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1. Introduction

Anderson and Kunitomo (2007) have developed a likelihood ratio test for a hy-

pothesis about the coefficients of one structural equation in a set of simultaneous

equations, which is called the Rank-Adjusted Anderson-Rubin (RAAR) test. The

null hypothesis is that the vector of coefficients is a specified vector; the alternative

hypothesis is that the structural equation is identified. They have derived the lim-

iting distribution of the RAAR test under the standard model and a model of many

instruments situation. The limiting distribution of −2 times the logarithm of the

likelihood ratio criterion is often chi-square with degrees of freedom equal to one less

than the number of coefficients specified in the null hypothesis when the disturbance

terms are homoscedastic. The problem of testing a null hypothesis on the coeffi-

cients of the structural equation has been studied by many econometricians since

Anderson and Rubin (1949). See Moreira (2003) and Andrews, Moreira and Stock

(2006) for a recent review of these studies. When there are many instruments and/or

the disturbance terms are heteroscedastic, the distribution of the RAAR test may

not be a chi-square. Then there is an important question how to extend the existing

testing procedures in such cases, which may be useful for practical applications.

The main purpose of this paper is to propose a new way of improving the RAAR

test, which may be called the MRAAR test. We show that the MRAAR test statis-

tic improves the asymptotic properties of the RAAR test and many other testing

procedures even when there are many instruments including the cases of many weak

instruments and the disturbances have persistent heteroscedasticity. The particular

type heteroscedasticity with many instruments has been recently discussed by Haus-

man, J., W. Newey, T. Woutersen, J. Chao and N. Swanson (2007), and Kunitomo

(2008) called it the Persistent Heteroscedasticity. Also we expect that the resulting

procedure based on the MRAAR test should have good asymptotic properties be-

cause the MRAAR test is essentially the same as the likelihood ratio test under the

standard situation.

In Section 2 we state the structural equation model and the alternative testing
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procedures of unknown parameters in simultaneous equation models with possibly

many instruments. Then in Section 3 we develop a new way of improving the RAAR

test procedure and discuss its asymptotic properties. We also relate our test statistic

to the testing procedures developed by Kleibergen (2002) and Moreira (2003). In

Section 4 we shall discuss possible extensions and in Section 5 we shall report the

finite sample properties of the null distributions of the MRAAR test and other test

statistics based on a set of Monte Carlo experiments. Then some brief concluding

remarks will be given in Section 6. The mathematical derivations will be given in

Section 7.

2. Tests in Structural Equation Models with Possibly Many

Instruments

Let a single linear structural equation be

y1i = β
′

2y2i + γ
′

1z1i + ui (i = 1, · · · , n),(2.1)

where y1i and y2i are a scalar and a vector of G2 endogenous variables, respectively,

and z1i is a vector of K1 (included) exogenous variables in (2.1), γ1 and β2 are

K1×1 and G2×1 vectors of unknown parameters, and ui are mutually independent

disturbance terms with E(ui) = 0 and E(u2
i |z

(n)
i ) = σ2

i (i = 1, · · · , n). We assume

that (2.1) is one equation in a system of 1+G2 endogenous variables y
′
i = (y1i, y

′
2i)

′

and Y = (y
(n)
1 ,Y

(n)
2 ) is an n× (1+G2) vector observations of endogenous variables.

We consider

Y
(n)
2 = Π

(z)
2n + V2 ,(2.2)

where Π
(z)
2n = (π

′
2i(z

(n)
i )) is an n×G2 matrix, each row π

′
2i(z

(n)
i ) depends on a Kn×1

vector z
(n)
i , V

(n)
2 is an n×G2 matrix, v

(n)
1 = u+V

(n)
2 β2, and V = (v

(n)
1 ,V

(n)
2 ). Then

we can write

Y = Π(z)
n + V,(2.3)

where Π(z)
n = (Z1γ1+Π

(z)
2n β2,Π

(z)
2n ) is an n×(1+G2) matrix, Z = (Z1,Z2n) = (z

(n)′

i )

is an n × Kn matrix of K1 + K2n instruments (z
(n)
i = (z

′
1i, z

(n)′

2i )
′
), V = (v

′
i) is an
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n × (1 + G2) matrix of disturbances with E(vi|z(n)
i ) = 0 and

E(viv
′

i|z
(n)
i ) = Ωi =

 ω11.i ω
′
2.i

ω2.i Ω22.i

 .(2.4)

The vector of Kn (= K1 + K2n) instruments z
(n)
i satisfies the orthogonal condition

E [uiz
(n)
i ] = 0 (i = 1, · · · , n) . The relation between (2.1) and (2.2) gives ui =

(1,−β
′

2)vi and

σ2
i = (1,−β

′

2)Ωi

 1

−β2

 = β
′
Ωiβ ,(2.5)

where β
′
= (1,−β

′

2). Since our main interest is the application to micro-econometric

data, we impose the condition

1

n

n∑
i=1

Ωi
p−→ Ω(2.6)

and Ω is a positive definite (constant) matrix. Then

1

n

n∑
i=1

σ2
i

p−→ σ2 (= β
′
Ωβ > 0) .(2.7)

Define the (1 + G2) × (1 + G2) matrices by

G = Y
′
Z2.1A

−1
22.1Z

′

2.1Y ,(2.8)

and

H = Y
′ (

In − Z(Z
′
Z)−1Z

′)
Y ,(2.9)

where Z2.1 = Z2n − Z1A
−1
11 A12, A22.1 = Z

′
2.1Z2.1 and

A =

 Z
′
1

Z
′
2n

 (Z1,Z2n) =

 A11 A12

A21 A22

(2.10)

is a nonsingular matrix (a.s.).

