(A1 +X2)

on the subset {¢pFM > ¢fM1}. Although this method works in lower dimensional cases, it
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is intractable for higher dimensions. However, it is possible to evaluate A on the subset
of pfM < ... < M.

Proposition 2.2 On the subset that ¢FM’s satisfy the order restriction ¢fM < ... <
oiM, the estimator of the risk difference A for the Stein risk-minimization estimator

8M* s evaluated above as

p

P
—~ 1
Ag(p—l—co)g fM:(p—l—co)cog T

i=1 "

=1

Proposition 2.2 suggests that we need to assume the condition ¢y > p — 1, namely
m > 2p, for the minimaxity of the Stein minimization estimator. In the lower dimensional
cases of p = 2 and p = 3, it can be verified that the condition ¢y > p — 1 is sufficient for
the minimaxity.

Proposition 2.3 Forcy > 1, the Stein risk-minimization estimator 8"™* is minimaz for
p=2.

Proposition 2.4 Forcy > 2, the Stein risk-minimization estimator 87*M*

p=3.

s minimaz for

3 Proof of the minimaxity

In this section, we shall give proofs of Propositions 2.1-2.4. For simplicity, we use here
the notations ¢; and ¢} instead of ¢ and ¢FM* | respectively. Also let

1
FizzAi_Aj,

JFi

and ¢; and \;¢; are expressed as ¢; = c¢o/\; + 2F; and \;¢; = co + 2\ F.

3.1 Preliminary lemmas

To prove the main results, we prepare several lemmas.

Lemma 3.1 (1) [f ¢z < ¢j and \; > )\j, then

4 2
(Nl = M) = +

N— N Aj(Ai@ = \j¢;) < bi + b5 (3.1)

(2) Let 377, denote the summation over {(i,j, k)i # j,j # k,k # i,i € J,,j €
Jp k€ Jp} for J, ={1,2,....p}. Then forp >3,

\ A
=0.
Zi:j:’“ (A = ) (Ai = Ax)
(3) 2 Fi = 0.

1=



Proof. For (1), the inequality (3.1) is equivalent to
(N +2)(9i — ) <0, A >\,

both of which are satisfied by the conditions.
For the proof of (2), we first note that for constants D;;’s,

zp:ZDij:zp:iDiﬁi zp: Dy

i=1 j#i i=1 j=1 i=1 j=i+1
p i—1
=Y "> (D + Dy), (3.2)
i=1 j=1
since Y7 S Diy = S0 YT Dy = ZZ 1Dy Let I =370 N /{(N -
Aj)(Ai — )‘k)} and Di; = > 1,k#i, k;éj)\ /{( )( )\k)} Then, I is written as
I = Z#Z DU, and we shall show that / = 0. From the identity (3.2), I is written

as [ = f L Z (D” + Dj;), and D;; + Dj; is rewritten as

p
Y A
Dz" + Di — E { 2 + J }
L, L =) (= A = M)

B Z (A=A (N — M)

k=1,k#i,k#j

Hence,

YT Y A
i=1 k=1,k#i,k (A = A (Aj = Ax)

=1 j=1 k=1,ksi k]

1 * )\k
=32 (A = M) (A — M)
=—1/2,
which means that I = 0.
For the proof of (3), from the identity (3.2), it is observed that

ZF ZZA_A

1=1 j#i

Sy ()

=1 j=1

which is equal to zero. Therefore the proof of Lemma 3.1 is complete. m



a p p
. ) = 2F; — 20 F? + 2 A
Lemma32()8/\( bi) “ 4 Z Z e — )
J=LjFi k=1,k#i,k#]
(2) Nig? = codi + 2¢oF; + AN F?

