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introduce the Separating Information Maximum Likelihood (SIML) method when
there are possibly micro-market noises. The resulting estimator is simple and it
has the representation as a specific quadratic form of returns. The SIML estimator
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is large under general conditions including non-Gaussian processes and volatility
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1. Introduction

Recently a considerable interest has been paid on the estimation problem of

the realized volatility by using high-frequency data in financial econometrics. It

may be partly because it is possible now to use a large number of high-frequency

data in financial markets including the foreign exchange rates markets and stock

markets. Although there were some discussion on the estimation of continuous

stochastic processes in the statistical literature, the earlier studies often had ignored

the presence of micro-market noises in financial markets when they tried to estimate

the underlying stochastic processes. Because there are several reasons why the

micro-market noises are important in high-frequency financial data both in economic

theory and in statistical measurements, several new statistical estimation methods

have been developed. See Anderson, T.G., Bollerslev, T. Diebold,F.K. and Labys, P.

(2000), Gloter and Jacod (2001), Ait-Sahalia, Y., P. Mykland and L. Zhang (2005),

Hayashi and Yoshida (2005), Zhang, L., P. Mykland and Ait-Sahalia (2005), Hansen

P. and A. Lunde (2006), Barndorff-Nielsen, O., P. Hansen, A. Lunde and N. Shepard

(2006), Ubukata and Oya (2007) for further discussions on the related topics.

The main purpose of this paper is to develop a new statistical method for esti-

mating the realized volatility and the realized covariance by using high frequency

data in the presence of possible micro-market noises. The estimation method we

are proposing is called the Separating Information Maximum Likelihood (SIML) es-

timator, which is regarded as a modification of the standard Maximum Likelihood

(ML) method under the Gaussian process. The SIML estimator of the realized

volatility and covariance for the underlying continuous (diffusion type) process has

the representation as a specific quadratic form of returns. As we shall show in this

paper, the SIML estimator has reasonable asymptotic properties; it is consistent

and it has the asymptotic normality (or the stable convergence in the general case)

when the sample size is large and the data frequency interval becomes zero under

general conditions including non-Gaussian processes and volatility models. There

has been a theoretical development of the ML estimation of the univariate diffusion
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process with measurement errors by Gloter and Jacod (2001). Our method can

be regarded as a modification or extension of their ML procedure. However, the

SIML approach has some different features from the standard ML estimation and

it is a a new estimation method. The main motivation of our study is the fact that

it is difficult to handle the exact likelihood function and calculate the exact ML

estimator of unknown parameters from a large number of data for the underlying

continuous stochastic processes with micro-market noises in the multivariate non-

Gaussian cases. We denote our estimation method as the Separating Information

Maximum Likelihood (SIML) estimator because it gives an interesting extension

of the standard ML estimation method. The main merit of the SIML estimation

is its simplicity and then it can be practically used for the multivariate (high fre-

quency) financial time series. The SIML estimator has not only desirable asymptotic

properties under general conditions including non-Gaussian processes and volatility

models, but also it has reasonable finite sample properties.

In Section 2 we introduce the standard model and the SIML estimation of the

realized volatility and the realized covariance with micro-market noise. We give the

asymptotic properties of the SIML estimator in the standard situation. Then in

Section 3 we shall investigate the asymptotic properties of the SIML method in the

more general situation. In Section 4 we shall report some finite sample properties

of the SIML estimator based on a set of simulations. Then some brief remarks will

be given in Section 5. The mathematical derivations of our results will be given in

Section 6 and Tables on the simulation results will be in Appendix.

2. The SIML Estimation of Realized Volatility and Covari-

ance with Micro-Market Noise

Let yij be the i−th observation of the j−th (log-) price at tni for j = 1, · · · , p; 0 =

tn0 ≤ tn1 ≤ · · · ≤ tnn = 1. We set yi = (yi1, · · · , yip) be a p × 1 vector and Yn = (y
′
i)

be an n × p matrix of observations. The underlying continuous process xi is not

necessarily the same as the observed prices and let v
′
i = (vi1, · · · , vip) be the vector
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of the micro-market noises. Then we have

yi = xi + vi(2.1)

where E(vi) = 0 and E(viv
′
i) = Σv.

We assume that

xt = x0 +
∫ t

0
Σ1/2

x (s)dBs (0 ≤ t ≤ 1),(2.2)

where Bs is a p× 1 vector of the standard Brownian motions and we write Σx(s) =

(σ
(x)
ij ) = Σ1/2

x (s)Σ1/2
x (s)

′
. Then the main statistical problem is to estimate the

quadratic variations and co-variations

Σx =
∫ 1

0
Σx(s)ds = (σ

(x)
ij )(2.3)

of the underlying continuous process {xt} and also the variance-covariance Σ(v) =

(σ
(v)
ij ) of the noise process from the observed yi (i = 1, · · · , n). Although we assume

the Gaussian processes in order to derive the SIML estimation in this section, the

asymptotic results do not depend on the Gaussianity of the underlying processes as

we shall see in Theorem 1 in Section 2.2 and Theorem 2 in Section 3.

2.1 The Standard Case

We consider the standard situation when Σ(s) = Σx and vi (i = 1, · · · , n) are inde-

pendently and normally distributed as Np(0,Σv). Then given the initial condition

y0
1 , we have

Yn ∼ Nn×p

(
1n ⊗ y

′

0, In ⊗ Σv + CnC
′

n ⊗ hnΣx

)
,(2.4)

1 If we regard y0 as a random vector unconditionally, there is an initial value problem and

E(y1|y0) = cov(y1,y0)[var(y0)]−1y0. But the coefficients are nearly the identity matrix when the

time interval hn is very short, i.e. the high-frequency financial data.
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where 1
′
n = (1, · · · , 1), hn = 1/n (= tni − tni−1) and

Cn =



1 0 · · · 0 0

1 1 0 · · · 0

1 1 1 · · · 0

1 · · · 1 1 0

1 · · · 1 1 1


.(2.5)

In order to investigate the likelihood function in the standard case, we prepare the

next lemma, which may be of independent interest. The proof is given in Section 6.