The RAAR test developed by Anderson and Kunitomo (2007) is that the null

hypothesis that H 0 : β = β0 (i.e. β
′
= (1,−β

(0)
2 ) is rejected if

1 +
β̂

′

Gβ̂

β̂
′

Hβ̂

1 +
β

′

0Gβ0

β
′

0Hβ0

< c(K2n, qn) ,(2.11)
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where β̂ is the solution of [
1

n
G − 1

qn

λnH

]
β̂LIML = 0(2.12)

and λn is the smallest root of |(1/n)G− l(1/qn)H| = 0 (qn = n−Kn and c(K2n, qn)

is a constant to be chosen).

As an influential study, Anderson and Rubin (1949) proposed the Anderson-Rubin

(AR) test, which is to reject H0 if

β
′

0Gβ0

β
′

0Hβ0

>
K2n

qn

FK2n,qn(ϵ) ,(2.13)

where FK2n,qn(ϵ) denotes the 1 − ϵ significance point of the F-distribution with K2n

and qn degrees of freedom.

We call the left-hand side of (2.12) the Rank-Adjusted Anderson-Rubin (RAAR)

criterion. Moreira (2003) arrived at a statistic which is similar by a somewhat differ-

ent route and proposed a simulation based test procedure, which is the conditional

likelihood statistic.

3 The modified RAAR tests

3.1 Modifying the RAAR statistic for Many Instruments

with Persistent Heteroscedasticity

We consider the situation that there are many instruments. Anderson, Kunitomo

and Masushita (2007) have discussed the estimation problem of the structural equa-

tion of interest with many instruments under a set of assumptions. The basic con-

ditions for many instruments which Anderson et al. (2007) have used are

K2n

n
−→ c (0 ≤ c < 1),(3.1)

1

d2
n

Π
(z)′

2n P2.1Π
(z)
2n

p−→ Φ22.1(3.2)

as dn
p→ ∞ (n → ∞), where P2.1 = (p

(2.1)
ij ) = Z2.1A

−1
22.1Z

′
2.1 and Φ22.1 is a nonsingular

constant matrix. In the following analysis we mainly consider the standard case

when d2
n = n.
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When c = 0 and the disturbances are homoscedastic, Anderson and Kunit-

omo (2007) have shown that the limiting null distribution of the RAAR test is the

χ2−distribution with G2 degrees of freedom under a set of standard conditions.

When 0 < c < 1 and/or the disturbances are heteroscedastic, however, it is not

necessarily χ2−distribution. The main reason why the RAAR test does not nec-

essarily have standard properties when the disturbances are heteroscedastic with

many instruments is the presence of incidental parameters with many instruments

and the effects of possible correlation between the conditional covariance Ωi and

p
(2.1)
ii (i = 1, · · · , n). This prevents from satisfying the Weak Heteroscedasticity con-

dition

(WH) plim
n→∞

[
1

n

n∑
i=1

p
(2.1)
ii Ωi − c Ω

]
= O .(3.3)

If this condition is not satisfied, we say that the disturbance terms have the Persis-

tent Heteroscedasticity condition as (PH).

Let PZ = (p
(n)
ij ) = Z(Z

′
Z)−1Z

′
, QZ = (q

(n)
ij ) = In−PZ and PZ1 = Z1(Z

′
1Z1)

−1Z
′
1

be n × n projection matrices. Then we can utilize the relations P2.1 = (In −
PZ1)PZ(In − PZ1) and QZ = (In − PZ1)(In − PZ)(In − PZ1). We construct PM =

(p
(m)
ij ) and QM = (q

(m)
ij ) = In − PM such that p

(m)
ij = p

(n)
ij (i ̸= j), p

(m)
ii − K2n/n

p→
0 (i, j = 1, · · · , n) and

plim
n→∞

1

n

n∑
i=1

[
p

(m)
ii − c

]2
= 0 .(3.4)

Then we define two (1 + G2) × (1 + G2) matrices by

GM = Y
′
P∗

MY(3.5)

and

HM = Y
′
Q∗

MY ,(3.6)

where P∗
M = (p∗ij) = (In −PZ1)PM(In −PZ1) and Q∗

M = (q∗ij) = (In −PZ1)QM(In −
PZ1).

By using GM and HM , the MRAAR test procedure is defined by the null hypoithesis

6



H0 : β = β0 is rejected if

MRAARn = (−1)(n − Kn) log


1 +

β̂
′

MGM β̂M

β̂
′

MHM β̂M

1 +
β

′

0GM β0

β
′

0HM β0

 > c∗(K2n, qn) ,(3.7)

where c∗(K2n, qn) is a constant, β̂M is the modified LIML (MLIML) estimator de-

fined by the solution of [
1

n
GM − 1

qn

λnHM

]
β̂M = 0(3.8)

and λn is the smallest root of |(1/n)GM − l(1/qn)HM | = 0.

The choice of c∗(K2n, qn) will be discussed in Section 3.3. The testing procedure

and the MRAAR test statistic can be often very close to the RAAR testing proce-

dure; they are exactly the same in the case when there are (orthogonal) 1 or −1

dummy instrumental variables such that (1/n)A22.1 = IK2 and p
(n)
ii = Kn/n.