(3) Let 31 = N7 — 2c0h; — 4——(Nips) — 4Nip; F;. Then, 31 is expressed as

N
Ri= = Mt — 40 (\o) (3.3
TN
p p
=—codi = 2co +)F +ANFP =8 > > A

(Ai = A (X = M)

J=L,j71 k=1k#i k]
Proof. Since \;¢; = ¢y + 2\, F}, it is seen that

0

0

O\
and (0/0\;)F; is expressed as

0 1
L) D sy w

J#i

P P 1
(m A=A ) PP N — X)) — M)’ (3.4)

=176 k=1ki,k#j

which proves (1). For (2), it is observed that \;¢? = ¢;(co+2\F;) = cods+2F;(co+2\ F}),
which yields the r.h.s. of (2). For the proof of (3), completing square with respect to ¢;
gives that

A =\ {(]52—2 co/Ni + 2F;) sz} 4 ( ii)

=i {6; — (co/Ni + 2F)Y* — Ni(co/Ni + 2F)? — ( o) (3.5)

8)\

which yields the first equality in (3.3). The second equality in (3.3) can be obtained by
using (1) and (2) of Lemma 3.2, and the proof is complete. m

3.2 Proof of Proposition 2.1

From Lemma 3.2, A for 6™ is written as
Zﬁ
p
Z{—co¢z—2 co+4)F; +4ANF] -8 Z Z Ty )(ZA _)\k)}

1 j=1,j#i k=1,k#i,k#j




Using the equalities given in (2) and (3) of Lemma 3.1, we can rewrite it as

p

p
A== N +4> NF
i=1 i=1
which is equal to (2.1). Let F;" = 37 4(Ai — A;)~" for i = 1,2. Then, it is observed that

2 2
§ NF2 =\ L +F ) 4+ X L — I
)\1 )\2 )\1 - )\2 2

=1
AL+ A 2
_ 1 22+
(A1 = X2) >\1—>\2

()\1F12 — )\2F2*) + )\1(F1*)2 + )\2(F2*)2

)\1+)\2 J *\ 2 *\ 2
_ 2§j M (F)? + Mo(FD)?,
( )\1 ( )\]) 1( 1) 2( 2)

so that A is expressed as
p
~ _ A ~|—)\2
A:—CQE:MH : 8§j Al
i (M (A1 = A (A2 = Xy)

+ AN (F)?2 4 A0 (F)? + Z N F2.

=3

This expression means that A tends to infinity as A\ — Ay — 0. Hence, A > 0 with a
positive probability. m

3.3 Proof of Proposition 2.2

Using (3) of Lemma 3.2, we observe that

p p P
A:_CO;@—2(c0+4);E+4;AiFf—82,,]% v — A, )(Al—Ak)

:—Coi¢i+4i)‘iﬂ27 (3.6)
i=1 i=1

where the second equality follows from (2) and (3) of Lemma 3.1. Using the identity
similar to (3.2) gives that

ZAF? ZAFZA_A ZZA

i=1 Jj#i i=1 j#i
-3y et
¥ —)\ LB VY
=1 j=i+1
p p 1
=1 j=i+1



Since 7 < j, it is noted that \; > \; and ¢; < ¢;. We thus use the inequality (3.1) to

obtain that
4ZAF2<Z 3 6+ 6, Z( 1)

=1 j=i+1
From (3.6), we can see that
~ a N
A< (P—1—00)2¢i: (p—l—Co)COZya
i=1 i=1 "

which proves Proposition 2.2. m

3.4 Proof of Proposition 2.3

We first treat the simple case p = 2 and prove the minimaxity of the Stein minimization
estimator 6"*. For p = 2, ¢!’s are given as follows: (¢, ¢3) = (f1,p2) on the set
{1 < ¢o}, and @7 = @5 = (A1 + Aag2)/ (A1 + A2) on the set {¢1 > ¢2}. On the set of
¢1 < ¢, Proposition 2.2 implies that A < 0 for ¢y > 1. Hence, we shall show that A <0
on the set of ¢; > ¢a. Let ¢y = (A1d1 + Xagha)/(A1 + X2). Then, it can be written as
b1a = 2(co + MF1L+ XoFy) /(M + X)) = 2(co+ 1)/(A1 + A2). Since ¢f = ¢ = ¢y, (1.5)
gives the expression