Lemma 1 : (i) Define an n × n matrix An by

An =
1
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1 1 0 · · · 0

1 0 1 · · · 0

0 1 0 1 · · ·
0 0 · · · 0 1

0 · · · 0 1 0


.(2.6)

Then the characteristic roots of An are cos π( 2k−1
2n+1

) (k = 1, · · · , n) and the associated

characteristic vectors are

cos[π( 2k−1
2n+1

)1
2
]

cos[π( 2k−1
2n+1

)3
2
]

...

cos[π( 2k−1
2n+1

)(n − 1
2
)]

 (k = 1, · · · , n).(2.7)

(ii) Then we have the spectral decomposition

C−1
n C

′−1
n = PnDnP

′

n = 2In − 2An ,(2.8)

where Dn is a diagonal matrix with the k-th elements

dk = 2

[
1 − cos(π(

2k − 1

2n + 1
))

]
(k = 1, · · · , n) ,(2.9)
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C−1
n =



1 0 · · · 0 0

−1 1 0 · · · 0

0 −1 1 0 · · ·
0 0 −1 1 0

0 0 0 −1 1


(2.10)

and

Pn = (pjk) , pjk =

√√√√ 2

n + 1
2

cos

[
π(

2k − 1

2n + 1
)(j − 1

2
)

]
.(2.11)

We transform Yn to Zn (= (z
′
k)) by

Zn = h−1/2
n P

′

nC
−1
n

(
Yn − Ȳ0

)
(2.12)

where

Ȳ0 = 1n ⊗ y
′

0 .(2.13)

We note that given the initial condition of y0 the above transformation is one-to-one.

Then the likelihood function under the Gaussian noises is given by

L∗
n(θ) =

(
1√
2π

)np n∏
k=1

|aknΣv + Σx|−1/2e

{
−1

2
z

′

k (aknΣv + Σx)
−1 zk

}
,(2.14)

where

akn = 4n sin2

[
π

2

(
2k − 1

2n + 1

)]
(k = 1, · · · , n) .(2.15)

Hence the maximum likelihood (ML) estimator can be defined as the solution of

minimizing

Ln(θ) = −
n∑

k=1

log |ak,nΣv + Σx|−1/2 +
1

2

n∑
k=1

z
′

k[aknΣv + Σx]
−1zk .(2.16)

From this representation we find that the ML estimator of unknown parameters is

a rather complicated function of the observations in general. It is mainly because

each akn terms depend on k as well as n. Let denote akn,n and then we can evaluate
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that akn,n → 0 as n → ∞ when kn = O(nα) (0 < α < 1
2
) since sin x ∼ x as x → 0.

On the other hand, an+1−ln,n = O(n) when ln = O(nβ) (0 < β < 1).

When k is small, we expect that akn,n is small. Then we may approximate

2 × Ln(θ) by

L1n(θ) = m log |Σx| +
m∑

k=1

z
′

kΣ
−1
x zk .(2.17)

It is the standard likelihood function except the fact that we only use the first m

terms. Then the SIML estimator of Σ̂x is defined by

Σ̂x =
1

m

m∑
k=1

zkz
′

k .(2.18)

On the other hand, when l is small and l = n + 1 − l, we expect that an+1−l,n is

large. Thus we may approximate 2 × Ln(θ) by

L2n(θ) =
n∑

k=n+1−l

log |ak,nΣv| +
n∑

k=n+1−l

z
′

k[ak,nΣv]
−1zk .(2.19)

It is also the standard likelihood function approach except the fact that we only use

the last l terms. Then the SIML estimator of Σ̂v is defined by

Σ̂v =
1

l

n∑
k=n+1−l

a−1
k,nzkz

′

k .(2.20)

For both Σ̂v and Σ̂x, the number of terms m and l should be dependent on n.

Then we only need the order requirements that mn = O(nα) (0 < α < 1
2
) and

ln = O(nβ) (0 < β < 1) for Σx and Σv, respectively.

In the above construction we define the SIML estimator by approximating the

exact likelihood function under the Gaussian micro-market noises and the continuous

diffusion process with the deterministic covariance. However, we expect that the

SIML estimator has some asymptotic robustness. The most important characteristic

of the SIML estimator is its simplicity and it has some important aspects for dealing

with high-frequency data. It is because the number of observation to use tick data,

for instance, becomes enormous from the standard statistical sense. Also it is quite

easy to deal with the multivariate high-frequency data in our approach.
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Since we have used a linear transformation in (2.12) and using a formula in the

appendix, we can rewrite

Σ̂x =
1

m
(

2n

n + 1
2

)
m∑

k=1

[
n∑

s=1

Rs cos

[
π(

2k − 1

2n + 1
)(s − 1

2
)

]] [
n∑

t=1

R
′

t cos

[
π(

2k − 1

2n + 1
)(t − 1

2
)

]]′

=
n∑

s,t=1

cs,t(m, n)RsR
′

t

=
n∑

s=t=1

cs,s(m,n)RsR
′

s +
n−1∑
l=1

cs,t+l(m, n)RsR
′

s+l +
n−1∑
l=1

cs+l,t(m,n)Rt+lR
′

t ,

where Rt = yt − yt−1 and

cs,t(m,n) =
1

m
(

n

2n + 1
)

[
sin 2πm( t+s−1

2n+1
)

sin(π t+s−1
2n+1

)
+

sin 2πm( t−s
2n+1

)

sin(π t−s
2n+1

)

]
.(2.21)

Since we have the representation of the SIML estimator in terms of asset returns

(i.e. yt − yt−1 = (ytj − yt−1j) with the observation interval hn), we can find the

relation between the SIML estimator and other estimation methods. For instance,

it may be interesting to see that the SIML estimator is similar but not in the class

of the realized kernel estimator which was recently introduced by Barndorff-Nielsen

et al. (2006).