3.2 Asymptotic Properties of the MRAAR test

We shall investigate the asymptotic properties of the MRAAR test statistic when

there are many instruments. One of the attractive features of the MRAAR statistic

is that it satisfies (3.4), which leads to (WH) with p
(n)
ij (i = 1, · · · , n) under (2.6)

within the LIML estimation. (See Section 4 of Anderson et al. (2007) and Kunit-

omo (2008).) This condition plays an important role for the asymptotic variance of

the LIML estimator, which is free from the form of higher order moments of dis-

turbances. It also makes the limiting distribution of the MRAAR statistic to have

a simple form. Then we have the representation of the limiting distribution of the

MRAAR statistic as Theorem 1 and the proof will be given in Section 7.

Theorem 1 : Let z
(n)
i , i = 1, 2, · · · , n, be a set of Kn×1 vectors (Kn = K1+K2n, n >

2). Let vi, i = 1, 2, · · · , n, be a set of (1 + G2) × 1 mutually independent random

vectors such that E(vi|z(n)
i ) = 0, E(viv

′
i|z

(n)
i ) = Ωi (a.s.) is a function of z

(n)
i , say,
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Ωi[n, z
(n)
i ] and E(∥vi∥4) are bounded. For (2.1) and (2.2), suppose (2.6), (3.1),

1

n
max
1≤i≤n

∥π2i(z
(n)
i )∥2 p−→ 0(3.9)

and
1

n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

p−→ Φ∗
M(3.10)

is a positive definite matrix as n → ∞ (qn → ∞), where (1/n)Π
(z)′

2n P∗
MΠ

(z)
2n

p−→
Φ∗

1M , (1/qn)Π
(z)′

2n Q∗
MΠ

(z)
2n

p−→ Φ∗
2M , Π

(z)
2n = (π2i(z

(n)′

i )) and c∗ = c/(1 − c).

(i) Then

MRAARn − MRAAR∗
1n

p−→ 0 ,(3.11)

and

MRAAR∗
1n =

1

σ2
0

u
′
(P∗

M − c∗Q
∗
M)

[
Π

(z)
2n + W2

] [
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]−1
(3.12)

×
[
Π

(z)′

2n + W
′

2

]
(P∗

n − c∗Q
∗
n)u ,

where σ2
0 = β

′

0Ωβ0 and an n × G2 matrix W2 = (w
′
2i) is defined by w2i = v2i −

ui(0, IG2)Ωβ0/σ
2
0 (i = 1, · · · , n).

(ii) Furthermore (3.12) can be decomposed as

MRAAR∗
1n = Λ1n + Λ2n + 2Λ3n ,(3.13)

where

Λ1n =
1

σ2
0

u
′
(P∗

M − c∗Q
∗
M)Π

(z)
2n

[
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]−1
Π

(z)′

2n (P∗
M − c∗Q

∗
M)u,

Λ2n =
1

σ2
0

u
′
(P∗

M − c∗Q
∗
M)W2

[
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]−1
W

′

2(P
∗
M − c∗Q

∗
M)u,

Λ3n =
1

σ2
0

u
′
(P∗

M − c∗Q
∗
M)W2

[
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]−1
Π

(z)′

2n (P∗
M − c∗Q

∗
M)u .

(iii) If c = 0, then Λ2n = op(1) and Λ3n = op(1).

In the standard case when Kn is a fixed number and the disturbances are ho-

moscedastic, it has been known that the limiting distribution of the RAAR statistic
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is χ2 with G2 degrees of freedom under H0. More generally, in that case under the

local alternative

β = β0 +
1√
n

ζ , ζ =

 0

−ζ2

 ,(3.14)

the limiting distribution of the likelihood ratio statistic is the noncentral χ2 with

G2 degrees of freedom and the noncentrality

ξ = plimn→∞ζ
′

2

[
1

n
Π

(z)′

2n P2.1Π
(z)
2n

]
ζ2 .(3.15)

Anderson and Kunitomo (2007) have extended this result slightly when there are

incidental parameters and c = 0. In this case the power function of the RAAR test

attains the asymptotic bound as the standard situation.

Corollary 1 : Assume that max1≤i≤n |σ2
i − σ2

0|
p→ 0 as n → ∞. Then the limiting

distribution of MRAARn under H0 is χ2 with G2 degrees of freedom if c = 0.

In the more general situation three cases can be considered. We have already

investigated the first case of dn = Op(n
1/2) and K2n = O(n). Anderson et al. (2007)

have given the asymptotic covariance of the LIML estimator under alternative as-

sumptions, which is useful for investigating the limiting behavior of the MRAAR

statistic. The second case is the standard large sample asymptotics, which corre-

sponds to the cases of dn = Op(n
1/2+δ) (δ > 0), or dn = Op(n

1/2) and K2n/n = o(1).

In this case we have the standard χ2 as the limiting distribution under the null

hypothesis. The third case occurs when dn = op(n
1/2) and

√
n/d2

n → 0, which may

correspond to the case of many weak instruments. In this case

d2
n

n
MRAARn

d→ Λ2(c) ,(3.16)

where [d2
n/n]Λ2n(c)

d→ Λ2(c) and Λ2(c) follows a weighted χ2 distribution depending

on c.

The second and third terms of (3.13) have often less impacts on the limiting

distribution of the MRAAR statistic because the second and the third terms are

dominated by the first term of MRAR∗
1n due to the effects of n and the noncentrality.
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In the case of many weak instruments, however, the approximation of the standard

χ2 distribution could be poor even if the disturbances are homoscedastic when the

noncentrality is relatively small.

3.3 Modifying the RAAR testing procedure

There are alternative ways to use Theorem 1 to construct the testing procedure

for H0 : β = β0. One possible method is to use the simulated distribution of an

approximate random variable of the MRAAR statistic introduced. For this purpose

we utilize

(P∗
M − c∗Q

∗
M)(Π

(z)
2n + W2)(3.17)

= (P∗
M − c∗Q

∗
M)(Π(z)

n + V) ×
[
IG2+1 −

β0β
′

0Ω

β
′

0Ωβ0

]  0
′

IG2

 .