2
-~ — — 0 — —
A=(A+ >‘2)¢f2 —dcopyy — 42 W(Mbm) — 41y

— co+1 4(co +1)2
=AM+ A -2 —4 i
( 1+ 2) {¢12 )\1+)\2} A1+)\2 ZaA ¢12
2

~n B~ 4Y () (37

=1

Noting that S22 (3/0\)(Mibrs) = 2(co + 1)/ (A1 + X2) = by, We can see that A =
—(M + /\2)5?2 — 4¢,,, which is not positive. Therefore, Proposition 2.3 is proved. m

3.5 Proof of Proposition 2.4

We now handle the case of p = 3 and prove the minimaxity of the Stein minimization
estimator §™*. The isotonic functions ¢}’s take the following four cases:

(C1) In the case that ¢; < @9 < @3, (67, 05, 035) = (P1, 2, P3).

(C2) In the case that ¢o > ¢3 and ¢ < @oy for doy = (Aady + A3d3)/(Aa + Az),
(¢17 ¢27 ¢3) (¢17 ¢237 ¢23)

(C3) In the case that ¢ > ¢y and ¢y, < @3 for ¢y = (A1 + Aaha) /(A1 + A2),
(61, 05, 03) = (D19, P12, P3)-

(C4) In the cases that {¢s > ¢3 and ¢; > ¢23} or {¢1 > ¢ and ¢y > B3}, ¢F = @5 =
05 = (M1 + Aatha + Asds) /(M1 + A2 + A3) = ¢y,

9



The result in the case (C1) follows from Proposition 2.2. For the case (C4), it is noted
that ¢y, is expressed as i3 = (3co +23°0_  MFi)/ S0, \i. Noting F; = >z 1/ (i = )
and using the identity (3.2), we can see that

3 3
Ai
NI D Wy
i= =1 j#i
3 i-1 A, )
:;;{Ai—% +)\j—]>\i} -0

so that ¢5 = 3(co +2)/ 27, Ai. The same arguments as in (3.7) is used to rewrite A as

3

N _2 _ 9  _ _

A= E {)\igbm — 2c0¢5 — 45()\@13) - 4)\in‘¢13}
i=1 !

i 2 L9
= Z )\1613 —4 Z _<)‘i€_bl3)-
i=1 i=1 ONi

The derivative (9/0\)(M\1¢,3) is written as

0 A

_ 9
i — 2
i, Mifa) = 3(co +2) 7 {)\1 NI VISW

which implies that

A2+ A3
(A1 + Aa+ A3)%

b=sa+2)

3
[ - _
Z ao\zﬁbm) = 3(co +2) = 2¢y3.

— A+ Ao+ A

Hence, A is expressed by
~ —92 —
A= _()‘1 + A+ /\3)¢13 — 8013,

which is not positive.

Finally, we shall show that A < 0 in the two cases (C2) and (C3). Since both cases
can be proved by the same arguments, it is sufficient to show it in the case (C2). In the

case (C2), the unbiased risk estimator (1.5) gives A= 31 + 323, where

~ 0
Ay =M\¢] — 20001 — 4_8)\ (AM@1) — 4N Fioy,
1

3

~ — — )
Ass —Z{W 2000 — 41
i=2 v

(\ip) — 4)\iFi$} ,

where the simple notation ¢ is used here instead of ¢y. From (3) of Lemma 3.2, it follows
that

-~

0
Ay =—\¢f — 48_)\1()\1¢1)

16
:—Co¢1—2(60+4)F1+4)\1F12— !

(A1 = A2) (A — Az)
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A similar argument gives the expression

Agg —()\2+)\3 —4CO¢ 42/\ Fqb 42

It is noted that

Mo+ A3)d =0(2¢0 + 22 Fy + 2X3Fy)
Ao Fy + A3 Fy 4(/\QFQ + A\3F3)?