2.2 Asymptotic Properties of the SIML estimator in the

Standard Case

We can derive the asymptotic properties of the SIML estimator quite easily because

it has a simple representation. For the asymptotic theory, we do not necessarily

need to assume that the distributions of xi (i = 1, · · · , n) and vi (i = 1, · · · , n) are

normal. We first give the asymptotic properties of the SIML estimator of Σx when

the volatility function is constant.

Theorem 1 : We assume that xi and vi (i = 1, · · · , n) are independent in

(2.1). Suppose that vi are mutually independently and distributed with E(vi) =

0, E(viv
′
i) = Σv and E(∥vi∥4) < ∞. Also suppose that xi is a square inte-

grable martingale with E(xi − xi−1) = 0, E
[
n (xi − xi−1)(xi − xi−1)

′
)
]

= Σx and
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E(∥
√

n(xi − xi−1)∥4) < ∞.

(i) Let Σx = (σ
(x)
ij ), Σ̂x = (σ̂

(x)
ij ) for any i, j (i, j = 1, · · · , p). We take m (= mn) as

a function of n and mn = O(nα) with 0 < α < 1
2
. Then as n −→ ∞

Σ̂x − Σx
p−→ 0 .(2.22)

Furthermore assume m5
n/n2 → 0 as n → ∞. Then

√
mn

[
σ̂

(x)
ij − σ

(x)
ij

]
w−→ N

(
0, σ

(x)
ii σ

(x)
jj +

[
σ

(x)
ij

]2
)

.(2.23)

(ii) Let Σv = (σ
(v)
ij ), Σ̂v = (σ̂

(v)
ij ) for any i, j (i, j = 1, · · · , p). We take l (= ln) as a

function of n and ln = O(nβ) with 0 < β < 1. Then as n −→ ∞

Σ̂v − Σv
p−→ 0(2.24)

and √
ln

[
σ̂

(v)
ij − σ

(v)
ij

]
w−→ N

(
0, σ

(v)
ii σ

(v)
jj +

[
σ

(v)
ij

]2
)

.(2.25)

It is obvious that we have the joint normality as the limiting distributions in

Theorem 1. One interesting observation is the result that the asymptotic variance

of (2.25) does not depend on the fourth order moments under the non-normal dis-

turbances.

There have been testing problems on the realized volatility in the presence of

micro-market noise. In the SIML approach the testing procedures and constructing

confidence regions can be constructed rather directly by using (2.23) and (2.25) for

the covariance of the underlying continuous stochastic process and the covariance of

the noises. We can utilize the relation

Σ̂x =
1

n

n∑
k=1

zkz
′

k(2.26)

=
(

m

n

)
1

m

m∑
k=1

zkz
′

k +

(
n − l − m

n

)
1

n − l − m

n+1−l∑
k=m+1

zkz
′

k +

(
l

n

)
1

l

n∑
k=n+1−l

zkz
′

k

=
m

n
Σ̂

(1)

x +
n − l − m

n
Σ̂

(2)

x +
l

n
Σ̂

(2)

x ,
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where Σ̂
(i)

x (i = 1, 2, 3) are independent in the standard situation. Since they are

asymptotically independent, we can also construct the testing procedure and con-

structing confidence region on any elements of Σx and Σv based on them.

One simple testing example is to test the null-hypothesis H0 : σv
ii = 0 vs.

H1 : σv
ii > 0 for some i, where σv

ii is the (i, i)-th element of Σv. For this problem

consider

T1 =
√

ln


1

ln

n∑
k=n+1−ln

z2
ik

1

n

n∑
k=1

z2
ik

− 1

 ,(2.27)

where zk = (zik) (i = 1, · · · , p). By using Theorem 1, we find that under H0

T1
w→ N(0, 2)(2.28)

when ln, n → ∞ while ln/n → 0.

Actually the limiting distribution of T1 is the same under more general conditions as

we shall see in Section 3. In this way it is straightforward to construct test statistics

and testing procedures in the SIML approach as the standard statistical procedure.

3. Asymptotic Properties of the SIML estimator in the

General Case

Since we have introduced the SIML estimator as a modification of the ML esti-

mator in the standard situation, it is important to investigate its properties when the

instantaneous volatility function Σx(s) of the underlying asset price is not constant

over time.

Let the conditional covariance matrix of the (underlying) returns without noise

be

Σi = E
[
n rir

′

i|Fn,i−1

]
,(3.1)

where ri = xi−xi−1 is a sequence of martingale differences and Fn,i−1 is the σ−field

generated by xs (s ≤ ti−1) and vs (s ≤ ti−1). In this setting it is natural to impose
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the condition
1

n

n∑
i=1

Σi
p−→ Σx =

∫ 1

0
Σx(s)ds .(3.2)

When the realized volatility and covariance Σx = (σ
(x)
ij ) is a constant (positive defi-

nite) matrix, we have the next proposition on the SIML estimator under regularity

conditions as a natural extension of Theorem 1.

Theorem 2 : We assume that xi and vi (i = 1, · · · , n) are mutually independent in

(2.1), ri = xi−xi−1 and vi are a sequence of martingale differences with (3.1), (3.2),

sup1≤i≤n E(∥vi∥4) < ∞ and sup1≤i≤n E [∥
√

n ri∥4] < ∞ . Suppose Σx is a constant

matrix (a.s.).

(i) As n −→ ∞,

Σ̂x − Σx
p−→ O(3.3)

with mn = nα (0 < α < 1/2) and

√
mn

[
σ̂

(x)
ij − σ

(x)
ij

]
w−→ N

(
0, σ

(x)
ii σ

(x)
jj +

[
σ

(x)
ij

]2
)

(3.4)

with m5
n/n2 → 0.

(ii) As n −→ ∞,

Σ̂v − Σv
p−→ O(3.5)

and √
ln

[
σ̂

(v)
ij − σ

(v)
ij

]
w−→ N

(
0, σ

(v)
ii σ

(v)
jj +

[
σ

(v)
ij

]2
)

(3.6)

with ln = nβ (0 < β < 1).