When ui (i = 1, · · · , n) are independently distributed, the random variable in (3.13)

can be further approximated by

MRAAR∗
2n = X

′

nΞnXn ,(3.18)

where

Xn = [Ψ∗
M ]−1/2 1√

n

[
Π

(z)′

2n + W
′

2

]
(P∗

n − c∗Q
∗
n)u ,

Ξn =
[
σ−2

0 Ψ∗
M

]1/2
[
1

n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]−1 [
σ−2

0 Ψ∗
M

]1/2

and

Ψ∗
M =

1

n
Π

(z)′

2n P∗∗
n ΣnP

∗∗
n Π

(z)
2n +

1

n

n∑
i,j=1

[
u2

i w2jw
′

2j + w2iuiw
′

2juj

] [
p∗ij − c∗q

∗
ij

]2
,

which is given in Lemma 2 of Section 6, where Σn = (diagu2
i ).

Since the limiting distribution of Xn is NG2(0, IG2) and the rank of Ξn is G2, the

limiting distribution of MRAAR∗
2n under H0 is χ2 when the disturbances are ho-

moscedastic and c = 0. In the more general case under H0 when ui (i = 1, · · · , n)

are independently distributed it can be re-expressed as

MRAAR∗
2n =

G2∑
i=1

ainX
∗2
i ,(3.19)
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where ain (i = 1, · · · , G2) are the non-zero characteristic roots of Ξ∗
n and X∗

i (i =

1, · · · , G2) are independently distributed as N(0, 1).

When ui (i = 1, · · · , n) are independently distributed but they are possibly

heteroscedastic, we need a further modification because each elements of u and W2

are not necessarily (asymptotically) independent even in the asymptotic sense. One

simple way of modification is to use

Λ̂
∗
n = σ−2

0

[
1

n
Π̂

(z)′

2n P∗∗
n Π̂

(z)

2n

]−1

Ψ̂
∗
M ,(3.20)

where P∗∗
n = P∗

M − c∗Q
∗
M ,

Ψ̂∗
M =

1

n
Π̂

(z)′

2n P∗∗
n Σ̂nP

∗∗
n Π̂

(z)

2n +
1

n

n∑
i,j=1

[
û2

i ŵ2jŵ
′

2j + ŵ2iûiŵ
′

2jûj

] [
p∗ij − c∗q

∗
ij

]2
,(3.21)

Π̂
(z)

2n and Σ̂n = (diag û2
i ) are the estimates of Π

(z)
2n and Σn = (diag σ2

i ), respec-

tively, and ŵ2i and ûi (i = 1, · · · , n) are the residuals under the null hypothesis

(or the residuaals of the MLIML estimation). As a simple method, we can take

Π̂
(z)′

2n P∗∗
n Π̂

(z)

2n = Y
′
2P

∗∗
n Y2 and Π̂

(z)′

2n P∗∗
n Σ̂nP

∗∗
n Π̂

(z)

2n = Y
′
2P

∗∗
n Σ̂nP

∗∗
n Y2.

When ui and w2i are heteroscedastic,

E [w2iui] = (0, IG2)

[
Ωi −

σ2
i

σ2
0

Ω

]
β(3.22)

are not necessarily zero vectors and then we need the second term in order to estimate

(3.27). Then we can evaluate numerically 1 the distribution function of

MRAAR∗
3n =

G2∑
i=1

λinX
2
i ,(3.23)

where λin are the characteristic roots of Λ̂n and Xi (i = 1, · · · , G2) are independently

distributed as N(0, 1).

When c = 0 and the disturbances are homoscedastic, we take P∗∗
n = P∗

M = P2.1

and then (3.12) can be written as

MRAAR∗
4n =

1

σ2
0

β
′

0Y
′
P2.1Y2

[
Y

′

2P2.1Y2

]−1
Y

′

2P2.1Yβ0 ,(3.24)

1We may use the Monte Carlo experiments to obtain the finite sample distribution given the

data.
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which is quite similar to the statistic used by Kleibergen (2002). Thus (3.12) could

be regarded as its extension (or a modification) to the case of many instruments and

the heteroscedastic disturbances.

Because of the form (3.24), the resulting testing procedure based on the finite

sample (conditional) distribution of (3.18) could be interpreted as an extension of

the conditional likelihood ratio (CRL) approach proposed by Moreira (2003) to the

many weak instrument situation. When ui ∼ N(0, σ2
0) (i = 1, · · · , n) and c = 0,

(3.24) follows the χ2−distribution with G2 degrees of freedom exactly. Thus the

above testing procedure could be also regarded as an extension of the standard

likelihood ratio and the RAAR test procedures.

4. An Extension

The RAAR test and MARRA test discussed in Section 3 can be extended to

some directions. Let

G∗
M =

 Z
′
1

Y
′

 PM (Z1,Y)(4.1)

and

H∗
M =

 Z
′
1

Y
′

 QM (Z1,Y)(4.2)

be (K1 + 1 + G2) × (K1 + 1 + G2) matrices and PM = (p
(m)
ij ) and QM = (q

(m)
ij ) are

defined in Section 3.1.