=2co + 4 .
C0f T, Ao+ A3 (3:9)
and
3 3 3
0 S N0/ (T, N
S~ 0 (13) 25 4 s Die MOINNES 1 F)
£ 9, X+ Ag
. 260 4)\2F2 + )\3F3
_)\2 + A3 )\2 + )\3
0 0
» M| =—F;+ —F: . 1
/\2+>\3{i: N (o 2)} (3.10)
Combining (3.9) and (3.10), we can rewrite Ay as
~ — )\2F2 + >\3F3 800 ()\2F2 + )\3F3)2
Aoz = — 2c0d — 4(co + 4 - 4
L WIS Ve W W Mo+ s
3
0 0 0
—F F E . A1
A2+A3{;A oo+ e (G Pt g )} (3.11)
From (3.4), it is noted that
0 8
2
E
Mgy, F2 gy, o
222 22
— NEZ - \2F2 4 2 + 3 , 3.12
(A2 = A2 = A3) — (As = A))(As — Ao) (3.12)
and (0/0Ng)Fy = (0/0X3)Fy = 1/(Ay — X3)2. Also note that
2/\2(/\2 + A3 — A3) 2>\3()\3 + A2 — o)
B = M) = Ag) | Oa— A1) (s — M)
2)\2 2)3 }
(A2 + A3) +
2 F ) 2= AD)A2—A3) | (A3 — A (A3 — Ao)
1
— 22\ + . 3.13
’ 3{()\2—/\1)(/\2—)\3) ()\3—)\1)()\3—)\2)} (313)

11



Combining (3.12) and (3.13) yields that

(AoF + AsF3)? 8 {3 , 0 0 0 }
—4 - > NCF+ s (5Bt 5o B
)\2 + )\3 Y ( )

Ao+ A3 — O\ O\ O3
- 16X - 16); AZF? + N2F2 — 2o\ Fo Fy)
A2 —=A)(A2—A3) (A3 — A1) (A5 — Aa) A2 + A3

1623 { 1 n 1 B 1 }
A+ A3 (A= A)Aa—A3) A3 —=A)(A3— X))  (Aa—N3)2 )

Hence, substituting this expression into (3.11) and combining it with 31, we obtain the
expression

—~ _ Ao Fy 4+ M\ F:
A=— Co¢1 — 200925 — 2(C0 -+ 4>F1 - 4(00 + 4)M
A2+ A3
_ 16\ _ 169 _ 163
(A= A2)Ar—=A3) (2= A2 —A3)  (As = A)(As — Ao
800
4N F? — 3.14
LR VW (3:14)
4 4o\ 1 1 1
—  INFZ 4N — Do\ — 28 .
+)\2+)\3{22+ 508 et Ao — A3 )\1—)\2+)\2—)\3+/\3—/\1

We first evaluate the term —4(co + 4)(AaFz + A3F3) /(A2 + A3), which is rewritten as
—2(co + 4){(N2p2 + A303) /(A2 + A3) — 2¢o/ (A2 + A3)}. It is observed that the inequality

9 Ao2@a + N33

> ¢y + 3.15
)\2 + )\3 - ¢2 ¢3 ( )

is equivalent to (Ay — A3)(¢2 — ¢3) > 0. Since ¢y > ¢3 in the case (C2), we can use the
inequality (3.15) to show that

Ao Fy + A3k

_4(60 + 4) )\2 i )\3

< —(co+4) {¢2 + @3 — )\24_|(i0)\3}

11 4
=9 N(F) + Fy) — 4 -
(co+4)(Fy+ F3) — (co + )Co{)\2+)\3 )\2+)\3}
< —2(co +4)(F2+ F3),

since 1/Ag + 1/A3 > 4/(A2 + A3). Then, we can use (3) of Lemma 3.1 to obtain that

Aol + A3k

_2(60 + 4)F1 — 4(00 + 4) )\2 T \
3

S —2(00 +4)(F1 + FQ + Fg) =0.