When Σx is a random matrix, we need the concept of stable convergence, which

has been explained by Chapter 3 of Hall and Heyde (1980), and the results of

Theorem 2 essentially hold with a careful treatment of weak convergence as we have

indicated in the proof given in Section 6. In this situation (3.4) should be replaced

by

√
mn

 σ̂
(x)
ii − σ

(x)
ii

σ
(x)
ii

 w−→ N(0, 2) (i = 1, · · · , p)(3.7)
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as n → ∞.

These results have some important implications in theory as well as in practice.

First, the SIML estimator has the asymptotic robustness in the sense that it has

the consistency and the asymptotic normality under general conditions. Second,

the order of convergences are near to n1/2 for the realized volatility and n for the

micro-market noise, which could be regarded as the asymptotic bounds. Third, the

formulas of the asymptotic variances are so simple that it is very easy to use them

for practical applications.

4. Simulations

We have investigated the finite sample distributions of the SIML estimators for

the realized variance and the realized covariance based on a set of simulations. The

number of replications is 1000. As a reasonable setting we have taken n = 5000

and n = 20000. We have chosen α = 0.3 and β = 0.8. In our experiments we

have considered the situation that the variance of noises 10−4, 10−6 and 10−8 of the

realized variances.

In our simulation we consider two cases when the observations are the sum of

signal and micro-market noise. In the first example the signal is the Brownian

motion with the volatility function

σx(s)
2 = σ(0)2

[
a0 + a1s + a2s

2
]
,(4.1)

where ai (i = 0, 1, 2) are constants and we have some restrictions such that σx(s)
2 >

0 for s ∈ [0, 1]. In this case the realized variance is given by

σ2
x =

∫ 1

0
σx(s)

2ds = σx(0)2
[
a0 +

a1

2
+

a2

3

]
.(4.2)

In this example we have taken several intra-day volatility patterns including the flat

(or constant) volatility, the monotone (decreasing or increasing) movements and the

U-shaped movements.
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In the second example the volatility follows the stochastic volatility model such that

σ2
x =

1

n

n∑
i=1

σx(t
n
i )2,(4.3)

where σx(t
n
i )2 = eh(ti) (s = ti, 0 < tn1 < · · · < tnn ≤ 1) and

h(tni ) = γ h(tni−1) + c u(tni ) .(4.4)

In our experiments we have set γ = 0.9, c = 0.2 and u(tni ) are the white noise process

followed by N(0, 1) as a typical situation.

We summarize our estimation results of the first example in Tables 4.1-4.4 and

the second example in Table 4.5, respectively. (See Tables in Appendix.) In each

table we have also calculated the value of the historical volatility as HI for compar-

ison. When there are micro-market noise components with the martingale signal

part, the value of HI often differs from the true realized volatility of the signal part

substantially. However, we have found that it is possible to estimate the realized

variance and the noise variance when we have the signal-noise ratio as 10−4 ∼ 10−6

at least by the SIML estimation method. Although we have omitted the details of

the second example, the estimation results are similar in the stochastic volatility

model.

By our simulations we can conclude that we can estimate both the realized

volatility of the hidden martingale part and the market noise part reasonably in

all cases we have examined by the SIML estimation. When the market noises are

extremely small, we have some difficulty to estimate the noise variances, which is a

natural phenomenon. In that case, however, we can detect that fact by using the

confidence interval constructed by the SIML estimation method.

5. Concluding Remarks

In this paper, we have developed a new estimation method for estimating the real-

ized volatility and the realized covariance by using high-frequency financial data un-

der the presence of noise. The Separating Information Maximum Likelihood (SIML)
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estimator proposed in this paper can be regarded as a modification of the standard

Maximum Likelihood (ML) method. Our SIML estimator has the representation as

a specific quadratic form of returns. We have shown that the SIML estimator has

reasonable asymptotic properties; it is consistent and it has the asymptotic normal-

ity (or the stable convergence in the general case) when the sample size is large and

the data frequency interval becomes zero under general conditions including non-

Gaussian processes and volatility models. The SIML estimator is so simple that

it can be practically used not only for the realized volatility but also the realized

covariance of the multivariate high frequency financial series.

As an application we are currently investigating a set of high frequency data

of Nikkei-225 index and Nikkei-225 Futures, which was the real motivation of our

study. The details of our results shall be reported in another occasion.

6 Mathematical Derivations

In this section we give some of the derivations of the results reported in the previous

sections.

Proof of Lemma 1 : Let An = (aij) in (2.6) and x = (xj) (i, j = 1, · · · , n)

satisfying Anx = λx . Then

x1 + x2

2
= λx1 ,(6.1)

xt−1 + xt+1

2
= λxt (t = 2, · · · , n − 1) ,(6.2)

1

2
xn−1 = λxn .(6.3)

Let ξi (i = 1, 2) be the solution of (6.2). Since 2λ = ξ1 + ξ2 and ξ1ξ2 = 1, we have

the solution

xt = c1ξ
t
1 + c2ξ

−t
1 (t = 1, · · · , n) ,(6.4)

where ci (i = 1) are some constants. Then (6.1) and (6.3) imply

0 = c1ξ1 + c2ξ
−1
1 + c1ξ

2
1 + c2ξ

−2
1 − (ξ1 + ξ−1

1 )(c1ξ1 + c2ξ
−1
1 )(6.5)

= (ξ1 − 1)(c1 − c2ξ
−1
1 ) .

14



Since c2 = c1ξ1 and ξ ̸= 1, we find that xt = c1[ξ
t
1 + ξ

−(t−1)
1 ] and ξ2n+1

1 = −1. Then

λk = cos[π
2k − 1

2n + 1
] (k = 1, · · · , n) .(6.6)

By taking c1 = (1/2)ξ
−1/2
1 , each elements of the characteristic vectors of An with

cos[π(2k − 1)/(2n + 1)] are

xt =
1

2

[
ξ

t−1/2
1 + ξ

−(t−1/2)
1

]
= cos

[
π

2k − 1

2n + 1
(t − 1

2
)

]
.(6.7)

Q.E.D.