We set the true vector θ
′

0 = (−γ
(0)′

1 , 1,−β
(0)
2 ). For the null hypothesis H

′
0 :

γ1 = γ
(0)
1 (a specified vector), β2 = β

(0)
2 (a specified vector) is rejected if

MRAARn = (−1)(n − Kn) log


1 +

θ̂
′

G∗
M θ̂

θ̂
′

H∗
M θ̂

1 +
θ

′

0G
∗
M θ0

θ
′

0H
∗
M θ0

 > c∗∗(K2n, qn) ,(4.3)

where θ̂ = (−γ̂
′

1, 1,−β̂2)
′
is the the solution of[

1

n
G∗

M − 1

qn

λnH
∗
M

]
θ̂M = 0(4.4)
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and λn is the smallest root of |(1/n)G∗
M − l(1/qn)H∗

M | = 0.

Then the null distribution of the MRAAR statistic can be developed as Theorem 1.

The proof is similar to Theorem 1 and it is omitted.

Theorem 2 : Suppose the assumptions of Theorem 1 hold. Under the null hypoth-

esis H
′
0, as n → ∞ (qn → ∞),

MRAARn − MRAAR∗
5n

p−→ 0 ,(4.5)

and

MRAAR∗
5n =

1

σ2
0

u
′ [

(P∗
M − c∗Q

∗
M)(Π(z)

∗n + W)
] [

Π(z)′

∗n (P∗
M − c∗Q

∗
M)Π(z)

∗n

]−1
(4.6)

×
[
(Π(z)

∗n + W)
′
(P∗

n − c∗P
∗
n)

]
u ,

where Π(z)
∗n = (Z1,Π

(z)
2n ) and W = (O,W2).

The null distribution of the MRAAR statistic in this case can be generated as H0.

When c = 0, P∗∗
n = P∗

M = P2.1 and Σn = σ2In, the limiting distribution is χ2 with

K1 + G2 degrees of freedom because ui and w2i (i = 1, · · · , n) are asymptotically

uncorrelated in this situation.

More generally, the extension of the MRAAR test to any hypothesis for the

subset of parameter vector θ = (−γ
′
1, 1,−β

′

2) can be constructed in the same way.

5. On Finite Sample Null Distributions of the MRAAR test

and other statistics

We have investigated the finite sample null distribution of the RAAR statis-

tic and the MRAAR statistic based on a set of Monte Carlo experiments in a

systematic way. We have used the numerical estimation procedure for the cu-

mulative distribution function (cdf) based on the simulation and we have enough

numerical accuracy in most cases. See Anderson et al. (2008) for the details of

the numerical computation method. The key parameters in figures and tables are

13



K2 (or K2n), n − K (or n − Kn), α = [ω22/|Ω|1/2](β2 − ω12/ω22) (Ω = (ωij)) and

δ2 = Π
(n)′

22 A22.1Π
(n)
22 /ω22. (See Anderson et al. (2008) for the detail of these no-

tations.) In Tables 1-6 we have given the null-distributions or the null-sizes of the

MRAAR test statistic. For comparison we also present the null-distributions or

the null-size of each test statistics including t-type test, RAAR, Kleibergen’s test,

Anderson-Rubin test, Moreira’s Conditional Likelihood test.

Because Hausman et al. (2007) have investigated a particular case of persistent

heteroscedasticity, we have also tried to reproduce their Monte Carlo experiments.

Hence in some tables we have given the null-distributions or the null-size of the t-type

test given by Hausman et al. (2007) and the MRAAR test we have developed in their

setting. Because they used the notation slightly different from ours, we denote the

noncentral parameter µ2
H (= δ2) and the correlation coefficient ρ (= −α/

√
1 + α2).

In addition to these test statistics, we have given the null-distributions of each

test statistics including t-type test, RAAR, Kleibergen’s test, Anderson-Rubin test,

Moreira’s Conditional Likelihood test when the disturbances have the persistent

heteroscedasticity.

When the noncentrality is large or moderate as in Tables 1 and 2, the differences

of significance levels are not large among the test statistics we have discussed. When

the noncentrality is small as in Tables 3-6, however, the differences become signif-

icant with or without heteroscedasticities. From these tables we have found that

the null-distribution or the null-sizes of the MRAAR test is quite robust against

the cases of many instruments, many weak instruments as well as the persistent

heteroscedasticities of disturbances.

There is a natural question on the power comprison of the MRAAR test and

the t-type test 2 when there are many instruments and the disturbances have per-

sistent heteroscedasticity. We have found that the empirical sizes of two statistics

are often similar, but also we have found that the RAAR test has a better power

property against the t-type statistic in some situation when we need a two-sided

2See Matsushita (2006) and Anderson et al. (2008) for some details of t-statistic in the many

instruments situation.
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t-test in particular. In this respect, we only illustrate this situation by showing the

power functions of two test statistics as Figure 1 in Appendix. We are currently

investigating the conditions when we have this phenomenon.

6. Concluding Remarks

In this paper, we propose a particular modification of the RAAR test procedure

for many weak instruments and the heteroscedastic disturbances. When there are

many instruments and the disturbances have persistent heteroscedasticity, it might

be argued that the RAAR test does not necessarily have desirable asymptotic prop-

erties as the likelihood ratio test in the standard asymptotic theory. However, as

we have shown that a simple modification of the RAAR test procedure based on

the MRAAR statistic gives a reasonable way of testing hypothesis on coefficients

of structural equation when there are many instruments and the disturbances are

heteroscedastic. We have shown that our test procedure could be interpreted as the

extensions of test statistics developed by Kleibergen (2002) and Moreira (2002) to

the cases of many instruments and the persistent heteroscedasticity.

As a preliminary study the MRAAR test has the reasonable power property.

The finite sample properties of the MRAAR test and other statistics including the

t-type statistic are currently under a further investigation.

7 Mathematical Derivations

In this section we give the proof of Theorem 1. The method of proof is basically a

modification of the arguments in Section 6 of Kunitomo (2008). Some of the details

are omitted.