From (2) of Lemma 3.1, it follows that

- 16X, - 16, - 16X 0
(A =AM = A3)  (Ae=A)Ae—A3) (s —A)(As— )

12



Hence, A in (3.14) is evaluated as

860

Ao+ A3
4 Ao\ 1 1 1
MN2F2 4 N2F2 QN Mgy By — — 208 .
>\2+)\3{22+ CEE IS S Vs Vil W Vi W VL VW

We shall evaluate the last term in the r.h.s. of (3.16). It is observed that
MNEZ 4+ N2FS — 20\ Fy Fy

Ao Ao A3 A3
= Ao Fy + A3 F3 — 2A9 M\ Fh F
<)\2_)\1+)\2 )\3> oIy + (/\3_/\14-)\3_)\2) 343 2A3L2 3

A<— cotr — 2cod + 4N FE —

(3.16)

+

A
=M Fh + A3 F5 + N _)\2()\1}71 Ao Fy) + N _3>\3()\1F1—)\3F3)
Ao A3

M4+ —— )\ F

(/\1 e 111 + =M 1 1)
1

Ao\ Fy— Fy —2FF ). 1

+ 23<)\2_)\32 /\2_/\33 23) (3.17)

The second last term in the r.h.s. of (3.17) is further rewritten as

—( A2 ME, + Ag /\1F1>

AL — A2 AL — As
. ()\2 + )\3) - )\3 ()\3 + )\2) - )\2
= /\1 — /\2 /\1F1 )\1 — )\3 )\lFl

1 1 A3 Ao
—(A\ A M F M F A F
(Ao + “”)(Al—AﬁAl—Ag) R v vtk W

—()\2 + )\3))\1F12 + ()\1F1 /\2F2) +

Ao
MF, — M\ F
A — Az A — Ag( 1P = Asy)

1 1
Ao\ F F;). 1
+ 23<)\1_)\2 2+)\1_)\3 3) (3.18)

It is noted that

1 1 1 1
_OFFy — — P F.
2 <A3—A1+)\3—)\2> ’ ()\2—)\1+)\2—)\3> 3

Then, combining the last terms in (3.17) and (3.18), we see that

1 1 1 1
Iy — 5 — 2FyF: L F.
()\2—)\3 2 N — g 3 23>+<)\1_)\2 2+)\1_)\3 3)

1 1 1 1 2
= F F F—F
()\1—)\2+)\1—)\3) 2+<)\1—)\2+>\1—)\3) CES VW Ag( 2= 1)

= F(Fy + F3) + (Fy — F3)

2
A2 — A3

= —F2 4+ (Fy — F3), (3.19)

A2 — A3
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since F1 + FQ + F3 = 0. From (317), (318) and (319), )\%FQQ + /\%F?)Z - 2A2)\3F2F3 is
expressed as

NoFS 4+ NiF3 — 20\ Fy Fy
=N Fh + A3F3) — (Mg + A3) A F}

+ (A2 + A3) <

1
N — (MF1 — Mo Fy) + N (MFy — /\3F3))

2
+ Mg | —F2 + (Fy — F3) ). (3.20)
Ao — A3

Substituting (3.20) into (3.16), we obtain that

800 22)\2F2 + 2)\3F3
Ao+ A3 A2+ A3

4 4
+ (M — R = X)W >\3F3))

L)y .2 9 9 9
P oy (321
+/\2+/\3{ ! AQ—A3(3 2+)\1—)\2+)\2—)\3+)\3—/\1>} (3.21)

A < — oy — 2600 —

From Lemma 3.3 given below, it can be shown that

/\1%)\2(/\1171 — Ao Fy) + /\1%)\3(/\1171 — \3F3) <29 + 2¢.
It is also observed that
2 2 2
R v T W D W
1 1 1 1
D VRS VL Wy Wl Wy W W W
2 2 2
+)\1—)\2+)\2—)\3+)\3—)\1
I 3
ED V=D YD VW
3(As — \3)

(A1 = A2) (A1 = As)
Hence from (3.21),

W , 6
¥ e 3:22)

which is not positive for ¢y > 2. Finally, we shall show the following lemma to complete
the proof of Proposition 2.4.