Lemma 2 : For any integer k

n∑
t=1

[
cos π

2k − 1

2n + 1
(t − 1

2
)

]2

=
n

2
+

1

4
.(6.8)

Proof : We use the relation

n∑
t=1

(
ei2π[ 2k−1

2n+1
(t− 1

2
)] + e−i2π[ 2k−1

2n+1
(t− 1

2
)]
)

= ei2π[ 2k−1
2n+1

] 1
2 × 1 − ei2π[ 2k−1

2n+1
]n

1 − ei2π[ 2k−1
2n+1

]
+ e−i2π[ 2k−1

2n+1
] 1
2 × 1 − e−i2π[ 2k−1

2n+1
]n

1 − e−i2π[ 2k−1
2n+1

]

=
1

1 − ei2π[ 2k−1
2n+1

]

(
ei2π[ 2k−1

2n+1
] 1
2 − e2πi[ 2k−1

2n+1
2n+1

2
] − e2πi[ 2k−1

2n+1
1
2
] + e−i2π[ 2k−1

2n+1
n]

)

=
−eπi[ 2k−1

2n+1
(2n+1)] + e−π[ 2k−1

2n+1
(2n+1−2)]

1 − ei2π[ 2k−1
2n+1

]

= 1 .

Then by using the relation

n∑
t=1

[
cos π

2k − 1

2n + 1
(t − 1

2
)

]2

=
n∑

t=1

[
1

2
+

1

2
cos π

2k − 1

2n + 1
2(t − 1

2
)

]
(6.9)

=
n

2
+

1

2

n∑
t=1

cos 2π
2k − 1

2n + 1
(t − 1

2
) ,

we have (6.8). Q.E.D.

A Derivation of (2.21) : We use the relation

m∑
k=1

[
cos π

2k − 1

2n + 1
(t + s − 1))

]
(6.10)

15



=
1

2

m∑
k=1

(
eiπ[ 2k−1

2n+1
(s+t−1)] + e−iπ[ 2k−1

2n+1
(s+t−1)]

)

=
1

2

eiπ[ s+t−1
2n+1

] × 1 − eiπ[ s+t−1
2n+1

]2m

1 − eiπ[ s+t−1
2n+1

]2
+ e−iπ[ s+t−1

2n+1
] × 1 − e−iπ[ s+t−1

2n+1
]2m

1 − e−iπ[ s+t−1
2n+1

]2


=

1

2

1

1 − eiπ[ s+t−1
2n+1

]2

(
eiπ[ s+t−1

2n+1
] − eπi[ s+t−1

2n+1
(2m+1) − eπi[ s+t−1

2n+1
] + e−iπ[ s+t−1

2n+1
(2m−1)]

)

=
1

2

sin 2πm s+t−1
2n+1

sin π s+t−1
2n+1

.

Then we have (2.21).

Proof of Theorem 1 : We first give the proof of Theorem 1 for the asymptotic

properties of the SIML estimator of the realized variance. Then we shall apply the

method to prove other cases.

(i) For any unit vector eg = (0, · · · , 0, 1, 0, · · · , 0)
′

(g = 1, · · · , p), we define σ2
x =

e
′
gΣxeg, σ̂2

x = e
′
gΣ̂xeg, σ2

v = e
′
gΣveg and σ̂2

v = e
′
gΣ̂veg. From (2.12) we set xkn =

e
′
gzk (k = 1, · · · , n) and xkn = x

(1)
kn + x

(2)
kn , where x

(1)
kn and x

(2)
kn correspond to the

(k, g)−elements of Z(1)
n = h−1/2

n P
′
nC

−1
n (Xn−Y0) and Z(2)

n = h−1/2
n P

′
nC

−1
n Vn, respec-

tively. By using Lemma 1, we have E [Z(1)
n eg] = 0, E [Z(1)

n ege
′
gZ

(1)′
n ] = (egΣxe

′
g)In,

E [Z(2)
n eg] = 0 and

E [Z(2)
n ege

′

gZ
(2)′

n ] = (egΣve
′

g)h
−1
n P

′

nC
−1
n C

′−1
n P

′

n = (egΣve
′

g)h
−1
n Dn .(6.11)

Then

σ̂2
x − σ2

x =
1

m

m∑
k=1

[
x2

kn − σ2
x

]
(6.12)

=
1

m

m∑
k=1

[
x2

kn − (σ2
x + aknσ

2
v)

]
+ σ2

v

[
1

m

m∑
k=1

akn

]
.

By using (2.15),

1

m

m∑
k=1

ak,n =
1

m
2n

m∑
k=1

[
1 − cos(π

2k − 1

2n + 1
)

]
(6.13)

= 2
n

m

[
m −

sin πm 2m
2n+1

sin π 1
2n+1

]

= O(
m2

n
)
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and

1

m

m∑
k=1

a2
kn =

1

m
4n2

m∑
k=1

[
1 − 2 cos(π

2k − 1

2n + 1
) +

1

2
(1 + cos(2π

2k − 1

2n + 1
))

]
(6.14)

=
4n2

m

[
3

2
m −

sin πm 2m
2n+1

sin π 1
2n+1

+
1

4

sin πm 4m
2n+1

sin π 2
2n+1

]

= O(
m4

n2
)

as n → ∞. Then (6.13) and (6.14) are o(1) by the condition
√

m/n → 0 (n → ∞).

Also E [x
(2)2
kn ] ≤ |akn|σ2

v , there exists a constant c1 such that E [x
(1)2
kn ] ≤ c1 and

1

m

m∑
k=1

E
[
x2

kn − (σ2
x + ak,nσ2

v)
]2

=
1

m

m∑
k=1

E
[
(x

(1)2
kn − σ2

x)
2 + (x

(2)2
kn − aknσ2

v)
2 + 4x

(1)2
kn x

(2)2
kn

]
.