Proof of Theorem 1 : We set the true coefficient vector as β0. The MRAAR

statistic in (3.7) can be approximately the same as

LR1 = (−n)

 β̂
′
1
n
GM β̂

β̂
′

1
qn

HM β̂
−

β
′

0
1
n
GMβ0

β
′

0
1
qn

HMβ0

(7.1)
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= (− n

D
)

{
2(β̂ − β0)

′
[
1

n
GMβ0 −

1

qn

HMβ0

(
N0

D0

)]

+(β̂ − β0)
′
[
1

n
GM − 1

qn

HM

(
N0

D0

)]
(β̂ − β0)

}
+ op(1) ,

where N0 = (1/n)β
′

0GMβ0, D0 = (1/qn)β
′

0HMβ0, D = (1/qn)β̂
′

HM β̂ and β̂ is the

modified LIML estimator of β by defining the LIML estimation with GM and HM .

We use the fact that D − D0 = op(1) under H0 and

√
n

[
1

n
GMβ0 −

1

qn

HMβ0

(
N0

D0

)]
(7.2)

=

[
IG2+1 −

Ωβ0β
′

0

β
′

0Ωβ0

] [
√

n(
1

n
GM − G

(0)
M )β0 −

√
cc∗

√
qn(

1

qn

HM − H
(0)
M )β0

]
,

where G
(0)
M = plim 1

n
GM and H

(0)
M = plim 1

qn
HM .

We first prepare the following lemma.

Lemma 1 : As n → ∞ and qn → ∞,

1

n
V

′
P∗

MV
p−→ c Ω(7.3)

and
1

qn

V
′
Q∗

MV
p−→ Ω .(7.4)

Proof : Because {vi} are mutually independent and we have (2.6), we need to

investigate the diagonal parts of P∗
M and Q∗

M . We use the relation

1

n
tr(P∗

M) =
1

n
tr(In − PZ1)PM(In − PZ1)

=
1

n
tr(In − PZ1)PZ(In − PZ1) +

1

n
tr(In − PZ1)(PM − PZ)(In − PZ1)

=
1

n
tr(PZ − PZ1) +

1

n
tr(PM − PZ)(In − PZ1) .

Since tr(PZ − PM) = op(1), |pii| ≤ 1 (i = 1, · · · , n), Kn/n < 1 and

|tr [(PZ − PM)PZ1 ] | = |tr
[
(diag(pii −

Kn

n
))PZ1

]
| ≤ 2K1 ,

we find that (1/n)tr(P∗
M) → c as n → ∞ and we have (7.3). Also we use the relation

1

qn

tr(In − PZ1)QM(In − PZ1)
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=
1

qn

tr [In − PZ ] +
1

qn

tr(In − PZ1)(PZ − PM)(In − PZ1)

= 1 +
1

qn

tr(PZ − PM)(In − PZ1)

= 1 +
1

qn

tr(PZ − PM) − 1

qn

tr(PZ − PM)PZ1 .

Then by using a similar argument we have (7.4). Q.E.D.

The next argument is a modification of Kunitomo (2008) and thus the develop-

ment should be only sketchy to avoid some duplication. By substituting the relation

Y = Π(z)
n + V into GM and HM , we have

1

n
GM =

1

n


 β

(0)′

2

IG2

 Π
(z)′

2n + V
′

 P∗
M

[(
β

(0)
2 , IG2

)
Π

(z)
2n + V

]
(7.5)

p−→ G0 = B
′
Φ∗

1MB + c Ω ,

and

1

qn

HM =
1

qn


 β

(0)′

2

IG2

 Π
(z)′

2n + V
′

 Q∗
M

[(
β

(0)
2 , IG2

)
Π

(z)
2n + V

]
(7.6)

p−→ H0 = B
′
Φ∗

2MB + Ω∗ ,

where B = (β
(0)
2 , IG2) and and β0 = (1,−β

(0)′

2 )
′
. Then (3.8) implies λn

p→ c and

N0/D0
p→ c because of the rank conditon on Π(z)

n and (3.10). Then β̂M
p→ β0 and

1

n
GM − N0

D0

HM
p→ B

′
[
plim

1

n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

]
B .(7.7)

Define G1, H1, λ1n, and b1 by G1 =
√

n( 1
n
GM − G0), H1 =

√
qn( 1

qn
HM − H0),

λ1n =
√

n(λn − c) and b1 =
√

n(β̂M − β0). From (3.8), we have

[G0− c H0]β0 +
1√
n

[G1−λ1nH0]β0 +
1√
n

[G0− c H0]b1 +
1

√
qn

[−cH1]β0 = op(
1√
n

)

and then for β̂
′

M = (1,−β̂
′

2M) and β
′
= (1,−β

(0)′

2 ),

B
′
Φ∗

M

√
n

[
β̂2.LI − β2

]
= (G1 − λ1nH0 −

√
cc∗H1) β0 + op(1) .(7.8)
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By multiplying (7.5) from the left by β
′

0 = (1,−β
′

2), we find

λ1n =
β

′

0(G1 −
√

cc∗H1)β0

β
′
Ωβ 0

+ op(1) .

Also by mutilying (7.6) on the left by (0, IG2) and substituting λ1n, we have

√
n

[
β̂2.LI − β

(0)
2

]
= Φ∗−1

M (0, IG2)

[
I1+G2 −

Ωβ0β
′

0

β
′

0Ωβ 0

]
(G1 −

√
cc∗H1) β0 + op(1).(7.9)

By using the relation Vβ0 = u, we have the representation

(G1 −
√

cc∗H1) β0 =
1√
n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)u +

1√
n

[
V

′
(P∗

M − c∗Q
∗
M)

]
u .