14



Lemma 3.3 Assume the case (C2), namely, ¢y > ¢35 and ¢1 < ¢ for ¢ = doy. Then, the
following inequality holds:

2 2
p- /\2(/\1F1 — X Fy) + - /\3(/\1F1 — A\3F3)
1 1
= M= (A1 — Aaga) + M= g (11 — A303)
< 1+ ¢. (3.23)

Proof. It is easy to see that the inequality (3.23) is equivalent to
(A1 = Ag) Aotz + (A — A2)A303 + (A1 — A2) (A1 — A3)p = (AT — Aads) .
Since ¢1 < ¢, it is sufficient to show that
(A= A3)hatha + (A1 = A2)Aads + (A — Aa) (M = A3)0 > (AT — Aadg) 9,
which is rewritten as
(A = As) Aot + (A1 — A2)Asds + {202A3 — (A2 + A3) A1 }o > 0. (3.24)

Substituting ¢ = (Agps + Asd3)/ (A2 + A3) into (3.24) and simplifying the expression, we
can see that the inequality (3.24) is equivalent to

A2Az(Ag — A3)(d2 — ¢3) > 0,

which is guaranteed by the condition ¢o > ¢3. B

4 Monte Carlo studies

It is generally surmised that the Stein Risk-Minimization estimator 6™* = U{L —
L®"™*(A)} V" has nice risk performance notably when each element of the matrix mean
©® is near zero. There is, however, a problem such that the diagonal elements of L —
L®"™*(A) may be negative. Because all singular values [;’s are positive for the singular
value decomposition X = ULV, it would be necessary for the diagonal elements of
L — L®"™*(A) not to be negative. This section presents some results of Monte Carlo
experiments to compare the risk performances of various estimators and to inspect the
so-called positive-part version of 67~

Our Monte Carlo experiments were based on 100,000 independent replications for
(p,m) = (2,5), (2,15), (5,8) and (10, 15). It is here noted that the minimaxity of the Stein
RM estimator §*"* is shown for (p,m) = (2,5) and (2,15), but not for (p,m) = (5,8)
and (10,15). For true parameter values of the matrix mean ® to be estimated, we took
typical values for squared singular values of @, that is, eigenvalues of @@, since the risk
function of an equivariant estimator (1.3) depends only on singular values of ©.

Here, for a diagonal matrix ¥ = diag (¢;) with the i-th diagonal element v;, {¥},
denotes the positive-part of ¥, that is, {¥}, = diag(max(0,¢;)), and also {¥}? =
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diag (max(0,1;))) where 1)) is the i-th largest value of 9;’s. The objects of this numer-
ical studies are the following six estimators: 6% = X, 6%, §°7T, 5f_T* = U{L(I, —
POV, §M* and 8 = U{L(I, — ®"*)}, V', Note from Tsukuma (2008) that
5?* and 5fM * dominate 6°7 and 8*M* | respectively, relative to the loss (1.2).

The estimated risk values by means of the Monte Carlo experiments are given in Tables
1, 2 and 3. The experimental results can now be summarized as follows.

1.

As the overall impression of the experimental results, each shrinkage estimator enor-
mously reduces the risk over 8% in the cases that all eigenvalues of @@’ are zeros,
namely, © is the zero matrix. On the other hand, the larger the eigenvalues of @ ©®*
are, the poorer the risk reduction of shrinkage estimator becomes. Tables 1 and 2
suggest that the improvement in risk increases with m for fixed p.