(6.15)

Thus we conly need to consider the first term of (6.15). Also we write

√
m

[
σ̂2

x − σ2
x

]
=

1√
m

m∑
k=1

[
x2

kn − (σ2
x + aknσ

2
v)

]
+ σ2

v

[
1√
m

m∑
k=1

akn

]
.(6.16)

Under the additional condition that m5/n2 → 0 as n → ∞ (by using a similar

evaluation as (6.13)) we have

1√
m

m∑
k=1

akn → 0 .(6.17)

Then we shall show the consistency and the variance formula in (2.23) under the

underlying non-normal distributions. We rewrite

E
[

1

m

m∑
k=1

(x
(1)2
kn − σ2

x)

]2

=
[

2n

2n + 1

]2

E


n∑

i,j=1

[
cijm rigrjg − δij

1

n
σ2

x

]
2

∼ E


n∑

i=j=1

[
cijmr2

ig −
1

n
σ2

x

]
2

+ E


n∑

i ̸=j=1

[cijmrigrjg]


2

,

where δij = 1 (i = j); δij = 0 (i ̸= j), ri = (rij) = xi−xi−1, cijm = (2/m)
∑m

k=1 siksjk

(i, j = 1, · · · , n; k = 1, · · · ,m) and

sjk = cos
[

2π

2n + 1
(j − 1

2
)(k − 1

2
)
]

.
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Because ri = (rig) (i = 1, · · · , n; g = 1, · · · , p) are a sequence of martingale differ-

ences,

E


n∑

i=j=1

[
ciimrigrig −

1

n
σ2

x

]
2

= E

 n∑
i,j=1

ciimcjjm(r2
ig −

1

n
σ2

x)(r
2
jg −

1

n
σ2

x)


=

n∑
i=j=1

c2
iimE

[
r2
ig −

1

n
σ2

x

]2

and

E


 n∑

i̸=j=1

cijmrigrjg

2
 = 2

n∑
i ̸=j=1

c2
ijmE(r2

ig)E(r2
jg) .(6.18)

After some calculations, we can evaluate the relations
∑n

j=1 sjksjl = 0 (k ̸= l),∑n
j=1 sjksjl = n/2 + 1/4 (k = l) and

n∑
i,j=1

c2
ijm =

4

m

[
n

2
+

1

4

]2

.(6.19)

Then we have the key relation

2
n∑

i,j=1

c2
ijmE(r2

ig)E(r2
jg) ∼ 2 × 4

m

[
n

2

]2
[
σ2

x

n

]2

=
2

m

[
σ2

x

]2
.(6.20)

Hence by using (6.19) and (6.20) we have obtained the consistency and the variance

formula (2.23) in the limiting distribution of the SIML estimator.

The remaining step is to apply the martingale central limit theorem (CLT) to the

main term of (6.16), that is,

1
√

mn

mn∑
k=1

[
x

(1)2
kn − σ2

x

]
.(6.21)

For this purpose we decompose

√
m

[
1

m

m∑
k=1

x
(1)2
kn − σ2

x

]
= (

2n

2n + 1
)

 n∑
i̸=j=1

c∗ijmrigrjg +
n∑

i=j=1

c∗iim(r2
ig − σ2

x)

(6.22)

and we consider a sequence of Un =
∑n

j=2[2
∑j−1

i=1 c∗ijmrig]rjg is a martingale, where

c∗ijm =
√

mcijm (i, j = 1, · · · , n). Then we use the martingale CLT (Theorem 3.5

of Hall and Heyde with p = 2) by setting Xnj = (2
∑j−1

i=1 c∗ijmrig)rjg and Ynj =

18



E [X2
nj|Fnj−1] (j = 2, · · · , n). We have the condition max1≤j≤n Ynj

p→ 0 because we

use the fact that for any ϵ > 0

P ( max
1≤j≤n

Ynj > ϵ) ≤
n∑

j=1

P (Ynj > ϵ) ≤
[
1

ϵ

]2 n∑
j=1

E [Y 2
nj] ,

(6.19) and the boundedness of the fourth order moments.

(ii) For the estimation of covariance for any pair of g, h = 1, · · · , p, we define σ
(x)
gh =

e
′
gΣxeh, σ̂

(x)
gh = e

′
gΣ̂xeh, σ

(v)
gh = e

′
gΣveh and σ̂

(v)
gh = e

′
gΣ̂veh. Then we apply the

similar arguments of (i). The only difference is to use

E


 n∑

i̸=j=1

cijmrigrjh

2
 =

n∑
i ̸=j=1

c2
ijm

[
E(r2

ig)E(r2
jh) + (E(rigrjh))

2
]

(6.23)

instead of (6.19) and then (6.21) should be modified as

n∑
i,j=1

c2
ijm

[
σggσhh + σ2

gh

]
∼ 1

m

[
σggσhh + σ2

gh

]
.(6.24)

(iii) For σ2
v , we have

σ̂2
v − σ2

v =
1

ln

n∑
k=n+1−l

a−1
k,n

[
x2

kn − ak,nσ
2
v

]
(6.25)

=
1

ln

n∑
k=n+1−l

a−1
k,n

[
x2

kn − (σ2
x + aknσ2

v)
]
+ σ2

x

1

l

n∑
k=n+1−l

a−1
k,n

 .

We rewrite

ak,n = 2n

[
1 + cos π[

2ln
2n + 1

]

]
= 4n cos2 π

2
[

2ln
2n + 1

] ,

where ln = n + 1 − kn. Because we take ln = o(n), there esists n0 such that for

n ≥ n0 we find that |a−1
kn | = O(n−1). Hence

1

l

n∑
k=n+1−l

a−1
kn → 0 .(6.26)

By applying the CLT to

1√
ln

n∑
k=n+1−l

[
a−1

knx2
kn − σ2

v

]
,(6.27)
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which is the main term of
√

ln [σ̂2
v − σ2

v ]. We notice that E [a−1
kn (x

(2)2
kn − aknσ

2
v)]

2 are

bounded for k = n + 1 − ln and n. Then by using the similar arguments as (i) and

evaluating the asymptotic variance, we have (2.25). For the estimation of covariance

of the noise term, we can use the same arguments as (ii) and it is omitted. Q.E.D.