Then (7.9) is rewritten as

√
n

[
β̂2.LI − β2

]
(7.10)

= Φ∗−1
M

1√
n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)u

+Φ∗−1
M

1√
n

[0, IG2 ]

[
I1+G2 −

Ωβ0β
′

0

β
′

0Ωβ0

]
V

′
(P∗

M − c∗Q
∗
M)u + op(1)

= Φ∗−1
M

1√
n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)u + Φ∗−1

M

√
c

1√
K2n

W
′

2(P
∗
M − c∗Q

∗
M)u ,

where

W
′

2 = (0, IG2)

[
I1+G2 −

Ωβ0β
′

0

β
′

0Ωβ0

]
V

′
.

Thus we have obtained the asymptotic distribution of β̂2M , which can be summarized

as the following Lemma 2. By using (7.1), (7.2) and (7.9), LR1 is asymptotically

equivalent to

LR2 = (
1

σ2
0

)
[√

n(β̂ − β0)
]′

[
1

n
GM − 1

qn

HM

(
N0

D0

)] [√
n(β̂ − β0)

]
+ op(1) .(7.11)

Then by substituting (7.10) into LR2 and
√

n(β̂−β0)
′
= [0,−

√
n(β̂2−β

(0)
2 ], finally

we obtain (3.12) by using Lemma 2 below.

Q.E.D.

In our derivation of this section we need the asymptotic distribution of the MLIML

estimator with many instruments when there are persistent heteroscedasticity, which
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is summarized in the next lemma. The proof is silimar to the one in Kunitomo (2008)

and it is omitted.

Lemma 2 : Let z
(n)
i , i = 1, 2, · · · , n, be a set of Kn×1 vectors (Kn = K1 +K2n, n >

2). Let vi, i = 1, 2, · · · , n, be a set of G∗ × 1 independent random vectors such

that E(vi|z(n)
i ) = 0, E(viv

′
i|z

(n)
i ) = Ωi (a.s.) is a function of z

(n)
i and E(∥vi∥4) are

bounded. Suppose (2.7), (3.1), (3.9) and

1

n
Π

(z)′

2n (P∗
M − c∗Q

∗
M)Π

(z)
2n

p−→ Φ∗
M(7.12)

is a positive definite matrix as n → ∞ and qn → ∞. Then

√
n

[
β̂2.MLI − β2

]
d−→ N(0,Φ∗−1

M Ψ∗
MΦ∗−1

M )(7.13)

where

Ψ∗
M = Ψ∗

1M + Ψ∗
2M ,(7.14)

Ψ∗
1M = plim

1

n

n∑
i,j,k=1

π2i(z
(n)
i )[p∗ij − c∗q

∗
ij]σ

2
j [p

∗
jk − c∗q

∗
jk]π2k(z

(n)
k )

′
,

Ψ∗
2M = plim

1

n

n∑
i,j=1

[
σ2

i E(w2jw
′

2j|z
(n)
j ) + E(w2iui|z(n)

i )E(w
′

2juj|z(n)
j )

] [
p∗ij − c∗q

∗
ij

]2
,

provided that Ψ∗
1M and Ψ∗

2M converge in probability as n → ∞, and w2i = v2i −
ui(0, IG2)Ωβ0/σ

2 (i = 1, · · · , n).
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APPENDIX : Tables

In Tables 1-6 the null-distributions or the null-sizes of alternative test statistics are given. They

include the t (tLIML) test, the RAAR test, Anderson-Rubin (AR) test, Kleibergen (K) test, Moreira

(CLR) test, Hausman’s t test (tHLIML) and the modified RAAR (mRAAR) test. In Figure 1 we

give the empirical power functions of the RAAR test and the t-type test in a particular case.
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Table 1: Empirical sizes of statistics that test H0 : β = β0 with n−K = 100, K2 = 3

and homoscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

δ2 = 100 α = 0.5 0.10 0.098 0.103 0.107 0.100 0.102 0.107 0.104

0.05 0.051 0.053 0.055 0.051 0.051 0.056 0.051

0.01 0.011 0.012 0.011 0.010 0.012 0.014 0.011

α = 1 0.10 0.101 0.108 0.109 0.107 0.107 0.110 0.107

0.05 0.050 0.056 0.059 0.054 0.055 0.057 0.055

0.01 0.015 0.011 0.015 0.011 0.013 0.018 0.012

δ2 = 30 α = 0.5 0.10 0.094 0.113 0.106 0.104 0.102 0.096 0.103

0.05 0.047 0.059 0.055 0.052 0.053 0.052 0.051

0.01 0.014 0.014 0.014 0.012 0.013 0.016 0.012

α = 1 0.10 0.089 0.110 0.110 0.104 0.107 0.097 0.105

0.05 0.053 0.058 0.059 0.054 0.056 0.058 0.054

0.01 0.021 0.014 0.013 0.012 0.014 0.024 0.011
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Figure 1: Power of tests: n − K = 100, K2 = 10, α = 1, δ2 = 10
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Table 2: Empirical sizes of statistics that test H0 : β = β0 with n − K = 100,