. The Stein RM estimator 6%~ is superior to 8% and 6. Moreover 6*M* is better

than 67 except the cases that all eigenvalues of ©®@" are much large or widely
scatter. As far as we look through the experimental results for (p,m) = (5,8) and
(10,15), we are considerably expecting §"* to be minimax for p > 4.

5RM* 5RM*
+

Comparing the estimated risk values of and , we can see that taking the
positive-part of L(I,—®*) has a sufficient effect on the risk savings. In the cases
that all eigenvalues of ®@®" are zeros, the risk reduction by éfM* over M7 is the
most substantial in the five shrinkage estimators and their improvements are about
75%, 93%, 87% and 94% for (p,m) = (2,5), (2,15), (5,8) and (10, 15), respectively.

. The risk performance of 5iT* is not as rich as that of (‘)EM *in almost all cases. 5iT*

is, however, slightly better than (SfM * when all eigenvalues of @@ are extremely

large (e.g., all eigenvalues of @@" are 103 for p = 10).

Table 1: Risk values in estimation of the normal mean matrix (p = 2 and m = 5).

Eigenvalues of @@ §ML  §EM 55T JiT* oM éfM*

(0,0) 10.01  6.00 4.00 265 3.60 250
(2,0) 10.01 6.61 4.99 387 469 3.78
(2,2) 10.01 7.33 587 497 555  4.82
(5,0) 1001 7.14 597 506 582 5.06
(5,2) 1001 7.84 6.66 6.02 640 5.88
(5,5) 10.01 838 7.28 689 698 6.68
(10,0) 10.01 7.51 6.83 6.09 687 6.22
(10,5) 10.01 876 7.90 T7.67 7.65 747
(10, 10) 1001 9.13 829 821 802 7.96
(20,0) 1001 7.74 745 683 7.66 7.09
(20,10) 10.01 937 878 875 858 855
(20, 20) 10.01 958 894 894 879 879
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Table 2: Risk values in estimation of the normal mean matrix (p = 2 and m = 15).

Eigenvalues of @@! §ML  §EM 55T (SiT* oM 6fM*
) 29.98 598 4.84 2.63 3.72 2.17
) 29.98 741 6.36 4.32 5.34 3.92
) 29.98 8.86 7.85 5.99 6.85 5.56
) 29.98 9.06 8.14 6.40 7.35 6.12
)
)
0

29.98 10.52 9.61 8.04 873 7.65
, 29.98 12.21 11.33 10.05 10.43  9.58
10,0) 29.98 1093 10.26 8.88 9.86 8.86

10,5) 29.98 14.13 13.37 1247 12.62 12.02
10, 10) 29.98 16.07 15.33 14.78 14.50 14.15
20,0) 29.98 13.06 12.70 11.65 12.82 11.99
20,10) 29.98 18.25 17.68 1740 17.12 16.93
20, 20) 29.98 20.43 19.84 19.78 19.08 19.04

Table 3: Risk values in estimation of the normal mean matrix (p = 5 and m = 8).