Proof of Theorem 2 : Because the basic method is similar to the proof of

Theorem 1, we illustrate the proof of Theorem 2 by using the simple case when

p = 1. We decompose zk = x
(1)
kn + x

(2)
kn (k = 1, · · · ,m) such that

x
(1)
kn =

√
4n

2n + 1

n∑
j=1

sjkrj(6.28)

and

x
(2)
kn =

n∑
j=1

bjkvj ,(6.29)

where

Bn = (bjk) = h−1/2
n P

′

nC
−1
n .

Then
1

m

m∑
k=1

z2
k =

1

m

m∑
k=1

x
(1)2
kn +

1

m

m∑
k=1

x
(2)2
kn + 2

1

m

m∑
k=1

x
(1)
knx

(2)
kn .(6.30)

First we can evaluate

E
[

1

m

m∑
k=1

x
(2)2
kn

]
=

1

m

m∑
k=1

E

 n∑
j=1

b2
jkv

2
j

 = σ2
v

1

m

m∑
k=1

akm −→ 0

as n → ∞ if we have mn = O(nα) (0 < α < 1/2). Then

1

m

m∑
k=1

x
(2)2
kn

p−→ 0 .(6.31)

Also we use the fact that[
1

m

m∑
k=1

x
(1)
knx

(2)
kn

]2

≤
[

1

m

m∑
k=1

x
(1)2
kn

] [
1

m

m∑
k=1

x
(2)2
kn

]
p→ 0

if (1/m)
∑m

k=1 x
(1)2
kn converges to a constant because of (6.30). Then the important

step is to show

1

m

m∑
k=1

x
(1)2
kn − 1

n

n∑
j=1

σ2
j =

[
4n

2n + 1

]
1

m

m∑
k=1

 n∑
i,j=1

siksjkrirj

 − 1

n

n∑
j=1

σ2
j(6.32)
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=
n∑

i,j=1

[
(

2n

2n + 1
)(

2

m

m∑
k=1

siksjk)rirj

]
− 1

n

n∑
j=1

σ2
j

p→ 0

as n → ∞ in the same way as the proof of Theorem 1. Because

m∑
k=1

siksjk =
1

2

m∑
k=1

{
cos

[
2π

2n + 1
(i + j − 1)(k − 1

2
)
]

+ cos
[

2π

2n + 1
(i − j)(k − 1

2
)
]}

,

for large m we have the relation (2/m)
∑m

k=1 siksjk = δij + o(1) and for any i ̸= j

and large m
4

m

m∑
k,l=1

siksjksilsjl = δkl + o(
1√
m

) .(6.33)

Then we can evaluate the asymptotic variance of

√
m

 1

m

m∑
k=1

x
(1)2
kn − 1

n

n∑
j=1

σ2
j

 =
√

m
n∑

i,j=1

(
2n

2n + 1
)(

2

m

m∑
k=1

siksjk)rirj − δij
1

n

n∑
j=1

σ2
j


(6.34)

and we decompose its terms as (6.22) in the proof of Theorem 1. By using the fact

that the order of (1/n)2 ∑n
i=j=1

∑m
k,l=1(4/m)siksjksilsjl = o(1), and ri (i = 1, · · · , n)

are a sequence of martingale differences with E(r2
i |Fn,i−1) = σ2

i and the bounded

fourth-order moments, we have

1

n2

n∑
i,j=1

m∑
k,l=1

4

m
siksjksilsjlσ

2
i σ

2
j −

 1

n

n∑
j=1

σ2
j

2

−→ 0(6.35)

as n → ∞.

By using the martingale CLT with (3.1)-(3.2) (Theorem 3.5 of Hall and Heyde with

p = 2), the asymptotic normality of σ̂2
x (or the stable convergence in the general

case when Σx is a random matrix) follows. The variance of the limiting distribution

is given by (3.4) in this case.

The proof of the asymptotic properties on Σv is similar to that of Theorem 1 by

utilizing the above arguments and we have omitted the details. Q.E.D.
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APPENDIX : TABLES

Table 4.1 : Estimation of realized volatility :

Case I (a0 = 1, a1 = a2 = 0)

5000 sgx sgv HI sgx sgv HI

True 2.000E-04 2.000E-06 2.000E-04 2.000E-07

Mean 2.06E-04 2.03E-06 2.02E-02 2.04E-04 2.26E-07 2.20E-03

SD 8.62E-05 4.27E-08 4.76E-04 8.27E-05 4.69E-09 5.08E-05

True 2.000E-04 2.000E-08 2.000E-04 2.000E-09

Mean 2.01E-04 4.65E-08 4.00E-04 2.00E-04 2.85E-08 2.20E-04

SD 8.22E-05 1.14E-09 8.30E-06 8.19E-05 7.84E-10 4.37E-06

20000 sgx sgv HI sgv sgx HI

True 2.000E-04 2.000E-06 2.000E-04 2.000E-07

Mean 2.01E-04 2.01E-06 8.02E-02 2.01E-04 2.08E-07 8.20E-03

SD 6.49E-05 2.12E-08 9.74E-04 6.51E-05 2.33E-09 1.01E-04

True 2.000E-04 2.000E-08 2.000E-4 2.000E-09

Mean 1.98E-04 2.84E-08 1.00E-03 1.99E-04 1.04E-08 2.80E-04

SD 6.57E-05 3.28E-10 1.16E-05 6.14E-05 1.53E-10 2.82E-06

Note : In Table 4.1, sgx and sgv correspond to the estimates for the variances Σx (4.2)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.
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Table 4.2 : Estimation of realized volatility :

Case II (a0 = 1, a1 = 1, a2 = 1)

5000 sgx sgv HI sgx sgv HI

True 3.667E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.66E-04 2.05E-06 2.04E-02 3.63E-04 2.49E-07 2.37E-03