K2 = 10 and homoscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

δ2 = 100 α = 0.5 0.10 0.107 0.116 0.112 0.101 0.103 0.109 0.104

0.05 0.055 0.060 0.062 0.052 0.053 0.057 0.052

0.01 0.014 0.013 0.016 0.011 0.012 0.013 0.011

α = 1 0.10 0.108 0.115 0.120 0.107 0.108 0.111 0.109

0.05 0.058 0.064 0.067 0.057 0.059 0.060 0.059

0.01 0.016 0.015 0.016 0.012 0.014 0.017 0.012

δ2 = 50 α = 0.5 0.10 0.115 0.131 0.117 0.105 0.106 0.103 0.104

0.05 0.062 0.072 0.065 0.054 0.055 0.053 0.052

0.01 0.015 0.018 0.016 0.011 0.013 0.015 0.011

α = 1 0.10 0.109 0.120 0.118 0.104 0.107 0.102 0.108

0.05 0.058 0.065 0.066 0.055 0.056 0.058 0.052

0.01 0.020 0.014 0.017 0.011 0.011 0.020 0.009

Table 3: Empirical sizes of statistics that test H0 : β = β0 with n = 500, K = 5 and

homoscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

µ2
H = 10 ρ = 0.3 0.10 0.085 0.152 0.099 0.095 0.098 0.072 0.105

0.05 0.041 0.088 0.049 0.049 0.050 0.034 0.051

0.01 0.007 0.022 0.010 0.010 0.010 0.006 0.010

ρ = 0.8 0.10 0.112 0.125 0.104 0.104 0.104 0.106 0.106

0.05 0.084 0.068 0.055 0.056 0.056 0.076 0.053

0.01 0.043 0.017 0.009 0.012 0.013 0.038 0.011

µ2
H = 3 ρ = 0.3 0.10 0.076 0.245 0.100 0.103 0.104 0.065 0.138

0.05 0.033 0.152 0.050 0.053 0.051 0.028 0.072

0.01 0.003 0.046 0.011 0.009 0.011 0.003 0.015

ρ = 0.8 0.10 0.189 0.177 0.099 0.099 0.100 0.156 0.101

0.05 0.152 0.102 0.051 0.049 0.050 0.118 0.048

0.01 0.091 0.028 0.010 0.009 0.010 0.068 0.010
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Table 4: Empirical sizes of statistics that test H0 : β = β0 with n = 500, K = 5 and

heteroscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

µ2
H = 10 ρ = 0.3 0.10 0.124 0.280 0.271 0.162 0.210 0.075 0.105

0.05 0.068 0.193 0.182 0.096 0.134 0.034 0.055

0.01 0.016 0.082 0.076 0.029 0.051 0.006 0.011

ρ = 0.8 0.10 0.104 0.156 0.170 0.126 0.133 0.114 0.101

0.05 0.077 0.090 0.099 0.069 0.074 0.080 0.051

0.01 0.040 0.025 0.030 0.017 0.020 0.036 0.011

µ2
H = 3 ρ = 0.3 0.10 0.090 0.397 0.260 0.174 0.237 0.063 0.122

0.05 0.044 0.295 0.172 0.106 0.156 0.028 0.061

0.01 0.008 0.145 0.062 0.036 0.061 0.005 0.011

ρ = 0.8 0.10 0.162 0.224 0.165 0.131 0.150 0.185 0.122

0.05 0.127 0.147 0.092 0.074 0.087 0.144 0.067

0.01 0.080 0.050 0.026 0.018 0.024 0.084 0.018

Table 5: Empirical sizes of statistics that test H0 : β = β0 with n = 500, K = 20

and homoscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

µ2
H = 20 ρ = 0.3 0.10 0.184 0.258 0.108 0.108 0.108 0.083 0.114

0.05 0.103 0.177 0.055 0.050 0.056 0.042 0.056

0.01 0.031 0.070 0.012 0.012 0.013 0.010 0.012

ρ = 0.8 0.10 0.126 0.161 0.109 0.104 0.105 0.096 0.100

0.05 0.091 0.095 0.059 0.054 0.054 0.065 0.051

0.01 0.049 0.029 0.014 0.010 0.013 0.032 0.011

µ2
H = 10 ρ = 0.3 0.10 0.199 0.362 0.106 0.109 0.113 0.087 0.138

0.05 0.120 0.273 0.055 0.056 0.055 0.044 0.074

0.01 0.038 0.135 0.012 0.012 0.012 0.011 0.018

ρ = 0.8 0.10 0.171 0.216 0.107 0.103 0.105 0.125 0.103

0.05 0.135 0.139 0.053 0.053 0.055 0.090 0.053

0.01 0.082 0.053 0.012 0.011 0.013 0.045 0.010
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Table 6: Empirical sizes of statistics that test H0 : β = β0 with n = 500, K = 20

and heteroscedastic errors

tLIML RAAR AR K CLR tHLIML mRAAR

µ2
H = 20 ρ = 0.3 0.10 0.238 0.393 0.328 0.159 0.229 0.089 0.103

0.05 0.140 0.306 0.226 0.098 0.151 0.044 0.054

0.01 0.042 0.176 0.090 0.031 0.060 0.012 0.011

ρ = 0.8 0.10 0.083 0.199 0.182 0.131 0.141 0.098 0.098

0.05 0.058 0.126 0.104 0.076 0.078 0.067 0.047

0.01 0.029 0.043 0.029 0.019 0.022 0.032 0.010

µ2
H = 10 ρ = 0.3 0.10 0.229 0.534 0.329 0.162 0.266 0.087 0.130

0.05 0.136 0.450 0.225 0.098 0.184 0.046 0.069

0.01 0.047 0.295 0.089 0.032 0.075 0.013 0.014

ρ = 0.8 0.10 0.111 0.276 0.178 0.147 0.162 0.137 0.112

0.05 0.089 0.196 0.103 0.084 0.093 0.103 0.055

0.01 0.057 0.081 0.028 0.022 0.028 0.058 0.013
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