Eigenvalues of ©@" oML §EM ST JiT* oM 6fM*
(0,0,0,0,0) 40.02 30.01 12.12 6.06 8.28 5.33
(2,0,0,0,0) 40.02 30.40 13.35 7.61 9.74 6.95
(2,2,1,0,0) 40.02 31.04 15.14 9.89 11.75 9.23
(2,2,2,2,2) 40.02 32.29 1797 13.40 14.76 12.57
(5,0,0,0,0) 40.02 30.81 14.85 9.46 11.67 9.00
(5,4,3,2,1) 40.02 33.07 20.06 16.12 17.11 15.21
(5,5,5,5,5) 40.02 34.81 23.56 20.93 20.72 19.51
(10,0,0,0,0) 40.02 31.18 16.61 11.62 14.11 11.58
(10,8,6,4,2) 40.02 35.01 24.69 22.31 22.13 20.98
(10,10, 10, 10,10) 40.02 37.20 28.41 27.54 26.15 25.74
(20,0,0,0,0) 40.02 31.49 18.50 13.91 16.91 14.51
(20,15,10,5,0) 40.02 35.54 27.96 26.19 26.22 25.21
(20, 20, 20, 20, 20) 40.02 38.78 32.00 31.95 31.23 31.20
(50,0,0,0,0) 40.02 31.71 19.99 15.75 1852 16.22
(50,40, 30, 20, 10) 40.02 38.94 34.58 34.51 33.53 33.49
(50, 50, 50, 50, 50) 40.02 39.58 34.80 34.80 36.11 36.11
(100,0,0,0,0) 40.02 31.82 2044 16.33 18.59 16.32
(100, 80, 60, 40, 20) 40.02 39.52 36.89 36.89 36.45 36.45
(100,100,100, 100,100) 40.02 39.81 36.18 36.18 37.95 37.95
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Table 4: Risk values in estimation of the normal mean matrix (p = 10 and m = 15).

Eigenvalues of ©@" oML oM 6T 5??* oM JEM*
(0,0,0,0,0,0,0,0,0,0) 150.02 110.02 44.19 15.08 16.15 9.37
(2,0,0,0,0,0,0,0,0,0) 150.02 110.55 45.57 16.81 17.95 11.21
(2,2,2,1,1,1,1,0,0,0) 150.02 112,59 50.86 23.67 24.54 18.21
(2,2,2,2,2,2,2,2,2,2) 150.02 11520 57.11 31.87 32.07 26.24
(5,0,0,0,0,0,0,0,0,0) 150.02 111.10 47.34 19.13 20.44 13.79
(5,5,4,4,3,3,2,2,1,1) 150.02 117.32 62.46 39.10 38.73 33.33
(5,5,5,5,5,5,5,5,5,5) 150.02 121.90 72.32 5292 50.08 45.79
(10,0,0,0,0,0,0,0,0,0) 150.02 111.73  49.77 2234  24.15 17.62
(10,10,8,8,6,6,4,4,2,2) 150.02 12297 75.83 57.95 54.81  50.80
(10,10, 10,10, 10, 10,10, 10, 10, 10) 150.02 130.45 89.72 78.62 70.52  68.20
(20,0,0,0,0,0,0,0,0,0) 150.02 11246 53.23 26.86 30.04  23.63
(20,20, 15,15, 10, 10,5,5,0,0) 150.02 126.42 87.25 73.99 70.06 66.75
(20, 20, 20, 20, 20, 20, 20, 20, 20, 20) 150.02 139.63 107.44 105.08 94.82  94.36
(50,0,0,0,0,0,0,0,0,0) 150.02 113.27 57.60 32.52 36.88  30.60
(50, 50, 40, 40, 30, 30, 20, 20, 10, 10) 150.02 141.40 117.15 115.71 106.76 106.38
(50, 50, 50, 50, 50, 50, 50, 50, 50, 50) 150.02 146.36 122.84 122.83 126.07 126.07
(100,0,0,0,0,0,0,0,0,0) 150.02 113.65 59.32 34.86 37.92 31.69
(100, 100, 80, 80, 60, 60, 40,40, 20,20) 150.02 145.92 129.73 129.67 125.60 125.58
(100, 100, 100, 100, 100,

150.02 148.30 129.86 129.86 138.42 138.42
100, 100, 100, 100, 100)

(10%,0,0,0,0,0,0,0,0,0) 150.02 114.06 60.72 36.93 38.61 32.44
(103,102, 800, 800, 600,
600, 400, 400, 200, 200)
(103,103,103, 103, 102,
10%,10%,10%,103,10%)

150.02 149.65 147.04 147.04 147.74 147.74

150.02 149.86 142.55 142.55 148.53 148.53
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