SD 1.62E-04 4.33E-08 4.80E-04 1.55E-04 5.25E-09 5.39E-05

True 2.000E-04 2.000E-08 2.000E-04 2.000E-09

Mean 3.57E-04 6.86E-08 5.66E-04 3.57E-04 5.05E-08 3.87E-04

SD 1.51E-04 1.82E-09 1.18E-05 1.54E-04 1.47E-09 8.02E-06

20000 sgx sgv HI sgv sgx HI

True 3.667E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.62E-04 2.02E-06 8.04E-02 3.63E-04 2.15E-07 8.36E-03

SD 1.21E-04 2.13E-08 9.76E-04 1.24E-04 2.43E-09 1.02E-04

True 3.667E-04 2.000E-06 3.667E-04 2.000E-07

Mean 3.58E-04 3.54E-08 1.17E-03 3.59E-04 1.74E-08 4.47E-04

SD 1.23E-04 4.39E-10 1.31E-05 1.16E-04 2.75E-10 4.59E-06

Note : In Table 4.2, sgx and sgv correspond to the estimates for the variances Σx in (4.2)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.
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Table 4.3 : Estimation of realized volatility :

Case III (a0 = 1, a1 = −1, a2 = 1)

5000 sgx sgv HI sgx sgv HI

True 1.667E-04 2.000E-06 1.677E-04 2.000E-07

Mean 1.72E-04 2.02E-06 2.02E-02 1.70E-04 2.22E-07 2.17E-03

SD 7.24E-05 4.26E-08 4.76E-04 6.93E-05 4.59E-09 5.02E-05

True 1.667E-04 2.000E-08 1.667E-04 2.000E-09

Mean 1.67E-04 4.21E-08 3.67E-04 1.67E-04 2.41E-10 3.74E-06

SD 6.85E-05 1.02E-09 7.70E-06 6.90E-05 6.62E-10 3.74E-06

20000 sgx sgv HI sgv sgx HI

True 1.667E-04 2.000E-06 1.667E-04 2.000E-07

Mean 1.68E-04 2.01E-06 8.02E-02 1.67E-04 2.-7E-07 8.16E-03

SD 5.47E-05 2.12E-08 9.73E-04 5.47E-05 2.31E-09 1.00E-04

True 1.667E-04 2.000E-8 1.667E-04 2.000E-09

Mean 1.65E-05 2.70E-08 9.67E-04 1.65E-04 8.99E-09 2.47E-04

SD 5.48E-05 3.07E-10 1.13E-05 5.11E-05 1.30E-10 2.49E-06

Note : In Table 4.3, sgx and sgv correspond to the estimates for the variances Σx in (4.2)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.

25



Table 4.4 : Estimation of realized volatility :

Case IV (a0 = 3, a1 = −3, a2 = 1)

5000 sgx sgv HI sgx sgv HI

True 1.833E-04 1.000E-06 1.833E-04 1.000E-07

Mean 1.90E-04 1.03E-06 1.02E-02 1.91E-04 1.24E-07 1.18E-03

SD 8.13E-05 2.17E-08 2.40E-04 8.16E-05 2.61E-09 2.67E-05

True 1.833E-04 1.000E-08 1.833E-04 1.000E-09

Mean 1.90E-04 3.43E-08 2.83E-04 1.88E-04 2.53E-08 1,93E-04

SD 8.24E-05 9.09E-10 5.78E-06 8.10E-05 7.41E-10 4.00E-06

20000 sgx sgv HI sgv sgx HI

True 1.833E-04 1.000E-06 1.833E-04 1.000E-07

Mean 1.85E-04 1.01E-06 4.02E-02 1.86E-04 1.08E-07 4.18E-03

SD 6.32E-05 1.06E-08 4.87E-04 6.30E-05 1.21E-09 5.11E-05

True 1.833E-04 1.000E-08 1.833E-04 1.000E-09

Mean 1.84E-04 1.77E-08 5.84E-04 1.85E-05 8.69E-09 2.23E-04

SD 6.36E-05 2.22E-10 6.58E-06 6.02E-05 1.42E-10 2.34E-06

Note : In Table 4.4, sgx and sgv correspond to the estimates for the variances Σx in (4.4)

and Σv, respectively. Mean and SD are the sample mean and the standard deviation of

the SIML estimator in the simulation. HI stands for the historical volatility.
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Table 4.5 : Estimation of realized volatility :

Case V (Stochastic Volatility)

5000 sgx sgv HI sgx sgv HI

True 2.303E-04 5.000E-07 2.303E-04 2.303E-04 5.000E-08

Mean 2.302E-04 5.125E-07 5.237E-03 2.308E-04 6.196E-08 7.319E-04

SD 1.034E-04 2.366E-08 1.304E-04 1.042E-04 3.347E-09 3.348E-05

True 2.303E-04 5.000E-09 2.303e-04 2.303E-04 5.000E-10

Mean 2.335E-04 1.690E-08 2.822E-04 2.274E-04 1.39E-08 2.371E-04

SD 8.24E-05 9.09E-10 5.78E-06 1.081E-04 2.061E-09 2.970E-05

20000 sgx sgv HI sgv sgx HI

True 2.303E-04 5.000E-07 2.303E-04 2.303E-04 5.000E-08

Mean 2.373E-04 5.034E-07 2.024E-02 2.302E-04 5.299E-08 2.232E-03

SD 7.911E-05 1.366E-08 2.564E-04 7.868E-05 1.432E-09 3.054E-05

True 2.303E-04 5.000E-09 2.303E-04 2.303E-04 5.000E-10

Mean 2.310E-04 7.948E-09 4.314E-04 2.338E-04 3.440E-09 2.516E-04

SD 8.066E-05 3.145E-10 1.564E-05 7.939E-05 2.458E-10 1.567E-05

Note : In Table 4.5, sgx and sgv correspond to the estimates for the variances Σx and

Σv when we have the stochastic volatility model of (4.3) and (4.4). Mean and SD are

the sample mean and the standard deviation of the SIML estimator in the simulation. HI

stands for the historical volatility.
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